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Smart Curb Digital Twin: Inventorying Curb
Environments Using Computer Vision
and Street Imagery

Haiyan Hao and Yan Wang

Abstract—Digital Twin (DT) offers a novel framework to
track, model, analyze, and anticipate complex urban processes
and support data-driven decision-making. However, a premise
of developing DT applications is to inventory physical urban
built environment digitally, which are often lacking for small-
and medium-sized cities due to limited resources. Particularly,
few digital inventories have been built for urban curb environ-
ments, which have been increasingly challenged by new vehicle
technologies and emerging mobility services. We propose a data-
driven framework to inventory curb facilities across types and
locations using computer vision (CV) and Google Street View
(GSV) imagery. Specifically, we used a state-of-the-art seman-
tic segmentation model, i.e., DeepLab V3, pre-trained on the
CityScapes dataset, to detect curb facilities of interest from GSV
images. We then used the Inverse Perspective Mapping (IPM)
to estimate the spatial location for each detected facility and
used spatial processing to aggregate and filter estimation results.
We demonstrated the framework for inventorying curbs in the
Innovation District in the City of Gainesville, FL.. The prelimi-
nary research contributes to Smart Curb Digital Twin for more
safe, accessible, and productive curb environments.

Index Terms—Curb environment, computer vision, digital
twin, street imagery, smart cities.

I. INTRODUCTION

URBS are spaces that separate vehicular and pedestrian

flows. Curbs locate important urban assets used by travel-
ers to switch transportation means, residents to access curbside
properties, drivers to park vehicles, municipalities to place
public facilities, and so forth. Under the burgeoning smart
city initiatives, recent advances in vehicular technologies and
mobility services, such as shared micro-mobility and electric
vehicle (EV), have complicated curb environments with dif-
ferent private and public sectors placing their facilities (e.g.,
EV charging stations and bike racks) [1], [2], [3]. These new
facilities have turned curbs contested spaces for more inten-
sive and diverse activities that can be difficult to manage [4].
Consequently, cities are in increasing need of up-to-date strate-
gies to design, regulate, and manage urban curbs and ensure
the efficiency and equity of different curb uses [5].
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Digital twin (DT) empowers urban and transportation prac-
titioners by creating virtual replicas for the urban built
environment and enabling the tracking, modeling, analyzing,
and prediction of complex urban processes [6]. Researchers
across disciplines have employed the DT framework for energy
monitoring, building information management, disaster man-
agement, construction management, and so forth [6], [7]. Curb
management can benefit from DT in the following aspects.
First, DT can present urban stakeholders with the spatial lay-
out of curb environments, which informs the decision-making
of placements of new curb facilities such as EV charging
stations and micro-mobility racks. Second, DT can model
human-infrastructure interaction and simulate curb-use con-
ditions across scenarios, which enables the evaluation of the
performance of curb designs and regulations [8]. Third, DT
supports the development of data-driven management systems
which can track the real-time operation and usage conditions
of different curbs, leading to more coordinated and efficient
curb uses among different stakeholders.

However, a salient barrier to developing DT applications for
urban curbs is the lack of the digitalization of curb environ-
ments. A few public institutions and private companies, e.g.,
SharedStreets and Coords, have recognized the challenges and
started to inventory curb environments for metropolitans [9].
However, the data collection mainly relied on hired surveyors
or crowdsourcing, which can be labor-intensive and expensive
for small and medium-sized cities with increasing populations.
Some recent research in landscape and urban planning has
shown the potential of using street view imagery in audit-
ing urban environments. For example, a few studies explored
approaches to automatically identify curb facilities, including
roadway signs [10], trees [11], and sidewalks [12], from street
view images leveraging either conventional image process-
ing techniques or computer vision (CV) algorithms. However,
these approaches mostly focused on a single object and may
require additional data (e.g., LIDAR and satellite images) for
accurate locating [13].

Given the presented needs and challenges, we present a low-
cost, fast, and automated data inventory framework for Smart
Curb Digital Twin. The framework extracts various discrete
and continuous curbside furniture, e.g., poles and sidewalks,
from Google Street View (GSV) imagery and processes them
into geospatial inventory that can be regularly updated with
the updating of GSV. We demonstrated the application of this
framework with GSV imagery collected from the Innovation
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Fig. 1. Framework design.

District in the City of Gainesville, FL, which includes diverse
land-use patches characterized by different curb environments.

II. FRAMEWORK DESIGN

The proposed framework is shown in Fig. 1. It mainly
includes two steps, i.e., 1) detecting and locating curb furni-
ture from individual GSV images and 2) aggregating detection
results from all GSV images for the digital inventory, which
will be introduced in the following subsections.

A. Locating Discrete and Continuous Objects From
Individual GSV Images

We show the pipeline for the first step in Fig. 2. For each
obtained GSV image, we first performed semantic segmen-
tation to detect the presence of curb facilities of interest.
We compared different pre-trained models in Detectron2, a
platform including various off-the-shelf CV models [14]. We
selected the DeepLab V3 model pre-trained on the CityScapes
dataset for semantic segmentation. DeepLab is a scene seg-
mentation architecture that uses atrous convolution to improve
the performance of the model in segmenting objects at
multiple scales [15]. Its recent version, i.e., DeepLab V3,
shows state-of-the-art performance in various scene segmen-
tation benchmarks. CityScapes consists of more than 20,000
annotated urban scene images collected from 50 cities and
across different seasons [16]. The combination of DeepLab
V3 and CityScapes is hence capable to digitalize urban built
environment.

This pre-trained model can identify several curb facilities
of interest, e.g., traffic signs, traffic lighting, poles, and side-
walk. We distinguished two types of objects at curb spaces,
i.e., discrete (e.g., poles) and continuous (e.g., sidewalks), and
adopted different processing procedures (Fig. 2). Specifically,
for discrete objects, we performed a set of image processing,
including removing small holes (i.e., incontinuity), removing
small objects (i.e., noises), filtering, and labeling, to clean and
segment identified objects of the same category on the same
image. We then draw bounding boxes for individual objects
and estimate their distances with Inverse Perspective Mapping
(IPM).

IPM is a technique that computes the top-view perspective
of images from other perspectives with known camera spec-
ifications (i.e., focal length, resolution, and pixel size) and
installation parameters (i.e., camera height and angles) [17]
(Fig. 3). IPM can be used to estimate the distance of the object
from the camera with the camera projection matrix, which
project objects from the 3-D world system to 2-D camera
system, as in:
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where, X, Y, and Z are the 3-dimension location of the object
in the world coordinate system; u and v are object locations
in the image plane, measured with lateral and vertical pixels;
up and vg are the location of the camera center in the image
plane, measured with lateral and vertical pixels; f; and f, are
the focal lengths of the camera, measured with lateral and
vertical pixels; & is camera height from the ground (Fig. 3),
measured in meters; r is the rotation matrix determined by the
camera’s yaw angle and pitch (Fig. 3); and f is transformation
vector denoting the location differences between origins for
the world coordinate system and camera coordinate system.f is
the zero vector when we set the origin of the world coordinate
system as the origin for the camera coordinate system (Fig. 3)

For the simplest case, when the camera’s yaw angle and
pitch were set to zero, i.e., r equals the zero matrix, and £
is also set as the zero vector. Then the lateral (i.e., x axis
in Fig. 3) and vertical (i.e., y axis in Fig. 3) offsets of the
detected object in relation to the camera can be calculated
with (2):

X = hu—u)
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In this research, we calculated the lateral and vertical offset
of discrete objects with their middle point of the lower bounds
of bounding boxes. For continuous objects such as sidewalks,
we firstly performed the IPM to convert the inclined GSV
image to top-down views, and then performed similar cleaning
and segmenting procedures as the discrete objects as shown
in Fig. 2. In this way, the bounding box can tightly fit the
identified continuous object. We then calculated the lateral and
vertical offsets for the start and end points of the closest bound
for continuous objects. As the accuracy of IPM estimation
reduces with the increasing distance, we removed all discrete
objects with offsets further than 12 meters and clipped the
length of continuous objects to not exceed 15 meters.

B. Aggregate Detection Results for Curb Inventory

The step described in Section II-A converts each GSV image
into a set of discrete and continuous objects associated with
the lateral and vertical offsets with respect to the camera. For
each GSV image, we then mapped the spatial location of the
detected objects with their relative offsets, the location (i.e.,
longitude and latitude) of the camera, and the heading angle of
the camera. As we used a small spatial interval (i.e., 10 meters)
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to sample GSV images, one object will be captured by multiple
GSV images from different angles and, hence, are associated
with multiple estimated locations as Fig. 4 shows. For discrete
objects, we used spatial clustering to group location estima-
tions for the same object. We then counted the occurrence for
each object and removed the ones that only occurred once,
which means that object was only found in a single GSV image
and may be misclassifications made by the CV algorithm. We
used the averaging coordinates of the different location esti-
mations as the final spatial location for discrete objects. For
continuous objects that are processed into line features, we
combined the segments that are located within one meter.
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Fig. 4. Aggregating detection results from different GSV images.

III. CASE APPLICATION

We demonstrated the application of this framework with
data collected from the Innovation District in the City
of Gainesville (Fig. 5). The Innovation District is located
between the city’s downtown and the University of Florida.
The district consists of diverse land use patches, e.g., residen-
tial, commercial, official, and mixed-use, that are associated
with disparate curb environments. The district also has a high
share of micro-mobility trips that transport students between
campus and downtown, which results in more frequent curb
uses and demands novel curb management strategies.
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Fig. 5.

The map for sampled coordinates for GSV image query.

Fig. 6. Mapping result for (a) discrete objects and (b) continuous objects.

Specifically, we sampled coordinates for data collection
along roadways in Innovation District with the “Generate
Points Along Lines” function in ArcGIS Desktop 10.7. We set
the distance between nearby sampling points to be 10 meters
and identified 1,110 sampling coordinates in the study region
(Fig. 5). We then used the coordinates of the sampled points
to query the closest available street-view imagery with Google
Street View Application Programming Interface (API). For
each coordinate, we queried four street-view images corre-
sponding to the four heading angles of 0°, 90°, 180°, and 270°.
Note that 0° represents north. Each image is of 640 * 640
pixels resolution, taken at the pitch of 0°, and with a 90°
field of view. We also acquired the actual coordinates of GSV
images referring to the associated metadata. Additionally, we
back-calculated the camera projective transformation matrix,
including the focal length and camera height, by calibrating (1)
with a few field measurements conducted at the pilot site.

Fig. 6 shows the mapping results for discrete objects (i.e.,
poles and traffic signs) and continuous objects (i.e., sidewalks)
identified for the study region. For discrete objects, the 4,440
GSV images initially yield 1,943 detected objects (with rep-
etitions). 188 different objects were identified to be captured
by more than one GSV image and were displayed in Fig. 6a.
The identified poles are generally street lighting, utility poles,
and posts for non-traffic signs. As Gainesville does not archive
data for poles and traffic signs, we manually measured the dis-
parities between the real and estimated object locations with
Google Map’s “Measure Distance” function. It was shown that
the algorithm can achieve 76.5% precision for object detec-
tion and O - 4m accuracy for spatial mapping (Fig. 6). False

positive cases include advertisement bands, road barriers, and
bollards.

For continuous objects, the algorithm initially yielded 773
line segments (with repetition) for sidewalks, which are dis-
played in Fig. 6b together with the actual sidewalk data
collected by the city. It was shown that the pre-trained CV
model can better identify sidewalks located near commer-
cial or office blocks than residential blocks. The algorithm
misclassifies medians as sidewalks at some locations.

IV. DiscussiON AND CONCLUSION

The emerging disruptive technologies will make urban envi-
ronments more complex and dynamic. Digital Twin (DT) has
great potential to contribute to more smart, efficient, and
sustainable cities by empowering decision-makers to make
data-driven decisions. The presented data inventory framework
for Smart Curb Digital Twin provides a fast and economic
solution to digitalize curb environments and, therefore, assists
local governments in developing DT applications for the plan-
ning and management of urban curbs. The framework is
applied in a real-world test site, i.e., the Innovation District
in Gainesville, FL. Based on the experiments, we identified
the following improvements that can be considered in future
work.

First, we used an off-the-shelf model, i.e., DeepLab V3 pre-
trained on the CityScapes dataset, for the detection of curb
objects. Though CityScapes is among one of the few datasets
for urban scene understanding, it was not specifically designed
for the curb environment. Only a few categories of curb facil-
ities are annotated in this dataset. Future studies may tune
the model with street-view images specifically annotated for
curb environments. It is also recommended to include up-to-
date categories of curb facilities in the annotation, such as EV
charging stations and shared micro-mobility parking stations.
Second, we used a conventional technique, IPM, to estimate
the location of identified curb facilities. One challenge we met
is the unknown specification and installation parameters of
GSV cameras, which is critical for accurate location estima-
tion with IPM. To address this, we did field measurements
and back-calculated the parameters in this study. Note that
the acquired GSV images can be from different years and
collected by different GSV vehicles with different cameras
specification and/or installation parameters. Also, some GSV
images are captured during rainy and cloudy days and are
of low image quality. These limitations can be easily over-
come when cities deploy their own data collection vehicles and
operate on sunny days. Additionally, many cities also started
to operate autonomous shuttles with sensors frequently scan-
ning surrounding environments including curbs. Future studies
may also consider leveraging these data to know the real-
time conditions of curb facilities [18], [19], and integrating
human dynamics using user-generated data to track curb use
patterns [20], [21]. With these improvements, we believe our
low-cost and fast inventory framework will play an impor-
tant role in bridging the real city and its digital copy, as well
as mitigating the uneven technological developments across
different cities.
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