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Abstract

An epithelial-mesenchymal transition (EMT) occurs in almost every metazoan embryo at the time meso-
derm begins to differentiate. Several embryos have a long record as models for studying an EMT given that
a known population of cells enters the EMT at a known time thereby enabling a detailed study of the
process. Often, however, it is difficult to learn the molecular details of these model EMT systems because
the transitioning cells are a minority of the population of cells in the embryo and in most cases there is an
inability to isolate that population. Here we provide a method that enables an examination of genes
expressed before, during, and after the EMT with a focus on just the cells that undergo the transition.
Single cell RNA-seq (scRNA-seq) has advanced as a technology making it feasible to study the trajectory of
gene expression specifically in the cells of interest, in vivo, and without the background noise of other cell
populations. The sea urchin skeletogenic cells constitute only 5% of the total number of cells in the embryo
yet with scRNA-seq it is possible to study the genes expressed by these cells without background noise. This
approach, though not perfect, adds a new tool for uncovering the mechanism of EMT in this cell type.

Key words Epithelial-mesenchymal transition, Single cell RNA-sequencing, Sea urchin, Tissue
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1 Introduction

Most embryonic mesoderm cells are initially specified when they
reside in an epithelium. An epithelial-to-mesenchymal transition
(EMT) then removes them from the epithelial layer and they
adapt a mesenchymal phenotype. In some cases, these cells again
become epithelial and go through additional EMTs. This process of
leaving the epithelium also occurs with carcinoma cells. Whether
the two EMTs share mechanistic components of the process is a
question that has often been asked. Literature reports indicate that
they do indeed share multiple properties: they tend to use the same
controlling transcription factors (twist, snail, and zeb1), though not
always. They appear similar in behavior (the cells become motile,
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change polarity, invade through the basement membrane,
de-adhere from the adherens junction, and the plasma membrane
is remodeled), though differences are observed in different model
systems. What is clear is that in both the carcinoma and embryo
systems, the molecular basis of this complex cellular event called
EMT is incompletely understood. Indeed, of the several thousand
papers a year on EMT, most focus on the epiphenomenon, that is,
does the phenotypic change occur to an epithelial culture, or layer,
under applied experimental conditions? Far fewer papers focus on
the functional mechanics of that EMT in molecular detail.

A major reason for not understanding the EMT process in
greater detail is that most systems are asynchronous, that is, the
cells undergoing an EMT are at different states at any given time
making it difficult to deduce the precise sequence of molecular
events. A few cases of EMT in embryonic systems do offer syn-
chrony, but each of these also has shortcomings. For example,
ventral furrow formation in Drosophila melanogaster (Drosophila)
provides a near synchronous EMT of mesoderm cells, and some
genes necessary for the process have been identified. However, the
difficulty in that system is that the number of mesoderm cells is
small relative to the remaining cells of the embryo, and the EMT
occurs relatively early in development, at a time when many mater-
nally expressed genes are still expressed. This makes it difficult to
exploit the power of Drosophila genetics to discover the genes
mechanistically involved specifically in the EMTprocess [1]. Anchor
cell invasion in Caenorhabditis elegans is another embryonic EMT
in which one cell invades through the basement membrane as part
of vulval assembly [2]. In this case the system is genetically tractable
and a number of genes involved in the process have been identified.
There is no question of synchrony, since only the one cell partici-
pates. However, a shortcoming of this system for EMT analysis is
that the anchor cell does not complete an EMT. It breaches the
basement membrane in a manner similar to that utilized by cells
undergoing EMT in other systems, but it does not de-adhere from
the epithelium. The sea urchin embryo also has a population of cells
that undergo EMT at a precise time in early development and a
gene regulatory network of specification is well established for
those cells, making this a useful model system for understanding
control of the process [3]. Nevertheless, this system also has short-
comings in that the skeletogenic cells that go through the EMT are
only 5% of the population of cells in the embryo, making it a
challenge to determine the sequence of molecular events in that
small population.

Here we describe a method that can be used on any system to at
least partially overcome some of the shortcomings possessed by
many systems. Single cell RNA-sequencing (scRNA-seq) has
advanced to the point where one can obtain a profile of expressed
RNA in each cell. Computational approaches along with a temporal
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trajectory of single cells offers an approach to profile the molecular
changes that occur in each cell undergoing the EMT over time.
This approach therefore, has the potential of eliminating much of
the noise introduced either by asynchrony of the EMT and/or
inclusion of noninvolved cells, and the reward is provision of a
temporal profile of molecular change.

It should be noted, however, that scRNA-seq is not the perfect
solution. Because of the small amount of RNA obtained from each
cell, amplification is necessary before sequencing. This and other
limitations means that some rare RNA species are less likely to be
included in the database than in bulk RNA-seq approaches. Never-
theless, the advances in scRNA-seq approaches provide the investi-
gator with a valuable tool to penetrate EMT mechanisms to a level
that heretofore has been unreachable.

2 The Single Cell RNA-Sequencing Approach, a Justification

Next generation sequencing (NGS) platforms increasingly allow
in-depth analyses of gene expression and genetic interactions in
many biological systems. The approaches allow the investigator
unprecedented access to biological questions. The methodology
begins with sample preparation, includes library production,
sequencing, and data analysis. The latter is most important as
software continues to be developed to enable the investigator to
gain ever more detail about the biological process in question. As
part of the description, the caveats and limitations of these tech-
nologies will be discussed. The focus will be on approaches that
advance RNA-sequencing technologies and their application to
understanding EMTs.

Two methods of RNA-sequencing are currently utilized, single
cell RNA-sequencing (scRNA-seq) and bulk RNA-sequencing
(RNA-seq). They each have their own individual advantages and
disadvantages and are useful for addressing different biological
questions. Bulk (whole-tissue) RNA-sequencing has many applica-
tions for research including comparative gene expression analyses
between samples of various conditions, differential gene expression,
identification of mRNA splice variants and small or long noncoding
RNAs. RNA material collected from whole-tissue samples requires
less or no amplification relative to scRNA-seq and the sample can be
more deeply sequenced than that obtained from a single cell. Bulk
RNA-seq is also easier: obtaining single cell suspensions from fixed
or frozen tissue is nontrivial and may be very difficult for some
samples. Thus, bulk RNA-sequencing is a good option in many
applications. However, bulk RNA-seq is not as informative for
identifying transcriptional differences within heterogeneous cell
populations such as in developing and complex tissues because
bulk RNA-seq measures the expression level of transcripts across a
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population of various types of cells, therefore creating an average
transcriptomic profile of the tissue. This can become an issue when
rare cell types are of interest, because their signal is essentially lost in
the noise and more abundant transcripts. One way to get around
this issue is by enriching for the population of interest, using a cell
surface marker, fluorescence or antibody, however, this will still
provide an averaged transcriptome across cells and does not capture
heterogeneity at the single cell level. Another way to improve the
analysis is to perform a temporal trajectory of the material in
question. For embryonic material this can be highly informative
because it adds the element of time, although still, within each
sample the heterogeneity produces noise.

Single cell RNA-sequencing has the potential to eliminate
much of the noise within a mixed population of cells. With a
temporal profile it enables the investigator to probe the transcrip-
tional dynamics of heterogeneous cell populations because it mea-
sures the distribution of mRNA expression from individual cells.
Single cell transcriptomes can be profiled for a number of purposes
such as creating cell atlases, mapping cell lineage trajectories [4–
10], modeling virtual in situ hybridization [11] and more
[12]. Using scRNA, one can capture cell trajectories and develop-
mental processes such as an EMT by applying a scRNA-seq time-
course to construct a cell trajectory map [13]. Generating an EMT
time-course to capture transient cell states at single cell resolution
informs the investigator with information on how this dynamic
process occurs over time, providing a resource that is not available
in any other known way.

Single cell RNA-sequencing is rapidly becoming a viable alter-
native to bulk RNA-sequencing, however, there are still some
inherent issues with the platform. One challenge is due to the fact
that RNA is harvested from only a single cell, and generally needs to
be amplified with reverse transcription or PCR. This process of
amplification can introduce bias that can lead to an incorrect inter-
pretation. However, this can be overcome during the normalization
and computational analysis by using Unique Molecular Identifiers
(UMI), to uniquely label individual RNA molecules, greatly reduc-
ing amplification bias. Additionally, due to the sparsity of some
RNA transcripts present in the cell and the inefficient cell capture
process, sometimes a gene may have moderate expression in some
cells, but cannot be detected in another cell. These occurrences,
known as gene dropouts can be misleading because it is difficult to
differentiate between inefficiency of transcript capture and a cell
lacking that particular gene expression, or a gene that is expressed
intermittently, therefore dimensionality reduction and normaliza-
tion should to be performed computationally [14, 15].
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3 Preparation of Single Cell Suspensions for scRNA-Seq

The key to any scRNA-seq experiment is generating a healthy
representative single cell suspension from dissociated tissues or
embryos. Therefore, it is imperative to develop a tissue dissociation
protocol that properly captures single cells with minimal loss of
integrity of the cells and minimal degradation of RNA. To achieve
these goals, it is of utmost importance to minimize the time away
from a cell’s native environment while generating and handling
single cell suspensions to accurately capture a cell’s RNA identity,
before alterations can occur. The transient nature of RNA expres-
sion can potentially be fixed in time following dissociation with a
proper fixative, such as methanol, and the cells washed and rehy-
drated in 3� SSC rather than PBS, because rehydration in PBS can
cause RNA degradation [16, 17]. Tissue types from various organ-
isms and embryos are highly variable in their composition, there-
fore to generate a single cell suspension, different tissues require
different enzymes, temperatures, salinity, and pH. Many groups
have utilized enzymes that degrade extracellular matrix compo-
nents to facilitate their dissociations. To establish a protocol, single
cell preparations should be kept consistent, because altering the
method of preparation can introduce a sampling bias. To establish
the optimal conditions our single cell dissociation protocol was
developed using a pilot study to establish the most reliable
approach and as part of that, establish that a fixative such as metha-
nol can be used to stabilize the RNA. The pilot study helped
establish optimal scRNA-seq conditions for our system. The details
of dissociation and stabilization of RNA are too varied to be cov-
ered in this chapter, but in each case the goals outlined above
should be sought.

4 Considerations of Approach and Instrumentation Available for Library Preparation
from Single Cells

To a research group beginning a scRNA-seq project, the next big
question to ask is what platform should be used? Single cell
RNA-sequencing has rapidly evolved since it was first used in
2009 [18]. When scRNA-seq was first introduced, it involved
manually pipetting single cells into microwells and was relatively
low throughput with a considerable amount of work required per
cell. Since then, many groups have contributed to making scRNA-
seq cost efficient and high throughput, and today many variations
of these technologies exist. The introduction of multiplexing in
2011 [19, 20] was a major milestone where they showed many
single cells could be sequenced together when UMIs were used.
Additionally, in 2013 [21] integrated fluidic circuits, to allow for
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higher throughput, and more reproducibility. In 2015, [22, 23]
introduced droplet-based methods where single cells are placed in
droplets using microfluidics and beads with UMIs to uniquely label
RNA molecules in each cell.

Currently a number of platforms are available to choose
between, each with its advantages and disadvantages. Platforms
differ from each other by either method of RNA quantification,
or by method of cell capture. RNA expression is quantified by
measure of either full length cDNAs or by tag-based UMIs.
There are three methods of cell capture, microwell-based, micro-
fluidic-based, and droplet-based. With the various options, it may
seem difficult to determine which method is best, and the answer is
it depends on the question being asked. Ziegenhain et al. [24] and
Svensson et al. [25] realized this and so to assist you in making an
informed decision they compare and contrast the common scRNA-
seq techniques’ accuracy, sensitivity, precision, power, and cost
efficiency. Based on their findings, Smart-seq2, had the best sensi-
tivity, accuracy, precision, and the lowest gene dropout rate, how-
ever this approach provides relatively low throughput compared to
droplet-based methods that are not as sensitive but significantly less
costly. Smart-seq2 currently is the best option for increased
sequencing depth but for a smaller number of cells, as cost can be
quite considerable. If willing to sacrifice some sequencing depth,
drop-seq is the most cost efficient of the methods, but requires a
tedious multi day protocol to be performed. Labs and sequencing
centers also are adapting commercial platforms that include Flui-
digm’s C1 microfluidic chip, Wafergen ICELL8, BioRad’s ddSEQ,
and perhaps the most popular, 10� Genomics Chromium. Other
alternatives utilize combinatorial indexing such as sciRNA-seq,
while SPLiT-seq utilizes a split and pool method of barcoding
cells within wells [4, 26]. These allow for higher throughput and
cost efficiency than 10� and Drop-seq, however, the sample prep-
aration takes longer, and there is a potential for introduction of
sampling bias. In addition, the cell quality reportedly is a bit lower
than 10� and Drop-seq. With all these options, it can be difficult to
identify which method is best, for your research question. For a
process such as EMT which has a temporal component, and for a
process that occurs within an in vivo model (in our case, the sea
urchin), we sought a method that could process many single cells
with the best depth possible. To satisfy such a requirement, 10�
Genomics was our choice of platform. Following library construc-
tion of single cells via 10� Genomics protocol, cells are sequenced
at ~50 k reads per cell and using a 150 bp paired end Illumina run.
Similarly, other single cell library preparation protocols utilize Illu-
mina’s paired end sequencing but may have different run length of
75, 125, 250 bp and more. Depending on the number of cells and
the run length, a variety of options will be available using Illumina.
For example, using a total of 1 billion PE reads on the NovaSeq
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6000 and 150 bp PE run, roughly, 20 k cells can be sequenced at
50 k reads/cell to generate a single cell atlas capturing EMT.
Indeed, the multitude of scRNA-seq techniques and methods are
rapidly evolving, and as cost of scRNA-seq decreases, previous
technologies will surely become obsolete. Research groups con-
tinue to push the limits and cost efficiency of scRNA-seq with
methods like cell hashing that allow for “super loading” of cells,
and it will only drive the cost down.

5 Bioinformatic Analysis: Overview of Procedure for Analysis of Results

Once single cell libraries are prepared and samples have been
sequenced, the first step in analyzing the data is to create an
expression matrix from the raw sequencing output. First, your bcl
file should be demutiplexed using bcl2fastq to produce fastq files
that can be checked for read quality control. A pipeline should be
established early on, to identify what type of analyses will be per-
formed (see Fig. 1 for a general ScRNA-seq pipeline that can be
adapted). Following sequencing, Unique Molecular Identifiers
(UMIs) should be extracted and reads demultiplexed using
UMI-tools or zUMIs [28, 29]. To perform a quality check on
reads, a common tool used is FastQC [30]. Once reads have been
checked for quality control, they should be trimmed if a sample has
poor base per sequence quality scores below 20, or if any exogenous
nucleotides such as adapters were introduced. A few commonly
used trimming tools are Trimmomatic, TrimGalore, and Cutadapt
[31–33]. Trimmed reads can then be mapped back to a reference
genome or transcriptome using a bulk RNA-seq aligner/pseudoa-
ligner such as STAR/Kallisto or an aligner appropriate for your
research question [34, 35]. Once reads have been mapped to genes,
they are counted on a per gene and per cell basis to generate a single
cell gene expression matrix [28, 36]. This matrix has a row for each
cell and a column for each gene. The i, j entry encodes the number
of molecules of mRNA for gene j in cell i. Therefore, each row
encodes the expression profile of a cell as a point in a high-
dimensional gene expression space, where there is a dimension for
each gene.

With the expression matrix in hand, we are now ready to begin
visualizing, exploring and analyzing the data. We begin by visualiz-
ing the high-dimensional single cell gene expression profiles in two
or three dimensions. Some popular tools for visualizing single cell
datasets include force layout embedding (FLE), UMAP, and tSNE
[14, 15]. Instead of applying these tools directly to the single cell
expression data, it can be helpful to first reduce the dimensionality
from 20,000 down to ~1000 by selecting variable genes, and then
down to ~100 using principal components analysis (PCA) or diffu-
sion maps. This gradual decrease in dimensionality can help extract
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meaningful signals in the visualization. This visualization results in a
set of x, y (and maybe z) coordinates that can be used to plot cells as
points in 2 or 3 dimensions. Cells can be colored according to time
of collection, batch, or expression of individual genes or gene
signatures. The second component of exploratory data analysis
involves searching for sets of cells with coherent gene expression
programs. There are two main ways to do this. The first is to cluster
cells (e.g., using Louvain clustering in diffusion component space).
The second is to define cell sets according to expression of gene
signatures. A gene signature is a list of genes (10 to 100 genes)
related to a specific biological process or cell state (e.g., Epithelial
Identity). To define an Epithelial cell state, we could select the top
10% of cells with highest expression of the Epithelial Identity gene
signature.

Trajectories Clustering
tSNE, Seurat, 
  PCA, SC3,
    UMAP

Waddington-OT, 
URD, Monocle 

edgeR, Monocle
  SCDE, Seurat 

Seurat

Biological Analysis
  Cell Clustering, 

Cell Trajectories/Pseudotime
Spatial Expression, Diff. Expression

Spatial Differential

Cell QC and Normalization
SingleCellExperiment, scater, 
        scran, Seurat, SCONE

Read Quantification
featureCounts, UMI-tools count,
    zUMIs, M3Drop, dropEst

Read Pseudo/Alignment
      STAR, BWA, Bowtie2,
           Kallisto, Salmon

Read Quality Control
FastQC, Kraken, Trimmomatic, 
        TrimGalore, Cutadapt

Demultiplex Samples + Cells
     bcl2fastq2, 
UMI-tools, zUMIs

Fig. 1 General scRNA-seq pipeline. Figure adapted from and inspired by the
single cell RNA-sequencing course [27]. Bioconductor is a repository that houses
toolkits for sequencing and cell quality control, analysis, visualization,
exploration, and more. Common packages used for each step in the pipeline
are included. Using these methods, each gene’s expression during EMT can be
quantitatively measured in single cells, allowing for a deeper understanding of
the underlying mechanistic structure of EMT
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In a time-course experiment, an expression matrix is obtained
for each time point. The exploratory analysis described above can
be applied to all time-points together in order to learn about
general trends in expression over time. But, in order to learn
about the different developmental trajectories and gene regulatory
networks controlling differentiation, we must perform trajectory
analysis.

The first goal of trajectory analysis is to infer ancestor–descen-
dant relationships between pairs of time-points. This is crucial
because scRNA-seq kills cells; therefore, we cannot use it to directly
measure the change in gene expression of any individual cell over
time. Live-cell imaging with fluorescent reporters can address this,
but only for a handful of genes at a time. Many algorithms have
been proposed to recover trajectories from scRNA-seq data.
Waddington-OT is the only algorithm developed to date that is
capable of modeling cell growth and development in a scRNA-seq
time-course. All other algorithms either cannot incorporate known
information about time of collection, or assume that all cells grow
at the same rate (and therefore give rise to the same number of
descendants). Waddington-OT infers ancestor-descendant rela-
tionships between pairs of time-points by leveraging a classical
mathematical tool called optimal transport (OT). Intuitively, OT
is based on the principle that cells can’t change expression of all
genes by large amounts in a short period of time. Therefore, cells
are connected to “putative descendants” in a way that minimizes
the total net change in expression over time. Each cell is allocated a
certain amount of “descendant mass” according to an estimate of
its proliferative ability and apoptosis rate (i.e., more proliferative
cells are connected to more descendants). These growth rates are
initially based on gene signatures of cell cycle and apoptosis, but are
ultimately learned from data. The output of this first step of trajec-
tory analysis is a “transport matrix” connecting each pair of time-
points. The transport matrix has a row for each cell at time 1 and a
column for each cell at time 2. The entries of the matrix indicate the
amount of descendant mass each cell from time 1 gives rise to at
time 2 (if we hadn’t killed the cells).

After inferring ancestor–descendant relationships, the second
goal of trajectory analysis is to infer gene regulatory networks
controlling development and differentiation. To do this,
Waddington-OT looks for transcription factors that are most pre-
dictive of transitions to various cell sets. For example, in iPSC
reprogramming which transcription factors are responsible for
pushing cells toward the stem cell state? Waddington-OT also
allows us to analyze the shared ancestry connecting pairs of cell
sets. This allows us to answer—does this pair of cell sets share a
common ancestor near the beginning of the time-course and when
does the pair diverge? We can then look for transcription factors
that explain the bifurcation.
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One common drawback of all these techniques is that spatial
information is lost when cells are dissociated into suspension, how-
ever, the robust characterization of spatial markers within a tissue
and developing embryo make it possible to reconstruct spatial
patterning in silico. To reconstruct spatial information from dis-
sociated tissues or embryos, Seurat can be employed to estimate a
cell’s likely position within spatial domains of the original tissue or
embryo. As software matures and techniques improve in resolution,
spatial transcriptomic technologies like Spatial Transcriptomics,
Slide-Seq, and Seurat can provide more accurate spatial transcrip-
tomic distributions [37, 38].

An outcome sought from this long list of computational
options is a list of genes to be used in follow-upmechanistic studies.
The question of how to reduce the size of that list varies with the
goals in the system. In the case of the EMT, one approach might be
to eliminate RNAs that are constitutively expressed since the EMT
is fundamentally a change. Then, the direction of change and its
timing can be considered using trajectories of RNAs and clustering
programs. To that, data on perturbations, either based on known
transcription factor control or perhaps on known drug effects can
provide differential expression data that helps narrow the candidate
list. Ultimately the goal is to identify candidates that are essential to
the EMT and will help the investigator understand how the process
works. To that end scRNA-seq provides an excellent tool.
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