
NDNSD: Service Publishing and Discovery in NDN
Saurab Dulal

University of Memphis
sdulal@memphis.edu

Lan Wang
University of Memphis
lanwang@memphis.edu

Abstract—Service discovery is a crucial component in today’s
massively distributed applications. In this paper, we propose
NDNSD – a fully distributed and general-purpose service discov-
ery protocol for Named Data Networking (NDN). By leveraging
NDN’s data synchronization capability, NDNSD offers a high-
level API for service publishing and discovery. We present
NDNSD’s main design features including hierarchical naming,
service information specification, and service accessibility. We
also implemented two other discovery schemes, one reactive and
one proactive, and compared them with NDNSD. Our evaluation
shows that NDNSD achieves (a) lower latency, lower overhead,
and same reliability compared to the reactive scheme, and (b)
comparable latency, lower overhead at larger scale, and higher
reliability compared to the proactive scheme.

Index Terms—Information Centric Networking, Named Data
Networking, Service Discovery, NDN Synchronization

I. INTRODUCTION

Modern applications rely on many services, e.g., cloud
computing, file storage, and databases, to function properly.
These services are provided by not only stationary servers,
but also mobile devices offering computing and data service.
Service discovery is the process of finding desired service(s)
in a distributed environment.

TCP/IP has a plethora of protocols ([1]–[5]) at different
layers to facilitate service discovery. These protocols have a
major limitation stemming from the inability of the network
layer to recognize names used by the application layer ([6],
[7]). For example, a printer application cannot identify itself
as /edu/abc/library/printer1 to the network, but instead has to
rely on its IP address and port number. This creates a semantic
mismatch between the two layers and thus requires either a
dedicated server (e.g., the resource directory in CoAP) or a
name resolution service such as DNS. This dependency is
cumbersome for decentralized applications or edge applica-
tions. Popular edge applications such as AWS IoT [8], Google
Chromecast [9], and Azure Sphere [10] mostly depend on
the cloud, not a local device, for service registration and
discovery. This design incurs extra delay for edge devices to
discover services residing in close vicinity. More seriously,
a disruption in the connectivity to the cloud will disrupt the
whole application.

Named Data Networking (NDN) is a new data-centric Inter-
net architecture [11]. It uses application-level names directly
in the network layer, so there is no need to resolve the
application names into addresses and ports (and there are no
addresses in the network layer). Moreover, NDN’s distributed
dataset synchronization protocols [12], i.e., Sync, can make the
discovery process fully distributed by directly synchronizing
the service information among the participating nodes, thereby

eliminating the requirement of a centralized entity to facili-
tate the service discovery process. Several service discovery
solutions ([13]–[17]) have been proposed for NDN (and its
predecessor CCN). However, we found various limitations in
these solutions (Section II-C) such as high overhead, being
limited to a specific environment, or requiring separate servers
to store service information.

In this paper, we propose NDNSD, a fully distributed,
general-purpose, and scalable service discovery protocol for
NDN. NDNSD offers a sync-based high-level API for pub-
lishing and discovering services, obtaining measurement in-
formation, and controlling access to service information. We
have implemented NDNSD and evaluated it by comparing it to
two other discovery schemes, one reactive and one proactive.
Our evaluation shows that NDNSD achieves (a) lower latency,
lower overhead, and same reliability compared to the reactive
scheme, and (b) comparable latency, lower overhead at a larger
scale, and higher reliability compared to the proactive scheme.

II. BACKGROUND AND RELATED WORK

A. NDN
Named Data Networking (NDN) is an evolving data-centric

Internet architecture. Every piece of content in NDN is named
(e.g. /edu/abc/servers/cygnux/info), carried in one or more
data packets. The content is fetched using Interests whose
name matches the data name. NDN changes IP’s host-centric
communication by decoupling data packets from their produc-
ers. The decoupling is feasible in NDN because data is signed
by its producer at the time of creation and thus its authenticity
can be verified by other nodes. Once decoupled, data can be
served by any node that stores a copy of it.

An NDN forwarder, e.g., the NDN Forwarding Daemon
(NFD) [18], implements the network-layer protocols needed
for name-based communication. The forwarder consists of
three core components: Pending Interest Table (PIT), Content
Store (CS), and Forwarding Information Base (FIB). The
PIT records incoming Interests, not yet satisfied, and also
aggregates them if the same Interest has already been received.
The CS caches previously received data packets to satisfy
incoming Interests. If an Interest is not satisfied by the CS
or matches the PIT, it is forwarded via one or more interfaces
with the help of the FIB and a forwarding strategy. Once a data
packet is received, it is forwarded to all the incoming interfaces
of the matching Interests recorded in the PIT, thus multicast is
supported natively in NDN. In addition, since each data packet
follows the reverse path of the matching Interests, routers can
measure path performance (e.g., RTT), which enables adaptive
forwarding decisions [19].

Fig. 1: Example of NDN Synchronization Process (“I” and
“D” represent Sync Interest and Sync Data, respectively.)

B. Data Synchronization in NDN (Sync)
NDN synchronization, or Sync in short, provides a pow-

erful abstraction above the Interest-Data exchange to facili-
tate multi-party communication [12]. Sync ensures that every
participating node has up-to-date information of their shared
distributed dataset by encoding the set of data names in a
compact form (i.e., “state”) and exchanging the state among
the nodes using Sync Interests (Figure 1). Once a new data
packet is published, Sync updates its local state and sends the
new state and new data name in a Sync Data packet to all
other nodes (Figure 1), which can now fetch the data using
the new data name.

C. Related Work
Mark Mosko suggested using Sync for service discov-

ery [13]. Devices use a well-defined namespace such as
“/parc/printers/” to advertise the manifest of service records.
However, Mosko’s design lacks protocol details, API speci-
fications, and access control. Moreover, it was designed for
a different ICN architecture, i.e. CCNx 1.0, as opposed to
NDN. Ravindran et.al. [14] proposed two different service
discovery protocols: neighbor discovery protocol (NDP) for
locally reachable CCNx nodes neighbors, and Service Publish
and Discovery (SPDP) for discovering remote services. SPDP
uses a recursive query that propagates hop-by-hop among the
reachable adjacencies running SPDP instances. Data contain-
ing the service list is aggregated by the respective instances
and is sent back to the original requestor. This approach
searches for services one hop at a time, so it may take a long
time if services are multiple hops away.

NDNe [16] uses an expanded ring search technique along
with the broadcast for service discovery in edge environments.
The request is first broadcasted to a 1-hop neighbor (TTL
is used for hop count). If no reply is received within the

Fig. 2: Application workflow showing all layers involved in
service publishing and discovery process

pre-defined timeout, the request is sent to 2-hop neighbors.
This process repeats until either the service is found, or the
consumer gives up. The expanded ring search can be expensive
and may not scale if there is a large number of consumers.

Similar to our work, Mastorakis et. al. use Sync among
multiple edge computing servers (ECS) to facilitate service
discovery [17]. ECS are special nodes in the network that
maintain service information available from service providers.
A discovery Interest (e.g. /discovery/ecs/) from an application
is matched with a suitable service by the closest ECS. How-
ever, maintaining ECS is an extra infrastructure requirement
for service discovery – this may be feasible for a particular
edge computing application, but not in the general case.

III. DESIGN

We designed NDNSD to be a fully distributed and general-
purpose service discovery protocol for NDN that works in a
wide range of environments, e.g., LAN, WAN, and IoT. It
provides an API for applications to advertise and discover
services. Internally, it uses NDN Sync [12] for service an-
nouncement and discovery.

We view service discovery as a pub-sub problem, i.e.
publishing service information and subscribing to such in-
formation. Participants in this pub-sub system can be one of
three types: i) those advertising services via publishing service
information, e.g., an NDN repository providing persistent
storage service to other devices, ii) those discovering services
via subscribing to service information, e.g., a data collection
application on a sensor that needs to use a remote persistent
storage service, and iii) those doing both, e.g., a group of
computers that dynamically share their spare computation
resources with each other. Since Sync provides transport
service to NDN applications, it can be used to realize a pub-
sub system, as shown by Nichols [20]. Unlike other pub-sub
systems designed for TCP/IP or ICN, Sync-based pub-
sub systems do not require central servers, changes in
the network layer, or a name resolution system. Instead,

2

Fig. 3: NDNSD Namespace Design

publishers and subscribers simply agree on a common name
for the Sync group, and the subscribers will be notified by the
Sync protocol of the new data names whenever a publisher
publishes new data.

Given Sync’s ability to support pub-sub models, we use
it for distributed service discovery. Service publishers and
finders can use a semantically meaningful name for their sync
group. e.g., “/edu/abc/library/printers/NDNSD/discovery” for
publishing and discovering the services of all the printers in
a university library. Similarly, “/edu/abc/cs/ndnrepo/NDNS-
D/discovery” can be used to discover NDN repositories in
a computer science department. These semantic names from
the application layer are directly used in the NDN network
layer for rendezvous, thus there is no need for name resolution
or central servers. Additionally, we use name-based access
control (NAC-ABE) to control the accessibility of sensitive
services by an unauthorized user. The focus of our work
is therefore threefold: (a) design the naming scheme and
structure of service information (Section III-B), (b) publish
and discover the service information, and (c) Service-info
accessibility. Figure 2 shows the workflow of NDNSD among
several components of the system. In the following sections,
we detail the NDNSD protocol design.

A. Hierarchical Namespace

NDNSD uses two separate namespaces for discovery and
application service information, and their design is illustrated
in Figure 3

1) Discovery Namespace: Service publishers and finders
use a Sync group to rendezvous with each other and we call
the name prefix of their Sync group Discovery Name Prefix.
As shown in Figure 3, the discovery name prefix starts with
a routable root component, which can be an organization,
e.g., /edu/abc, or an application, e.g., /app/mhealth. Depending
on the specific application scenario, there can be more name
components to further constrain the service scope, such as
physical location (e.g., university library), organization entity
(e.g., computer science department), and target users (e.g.,

computer science students). The next component is service
type. For example, image-proc represents all the image pro-
cessing services, while image-proc/rcnn includes only those
running the RCNN algorithm. The above name components
are provided by the application to NDNSD through its API
(see Section III-C). Finally, the last two name components
are added by NDNSD to yield the discovery name prefix,
e.g., /edu/abc/image-proc/rcnn/NDNSD/discovery. “NDNSD”
differentiates NDNSD’s data from other protocols’ data, and
“discovery” differentiates NDNSD’s service discovery Sync
data from its service-info data.

The above design does not impose a strict limit on the
depth of the namespace hierarchy. Moreover, applications have
the flexibility to use semantically meaningful names. Note,
however, that service publishers and finders in one application
need to agree on a service type and avoid collision with other
applications. There may be well-known service types emerging
as NDNSD is gradually adopted.

2) Service Information Namespace: Each service provider
publishes detailed information about its service in the rele-
vant Sync group (see the previous section) so that service
finders can choose the most suitable provider. Figure 3 il-
lustrates the design of our service information namespace.
It has the same first three name components, i.e., root,
service scope (optional), and service type, as the discovery
namespace. However, it requires a service identifier after
service type, e.g., “rcnn1” after /edu/abc/image-proc/rcnn, to
identify a specific service provider, which is supplied by
the application. The next two name components, “NDNSD”
and “service-info”, are added by NDNSD. For example,
/edu/abc/cs/servers/cygnux/NDN/service-info is the name pre-
fix of the service information about the server cygnux in
the computer science department. The last component is a
sequence number for the service information – whenever
the server’s information changes, the sequence number is
increased. The service provider will publish the new name
through Sync, which will notify the service finders of the new
name so they can fetch the new service information.

Note that service publishers should have a valid certificate
for the name they want to use to advertise their service, as
NDN requires every data packet to be signed by the public
key of the data publisher.

B. Service Information

Service information is a collection of information used by
a service provider to advertise its service. Since NDNSD is
a generic service discovery protocol, the service information
design should support a wide variety of applications. As shown
in Figure 4, it is composed of three blocks: service info
namespace, required service detail, and optional service detail.
The items in the namespace block are used to construct dis-
covery and service information name prefixes (Section III-A)
to advertise the service. Using the two service detail blocks,
providers can list details of their service using as many key-
value pairs as needed. The required block contains the service
name, i.e., how to reach the service, and lifetime, i.e., how long

3

Fig. 4: Sample Service Publisher Configuration File
(The above sample file is written in Boost Info Format [21])

this service information is valid. The optional block contains
more application-specific information. For example, an image-
processing service can list details about the model used to
process the image and release version. IoT applications can
provide details about sensor type, location, available memory,
sleep time, processing capabilities, etc.

C. API and Protocol Interactions

NDNSD provides the following API for applications to
publish and discover service information:
Service Publisher receives and stores the service information
from the application. It uses the root, service scope, and
service type information in the namespace block to form a
discovery prefix (e.g., /edu/abc/library/printers/NDNSD/dis-
covery) and joins the corresponding sync group. The pub-
lisher also uses the root, service scope, service type, and
service identifier to construct the service-info data name,
e.g., /edu/abc/printers/printer1/NDNSD/service-info/1, creates
a data packet with this name, and stores information from the
service-detail blocks in the content of the packet.
Service Finder accepts service discovery requests from an
application. Each request contains root, service scope, and
service type which are combined to form a discovery prefix.
Next, the finder joins the sync group identified by the discov-
ery prefix, fetches the service information from all the service
providers, and sends it back to the application. In addition, the
finder can provide measurement information to the application
on demand (Section III-D).

D. Measurement Information

Measurement information is crucial for applications to de-
termine the Quality of Service and perform load balancing. In
order to help service finders make better decisions in selecting
service providers, NDNSD computes statistics such as round-
trip time (RTT), retransmission count, and timeouts, while
fetching the service information or probing a service provider
using its service name. The measurements are exposed to the
application via the Service Finder’s API.

Fig. 5: Use of NAC-ABE in Our System. Note: content in the
context of NDNSD is service information

E. Service-info Accessibility

Sensitive services may require some form of access con-
trol such that only authorized users can access their service
information. For example, a printer in the CS department
chair’s office may want to restrict public use. We use Name-
Based Access Control with Attribute-based Encryption (NAC-
ABE) [22] to control the visibility of service information. As
shown in Figure 5, NAC encrypts the service information with
policies composed of attributes, and generates decryption keys
for only those with appropriate access rights. For example, the
printer in the Chair’s office can advertise a printer service
and encrypt the service information with the policy (“CS
Chair” or “CS Admin Assistant”). Now to decrypt this service
information, the finder needs to have a decryption key with
either the “CS Chair” or the “CS Admin Assistant” attribute.

Note that NAC is not used for all the advertised services by
default. It is up to each service provider to decide whether to
use NAC, based on the sensitivity of the services it offers. For
example, public printers do not need access control on their
service information.

IV. EVALUATION

We evaluate NDNSD by comparing it with two simple
service discovery schemes, one is proactive and the other
is reactive. In the Proactive scheme, the service provider
periodically multicasts its service to the entire network using
a notification Interest. The Interest consists of the discovery
prefix (e.g. /edu/abc/cs/servers), the application service name
(e.g. /edu/abc/cs/servers/cygnux/service-info), and a sequence
number. The sequence number is increased whenever the
service status is updated. An application interested in the
service listens to the multicast, uses the application service
name to construct a service-info Interest, and fetches the cor-
responding service-info using unicast. The sequence number
tells the finder if the multicast was already received and, if
so, the finder avoids fetching the same service-info. In this
scheme, multicast Interests from multiple service providers (of
the same service) are not aggregated due to the presence of
the application service name. This can significantly increase
packet overhead with an increasing number of providers. In
the Reactive scheme, the finder multicasts service discovery
Interests to the network. Since there can be more than one
service provider, the finder iteratively sends multicast Interests,

4

(a) (b)

(c)

Fig. 6: Figure (a), (b), and (c) shows the median, 75th, and 90th-percentile service discovery latency stretch, respectively, for
each successive publication

with known providers carried in the application parameter
field. This process continues until the Interest times out,
which means the service-info from all the providers have been
fetched. Each provider, after receiving the multicast Interest,
checks if its name is present in the application parameter. If so,
it ignores the Interest. Otherwise, it sends back its service-info.
This iterative process is also periodic, which helps the finder
fetch all the updates from the providers. For a fair comparison,
we set the frequency of periodic Interest multicasts for all the
schemes to once every second in our experiments.
Setup For our evaluation, we emulate multiple service
providers offering Computation Service. Each provider updates
its service-info, such as available GPUs, TPUs, Disk Storage,
and Server-load, every 10 seconds for a total of 30 updates.
We use Mini-NDN [23], a lightweight network emulator tool,
and the NDN testbed topology1 consisting of 37 nodes and 97
links for all experiments.

A. Performance Metrics
We use the following metrics in our evaluation:

a) Service Discovery Latency Stretch is the ratio between
the actual service-info latency (i.e., time to discover some
service-info data) and the expected minimum of the same.

b) Normalized Packet Overhead (per node) is the ratio
between the overhead per node and the expected minimum
number of packets per node. For example, suppose there are
5 service finders and 2 service providers each publishing 30
times at an interval of 10 seconds, the expected minimum
number of packets = number of providers × number of links
in both directions × number of publications = 2 ×194 ×
30 = 11640. For NDNSD, the overhead consists of (i) Sync
Interest and Data packets used by the service providers and
finders for synchronization, and (ii) the duplicate NACKs
sent by the nodes to notify the downstream of receiving the
same Interest twice. For the Proactive scheme, the overhead
consists of periodic service multicast Interests from the service
providers and the duplicate NACKs. For the Reactive scheme,

1NDN testbed topology: http://ndndemo.arl.wustl.edu/

the overhead consists of periodic multicasts to find service
from the finders and the duplicate NACKs. Additionally, for
all the schemes, extra service-info Interests and data packets
are also counted as an overhead. Ideally, there should only be
one Interest and one Data packet for each publication.

c) Satisfaction Ratio for a specific service is defined as the
number of service providers learned by a finder divided by the
total number of service providers offering the same service.

B. Emulation Results

In Figure 6, we present the median, 75th, and 90th-
percentile of the Service Discovery Latency Stretch. The
results show that both NDNSD and the Proactive scheme have
similar low stretches. This is because in both schemes, the
service provider advertises its service to the entire network
after it is published or updated. The advertisement helps the
finders to fetch the service-info immediately after receiving
the multicast. Figure 6 also shows that the Reactive scheme
performed worst among the three, because in this scheme the
publisher needs to wait for a multicast Interest from the finder
to send back the service-info. Thus, delayed arrival of the
Interests will increase the service-info latency, which explains
its high stretch. Occasionally, in the Reactive scheme, Interest
arrival and service advertisement can happen at the same time,
resulting in a short service-info latency equal to the delay
between the service provider and the finder. This can be seen
in Figure 6(a) & (b) where the Reactive stretch is lower than
the other two schemes and close to 1.

In Figure 7, we present the Normalized Packet Overhead of
the different schemes. The overhead in the Proactive scheme
remains constant as the number of providers increases because
the expected and actual number of packets increased by the
same factor due to the lack of Interest aggregation in the
Proactive scheme. It can be seen that for the other two
schemes, NDNSD and Reactive, the overhead starts decreasing
as the number of providers increases. This is because of the
Interest aggregation in both schemes. In addition, NDNSD
performed much better than the Reactive scheme. This is be-
cause: (a) NDNSD fetches service-info using unicast whereas

5

Fig. 7: Normalized Packet Overhead

the Reactive scheme uses multicast, (b) The Reactive scheme
always uses one extra final multicast Interest, which times out,
to make sure service-info from all the providers are fetched,
and (c) a greater number of multicast packets in the Reactive
scheme leads to more duplicate NACKs. Thus, we can expect
that NDNSD will perform better than the Reactive scheme,
even if the number of publishers grows much higher.

Finally, we ran a set of experiments introducing 1, 2, and 4
percent link loss per link and compared the Satisfaction Ratios.
We observed that both NDNSD and the Reactive scheme
were able to receive all the service-info data regardless of the
link losses, thereby maintaining a 100% satisfaction ratio. For
NDNSD, Sync actively synchronizes the publications using
the states among all participating nodes. Thus, advertisements
from all the service providers reach the finder. Once an adver-
tisement is received, NDNSD fetches the service-info and does
multiple retransmissions if needed. In the Reactive case, the
finder’s periodic discovery Interest is able to retrieve/recover
all service-info data. In contrast, in the Proactive case, there
is no finder retransmission, so lost service-info packets cannot
be recovered. Hence, we observed 99%, 97.5%, and 97%
satisfaction ratios for 1, 2, and 4 percent link loss, respectively.

V. CONCLUSION AND FUTURE WORKS

We have presented NDNSD, a fully distributed, general-
purpose protocol for service publishing and discovery in
NDN. We use a hierarchical namespace for NDNSD, which
provides applications with fine-grained control over the adver-
tised names of their service(s). Moreover, we leverage NDN
Sync to make service discovery independent of any external
infrastructure, and designed the service information to support
a wide variety of applications. NDNSD provides measurement
information to applications to allow better decision-making
when selecting service providers, and is able to control the
accessibility of service information using NAC. Finally, we
have shown that NDNSD outperforms two other baseline
service discovery solutions.

We plan to do the following in our next steps: (a) evaluate
NDNSD’s performance in applications such as building man-
agement systems and improve our design and implementation
accordingly, (b) refine the collection and representation of

measurement information, and (c) conduct evaluation over
NDN testbed and release NDNSD to the public.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion awards 1629769 and 2019085. We thank the anonymous
reviewers for their insightful feedback.

REFERENCES

[1] M. Jeronimo and J. Weast, UPnP design by example: a software
developer’s guide to universal plug and play. Intel Press, 2003.

[2] M. Boucadair, R. Penno, and D. Wing, “Universal plug and play (upnp)
internet gateway device-port control protocol interworking function (igd-
pcp iwf),” RFC 6970, 2013.

[3] “IEEE standard for local and metropolitan area networks – station and
media access control connectivity discovery,” IEEE Std 802.1AB-2005,
pp. 1–176, 2005.

[4] E. Guttman, “Service location protocol: Automatic discovery of IP
network services,” IEEE Internet Computing, vol. 3, no. 4, pp. 71–80,
1999.

[5] L. Smith, C. Roe, and K. S. Knudsen, “A jini/sup tm/ lookup service
for resource-constrained devices,” in Proceedings 2002 IEEE 4th Inter-
national Workshop on Networked Appliances, 2002, pp. 135–144.

[6] W. Shang, Y. Yu, R. Droms, and L. Zhang, “Challenges in IoT
networking via TCP/IP architecture,” NDN Technical Report 0038, 2016.

[7] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev, J. Thomp-
son, J. Burke, B. Zhang, and L. Zhang, “Named Data Networking of
Things,” in 2016 IEEE First International Conference on Internet-of-
Things Design and Implementation (IoTDI). IEEE, 2016, pp. 117–128.

[8] Amazon Inc., “AWS IoT,” https://aws.amazon.com/iot/solutions/
connected-home/., (Accessed on 07/05/2022).

[9] S. Weber, Chromecast Users Manual: Stream Video, Music, and Every-
thing Else You Love to Your TV. USA: Weber Systems Inc., 2014.

[10] Mircosoft Inc., “Azure iot edge, 2020,” https://azure.microsoft.com/
en-us/services/iot-edge/., (Accessed on 07/05/2022).

[11] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66–73, 2014.

[12] P. Moll, W. Shang, Y. Yu, A. Afanasyev, and L. Zhang, “A survey of
distributed dataset synchronization in named data networking,” NDN,
Technical Report NDN-0053, Revision 2, 2021.

[13] M. Mosko, “CCNx 1.0 collection synchronization,” in PARC Technical
Report. Palo Alto Research Center, Inc., 2014.

[14] R. Ravindran, T. Biswas, X. Zhang, A. Chakraborti, and G. Wang,
“Information-centric networking based homenet,” in 2013 IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM 2013).
IEEE, 2013, pp. 1102–1108.

[15] ndn lite, “Ndn-lite service discovery,” 2018, accessed: 2020-04-
22. [Online]. Available: https://github.com/named-data-iot/ndn-lite/
wiki/Service-Discovery

[16] M. Amadeo, C. Campolo, and A. Molinaro, “NDNe: Enhancing Named
Data Networking to support cloudification at the edge,” IEEE Commu-
nications Letters, vol. 20, no. 11, pp. 2264–2267, 2016.

[17] S. Mastorakis, A. Mtibaa, J. Lee, and S. Misra, “ICedge: When edge
computing meets information-centric networking,” IEEE Internet of
Things Journal, 2020.

[18] NDN Project Team, “Named Data Networking Forwarding Daemon,”
https://github.com/named-data/NFD, (Accessed on 07/05/2022).

[19] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A
case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, pp. 779–791, 2013.

[20] K. Nichols, “Lessons learned building a secure network measurement
framework using basic ndn,” in Proceedings of the 6th ACM Conference
on Information-Centric Networking, 2019, pp. 112–122.

[21] M. Kalicinski and S. Redl, “Boost. propertytree,” Online: http://www.
boost. org/doc/libs/1, vol. 42, no. 0, 2008.

[22] Z. Zhang, Y. Yu, S. K. Ramani, A. Afanasyev, and L. Zhang, “NAC:
Automating access control via Named Data,” in IEEE Military Commu-
nications Conference (MILCOM), 2018, pp. 626–633.

[23] NDN Project Team, “Mini-NDN GitHub,” https://github.com/
named-data/mini-ndn, (Accessed on 07/05/2022).

6

