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Abstract

In 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested that proteins
have amino-terminal sequences that dictate their export and localization in the cell. A cytosolic
binding factor was predicted, and later the protein conducting channel was discovered that was
proposed in 1975 to align with the large ribosomal tunnel. The 1975 Signal Hypothesis also
predicted that proteins targeted to different intracellular membranes would possess distinct signals
and integral membrane proteins contained uncleaved signal sequences which initiate translocation
of the polypeptide chain. This review summarizes the central role that the signal peptides play as
address codes for proteins, their decisive role as targeting factors for delivery to the membrane and
their function to activate the translocation machinery for export and membrane protein insertion.
After shedding light on the navigation of proteins, the importance of removal of signal peptide and
their degradation are addressed. Furthermore, the emerging work on signal peptidases as novel
targets for antibiotic development is described.



1. Introduction

The transport of proteins across cell membranes is fundamentally significant to many biological
processes. Protein export also finds a special interest in biotechnology for production of
hormones/enzymes and recombinant proteins, in laboratory techniques and disease diagnosis.
Considerable progress has been made during the last several decades in understanding the
characteristics of the folded state of substrates during translocation in the cytosol, membrane
targeting, the structure and function of translocation devices, the insertion of membrane proteins
into the lipid bilayer, and the role of energy in protein export. Insight into these fundamental
concepts is highly appreciated and anticipated by scientists in the protein export field.

Protein integration and transport across the membranes are ubiquitous in every organism.
Typically, these proteins are synthesized with a stretch of amino acids called the ‘signal peptide’
that is recognized by the cytosolic proteins for sorting and then targeting to the membrane. After
being transferred to the translocation machinery, the proteins are membrane inserted or
translocated across the membrane. In the final step, the signal peptide is proteolytically removed
from the exported protein by signal peptidase.

The signal peptide plays center stage in this export process with a myriad of functions (1). The
signal peptides can bind to chaperones to prevent premature folding of the protein in the cytosol.
In addition to slowing down the folding of a mature domain of a preprotein, signal peptides act as
a zip code for sorting the proteins from the cytosol to the membrane. Finally, the signal peptide
activates the translocation machinery, initiating the translocation process.

This review highlights the function of signal peptides in Gram-negative bacteria in protein sorting
and targeting to the inner membrane, and translocation across the membrane and insertion. After
navigating the journey of proteins, their removal and degradation are discussed. Furthermore, the
potential of the signal peptidases (endopeptidases which remove signal peptides) as antibacterial
targets will be covered.

2. Signal peptides

Most exported proteins in bacteria are transported across the inner membrane by the general
secretion (Sec) pathway or the Twin arginine translocation (Tat) system or the simple membrane
protein insertase YidC [reviewed in (2-5)]. The targeting of the preproteins to these pathways are
dependent on the pathway selective for the respective signal peptide. These are the Sec signal
peptide, the lipoprotein signal peptide, the Tat signal peptide and the prepilin signal peptide.
Below we describe the properties of each of these signal peptides.

The Sec signal peptide targets the protein to the Sec machinery and is composed of three regions
(Fig. 1) (6-8): (1) a positively charged N-terminal region (n), (ii) a central hydrophobic region (h)
and, (ii1) a rather polar C-terminal region which contains small amino acid residues at positions -
1 and -3 (with respect to the cleavage site). Additionally, a helix breaking residue is often found
at the -4 to -6 positions of the C-terminal region (8). Genetic and mutagenesis studies have shown
that the apolar region of the signal peptide is essential for the function of a cleavable signal peptide



(9-11). Moreover, the basic amino terminus can be important for making translocation more
efficient (12,13).

Similar to the Sec signal peptide, the lipoprotein signal peptide which is processed by signal
peptidase 2 (SPase II, lipoprotein signal peptidase) has a positively charged n region and a
hydrophobic central region (h region) (Fig. 1). The main difference between Sec and lipoprotein
signal sequences is that the c region of the lipoprotein contains the lipobox motif comprised of
Leu-Ala/Ser-Gly/Ala-Cysteine at the -3 to +1 position (14). The lipobox motif is a structural
determinant for lipid modification of the strictly conserved Cys at the +1 position of the mature
domain that gets modified by diacylglyceride. The glyceride fatty acid lipid is attached by a
preprolipoprotein diacylglycerol transferase (Lgt), prior to cleavage by SPase II (14). In Gram-
negative and some Gram-positive bacteria, most lipoproteins are further modified by an acyl chain
by N-acyl transferase (Lnt) (15). Analysis of the signal sequences have shown that the h regions
are shorter for lipoprotein signal peptides as compared to that present in the Sec signal peptides
(16-18).

The Tat signal peptide targets proteins to the Tat machinery and has a tripartite arrangement similar
to the Sec signal peptide (Fig. 1). It was initially discovered in chloroplast in exported proteins
transported into the thylakoid lumen independently of ATP hydrolysis. Later, Berks and others
observed it in cofactor containing periplasmic proteins of bacteria (19-23). The “Tat” signal
peptide takes its name from the invariant and essential twin arginines in the n-region of the signal
peptide. The motif for Tat signal peptides is RRXFLK where X can be any residue and F, L and
K are quite commonly found. Mutagenesis of the twin arginines even to a lysine pair can abolish
or significantly reduce transport although single mutations of the arginines are largely tolerated
(24-26). Typically, the Tat signal peptides are longer than the Sec signal peptides, and the h-region
is less hydrophobic than that present in the Sec signal peptides (27). Moreover, there is often a
basic residue in the c-region that functions as a Sec avoidance sequence (28). While most of the
Tat preproteins are processed by signal peptidase 1 (SPase 1) (29), some contain a lipobox and are
therefore processed by SPase II.

A specialized signal peptide called the prepilin signal peptide is found on the type 4 pilus proteins.
Similar to the Sec and most lipoprotein signal peptides, it targets the protein to the Sec machinery.
Type 4 substrates are found on the surface of many Gram-negative bacteria such as Pseudomonas
aeruginosa and Neisseria gonorrhoeae. Pilin subunits allow the bacteria to stick to the surface of
the host epithelial cells during infection. The prepilin signal peptide is unique as it is cleaved at
the border of the n-h region (30,31). The processing is carried out by prepilin signal peptidase,
which recognizes the GFTLIE motif and cleaves after the glycine (32). After cleavage, the prepilin
signal peptidase methylates the amino terminus of the mature pilin (33). This generates N-
methylphenylalanine as the first amino acid of the mature pilin.

In addition to these cleavable signal peptides, uncleaved signal peptides containing a longer
hydrophobic stretch target proteins to the translocation machinery but remain as a membrane
anchor sequence. These uncleavable signal peptides are found in membrane proteins which span
the bacterial inner membrane as an a-helix. These domains are enriched in hydrophobic residues
such as Ala, Ile, Leu, and Val but mostly void of charged residues (34). The uncleaved signals
can span the membrane in different orientations, dictated by the positive inside rule (35,36). If



there are positive charges preceding the hydrophobic stretch, then the transmembrane (TM)
segment is oriented with the C-terminus facing the periplasm whereas if the hydrophobic stretches
are followed by positively charged residues, then the amino-terminus of the TM segment is
localized to the cytoplasm. The positive inside rule is based on the finding that the membrane
proteins have cytoplasmic loops that are enriched in positively charged residues (Lys, Arg) as
compared to the periplasmic/translocated loops (35).

2.1 Signal peptide targeting to the membrane

Targeting of exported and membrane proteins is initiated early on after the amino terminus of the
nascent protein emerges from the ribosomal exit channel (Fig. 2). The targeting pathway is
decided by the interaction of the nascent protein with the ribosome-bound chaperones and targeting
factors such as the Trigger Factor (TF) (37,38), the signal recognition particle (SRP) (39-41) and
SecA (the ATPase motor of the Sec translocation machinery) in some cases (42,43). These
chaperones and targeting factors recognize the distinct signal sequences to facilitate the
localization to the inner membrane of bacteria.

In Gram-negative bacteria, the exported proteins are targeted to the Sec complex or the Tat
translocase by a post-translational mechanism (Fig. 2). Exported proteins which employ the Sec
pathway contain moderately hydrophobic signal sequences and are transported through the Sec
channel in a largely unfolded state. In contrast, the Tat substrates are translocated in the folded
state after release of the protein from the ribosome and hence post-translational. Typically, the
integral membrane proteins are targeted co-translationally either to the Sec machinery or the YidC
insertase as soon as the hydrophobic TM segment emerges from the ribosomal tunnel.

2.1.1 Post-translational Pathway

2.1.1.1 Sec Proteins

In the post-translational pathway, the TF is bound to the ribosome over the exit channel shielding
the nascent chains from proteases (Fig. 2) (44). The ribosome-bound TF provides a protective
environment preventing the premature folding and aggregation of the growing protein chain.
Ribosome profiling studies have shown that the TF binds to the nascent chain only after
approximately 100 amino acids are synthesized and play a role for the biogenesis of many [3-barrel
outer membrane proteins (45). After the protein is released from the ribosome, some proteins can
form a complex with SecB (46), a dedicated molecular chaperone for export in bacteria. SecB is
a tetramer (47) and how it keeps proteins in a non-native loosely-folded form (48) is an intriguing
mechanistic question. Recently, a state-of-the-art NMR study revealed that an unfolded preprotein
wraps around the SecB. This is achieved by binding to the long hydrophobic grooves of SecB that
run around the tetramer (49). The SecB delivers the preprotein to SecA bound to SecYEG at the
membrane (50). The targeting of the preprotein to SecA is achieved by SecA acting as a receptor
that binds the signal peptide (51) and the chaperone SecB (52).

In an alternative scenario, cytosolic SecA can interact with the nascent chains emerging from the
ribosome (Fig. 2). Indeed, previous studies had suggested that SecA interacts with the nascent
chains (53,54). In more recent studies, SecA was shown to interact with the ribosome near the



ribosome exit channel (55). The binding of SecA to the ribosome is mediated by the ribosomal
protein, L23. This interaction is important since mutations in L23 perturb SecA ribosome binding,
significantly affecting the post-translational export of proteins in vivo (55). The isolation of
mRNAs that copurify with SecA revealed that they encode both Sec exported and membrane
proteins (56). The interaction of SecA with the nascent protein chains occurs only when the chains
are longer than 110 residues. The interaction of SecA with the nascent chains is not dependent on
TF or SecB. Notably, the authors found that SecB interaction with the nascent chains depended
on SecA being bound to the nascent chains, suggesting that SecA interacts with a subset of SecB
dependent substrates co-translationally (56). The emerging data suggests that SecA bound nascent
chains can target proteins directly to the SecYEG complex or with the help of SecB (Fig. 2).
However, it is uncertain if the interaction of SecA with all SecA-dependent substrates occurs co-
translationally.

In some cases, the preprotein is released from the ribosome with the TF still bound (not shown in
Fig. 2). In vitro, TF has been shown to form a stable 1 to 1 complex with proOmpA (57), making
proOmpA translocation competent. The TF functions as a holdase and foldase to bind its substrate
in an unfolded state (37). Saio et al. (2014) characterized the binding of the TF to the unfolded
precursor of alkaline phosphatase (pre-PhoA) by NMR (58). With the help of multiple binding
pockets, the TF engages with the nascent polypeptide and shields the emerging hydrophobic
regions of pre-PhoA in solvent to prevent it from premature folding and aggregation. De Geyter
et al. (2020) showed that the TF is a genuine export chaperone (59). Notably, they revealed that
the TF bound preprotein can associate with the SecB, which then recruits SecA through its C-tail
and promotes the transfer of the preprotein to SecA.

2.1.1.2 Tat Proteins

A different post-translational mechanism is used for targeting of Tat proteins to the inner
membrane (Fig. 2). These Tat proteins need to be folded in the cytoplasm prior to their
translocation across the membrane (60). Many of the known substrates of the Tat pathway in
bacteria bind a variety of redox cofactors, including molybdopterin centers and FeS cluster. There
are specialized chaperones termed REMP (redox enzyme maturation proteins) to mediate cofactor
insertion and proof reading (61,62). For example, TorD is a REMP for TorA that encodes
Trimethylamine-N-Oxide Reductase. TorD facilitates cofactor insertion and protects the TorA
signal peptide from proteases (63) enabling the TorA to be delivered correctly to the Tat
translocase (64). Another REMP is the DmsD that is involved in the biogenesis of dimethyl
sulphoxide (DMSO) reductase (DmsA) (65). DmsD associates with the DmsA signal peptide (66)
and also interacts with the molecular chaperones DnaK, Dnal, GroE, GroEL, and TF (38,67).
Finally, NapD is a REMP for the nitrate reductase complex localized in the periplasmic space.
NapD binds to the Tat signal peptide of NapA (68) and is involved in the insertion of the
molybdenum cofactor.

2.1.2 Co-translational Pathway
For integral membrane proteins the hydrophobic segments in the nascent proteins interact with

SRP at the ribosome exit channel and are sorted away from exported proteins that contain less
hydrophobic sequences (Fig. 2) (69). The inference for this comes from ribosome profiling studies



examining the mRNAs that are bound to SRP engaged ribosome nascent chains (70). The study
revealed 87% of the SRP interactors are membrane proteins and only 6% are periplasmic/outer
membrane proteins (70). SRP can scan the ribosome with low affinity even before the nascent
chain reaches the exit tunnel and interacts with the ribosomal binding proteins L23 and L29. This
is called the stand-by mode (71). When the nascent chain of 30-35 amino acids length reaches the
exit site, SRP forms a high affinity complex with the translating ribosome and signal peptide
(71,72). Soon after forming this high affinity complex, the nascent chain is delivered to its receptor
at the membrane (Fig. 2, right side) to form a quaternary complex. The receptor FtsY (in
prokaryotes) then transfers the ribosome nascent chain to the SecYEG complex by a mechanism
involving the catalysis of GTPases.

The SRP has also been shown to target membrane proteins to the YidC insertase (73) (Fig. 2). For
example, MscL (74) and the tail anchored proteins SciP, DjIC, and Flk require both YidC and SRP
for membrane protein insertion (75,76). Fth and FtsY can be crosslinked to the cytoplasmic loop
of YidC, suggesting that the SRP-YidC nascent chains are targeted to FtsY that is in proximity to
the YidC cytoplasmic loop (77). The YidC cytoplasmic loop C2 and the C-tail of YidC binds to
the ribosome supporting YidC activity (78).

Although the classical model predicts that SRP binds to the TM segment when it is exposed out of
the ribosome exit channel, SRP can also interact with the hydrophobic regions that are not a part
of the TM segment in some cases. Pross and Kuhn (2020) proved that there are two hydrophobic
segments in the amino-terminal part of the C-tailed anchored protein SciP, which are recognized
by SRP allowing it to target SciP to YidC (79). Additionally, in contrast to the classical view,
ribosome profiling studies showed that 29% of the SRP interactors skipped interaction with the
first TM segment of the membrane protein but were bound to C-terminal TM segments (70). The
M domain of Ffh prefers to bind to hydrophobic stretches that are 12 to 17 amino acids long and
contains Leu, Ile, Val, Met, Phe, Trp, and Tyr (70).

In another variation, certain membrane proteins with internal TM segment can be co-
translationally targeted to the membrane by SecA (80). SecA binds to the ribosome near the exit
channel where it can recognize certain membrane proteins. SecA interacts with high specificity
with nascent RodZ chains containing a TM segment far from the amino-terminus and targets the
protein to the inner membrane (80). Previously, Rawat et al. (2015) had shown that SecA drives
TM insertion and that Ffh and FtsY were not involved (81). SecA is sufficient for membrane
targeting of RodZ both in vivo and in vitro (80). Interestingly, Knupffer et al. (82) found that
SecA, just like SRP, deeply inserts into the exit tunnel of the ribosome to make contact with the
intra-tunnel loop of L23 (82). When the nascent chain is synthesized, SecA withdraws from the
tunnel and the SecA bound to the L23 ribosome protein recruits the nascent TM segment. It is
intriguing that the SecA amino-terminal amphipathic helix and the ribosomal L23 protein bind the
nascent chain TM segment with the TM segment clustered in between, as revealed by Cro-EM
studies (83). The SecA ribosome nascent chain complex is then targeted to the SecYEG complex,
which repositions SecA on the ribosome, allowing the TM segment containing the nascent chain
to be handed over to the SecYEG.

2.2 Crossing the Membrane



Once the signal peptide has navigated the transported protein to the membrane, it promotes
interaction with the translocation machineries (see below). A vast majority of proteins are
translocated by the SecYEG/SecDF system (Fig. 3C) and SecA (5,84-86), whereas the Tat
machinery is involved in the export of around 30 proteins in E. coli (60,87) (Fig. 3A). As
mentioned before, the Tat machinery is radically distinct from the SecA/SecYEG /SecDF system
as it can export fully folded proteins.

The SecYEG/SecDF/YidC translocase (Fig. 3C) plays the principal role for placing membrane
proteins in the lipid bilayer with the correct topology (88). Additionally, it functions to translocate
hydrophilic domains of membrane proteins across the membrane and allows the hydrophobic
regions to integrate into the lipid bilayer. The YidC insertase on its own or in cooperation with the
Sec translocase can insert membrane proteins (89) (Fig. 3B and 3C). The Tat machinery can act
as insertase for the membrane proteins with C-terminal TM segments (60).

2.2.1 Protein Translocation across the Membrane

2.2.1.1 SecYEG/SecA translocase

SecA plays a crucial role for the export process both as a receptor and molecular motor (85). The
preprotein binds with high affinity to SecA/SecYEG but not to SecYEG (50). SecA is also
necessary for the translocation of proteins across the inner membrane (86).

The structure of the SecYE protein-conducting channel, comprised of three subunits, was solved
from Methanococcus jannashii in 2004 (90). SecY is the main channel forming unit that has a
classic hourglass structure where TM 1-5 and TM 6-10 form two symmetric bundles held together
by a linker (Fig. 4A). The second subunit, SecE forms a clamp around SecY by wrapping around
the two sides via its TM segment and cytoplasmic tail to stabilize the complex (Fig. 4A). The
SecE in E. coli is a 14 kDa essential 3TM protein. Sec61f (SecG of E. coli) is located on the third
side of SecY (Fig. 4A). Both SecY and SecE are evolutionarily conserved in bacteria, archaea and
eukaryotes while SecG is not conserved in the three domains of life (91,92).

There is a pore ring with a diameter of 4 — 6 A (Fig. 4B) at the center of the SecY channel (90).
The pore ring is formed by 6 hydrophobic aliphatic residues and expands to accommodate the
polypeptide chain during translocation (93). A short helix TM 2a termed as the “plug” keeps the
pore closed (Fig. 4C). The plug functions to maintain the integrity and preserve the permeability
barrier of the membrane (94). It has been shown that deleting the plug domain does not result in
a major defect in protein export. However, channel experiments have shown that deletions of the
plug compromise the membrane permeability of the channel as there are fluctuations between the
open and closed state of the translocon (94). This suggests that when the plug is present, the
channel is stabilized in the closed state. Finally, on the front side of the channel, is the lateral gate
(comprised of the TM 2a and TM 7)(Fig. 4D) that can open sideways to allow signal peptides or
TM segments to exit the channel (90).

The peripheral subunit of the Sec complex is SecA which docks onto the SecYEG channel. It
utilizes the energy from both ATP binding as well as ATP hydrolysis to drive the transport of
unfolded proteins across the Sec channel. Structurally, SecA contains multiple domains with two



ATP binding domains (NBD-1 and NBD-2) (95), the HSD (helical scaffold domain), a preprotein
crosslinking domain (PPXD) (95), a helical wing domain (HWD), and a carboxyl-terminal linker
domain (CTL) (Fig. 5A). The HSD domain also has the central helix and the 2 helix finger (2HF)
(96) or the regulator of ATPase (IRA1) (97) subdomains. PPXD and the 2HF have been implicated
in binding the signal peptide and the mature region of the preprotein (98-100).

The crystal structures of the SecA-SecYEG complexes with and without substrate have shed light
on how SecA moves the substrate polypeptide through the channel (101-103). In the crystal
structure of the SecA—SecYEG complex, a single SecA protein is bound to a single SecYEG
protomer creating a groove for the passage of the preprotein (101). A clamp region can be
observed at the interface of PPXD and NBD-2 domains. Based on the crosslinking studies, the
clamp has been proposed to bind the preprotein (Fig. SA, without SecYEG shown) (104). The
2HF region of SecA (Fig. 6A) is located at the entrance of the SecYEG channel that may push the
preprotein into the channel (104). Interestingly, while an NMR study (51) showed the signal
peptide was bound to a SecA groove formed at the interface of the 2HF and the PPXD (Fig. 5B),
it is possible that it would move from this region to align more parallel to the 2HF, such that it
could be pushed into the channel. Indeed, based on the FRET, mutagenesis and genetic studies,
Oliver and coworkers proposed a model where the signal peptide binds parallel to the 2HF (Fig
5C) (105).

To examine the structure of the SecY channel during active SecA-dependent translocation, X-ray
crystallography was used to solve a substrate engaged SecA-SecYE complex (Fig. 6A). The
substrate sequence, which included the OmpA signal sequence and a short mature region, was
inserted at the end of the 2HF of SecA (102). The structure revealed that the signal peptide moved
into the lateral gate facing the lipid bilayer and the mature region inserted into the channel as a
loop, displacing the plug. Thus, the interaction of the signal sequence with the lateral gate induces
conformational changes and movements of the plug domain. This leads the way for the substrate
to move up the pore ring towards the periplasm by repeated ATP binding and hydrolysis events
moving roughly 20-25 amino acids into the translocon in each step.

More recently, in order to gain insight into the path of a translocating polypeptide through SecA,
another substrate engaged SecA-SecYE was solved in an active transition state of ATP hydrolysis
with ADP-BeFx bound (Fig. 6B) (103). The SecA/SecYE translocation intermediate with SecA
locked in an ATP bound state was generated using a substrate fusion protein consisting of the
proOmpA signal sequence, a linker region, and a folded GFP. In order to stabilize the complex, a
cysteine was added after the signal sequence to form a disufide bond to the cysteine introduced at
the SecY plug. The protein was then reconstituted into nanodiscs and solved by cryo-EM with a
resolution of about 3.5 A. Tracing the substrate within the SecA-SecYE complex confirmed that
in addition to the polypeptide being in proximity to the SecA 2HF, it also interacts with the SecA
clamp region via a short B-strand. It also showed the signal sequence forms a helix that is
positioned in a groove outside the lateral gate of the SecY channel.

There are several models that have been proposed to account for the role of ATP energy in
energizing SecA/SecYEG in protein transport, including (1) power stroke, (2) Brownian ratchet,
(3) push and slide, and other mechanisms. According to the power stroke model, the SecA ATP
hydrolysis causes conformational changes that result in mechanical pushing of the polypeptide



chain through the SecYEG channel. Indeed, a large segment of SecA was proposed to move
through the SecYEG channel to the periplasmic region in order to translocate the polypeptide to
the trans side of the membrane (106,107). Later versions of the power stroke model proposed that
the 2HF, which is positioned at the entrance of the SecYEG channel, functions as a piston to push
the polypeptide through the membrane. This rationale comes from the fact that the SecA 2HF
interacts with the preprotein during protein translocation (108). Upon ATP binding, the 2HF
undergoes a large conformational change that pushes the protein substrate chain into the SecY
channel (109). After the 2HF releases the polypeptide substrate of the preprotein, the finger resets
to its original position (109). This cycle of conformational changes occur multiple times until the
polypeptide is translocated through the channel.

In a Brownian ratchet mechanism, the movement of a protein chain occurs via diffusion through
the channel. SecA would mediate SecYEG channel opening thereby enabling the preprotein to
diffuse through the SecYEG pore. The evidence for this action was presented in a model by Allen
et al. (110). The authors demonstrated that the SecYEG gate is wide open when ATP is bound to
SecA and slightly open with ADP bound to SecA. The slightly open channel allows protein
substrate regions with small side chains to slide through the pore, but larger side chains would
require the pore to open. Interestingly, the SecYEG channel and the SecA 2HF are able to detect
the presence of a protein chain which results in nucleotide exchange, allowing ATP to replace
ADP. The binding of ATP to SecA leads to opening of the SecYEG channel-through which the
chain crosses by diffusion. Backsliding of the polypeptide chain is prevented by closure of the
channel. More recently, ATP-driven translocation through the SecYEG channel was shown to be
indirectly coupled to ATP hydrolysis providing further support to the Brownian ratchet model
(111).

A push and slide mechanism combines the power strokes and the passive diffusion models. Bauer
et al., (2014) found that certain protein chains can slide passively through the SecYEG channel
without ATP hydrolysis (112). Passive sliding of the polypeptide chain takes place after the
preprotein is released by the 2HF and SecA has bound to ADP. Under these conditions, the clamp
region between PPXD domain and NBD-2 domain is open and cannot bind the mature domain.
The polypeptide chain can passively slide in either direction. Power stroke would occur again
after the binding of ATP to SecA. During the power stroke, segments of the polypeptide chain
move deep into the SecY channel (113) as the SecA 2HF moves into the channel. Prior to the
retraction of the 2HF to the original position, the clamp region of SecA captures the mature domain
of the preprotein substrate and tightens around it, thus preventing back sliding of the polypeptide
chain (109). This tightening enables the forward translocation of the chain to be maintained. The
clamp closure occurs before or during SecA ATP hydrolysis and that the 2HF resets all the way
when the clamp is closed. Otherwise, as the 2HF resets, and moves away from the channel it
would drag the polypeptide with it (109,113). One baffling fact is that the immobilization of the
2HF to SecYEG do not inhibit translocation (114).

In addition to the energy of ATP binding and hydrolysis, the proton motive force (pmf) can also
contribute to the translocation of preproteins across the SecYEG channel membrane (115,116).
SecD and SecF, which have 6 TM segments and a large periplasmic domain, are required for pmf
stimulation of protein translocation (117). One model proposes that SecDF assists in translocation
by binding the preprotein once it emerges from SecY and prevents back sliding (118). Then it
swivels its head domain to translocate about 25 amino acids across the membrane with the help of
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the pmf. Therefore, SecDF functions in the pulling of preproteins across the membrane, and the
release of preproteins from the SecYEG complex after complete translocation.

2.2.1.2 Tat translocase

The Tat machinery exports fully folded proteins of different sizes. It is comprised of TatA, TatB,
and TatC (Tat complex) in E. coli and TatAC in B. subtilis (60,87,119). The Tat components in
E. coli are assembled on the cytoplasmic membrane as a TatBC complex and a cytoplasmic TatA
pool. TatC membrane insertion is a SecYEG and YidC dependent event (73,120). The TatA
oligomers are recruited to the TatBC complex in a pmf dependent event before substrate
translocation. The recognition of the twin arginine motif by a conserved patch on TatC (60)
initiates the architectural reorganization of the active complex assembly. The low stability, size
and transient nature of the active complex presents a daunting challenge to identify the precise
assembled active complex and Tat translocation.

The Tat components TatA and TatB have similar features each possessing a small periplasmic N-
terminal region, a single short TM helix (TMH) followed by an amphipathic helix (APH), and a
cytoplasmic domain. TatA is assumed to form the translocation complex with the substrate as it
is capable of forming oligomeric rings of different sizes (121). TatB functions with TatC as a
receptor to bind Tat substrates (122,123). TatB and TatC form a 1:1 complex and have an
oligomeric structure with a size range of 360 —700 kDa (124).

In the resting state, the TatBC receptor complex most likely has some TatA associated and recent
studies suggest there are three to four copies each of TatA, TatB and TatC in a ratio of 1:1:1 (124-
126). Based primarily on crosslinking studies it has been proposed recently that this TatABC
complex is organized such that TatB binds to the TatC TMS5 and TatA binds to the TatC TM6 (see
model in Fig. 3A of the TatABC complex in the resting state). Upon activation of the complex by
substrate addition, there is a conformational change such that TatA and TatB binds to TMS5 of TatC
(126). The authors suggest that switching of the TatA and TatB positions is triggered by the
substrate with the signal peptide moving further into the membrane interior.

NMR studies reveal that TatA and TatB proteins possess a short a-helical TM segment followed
by the amphipathic helix (APH) (Fig. 7A) (127,128). TatA forms oligomeric rings with variable
number of TatA molecules (128). Interestingly, structural studies and molecular dynamic (MD)
simulations predict that the TatA structure causes significant thinning of the membrane due to its
short TM segments (128). This may be true with TatB as well since it has a short TM segment.
The structure of the 6-membrane spanning TatC from Aquifex aeolicus revealed that the protein
has a “cup hand” or “glove-like structure” (Fig. 7A), where TatC assembles into a concave
structure that can accommodate a TM segment of TatB or the neighboring TatC (129,130).
Remarkably, the TatC surface has an ionizable Glul65 side chain that is expected to be buried in
the hydrophobic interior of the bilayer. MD simulations show that the TatC has a hydrated cavity
facing the cytosol with the conserved Glu/Gln inside the membrane. This hydrophilic cavity and
the short TM segments 5 and 6, cause thinning of the membrane.

Export by the Tat pathway begins by the recognition of the Tat signal peptide of the preprotein
substrate by TatC within the TatBC complex. TatC recognizes the RR motif via its N-terminal
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domain and a cytoplasmic loop 1 (Fig. 7B) (131,132). Subsequently, insertion of the signal
sequence into the interior of the membrane takes place by contacting the periplasmic side of TatA.
Following the substrate insertion into the TatBC complex, the oligomeric TatA complex is formed
in a step that requires a TM pmf. An oligomeric complex of TatA facilitates the translocation of
the folded substrate. TatA protomers are predicted to form oligomeric ring-like pores of varying
diameters in the cytoplasmic membrane, permitting the movement of fully-folded proteins into the
periplasm (133).

The precise mechanism of translocation is still debatable, but we will discuss the two main
hypotheses documented in literature. The trap door model postulates that the amphipathic helix
(APH) domain of TatA flips into the lipid bilayer with the help of membrane potential on contact
with the substrate carrying the TatA interactive motif (134). TatA oligomers self-arrange to form
a pore of ~ 8.5-13 nm in diameter to accommodate the folded protein (3). The APH at the
cytoplasmic face mirrors a “trap door” that regulates the transient channel for translocation of the
substrate. This would essentially depend on the flexible hinge (the conserved Gly residue) between
the APH and TMH (3). When the APH swings down to align with the TMH, the polar residues
may interact with the hydrophilic protein to be translocated and thus the folded protein is promoted
across the formfitting passive conduit.

The second model proposed a weakening of the lipid bilayer when TatA oligomerizes with its
polar N-tail destabilizing the membrane, allowing translocation of the Tat substrate (135). This
model where transient bilayer disruptions occur, is gaining more support with the NMR structure
of TatA and suggests that the TatA topology may not be as flexible as predicted by the trap door
model. MD simulations reveal the phospholipids are highly distorted and the membrane thickness
is dramatically shortened. It is believed that the thinning of the membrane is due to the short TatA
TM segment and the presence of the conserved glutamine in the oligomer. However, this model
does not clarify what drives the translocation of the substrate across the membrane.

2.3 The Insertion of Proteins into the Membrane

The insertion of proteins in their proper conformation and orientation into the lipid bilayer is
crucial for the functional integrity of the membrane proteins [for recent reviews see (84,88,136)].

2.3.1 SecYEG/YidC

For membrane protein topogenesis, the nascent membrane protein chain is presumed to be driven
across the membrane utilizing the GTP hydrolysis energy from protein synthesis. This is possible
because the ribosome binds to the SecYEG complex and may form a single aqueous conduit that
stretches across most of the inner membrane.

As the membrane protein enters the SecYEG channel, the hydrophobic TM sequence or signal
peptide may first enter the hydrophilic channel and then exit the lateral gate (90) or it can slide
into the membrane via the lateral gate by thermodynamically partitioning between the lipid and
the aqueous pore (88). Rather than the sequence of amino acids of the TM segment, the overall
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hydrophobic character of the segment is important for insertion into the membrane (137,138). The
hydrophobic stretch can stabilize the open lateral gate (139).

As seen with the substrate engaged SecYEG/SecA complex, the ribosome bound-Sec translocon
showed the signal peptide in the lateral gate. A cryoEM structure of the canine ribosome Sec61
translocon engaged with a preprolactin substrate showed the signal peptide in the lateral gate (Fig.
6C) (140). The pore region of the SecYEG channel would allow the polar polypeptide chains to
be translocated to the periplasmic side of the membrane (108). After translocation, a simple
membrane protein with one TM segment would completely exit the channel and partition into the
lipid bilayer.

Similarly, the lateral gate accommodates the TM segment of the ribosome bound membrane
protein inserting into the Sec61 complex, as revealed by cryo-EM study (Fig. 6D) (141). Notably,
another cryo-EM study of a nascent membrane protein-SecYE complex demonstrated that the first
two TM a-helices of proteorhodopsin had exited the lateral gate to face the lipid with the N-
terminus at the periphery of SecY (Fig. 6E) (142). Kater et al., (2019) further elucidated that a
partially inserted hydrophobic region can cause opening of the lateral gate (143).

SecA is always required for translocation of large loops and occasionally for small loops of
membrane proteins (144-147). However, the mechanism by which this task is carried out has not
been elucidated, as the ribosome is expected to be already bound to the SecYEG complex when
the membrane protein inserts co-translationally. In order to perform the translocation function by
SecA, the ribosome should be dissociated partly or completely from the SecYEG. This illustrates
the dynamic nature of the insertion process and the interplay of the various SecYEG binding
partners.

An interesting method to study in vivo insertion and co-translational folding of membrane proteins
is the application of translational arrest peptides to measure forces acting on a nascent protein
during membrane insertion (148,149). In this approach, the arrest peptide binds to the ribosomal
tunnel and induces ribosomal stalling at a specific amino acid. SecYEG mediated membrane
insertion and folding of a nascent chain is followed by examining the release of stalling and
resumption of protein synthesis. This technique has been used to study the co-translational
insertion of simple to complex proteins spanning the membrane ten times, showing that the surface
helices and re-entrant loops that flank a TM segment can either advance or delay membrane protein
insertion (150). Moreover, the results supported a sliding mechanism where the inserting TM
segment moved into the membrane along the outer part of the lateral gate.

The mechanism of insertion of multispanning membrane proteins is complicated with most of the
findings coming from studies of the endoplasmic reticulum (ER) membrane system (88,136). In
some cases, a TM segment is inserted into the translocase and then reoriented within the channel
(151). Remarkably, some TM segments of the membrane proteins such as the aquaporin 4 channel,
exit the channel but apparently interact again at a later stage in membrane biogenesis, validating
the dynamic nature of membrane protein biogenesis. The SecYEG machinery can handle the
internal TM segments by various mechanisms. Some TM segments integrate into the lipid bilayer
spontaneously (152), others integrate into the lipid bilayer only after the protein synthesis is
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terminated (153,154), some pairs of TM segments co-integrate into the membrane (155,156), while
the rest can be stabilized by chaperones such as TRAM and YidC (152,153,157-159).

SecYEG plays the primary role in membrane insertion in the plasma membrane in bacteria. The
accessory component, YidC actively participates in membrane protein biogenesis for several
different Sec dependent proteins (Fig. 2 and 3). Substrates that require the synergistic action of
both YidC and SecYEG for insertion include, subunit a and b of the F1Fo ATP synthase (160)
and TatC of the twin arginine translocase (73,120). Moreover, YidC can bind to the TM
segment of membrane proteins after the TM segment exits the SecYEG channel (158). This case
is exemplified by the TM segments of FtsQ and leader peptidase (161) which were shown to
initially contact SecYEG followed by contact with YidC at a later stage during its translocation
process. This latter finding implied that YidC may facilitate Sec substrates to partition into the
bilayer and assist in the clearing the Sec channel of its substrates. Remarkably, in the case of
CyoA (subunit of cytochrome bo3 oxidase), the amino-terminal domain is inserted by the sole
action of the YidC insertase whereas the large C-terminal domain requires SecY EG operating
with the SecA motor ATPase for insertion (162-164).

Furthermore, YidC acts as a chaperone (159) and assembler of multi-TM complexes (165). Studies
with LacY biogenesis showed that YidC acts in the late stages of membrane protein biogenesis
and is crucial for the correct folding of the protein but nonessential for its insertion (159,166).
Wagner et al. discovered a similar trend with MalF, a subunit of the maltose binding complex.
Upon YidC depletion, the stability of the complex was affected without compromising the
insertion of the TM segments of MalF mediated by the SecYEG complex (167).

In order to perform these multi-functions, YidC must be located close to the SecYEG complex.
Indeed, YidC, SecDF/YajC may associate with SecYEG to form a holo-translocon (168). This
has been validated by copurification of YidC with the SecYEG and SecDF/YajC. The purified
complex is capable of inserting in vitro synthesized membrane proteins (169). A low-resolution
structure of the holocomplex SecYEG/SecDFYidC revealed that the SecYEG-YidC interface is a
lipid filled cavity (170). Although a YidC holocomplex can be isolated, YidC is capable of
dynamic interaction with SecYEG. When YidC contacts SecYEG, it is in proximity to the lateral
gate of SecYEG and can contact helices on either side of the lateral gate (TMs 2b, 3, 7 and 8)
(171). This contact is maintained even in the absence of SecDF. Furthermore, SecYEG contacts
TMI1 and cytosolic loop 1 of YidC (77). The Sec lateral gate can contact the YidC TM3-TMS5
region which forms the greasy slide (172). Taken together, these studies suggest that the insertion
of Sec-dependent protein substrates occurs at the interface of YidC/SecYEG.

2.3.2 YidC-only pathway

In addition to assisting SecYEG and acting as a chaperone for membrane insertion, YidC can also
operate independently. Examples of the Sec-independent proteins include M 13 phage coat protein
(PC) and the Pf3 coat protein, which were earlier presumed to be inserted by an unassisted
mechanism. Depletion of YidC resulted in the accumulation of these proteins in the cytoplasm
(173-175). Moreover, crosslinking studies exhibited that YidC interacts with the inserting P{3
coat (174). Subunit ¢ of F1Fo ATPase was shown to be dependent on YidC for membrane insertion
both in vivo (176,177) and in vitro (178). Interestingly, YidC proteoliposomes were capable of
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forming the subunit ¢ oligomer whereas the liposomes were not (179). The indispensable nature
of YidC in cells is still speculative. One of the reasons may be attributed to the fact that YidC is
required for the biogenesis of the respiratory complexes (180).

Other substrates for the YidC-only pathway are MscL (Mechanosensitive channel of large
conductance), which inserts co-translationally (74) and the tail anchored membrane proteins TssL
(SciP), DjIK, and Flk (75,76,181). In eukaryotes, the ER tail anchored membrane proteins with a
high hydrophobic TM segment are inserted by the Get pathway while those proteins with low
hydrophobic TM segment are inserted by the ER membrane protein complex (EMC) (136).
Interestingly, Getl and EMC3 of the Get complex and EMC, respectively, are YidC homologs
found in the ER (182-184).

The common feature of substrates of the YidC only pathway is that they have a short translocated
region (185), suggesting that the YidC insertase has limited translocase activity. Indeed, if the
polarity of the translocated domain exceeds a certain threshold by introduction of charged/polar
residues, then YidC requires the assistance of the SecYEG complex, implying that YidC is
incapable to translocate these substrates unaided (147,186). The switching from YidC-only
pathway to the YidC/Sec pathway indicates that both the YidC and the SecYEG are surveying the
polypeptide chain during the membrane insertion process. This is feasible by dynamic interaction
of YidC with SecYEG (171,172) or, a certain portion of YidC is a part of the
SecYEG/SecDFYajC/YidC holocomplex (168).

Structural studies have shown that YidC is a monomer and contains a hydrophilic cavity within
the 5 TM core region (Fig. 8) (187,188). This aqueous groove with a conserved positively charged
residue is open both to the cytoplasm and the lipid bilayer but closed from the periplasmic side.
The existence of a hydrophilic groove located within the inner leaflet of the membrane was
supported by in vivo solvent accessibility and MD simulation studies. The study also revealed that
YidC shapes the membrane with significant membrane thinning around the protein (189). The
presence of the hydrophilic groove in the membrane decreases the membrane crossing distance
which would in turn reduce the energy cost of translocating a polypeptide chain. Wu and Rapoport
(2021) have recently proposed that protein translocation through a locally thinned membrane is a
new paradigm for lowering the energy cost for translocation (190).

Remarkably, the positively charged residue in the hydrophilic groove is essential for SpolllJ
(YidCl1) function in B. subtilis. It was proposed that the hydrophilic groove participates in an
electrostatic step to translocate the negatively charged N-terminal tail region of MifM across the
membrane (187). However, the positive charge is not essential for the £. coli YidC (191). Rather,
the positively charged residues plays a role in maintaining the hydrophilic microenvironment in
the groove, which is necessary for the activity of YidC (192).

In addition to the hydrophilic groove, YidC has a cytoplasmic helical hairpin-like domain (Fig.
8A) (187) which was predicted to be involved in the initial recruitment of the substrate. The
arrangement of two antiparallel helices in the C1 region of EcYidC is rotated by 35° with respect
to the core region, as compared to that in the BhYidC structure. Moreover, in both the structures
the B factor for this region is high, demonstrating the flexibility of the C1 cytoplasmic loop region.
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Crosslinking studies of the essential C1 loop show contacts not only with the targeting proteins
SRP and FtsY but also the Sec translocon (77,78).

The mechanism of the substrate TM recognition by YidC is fascinating. Crosslinking studies have
indicated that the TM3 of YidC contacts the TM domain of FtsQ, leader peptidase, subunit ¢ of
the F1FoATPase (193). Contacts are also observed with TM3 and TMS5 of YidC to Pf3 coat and
MscL (194,195). It has been proposed that the substrate enters the YidC groove between these
TM3 and TMS5 segments, which constitutes a greasy slide where the TM segment moves across
the membrane (Fig. 8B). Kedrov et al., performed cryo-EM studies on a YidC-ribosome Foc
nascent chain complex where YidC was reconstituted in nanodiscs. The study revealed that the
Foc nascent chain was in proximity to TM3 facing the lipid region (196).

He et al. (2020) elucidated the pathway employed by the single spanning Pf3 coat to provide
insight into the YidC insertion mechanism of simple membrane proteins (197) (Fig. 8C). The
tracking of the Pf3 coat protein through YidC was obtained by “freezing” each step of the insertion
process by creating translational arrested intermediates of different sizes and investigating them
by thiol crosslinking (197). The results divulged that the TM segment of Pf3 moves up the YidC
greasy slide comprised of TM3/TMS5 during membrane insertion. After the TM reached the top
of the slide, the N-tail transiently enters the YidC hydrophilic groove. In the next step, the N-tail
is released from the groove and translocated across the periplasmic leaflet of the membrane.

2.3.3 TatC and TatC/SecYEG

The Tat substrates of E. coli include the five integral membrane proteins including HybO, FdnH,
FdoH, HyaA and HybA (198). The genes encode subunits of NiFe hydrogenase or formate
dehydrogenase. They are encoded with a Tat signal peptide and possess a C-terminal TM segment
that functions as a stop transfer domain. The recognition of these membrane proteins by the Tat
complex is achieved by the interaction of the Tat signal peptide with the TatBC complex.

Although mechanistically different, surprisingly, in some bacteria, cooperation is observed
between the Tat and the Sec pathway for the insertion and assembly of polytopic membrane
proteins (199). The first evidence for this was from the analysis of the iron-sulfur membrane
bound Rieske proteins from Gram-positive actinobacteria that has three TM segments. While the
first two TM segments are inserted by the SecYEG translocase, the third TM segment, which is
preceded by a Tat motif was inserted by the Tat system. To understand the mechanism of insertion
further and to decipher the handover process from Sec to Tat, the S. coelicolor Rieske protein,
Sco2149 was examined (200). The authors observed that a moderate hydrophobicity of the TM3
segment and the presence of several C-terminal positively charged residues promote the release of
the TM3 from the SecYEG apparatus. This further allows the Tat signal peptide to engage with
the Tat translocase and stimulate translocation across the membrane. Other examples of the dual
participation by Sec/Tat machineries targeting membrane proteins include the five spanning
membrane proteins S. coelicolor Molybdenum cofactor protein Sco3746, and the delta
proteobacterium MLMS-1 FeS containing polyferredoxin. In these cases, the first four TM
segments are inserted by the SecYEG complex, and the Tat system inserts the last TM segment
and translocates the folded C-terminal domain. In each case, the fifth TM segment has moderate
hydrophobicity and an amino terminal Tat RR-motif (200).
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2.4 Removal of the signal peptide and degradation

The last step in the translocation pathway is the removal of the signal peptide. This allows the
exported proteins to be released from the membrane so that they can continue their journey to the
periplasm, outer membrane or to the extracellular medium. The removed signal peptides are
degraded by enzymes having signal peptide hydrolase activity.

Signal peptidases cleave off the signal peptides and play crucial roles as endopeptidases with clear
cut substrate specificities (201). Type I signal peptidase (SPase I; also known as leader peptidase)
processes the majority of preproteins while Type II signal peptidases (SPase II; also known as
lipoprotein signal peptidase) process lipoprotein precursors (202).

2.3.1 Signal peptidase 1

The first signal peptidase to be characterized was E. coli signal peptidase I (SPase I). It was
overproduced and purified to homogeneity (203). The purified protease in detergent was shown
to cleave a wide variety of preproteins, including eukaryotic secretory preproteins (204).
Similarly, the eukaryotic signal peptidase can cleave bacterial preproteins, demonstrating that the
cleavage specificity is evolutionarily conserved (204). Subsequently, the E. coli protease enzyme
was shown to be localized to the inner membrane with its catalytic domain facing the periplasmic
space (205). Moreover, it was shown to be an essential enzyme for the bacteria (206).

Signal peptidases are indispensable for the secretion process. Disruption of the signal peptide
processing prevents the preproteins from arriving to their correct destination in the cell (207).
Under decreased SPase I activity in a depletion strain, the accumulated preproteins were
translocated but were anchored to the inner membrane by the uncleaved signal peptide. Therefore,
the function of signal peptidase is to release the exported protein from the membrane by removing
the signal peptide so that they proceed to their destination. It is now established that SPase I
processes the majority of non-lipoproteins that are exported by the Sec pathway or by the Tat
pathway (29).

To understand how SPase cleaves and binds substrates at the active site, the structure of the E. coli
signal peptidase periplasmic domain (A2-75) (208) was solved to high resolution of 1.9A (209)
(Fig. 9A). The catalytic serine (Ser 91) was covalently attached to the cleaved B-lactam inhibitor
and the lysine 146 amino group was within hydrogen bond distance. This corroborates with the
mutagenesis studies displaying the indispensable mechanism of active Ser and Lys dyad for
catalysis (210-212) (Fig. 9A) in contrast to the canonical Ser-His-Asp mechanism (213).

Intensive analysis of the structure of the active site region with the inhibitor (209) and a signal
peptide modeled into the binding site of the apo enzyme (214) revealed the binding pockets at the
S1 and S3 positions that account for the “ -3 and -1 or “Ala-X-Ala” rule for processing based on
conserved residues in preproteins (215). The S1 pocket is quite small and the S3 pocket is slightly
bigger, fitting well with the known substrate specificity. The -2, -4 and -5 residues are solvent
exposed, consistent with almost any residue found at these positions. The substrate binding pocket
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was further supported by the structure of the S. aureus SPase I (SpsB) with a portion of the signal
peptide and the early mature region sequence binding to the active site (216).

2.3.2 Signal peptidase 11

As mentioned earlier, the substrate for signal peptidase II (SPase II) is a diacylglycerol modified
prolipoprotein (217). Following cleavage and further maturation, the bacterial lipoproteins possess
a N-acyl diacylglycerylcysteine at the N-terminal end of the protein, which serves to anchor
lipoproteins to the inner membrane or the outer membrane.

The gene for SPase II (Isp) was cloned by the Mizushima and the Wu labs independently (218,219).
The SPase protein spans the membrane four times with the protein ends facing the cytoplasm. The
initial evidence of this peptidase as an aspartic protease was the fact that it was inhibited by
pepstatin (220). Also, in B. subtilis, several aspartic acid residues located at the ends of the TM
segments were shown to be important for activity (221).

The structure of SPase Il from Pseudomonas aeruginosa in complex with the inhibitor globomycin
solved to 2.8 A provided evidence that SPase II was an aspartic acid protease (Fig. 9) (222). Along
with mutagenesis studies, the work revealed that Asp 124 and Asp 143 comprise a catalytic dyad
(Fig. 9A). Interestingly, the aspartic residues are located within the predicted membrane region
confirming that SPase catalyzes intramembrane proteolysis. These findings validate the fact that
lipoprotein signal peptides typically have short hydrophobic regions. Caffrey and coworkers
proposed a model for how SPase II binds the preprotein and carries out catalysis (222). The signal
peptide helix of the preprotein enters the SPase II active region via TM segments 2 and 4, and then
binds to the protein to position the preprotein lipobox residues analogous to the Leu-Ile-Ser
tripeptide of the globomycin inhibitor. The signal peptide region immediately following the Leu
residue in the lipobox is in an extended conformation with the Gly-Cys scissile bond positioned in
proximity to the Asp catalytic dyad Asp124 and Asp143. The mature domain of the preprotein is
located in the periplasmic region.

2.3.3 Signal peptide degradation

The final step “in the life and death of signal peptides (see ref (223)” is their degradation.
Degradation of the signal peptides is important because in many cases they can be toxic to the cell
or interfere with protein export (224,225). The first protease discovered to possess signal peptide
hydrolase activity was SppA (or protease IV), which was shown to degrade the lipoprotein signal
peptide (226). SppA is an inner protein that forms a tetrameric structure (226,227). The catalytic
domain of SppA containing the active site Ser-Lys dyad (Fig. 9B) (228,229) is found within the
periplasmic region at a large distance from the membrane indicating that the signal peptide is
released from the membrane prior to its degradation (228). Apparently, SppA would cleave a wide
variety of signal peptides that are released into the periplasmic space. Other proteases such as
oligopeptidase A would hydrolyze signal peptides that are released into the cytoplasm (230).

The bacterial RseP, like signal peptide peptidase in eukaryotes (231-233), can catalyze cleavage

of membrane spanning signal peptides (234). RseP is a site-2 protease that can cleave within TM
segments of membrane proteins as well (235). It is a zinc metalloprotease (Fig. 9C). The active

18



site is in an aqueous environment close to the cytoplasmic surface of the membrane. It binds zinc
and has an essential catalytic glutamic acid. Saito et al (2011) showed that RseP is capable of
degrading a number of signal peptides from a wide variety of preproteins such as OmpA, M13
procoat, Liv], LivK, PhoA, TolC, SecM, suggesting that it significantly contributes to signal
peptide degradation in E. coli (234). This group of proteases is fascinating since they catalyze
proteolysis within the membrane.

3. Targeting the signal peptide proteases as antibiotic target

Signal peptidase I and II are attractive antibacterial drug targets (236-240). SPase I is conserved
in bacterial pathogens and has a novel active site architecture (Ser-Lys dyad) that can be targeted.
Its active site location on the periplasmic side of the membrane makes it readily accessible (241).
SPase II presents as another target candidate as lipoprotein signal peptidases are absent in the
eukaryotic organism. The reduced efficacy of the existing antibiotics and the emergence of drug-
resistant bacterial pathogens has led to the urgent demand for new treatments. This warrants the
study of novel antibacterial targets such as SPase I and SPase II.

3.1 SPase I as antibiotic target

Various companies have centered on SPase I as an antibacterial target including Smithkline
Beecham pharmaceuticals (now GlaxoSmithKline), Merck, Eli Lilly and Genentech. Some of the
first inhibitors were the [B-lactams, including clavams, thioclavams, penem carboxylate C6
Substituted esters, and allyl (5S,6S)-6-[R)-acetoxyethyl]penem-3-carboxylate (Fig. 10A) and
(55)-tricyclic penem (242). Some of the peptide inhibitors such as, a-ketoamide peptides and
decanoyl-PTANA-aldehyde (Fig. 10C) were effective (243,244).

Another promising class of inhibitors are the natural products Krisynomycin and Arylomycins.
They are produced in Streptomyces by the non-ribosomal peptide synthesis. The Arylomycin
family includes Arylomycin A and B (245,246), and Arylomycin C (a lipoglycopeptide) (247)
discovered in the beginning of the 21 century. More recently, Arylomycin D was discovered (see
below). Arylomycin D and its derivative M131, as well as Krisynomycin displayed significant
antibacterial activity against the methicillin resistant S. aureus (MRSA) (248,249). Romesberg
and others have developed a total synthesis of Arylomycin A2 (250), Arylomycins B2 (251,252),
Arylomycin C (253) and members of the Arylomycin D class (248,249).

Noteworthy, Smith et al. (2012) proposed that Arylomycins may represent a class of latent
antibiotics whose activity can be masked by mutations in the SPase I protease which otherwise
would have rendered them susceptible (241). While Arylomycins normally have a narrow
spectrum of antibiotic activity (Fig. 10B), these antibiotics have the potential to have a much
broader spectrum antibiotic activity against both Gram-positive and Gram-negative bacteria.
Romesberg and coworkers initially investigated Staphylococcus epidermidis that was sensitive to
Arylomycin A and isolated resistant strains which had mutations in SPase I (Ser to Pro changes at
position 29). Intriguingly, the analogous Pro mutations in SPases that occurred during evolution,
accounted for the natural resistance that is observed in E. coli, P. aeruginosa, and S. aureus.
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Strikingly, they found that a wide variety of bacteria that lacked this Pro substitution were sensitive
to Arylomycin.

To gain insight into how to improve the potency of Ayrlomycin the structure of the E. coli SPase-
Arylomycin complex was solved (254). Paetzel and coworkers revealed that the carboxylate of
Arylomycin was bound to the catalytic serine, and the penultimate alanine of the inhibitor was
localized within the S3 pocket. The structure also shows that residue 84 of E. coli SPase that
confers resistance to the antibiotic is positioned near the amino-terminal part of the Arylomycin
lipopeptide. A proline at the 84 position prevents the donation of one potential hydrogen bond
from the backbone amide group on the B-strand 1 of SPase I to the carbonyl oxygen of the fatty
acid of arylomycin. The presence of this extra H bond interaction would presumably increase the
affinity of arylomycin to the SPase I proteins, making the bacteria more susceptible to the
antibiotic.

A breakthrough in the antibiotic field by scientists at Genentech was the production of G0775,
which represents a new class of Gram-negative antibiotics, that targets SPase I (Fig. 10D) (255).
This optimized arylomycin had several modifications including a replacement for the natural
aliphatic tail, modification of the phenol groups of the tripeptide ring, and the introduction of an
electrophilic warhead at the C-terminal carboxylate. GO775 was 500 times more potent than the
arylomycin A-C16 against E. coli and K. pneumoniae which was normally not inhibited by
arylomycin. It also had a potent activity against other pathogens. Additionally, it was effective in
treating mice that were infected with Gram-negative bacterial pathogens, without any toxic impact
on the mammalian cells. Intriguingly, the electrophilic warhead that was expected to covalently
modify the active site serine instead modified the catalytic base lysine, by a novel mechanism.
High affinity interaction between the target protein and the inhibitor made G0775 extremely active
against multidrug resistant bacteria.

3.2 SPase II as antibiotic target

SPase II has been an attractive antibiotic target since the natural products globomycin (Fig. 10E)
and myxovirescin (Fig. 10F) have been shown to have antibacterial activity (256-259).
Globomycin is a cyclic depsipeptide produced in Streptomyces. Myxovirescin is a secondary
metabolite with a 28-membered macrocyclic lactone that is made in myxobacteria. Inhibition of
SPase Il is lethal in all Gram-negative bacteria.

Quite surprisingly, the structures of the S. aureus SPase II in complex with either globomycin or
myxovirescin (260) revealed that the mode of inhibition is similar despite the two antibiotics
interacting mostly with the protein on opposite sides of the substrate binding pocket. While both
inhibitors bind to the catalytic Asp dyad with the hydroxyl group wedging in between (the B-
hydroxy group of serine residue of globomycin and a 6 OH group from myxovirescin), most of
the remaining parts of the molecule were on opposite sides of the substrate binding region. The
interaction of the OH with the aspartic acid behaved like a non-cleavable tetrahedral analog (260).
The hydroxyl groups of the antibiotics inhibited the enzyme by targeting the catalytic dyad aspartic
acid residues.
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To identify new inhibitors of SPase II, a high throughput screen was performed (261) where
646,275 molecules were analyzed using a SPase II FRET substrate assay. To validate their assay,
they showed globomycin inhibited SPase II with an IC50 of 1.2 nM. Myxovirescin had a
comparable or even better IC50. After identifying the best molecules from this initial screening,
further optimization of the compound by medicinal chemistry resulted in an inhibitor of IC50 of
99 nM. Although this was a potent SPase II inhibitor, it did not accrue antibacterial activity in E.
coli unless it was used in combination with polymyxin B nonapeptide, which made the outer
membrane more permeable to compounds.

More recently, the structure of Globomycin was optimized to improve its antibacterial activity
against E. coli (262) and its permeability across the outer membrane. Taking advantage of the
SPase-globomycin structure, modifications were made to alter the lipophilic side chains, the n-
hexyl group, and the backbone to introduce a salt-bridge that interacted with the SPase II catalytic
aspartic residues. Several compounds were obtained that had increased potency against several
Gram-negative pathogens.

4. Summary and Outlook

In conclusion, the signal peptide plays a universal central role in protein export in the three
kingdoms of life. It orchestrates the sorting of proteins from the cytosol to the membrane. After
targeting the protein to the membrane by binding to the receptor, the signal peptide activates the
translocase such that the preprotein can make its way to the other side of the membrane.

Activation of the SecYEG channel occurs by binding of the signal peptide to the lateral gate,
leading to a conformational change in the channel. Thus, signal peptide binding unlocks the Sec
channel for translocation. In case of the Tat translocation machinery, the signal peptide provides
the signal for the assembly of an oligomeric Tat translocase capable of transporting fully folded
protein substrates. The key to triggering this process is the twin arginines within the signal peptide
that binds to the TatBC receptor which switches on the Tat assembly process.

The final step in the translocation process is the removal of the signal peptide and its degradation.
The hydrophobic region of the signal peptide positions the cleavage site for proteolysis by signal
peptidases. After having served its purpose of protein navigation, the signal peptide is degraded
by signal peptide hydrolases.

Owing to the decisive role the signal peptidases play in protein transport and translocation, they
have been appreciated recently as novel targets for antibiotics. The proteins so inhibited are
involved in an array of bacterial fundamental processes essential for growth and viability of the
bacteria/pathogen. The recent studies present Arylomycin and its derivatives such as G0775 as
promising candidates for translation into new medicine to treat multidrug resistant pathogens.
These compounds and the next generation of synthetic analogs will hopefully prove to be
successful antibiotics to combat bacterial infections.

Yet, much remains to be discovered in the protein targeting and export field even 50 years after
the Signal Hypothesis was proposed by Giinter Blobel. Snapshots of the machineries engaged in
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substrate translocation are expected to provide new mechanistic insight into the processes of
translocation dynamics, instigating the array of polytopic orientations in the membrane. Protein
export has entered an exciting chapter, and more is anticipated in the days to come.
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Figure Legends.

Figure 1. Bacterial Signal peptides.

Schematic representations of the Sec-type signal peptide, the twin-arginine (Tat) signal peptide,
the lipoprotein signal peptide, and the prepilin signal peptide. The various regions of the signal
peptides (n, h, ¢ and basic regions) are indicated. The SP cleavage site is represented with a red
arrow. N and C indicates amino and carboxyl-terminus, respectively.

Figure 2. Membrane targeting pathways.

Overview of the post-translational (left side) and co-translational (right side) targeting pathways.
After exported proteins are released from the ribosome, Sec-dependent proteins can be stabilized
by the molecular chaperone SecB in an unfolded state and then targeted to SecA at the membrane,
followed by translocation by the SecYEG complex. Alternatively, SecA can interact with the
ribosome bound nascent chain and target the exported protein to the SecYEG complex. In case of
Tat complex, the proteins fold in the cytoplasm before being exported by the Tat complex. In the
event of co-translational targeting, the nascent membrane proteins form a complex with SRP,
which target proteins to FtsY (SRP receptor) for membrane insertion either by the SecYEG
complex or the YidC insertase. Created with BioRender.com.

Figure 3. The structures of the bacterial export and insertion machineries.

Export of proteins across the membrane are catalyzed by (A) the Tat complex (resting complex
shown) in a folded state (left side) (126), (B) by YidC (PDB: 3WVF) alone or (C) by
SecYEG/SecDF/YidC (PDB: 5MG3) energized by the SecA motor ATPase (not shown) in an
unfolded state. TatA, TatB and TatC is shown in cyan, magenta and green, respectively. SecY,
SecE, and SecG is shown in green, red, and magenta; SecD, SecF and YidC are shown in orange,
blue and cyan. Membrane protein integration is catalyzed by the SecYEG/SecDF/YidC complex
or by the YidC insertase. The view is in the plane of the membrane with the periplasmic face at
the top and the cytoplasmic face at the bottom.

Figure 4. Crystal structure of the SecYEP complex in the resting state from Methanocaldococcus
jannaschii (PDB: 1RHZ) (A). TM1-5 (red) and TM6-10 (cyan) are the halves of SecY. SecE and
Sec61p are in yellow and purple, respectively. (B) The pore ring comprised of six residues (pink)
and lateral gate (TM2b in red and TM7 in cyan) are highlighted. (C) The plug helix located above
the pore ring is indicated in dark blue. (D) The SecYER complex from Thermus thermophiles
(PDB: 5SAWW). The lateral gate region comprised of TM2b (red) and TM7 (blue) is the site where
the signal peptide or TM segments of membrane proteins exit the channel upon opening of the
gate. The SecYEP structures in A-C are shown perpendicular to the membrane.

Figure 5. The structure of SecA from E. coli (PDB: 2VDA). (A) The various domains of SecA
are highlighted. The nucleotide binding domains I (orange) and II (blue), the central helix
subdomain of helical scaffold domain (HSD in purple), the preprotein crosslinking domain (PPXD
green), the helical wing domain (HWD cyan), and the observed carboxyl-terminal linker domain
(CTL). Also highlighted is the 2-helix finger (2HF tan) within the HSD domain. (B) The signal
peptide (red) binds roughly perpendicular to 2HF based on NMR studies (51). (C) The signal
peptide is modeled parallel to the 2HF based on FRET, mutagenesis and genetic studies (105).
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Figure 6. Structures of substrate engaged SecYE or Sec61 complexes. (A) Crystal structure of
SecYE-SecA (PDB: SEUL) with a portion of the preprotein (comprised of the OmpA signal
sequence and a few residues in the mature region) fused into the 2HF (navy blue) by insertion
between 741 and 744 of SecA. SecA (in light blue) was from B. subtilis and SecYE was from
Geobacillus thermodenitrificans. Nanobody (chartreuse) bound to the periplasmic side of SecY
(tan). (B) CryoEM structure of SecYEG-SecA complexed with a proOmpA sfGFP (PDB: 61TC)
fusion protein. The structure was performed with SecYE in a lipid nanodisc. An anti-GFP
nanobody was inserted at the C-terminus of SecA to recognize and stabilize the fused sfGFP of
the substrate. In addition, a disulfide was created between a cysteine at position 8 in the early
mature region of the proOmpA GFP fusion protein and a cysteine placed in the plug domain of
SecY. Finally, a SecY nanobody that recognizes the periplasmic SecY region was added to
stabilize the complex. SecY nanobody (chartreuse) is shown. SecA was from B. subtilis and
SecYE was from Geobacillus thermodenitrificans. The nanobody is shown in green in A-B. (C)
CryoEM structure (PDB: 3JC2) in detergent of the canine ribosome Sec61 channel engaged with
the N-terminal 86-amino acid preprolactin region. (D) CryoEM structure (PDB: 4CG6) of the
canine Sec61 channel engaged with a hydrophobic TM segment (light green) of a leader peptidase
(lep) arrested intermediate. The TM segment was modeled within the opened TM2/TM7 lateral
gate. (E) CryoEM structure (PDB: SABB) of a stalled E. coli ribosome SecYE complex engaged
with proteorhodopsin (TM indicated in light green). TM2 and TM7 of the lateral gate are shown
in magneta and cyan, respectively in A-E. The signal peptide (red) is indicated in A-C. The plug
helix is indicated in yellow in D-E.

Figure 7. The Tat complex components and a model of TatC-signal peptide complex. (A) The
single span TatA (PDB: 2MN7) and TatB (PDB: 2MI2) proteins were determined by NMR
(127,128). The structure of 6 membrane spanning TatC (PDB: 4B4A) was solved by X-ray
crystallography (129,130). (B) The model of TatC binding to the Tat substrate was made by
Ramasamy et al (130). Only signal peptide and early mature region of the preprotein are indicated.

Figure 8. The YidC insertase (PDB: 3WVF). (A) The E. coli YidC has a large periplasmic
domain, a coiled cytoplasmic domain, and a conserved core region comprising of 5 TM helices
(TMs 2-6) that form a hydrophilic groove open to the cytoplasm and lipid bilayer. The hydrophilic
groove has a strictly conserved arginine that helps to keep the region hydrated. (B) A close-up
view of the greasy slide (TM3 and TMSY) that contacts the TM region of YidC substrates during
insertion. The residues that contact the substrate TM segment (s) are indicated in dark blue. (C)
During membrane insertion of the P{3 coat, the TM segment moves up the greasy slide with the
N-tail region captured transiently in the hydrophilic groove. The periplasmic domain of YidC is
omitted in B and C.

Figure 9. Peptidases involved in the removal of signal peptides and their degradation. (A) Signal
peptidase 1 (PDB: 1T7D) is a novel Ser-Lys protease that cleaves the preprotein at the membrane
surface on the periplasmic side. Signal peptidase 2 (PDB: 5DIR) is an aspartic acid protease that
cleaves a diacyl glyceride modified preproteins within the plane of the membrane. (B) SppA (PDB:
3BFO0) is a tetrameric protein that degrades signal peptides which are released from the membrane
into the periplasmic space. SppA employs a Ser-Lys dyad and is anchored to the membrane by an
amino terminal TM segment. (C) RseP signal peptide peptidase (PDB: 3B4R) in open state. Both
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water molecules and peptide substrates reach the active site containing Zn*" ion (blue) during its
open state.

Figure 10. Structures of Signal peptidase inhibitors. (A) allyl (5S,6S)-6[(R)-acetoxyethyl]-
penem-3-carboxylate. (B) Decanoyl-PTANA-aldehyde. (C) Arylomycin A; R1=R2=R3=H; R4
=1s0-Cl11, 12, 14, n-C12, anteiso-C13. (D) GO775, an optimized arylomycin. E. Globomycin. F.
Myxovirescin.
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