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Abstract—Accurate population counts are essential for un-
derstanding the status of species and for researchers studying
various phenomena including monitoring the relationship be-
tween environmental stresses and the spread of disease within
populations. Both small roosts and large colonies of bats provide
challenges when attempting to determine an accurate population
count. Recently, there have been a number of new video analysis
software applications, that are available on the internet, which
can be used to provide population counts. When software-based
counts are compared with manual counts, the software provides
counts that are substantially less labor intensive, determined
substantially more quickly, and have the potential to be more
accurate. This short paper discusses the use of neural networks
to determine the number of bats that there are in a region when
multiple bats may overlap. The work discussed in this manuscript
demonstrates that the counts of multiple overlapping bats can
be improved using trained neural networks. This is a critical
improvement for providing accurate counts in high density
videos. This manuscript contains the biological motivations, and a
brief overview of how artificial intelligence is being implemented.
The results discussed compare the accuracy values of neural
networks for a few case studies including cross-comparisons of
data trained on different video types and for different animals
which can have accuracy values above 90 % for comparable
video types. Finally, the generation and use of synthetic images,
to increase the amount of data in a training set, is also discussed,
which resulted in a trained neural network that produced an
accuracy value of 80% on 12 unbiased categories.

Index Terms—artificial intelligence, bioinformatics, computer
vision, machine learning, neural networks.

1. INTRODUCTION

Bats are found worldwide, are vital to healthy ecosys-
tems, and provide crucial benefits to human systems globally
through seed dispersal, crop pollination, and reduction of
agricultural pest and insect disease vectors [1]- [3]. Yet the
current population status of many bat species is unknown
because they are often densely populated, mobile, and roost
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in difficult to access locations, making them difficult to count.
Monitoring the size of bat populations is important for assess-
ing the need for management and conservation intervention,
calculating changes in life history parameters, and monitoring
species response to threats such as habitat destruction, climate
change, and emerging diseases such as white-nose syndrome,
see e.g., [4].

Recent advances in video technology, including near- and
far-infrared, have increased our capacity to monitor bats
emerging from roosts, and many agencies use these cameras to
record bats. Until recently, many roost counts were conducted
by visual estimates assuming constant flow rate during an
emergence, or by manually counting individuals from video
recordings. However, these methods are very time intensive,
and can be inaccurate and prone to bias, see e.g., [5].

One approach for determining the count of bats in a video
is to use automated video analysis software which can be
downloaded from the internet (see e.g., [6] and [7]). A
description of how both of the above software packages can be
used for this purpose is described in Refs. [8] and [9]. In these
software packages, moving objects are identified and counts
are determined for bats that enter or exit a boundary. The
videos analyzed in Ref. [9] demonstrate that the automated
counts were on average 83% of the value of the rigorous
manual counts across multiple video segments. In every case
described in that analysis, the automated count was below
the manual count. This is in large part because the software
counted multiple overlapping bats as a single bat. The neural
network techniques explored in this manuscript will improve
the resulting counts by resolving the actual number of objects
leaving a boundary.

Instead of looking for specific features to aid the count, we
will use neural networks. Neural networks are a mathematical
tool that can be used to categorize objects. This is used in
both self driving and driving assisted vehicles to identify
other vehicles, road markings, road signs, and obstacles, see
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Fig. 1. Full frame snapshots for the seven videos used to train neural networks. The top row contains videos of bats from different sources. The bottom

includes two bird videos and the last is of a fish video.

e.g., [10]. It is also used in handwriting recognition in an
automated teller machine to read the amount of money that
should be transferred, see e.g., [11]. In the work described in
this manuscript, we will train, test, and ultimately implement
a neural network for use in software to provide more accurate
counts of overlapping bats in videos.

There are multiple video types currently used in population
studies of bats including, low resolution GoPro videos, higher
resolution videos, infrared videos, and thermal videos. We
will test each of these and see if one neural network can be
used for all video types or if individual networks are required.
Further, we will also test if other species (specifically birds
and fish), can also be accurately counted using a universal
network trained from the multiple input data sets.

II. DATA PREPARATION FOR NETWORK TRAINING

Seven test videos are discussed in this manuscript which
were used to train the counts. These videos include four of
bats, two of birds, and one with fish. Figure 1 includes a
single frame from these seven videos. These different videos
are representative of different field studies beyond those with
the goal of determining bat populations. This set of videos
will be used to test the cross-applicability of the trained neural
networks.

A. Determining regions of interest and the counts within them

All seven videos discussed in this manuscript were taken
from a stationary perspective. That allows for the background
to be determined based the median of pixel value for each
stack of video frames [12]. The background from each video
was then subtracted from each individual frame leaving fore-
ground objects. A bounding box was placed around all fore-
ground objects that were detected. This bounding box defined

the separate regions of interest that were then categorized and
used to train neural networks.

In the analysis described in this manuscript, 12 categories
have been used corresponding to number of animals (bats,
birds, or fish) found in a region of interest. These count
categories range from zero to ten, with one additional category
that include all the boxes containing more than 10 animals. The
frequencies at which this highest count (10+) occurred was less
than 0.25% of that count for each of the seven videos.

Our target was to categorize 10,000 counts for each video
to be used in training and validation. To facilitate this task,
a graphical user interface was developed which allowed us to
label each region of interest with the corresponding count as
well as to add a flag if this number was uncertain. After labels
were assigned the next region of interest was cycled to.

After eliminating all uncertain counts, a total count of
29,732 bats, 18,057 birds, and 9,956 fishes were categorized
across seven videos. Table I contains the raw counts for each
category across the seven videos as well as the percentage
that each count has. The total count of the thermal video was
lower than our target of 10,000 because it had fewer frames
resulting in too few regions of interest to categorize.

A low resolution GoPro video of bats against a grey sky at
dusk will be the primary focus of the discussion that follows.
This video will be used to demonstrate the need, creation, and
quality of synthetic images. In Fig. 2, a sample of the region
of interests for the each of the 12 categories is shown.

B. Distributions of counts in regions of interest

The counts depicted in Tab. I are heavily biased toward the
first three categories (0, 1, and 2 counts). These categories
account for more than 96% of the overall counts made in the
seven original videos. The presence of the high number of zero
counts in some videos was caused by the background detection
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TABLE 1
OCCURRENCE AND PERCENT FOR EVERY COUNT CATEGORY (0-10+) FOR THE SEVEN INDIVIDUAL VIDEOS AND ALL SEVEN VIDEOS COMBINED.

Video 0 1 2 3 4 6 7 8 9 10 10+ Total

Low-Res Bat 645 6376 1503 368 201 87 50 31 5 7 12 6 9291
6.94% | 68.6% | 16.2% | 3.96% | 2.16% | 0.94% | 0.54% | 0.33% | 0.05% | 0.08% | 0.13% | 0.06%

High-Res Bat 1 7711 509 90 27 2 0 0 0 0 0 8346
0.01% | 924% | 6.10% | 1.08% | 0.32% | 0.07% | 0.02% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

IR Bat 236 7395 1306 390 168 101 47 26 15 17 4 23 9728
243% | 76.0% | 13.4% | 4.01% | 1.73% | 1.04% | 048% | 0.27% | 0.15% | 0.17% | 0.04% | 0.24%

Thermal Bat 2 2234 118 11 1 0 0 0 0 0 0 2367
0.08% | 94.4% | 4.99% | 0.46% | 0.04% | 0.04% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

High-Res Starling 1 8208 640 60 16 0 0 0 1 0 10 8938
0.01% | 91.8% | 7.16% | 0.67% | 0.18% | 0.02% | 0.00% | 0.00% | 0.00% | 0.01% | 0.00% | 0.11%

High-Res Crane 0 7906 921 213 40 33 5 1 0 0 0 0 9119
0.00% | 86.7% | 10.1% | 2.34% | 0.44% | 0.36% | 0.05% | 0.01% | 0.00% | 0.00% | 0.00% | 0.00%

Low-Res Fish 7711 2086 95 5 2 0 1 4 28 23 1 9956
77.5% | 21.0% | 0.95% | 0.05% | 0.02% | 0.00% | 0.00% | 0.01% | 0.04% | 0.28% | 0.23% | 0.01%

All 7 Combined 8596 | 41916 | 5092 1137 455 230 104 59 24 53 39 40 57745
14.9% | 72.6% | 8.82% | 1.97% | 0.79% | 0.40% | 0.18% | 0.10% | 0.04% | 0.09% | 0.07% | 0.07%

Fig. 2. Sample snapshots from small regions in a GoPro video demonstrating
the 12 categories that are used in training. Each category is defined by the
number of bats seen. The number of bats, from left to right, are: (top row) 0,
1, 2, 3, (middle row) 4, 5, 6, 7, and (bottom row) 8, 9, 10, and 10+.

being sensitive to fluctuations in lighting, the movement of a
background object (e.g. a cloud, or a tree), or a cave edge. In
the case of the fish video, it was glare and reflection on the
glass of the aquarium that created multiple regions with no
detected object inside. In the fish video, the zero count was
actually the most frequently occurring category accounting for
more than 77% of the counts in the video.

In each of the other videos the one count category occured
most commonly. In all videos, the density of the bats, birds,
or fish, was low enough that more often than not, single
objects were found in the regions of interest as opposed to
multiple overlapping objects. Table I indicates that in many
cases, for example the Thermal Bat video in categories with
counts greater than three, there is a dearth of data.

The count of the number of bats in the GoPro video was
performed by three people. These counts were done for the

same regions of interest, on the same video. Overall there was
a greater than 99% agreement among these separate count
catalogs.

The issue of training on an imperfect data set that is
not uncommon in classification problems [13]. The effect of
having noisy or mislabelled data is explained in detail in [14]
and is negligible. This is especially true when considering that
we will incorporating techniques such as data augmentation
and regularization, in our final neural network that will be
implemented in tracking software. These will help improve
the network’s robustness to mislabelled data [15], [16].

III. DEEP LEARNING ANALYSIS

Counting bats, birds, or fishes is a multi-class classification
problem. We have chosen to apply deep neural network tech-
niques in order to classify the number of bats in each image
between 0 and 11. The network takes as input an RGB image
of dimension (40,40,3) and outputs a probability distribution
among the 11 classes. This image dimension was chosen
because it didn’t involve substantial up-scaling of low count
regions or down-scaling of high count regions. All regions
of interest were resized to match this common dimension. All
images pass through a normalisation procedure before entering
the network. The purpose of this step is to transform the values
of the pixels from (0,255) to (0,1). Two types of normalization
were tested and found to give similar results in terms of
network accuracy. The first is done by dividing all pixels by
255 and the second is by performing a pixel standardization
which is done by removing, from each image, the mean of the
dataset and dividing it by the standard deviation of the dataset.
Many parameters were optimized before the construction
of the network. Initializers, optimizers, learning rates, dropout
fraction, pooling layers, activation functions, loss functions,
epochs, and batches were each constrained in an iterative
manner and the best architecture was selected according to its
simplicity (size and calculation time) and to the accuracy of
the results. Fully dense NNs, Convolutional Neural Networks
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Fig. 3. Architecture of the neural network used to categorize 12 counts for
identified regions of interest. The architecture continues from the bottom of
the first column to the top of the second, and similarly, the second column is
continued on the top of the third column.

(CNN), and a combination of both were tested. The number
of hidden layers, the number of neurons in each layer, and
the size of the filters are derived for each architecture. We
also used the KerasTuner package for this optimization.
KerasTuner is a hyperparameter optimization framework
that aims to alleviate the challenges of searching for optimal
hyperparameter values. After testing various networks, the
optimized neural network is displayed in Fig. 3 was decided
on. For each video we used 80% of the data set for training
and the remaining 20% was set aside for an initial validation.

IV. RESULTS

The discussion below has been broken into three subsec-
tions. Section IV-A will discuss how well each network was
trained and how well it worked when applied to a different
video. Section IV-B describes the use of a network trained

from the combined data set from all seven videos. Section
IV-C discusses the creation and use of synthetic images that
were used to supplement the analysis of the low resolution
GoPro video.

A. Evaluating networks trained on different data sets

The diagonal (top-left to bottom-right) entries in Table II
show that training a network on a specific type of images
results in a high accuracy when tested on the same type of
images. In those cases, the classification accuracy ranged from
95-99%.

It should be stated that often in these cases, guessing a
count of one object or zero objects would more often than
not be correct. Nonetheless, the determined accuracy values
are promising, especially when considering that 12 categories
were used. Further, in looking at the confusion matrices for
these self-compared networks often when a count was off, it
was often off only slightly (over or under estimating by only
one or two). For our purpose of training a network to improve
counts of overlapping bats this will be very beneficial. This is
especially true when considering the large statistics involved in
a population count, were a handful of over and under estimates
can largely cancel out.

Table II can be used for cross-comparisons as well. In this
table the rows represent the training data set used to create the
corresponding network and the columns contain what regions
of interest were counted using that network. So for example
the top row indicates that the network trained on the low-
resolution GoPro video was somewhat accurate when applied
to the Bat IR and Starling videos (75% and 69%, accurate
respectively). But it had a lower accuracy for the other four
cross-comparisons. This can be reasoned out by the fact that
aesthetically the Bat IR and Staring videos, also had a grey
background most similar to the trained video, and the size
and shape of the bats (or birds) were also comparable to
the objects in the trained video. The Bat Thermal video and
Crane videos resulted the least accurate use of this network,
potentially because of the different backgrounds in the prior
and the different object shapes in the latter.

Most networks worked decently well (>70% accuracy)
when applied to one or two other videos, and poorly for the
remaining. The network trained on the Starling video data was
arguably the most universal, working well for all data sets
except for the Fish video data. In all fairness, this is likely
because in many quantifiable measures the Starling video data
is similar to that of the other videos it compared well with. Not
surprisingly, the Fish video data, being most dissimilar from
the other videos in object shape, object color, and background
resulted in the least cross applicable network resulting in an
accuracy ranging from 7%-36%.

B. Training and testing one network applied to all videos

When implementing the neural network to provide more
accurate counts of multiple overlapping objects a natural
question to ask is whether or not separate networks will need
to be trained for each video type, each species, and so on.
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TABLE II
VALIDATION AND CROSS-COMPARISONS OF NEURAL NETWORKS FROM DIFFERENT VIDEOS.

Low-Res | High-Res IR Thermal | High-Res | High-Res | Low-Res All7 Low-Res

Bat Bat Bat Bat Starling Crane Fish Combined | Synthetic
Low-Res Bat 98% 17% 75% 3% 69% 9% 30% 48% 24%
High-Res Bat 73% 97% 76% 77% 96% 83% 19% 73% 10%
IR Bat 11% 10% 95% 0% 5% 4% 1% 33% 18%
Thermal Bat 69% 88% 76% 98% 80% 82% 21% 70% 8%
High-Res Starling 69% 92% 78% 94% 99% 89% 0% 71% 8%
High-Res Crane 69% 1% 76% 2% 94% 99% 21% 68% 8%
Low-Res Fish 18% 21% 7% 23% 22% 36% 96% 34% 12%
All 7 Combined 92% 95% 88% 95% 98% 95% 94% 94% 24%
Low-Res Synthetic Bat 80% 22% 35% 0% 34% 9% 77% 42% 63%

To investigate this we attempted to make a more universal
network comprised of the pooled data from all 57,745 counted
objects across the seven videos. An eighth (All 7 Combined)
network was trained based on this data set.

Still keeping in mind the heavy bias toward 0-3 objects, the
results are on the second to last row of Table II. The overall
accuracy is 94%. This network was also tested against each
data set individually. The accuracy values range from 88% for
the IR Bat data up to 98% for the Starling data. For each
comparison, the overall network sacrifices some accuracy but
it has the potential to be universally applied.

C. Generating synthetic images

Across all seven videos most of our regions of interest
contain 0-3 detected objects. This has created a bias in the
network which will prefer lower counts. This is also a problem
if there isn’t sufficient data (or any data at all) to properly
train a count category for a specific network. Additionally,
even when there is some data to train on there may be less
than it initially appears.

Data augmentation (specifically, applying skew and/or rota-
tion transforms) is usually used to generate additional images
and increase the volume of the data sets and to remove any
existing bias among categories [17]. This process acts as a
regularizing technique and helps in avoiding over-fitting. Take,
for example, the category of nine bats counted in the low
resolution GoPro video, according to Table I there are seven
different identified regions of interest with nine bats. Figure 4
shows that these seven regions can be reduced to four because
some are based on the same arrangement seen in a subsequent
frame. Overall, even with 10,000 counts categorized there is
a lack of sufficient data for properly training a neural network
in high count categories.

We have developed a simple algorithm to combat this lack
of data and have used it to create synthetic images. The regions
of interest from the low-resolution GoPro video were used to
prototype this algorithm.

The first step is to use regions of interest with no object de-
tected to define a background on which an object (a bat in this
case) can be placed. The background determination was done
in two ways. The first method for determining backgrounds is

Fig. 4. The seven regions of interest that have been categorized as having
nine bats inside. These have been arranged into columns to highlight two
occurrences of consecutive frames with minimal variations within.

to use the bounding box locations from specific frames placed
on the median determined background where no objects exist.
The second method for determining a background consists of
using the object detection with a very low tolerance on each
frame so that background and foreground objects could both
be found. The regions of interest that resulted were compared
with the previously determined regions. All cases with no
overlap (meaning no object was found inside) were saved and
as new background regions. The first background method has
the benefit of being regions where genuinely bats were seen,
and the second has the benefit of potentially having additional
background texture.

On each randomly generated background, it is possible to
place the desired number of bats (from zero to more than
ten). When placing a bat we first need to have a trusted set of
regions of interest where we confidently know the count. To
simplify matters we choose to use only images with a single
bat. The 6,376 regions with a single bat were filtered so that
there was no partial bat, boundary of the video, or anything
else in the image that might also be copied. Those restrictions
reduced our number of usable single bat regions by about a
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Fig. 5. Regions of interest containing single bats. Original regions of interest
with a single bat from the low resolution GoPro video are in the top row.
Slightly augmented single bat regions of interest with a minor skew and
rotation are in the middle row. Synthetic images consisting of a single bat
from one region of interest placed on a background from another region on
the video are in the bottom row.

factor of four, down to 1,460.

The backgrounds that were previously discussed were used
at random to generate a set of regions with zero bats. Then
using the single bats, a broad portion of background was used
and then one or more bat was placed on that background at
random locations. A Gaussian filter is then used to blur the
edges of the foreground object with the background to create
the synthetic composite image.

Figures 5 and 6 have been included to show some of
the synthetic images that have been generated. In Fig. 5
the top row displays the original frames with a single bat
region of interest, the middle row displays a single bat region
which has been slightly transformed (minor rotations or skew
adjustments) and the final row displays single bats which have
been placed on a single background.

In Fig. 6 multiple bats have been stacked on the image at
different locations. When compared to Fig. 4, the synthetic
regions have the benefit of being more randomly placed, and
the additional benefit of having exactly the desired number of
objects in it. In Figure 6 the spacing of the bats overall appears
to be larger than in Figure 4.

A network was also trained for this completely synthetic
data set created using GoPro video for background and the
single bats. An unbiased data set comprised of approximately
6,000 synthetic images in each count category. The bottom
row of Tab. II contains the results comparing this synthetic
set with the others. The validation accuracy of this network
was 63%. This number may sound poor when compared to
prior results, but it is comprised of 12 count categories each
with an equal weight. Further, we believe that, improvements
to how the unbiased data set has been made, an additional
augmentation step, and modifications of the neural network
architecture will allow for a higher accuracy.

The most important result of using this synthetic network
comes from applying the synthetically trained network with
the original low resolution video. In that case, the synthetic

Fig. 6. Twelve synthetic frames that have nine bats placed in random locations
on a random background. These are intended to simulate and create additional
data similar to what is shown in Fig. 4.

trained network gave an 80% accuracy. The confusion matrix
with the application of the synthetic data trained network
applied to the original low resolution GoPro data set has been
included as Figure 7.

This figure shows that the majority of the incorrect counts
are off by a few values from the actual. It should however be
noted that often an underestimate of the count was predicted
by this network. This can be addressed by properly spacing
the bats so that the network can better resolve multiple
bats. Ultimately, the maximum range and minimum range of
placement needs to be further tested. Nonetheless, we believe
that the routine described here can be beneficial for training
similar data sets where data is biased and otherwise sparse.

V. ONGOING AND FUTURE WORK

In future work we will test maximum and minimum spacing
for subsequent bats in the hopes of allowing all bats to be at
least partially seen while still having them placed close enough
together that they will be identified as a single object by an
untrained eye.

Additionally, because high counts (more than five) occur so
infrequently we will also train future networks with fewer cate-
gories and we will use additional data augmentation techniques
to further increase our training pool. These can simply include
using the skew and rotation augmentation on synthetically
generated images.

Another question of interest is whether we can use the
synthetically generated images where we know each bat’s
center to provide a better tracking algorithm. We plan to test
this in the near future on synthetic images with a few (five or
fewer) bats.

We will need to run this augmentation routine on each of
the different video types. The low resolution GoPro video
was specifically chosen because of the ease in determining
foreground objects and because of its simple background. The
IR video for example with the cave edges in the background
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Fig. 7. Confusion matrix with the occurrences of predicted counts (rows) against actual counts (columns) based on a purely synthetic data trained network
used to classify the original GoPro images. The synthetic data was generated from stacking low resolution GoPro images of bats.

may require something more elaborate than a Gaussian filter
to be used when placing synthetic bats.

Another aspect which we are currently testing is if a trained
neural network can completely replace the background deter-
mination, and subtraction, that is currently used to identify
foreground objects. In tracking software this is one of the
computationally expensive steps and it is also often one of the
most problematic parameters because is not well understood
by all users. Further the foreground-background threshold can
also vary from frame to frame if the brightness within a video
changes.

VI. SUMMARY AND CONCLUSIONS

Bats are an important study system for many ecological and
evolutionary questions, including the benefits of ecosystem
services, the impacts of climate change on natural popula-
tions, and the potential spread of zoonotic diseases to human
populations. The tracking metrics used are straightforward and
provide interesting insight into animal behavior. The counting
software we are working to supplement is critical for many
researchers and conservationists, and it will be freely available
on the internet.

Training on synthetic data appears to have been successful
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in removing bias, working with an 80% accuracy. We believe
further refinements in the spacing of the synthesized data will
improve that accuracy because currently, it appears that some
objects are too far from one another and some are too near.

The result from the training on the combined seven video
data set is promising as it reached accuracy values across the
board that were greater than 88%, but with values typically a
few percent lower than the self-compared values. This leads
us to conclude that individual networks corresponding to one
video type should be used in particular if a niche group (e.g.
the Department of Fish and Wildlife) has a specific video
type that will be commonly used as part of an agency-wide
protocol, and that a universal network can also be trained for
all other video types as a catch-all for anyone else.

We plan to use the techniques discussed in this manuscript
to ultimately generate two unbiased networks, one that is
specifically trained on all videos used by our collaborators
and another that is more universally applicable.
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