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We initiate the study of X-ray tomography on sub-Riemannian 
manifolds, for which the Heisenberg group exhibits the 
simplest nontrivial example. With the language of the group 
Fourier transform, we prove an operator-valued incarnation 
of the Fourier Slice Theorem, and apply this new tool to 
show that a sufficiently regular function on the Heisenberg 
group is determined by its line integrals over sub-Riemannian 
geodesics. We also consider the family of taming metrics gε
approximating the sub-Riemannian metric, and show that 
the associated X-ray transform is injective for all ε > 0. This 
result gives a concrete example of an injective X-ray transform 
in a geometry with an abundance of conjugate points.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Our object of study is the geodesic X-ray transform associated to the sub-Riemannian 
geometry of the Heisenberg group, which is H := C ×R with the multiplication law

(x + iy, t)(u + iv, s) =
(
x + u + i(y + v), t + s + 1

2 (xv − yu)
)
,
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and a metric defined in Section 3.1. H is the local model for any 3-dimensional sub-
Riemannian manifold of contact type, in the same sense that 3-dimensional Euclidean 
space is the local model for any 3-dimensional Riemannian manifold [23, Thm. 1]. This 
property positions H as the natural homogeneous starting point for studying the integral 
geometry of contact manifolds, just as Radon first inverted the X-ray transform in R2.

X-ray transforms, which integrate a function on a manifold over its geodesics, have 
been extensively studied on Riemannian manifolds and homogeneous spaces [10,14]. Hel-
gason showed in [13] that the X-ray transform on symmetric spaces of noncompact type 
is injective. In [21] the authors prove injectivity on compact symmetric spaces excluding 
the n-sphere. Ilmavirts in [17] obtains injectivity on compact Lie groups excluding S1

and S3. (For a survey of results on Riemannian manifolds with boundary see [18].) To 
the author’s knowledge, X-ray transforms on sub-Riemannian manifolds are virtually 
unexplored.

To a function f ∈ L1(H) we associate the function If , its X-ray transform, defined 
by

If(γ) :=
∫

f (γ(s)) ds,

where the geodesics γ will be cast as (projections of) integral curves of the Hamiltonian 
flow on T ∗H for the degenerate fiber quadratic Hamiltonian later described (7). Related 
integral transforms on H have been studied, for example, by Rubin [33], and Strichartz
[35], who consider integration over left translates of hyperplanes. We ask whether If
determines f .

The sub-Riemannian setting, whose general theory is poorly understood, introduces 
qualitatively new features to this question. For example, fibers of the unit cotangent 
bundle U∗H (defined in Section 3.1) are now cylinders, and there is no unique Levi-Civita 
connection. Thus U∗H has noncompact fibers, and there is no canonical splitting of its 
tangent space into vertical and horizontal components like there is in the Riemannian 
case as described in [29]. See [26] for background sub-Riemannian geometry or [5] for an 
extensive introduction to the Heisenberg group.

A standard geometric obstacle to such inverse problems is presented by the presence of 
conjugate points. In [25] and [15] the authors show that conjugate points generally inhibit 
stable inversion of the X-ray transform on Riemannian manifolds, with unconditional 
loss in two dimensions. Unfortunately, the conjugate points in the Heisenberg group are 
ubiquitous; the cut locus to any point passes through that point—a feature generic in 
sub-Riemannian geometry, where the exponential map is never a local diffeomorphism 
at the origin [34, p. 222]. Therefore, standard tools for proving injectivity, such as Pestov 
energy methods, which typically require a positive-definite second fundamental form [18]
do not apply without a closer look. We prove that, nonetheless, the X-ray transform on 
the Heisenberg group is injective.

A common recipe for inverting such integral transforms is to compute the normal 
operator I∗I, for I∗ defined with a suitable measure in the target space, as in [1,14,32], 
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and identify the normal operator as a function of distinguished invariant differential 
operators. On the Heisenberg group, I∗I is not well-behaved (or immediately well-defined 
on Cc(H)) due to the singular nature of the sub-Riemannian exponential map, so we focus 
on studying the transform I directly. We observe a convenient identification of the space 
of geodesics with a quotient of the Heisenberg group (12), which allows us to express I
as a convolution. We then apply the group Fourier transform on the Heisenberg group 
and its quotient to express I essentially as a multiplication operator (Theorem 2), from 
which we deduce that I is injective (Theorem 1). For background material on the group 
Fourier transform and the harmonic analysis of the Heisenberg group, see [6], [8], or [37].

2. Main results

The Heisenberg geodesics exist for all time and are left-translates of helices and 
straight lines, as described in Section 3.1. Let G be the set of all maximal Heisenberg 
geodesics without orientation, and Gλ the set of all geodesics having a fixed value λ ∈ R, 
for the “charge” λ, which is a constant of motion. We will parameterize Gλ using left-
translates of specific model geodesics as in [17], with the caveat that Heisenberg geodesics 
are not one-parameter subgroups of the Heisenberg group.

Left translation by any element (z, t) ∈ H is an isometry of H and so H acts on G. 
This action does not change the value of λ, and is a transitive action on each leaf Gλ, 
λ �= 0. (It is not transitive on G0 since it does not change the direction of the line in 
the plane which the λ = 0 geodesic projects to.) These facts are verified by inspecting 
the exponential map in (41). Thus we can use H to parameterize Gλ, λ �= 0, by fixing a 
particular helix γλ ∈ Gλ and left-translating it about. We take this helix to be one whose 
projection is a circle of radius |R| = 1/|λ| centered at the origin and parameterized by 
arclength. Thus our parameterization of that part of G having λ �= 0 is

s �→ (z, t)γλ(s), γλ(s) =
(
Rei(s/R), 1

2sR
)
∈ H; R = 1/λ. (1)

Using this identification, we may parameterize geodesics by (z, t, λ) as above, uniquely 
modulo the isotropy group Γλ := {(0, kπR2) ∈ H : k ∈ Z} stabilizing γλ, and write the 
X-ray transform concretely as

If(z, t, λ) := Iλf(z, t) :=
∫
R

f ((z, t)γλ(s)) ds, f ∈ Cc(H).

We ignore the degenerate case when λ = 0, where the geodesics are straight lines. 
Furthermore, since λ < 0 corresponds to a λ > 0 geodesic with opposite orientation, we 
will take λ > 0 unless otherwise specified. Fixing λ > 0, we prove in Proposition 11 that 
Iλ : L1(H) → L1(Gλ), with a natural measure on the codomain given in Section 4.1, 
is well-defined and bounded. Existing literature ([16] and [17] for example) profitably 
considers the X-ray transform as a family of operators indexed by a directional parameter 
in this way.
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In [35, p. 392], Strichartz proves indirectly that a function on the Heisenberg group 
may not in general be recovered from its integrals over λ = 0 geodesics alone, but does 
not consider λ �= 0 geodesics. Indeed, our main result necessarily involves geodesics with 
nonzero charge λ:

Theorem 1. The Heisenberg X-ray transform I : L1(H) → L1(G, dG) is injective. In 
particular, if f ∈ L1(H), and Iλf = 0 for all λ in a neighborhood of zero, then f = 0.

The measure dG on the set of geodesics, G, is defined in Section 4.1.
Thinking of the charge λ as the restricted directional parameter, Theorem 1 is an 

example of limited angle tomography (see [22] and [28, Ch. 6]).
We prove this result using harmonic analysis adapted to the group structure, modi-

fying familiar results in Euclidean space. Consider, for example, the Radon and Mean 
Value Transforms on R2:

Rf(s, θ) :=
∫
R

f
(
seiθ + iteiθ

)
dt, Mrf(z) = 1

2π

2π∫
0

f
(
z + reiθ

)
dθ (2)

where, say, f ∈ Cc(R2). Taking the Fourier transforms in s and z, respectively, yields

Fs �→σRf(σ, θ) = f̂(σeiθ), Fz �→ζM
rf(ζ) = J0(r|ζ|)f̂(ζ),

where J0 is the zeroth-order Bessel function (43). These results are known as Fourier 
Slice Theorems, or Projection Slice Theorems [28]. They reveal that R, thought of as 
a projection onto {θ}, becomes a restriction operator onto the “slice” σ → σeiθ in the 
Fourier domain, and that Mr becomes a multiplication operator by J0(r|ζ|) when viewed 
in the Fourier domain. Fourier Slice Theorems exist for more general Radon transforms 
as well; for example, in [11,19].

The Radon and Mean Value Transforms may be interpreted as integration over 
straight lines or magnetic geodesics in Euclidean space. In the case of H—which is a 
“flat” sub-Riemannian geometry—we prove a corresponding Fourier Slice Theorem for 
Heisenberg geodesics. We use the operator-valued group Fourier transform FH associated 
to the Bargmann-Fock representation βh (defined in equation (8)), which has proven a 
useful tool, for example, by Nachman in [27] to find the fundamental solution for the 
wave operator for the Heisenberg Laplacian. The theory of FH is extensively developed 
in [9,37]. In particular it has a Plancherel Theorem and Inversion Theorem [7,8,37].

We identify Gλ
∼= H/Γλ in Section 4.1 and so also define in equation (10) the group 

Fourier transform FH/Γλ
on the quotient. We see that in the generalized Fourier domain 

of FH and FH/Γλ
, the Heisenberg X-ray transform is essentially a multiplication operator:

Theorem 2 (Heisenberg Fourier Slice Theorem). If f ∈ L1(H), then(
FH/Γλ

(Iλf)
)
(n) = (2π/λ)Jn ◦ (FHf) (nλ2), ∀n ∈ Z \ {0},∀λ > 0. (3)
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Equation (3) is an equality of operators acting on Bargmann-Fock space (originally 
described in [4]),

H :=
{
F : C → C, holomorphic : 1

π

∫
C

|F (ζ)|2e−|ζ|2dζ < ∞
}
. (4)

Jn : H → H is the operator

JnF (ζ) = 1
2πi

(
1
en

)n/2 ∮
zn−1e−nζ/zF (ζ + z)dz, n > 0 (5)

where the contour is a circle around the origin oriented counterclockwise (and where 
J−n = Jn). Loosely speaking, the Heisenberg X-ray transform I is “block-diagonalized” 
in λ by the group Fourier transform, and each block is essentially a multiple of Jn.

The classical Fourier Slice Theorem for R in (2) states that knowledge of Rf for a 
fixed θ0 determines the Fourier transform f̂(ζ) for all ζ ‖ θ0. Similarly, the Heisenberg 
Fourier Slice Theorem says that knowledge of Iλf for fixed λ determines the group 
Fourier transform FHf(h), up to multiplication by the operator Jn, for all h ∈ λ2Z∗. 
Therefore, injectivity of I follows once we show that Jn is an injective operator at least 
whenever n is an odd integer (Proposition 22).

Finally, in Section 5, we consider the ray transform Iε (defined in (27)) associated to 
a special family of left-invariant taming metrics gε parameterized by ε > 0:

gε := dx2 + dy2 + (1/ε)2 Θ2; Θ := dt− 1
2 (xdy − ydx).

First, we prove a Heisenberg Fourier Slice Theorem for gε geodesics:

Theorem 3 (gε Heisenberg Fourier Slice Theorem). If f ∈ L1(H), and ε > 0 then

FH/Γε
λ

(Iελf) (n) = (2π/λ)Jn

(
1√

1 + 2ε2λ2

)
◦ (FHf)

(
nλ2

1 + 2ε2λ2

)
, ∀n ∈ Z∗, ∀λ > 0.

Here Jn(r), r > 0, is defined in (21).
We then use Theorem 3 in the same way with Proposition 33 to show that Iε is 

injective:

Theorem 4. For all ε > 0, the Heisenberg taming X-ray transform Iε : L1(H) →
L1(Gε, dGε) is injective. In particular, if f ∈ L1(H) and Iελf = 0 for all λ in a neighbor-
hood of zero, then f = 0.

The measure dGε on the set of gε-geodesics, Gε, is defined in (30).
The first part of Theorem 4 is not new. In [30] the authors prove a support theorem 

for geodesics of left-invariant metrics on the Heisenberg group, which implies injectivity 
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of the associated X-ray transform. However, to the author’s knowledge, the second part 
of Theorem 4 is new.

3. Preliminaries

3.1. Heisenberg geometry

We define the sub-Riemannian metric on H by declaring the left-invariant vector fields

X = ∂x − 1
2y∂t, Y = ∂y + 1

2x∂t, (6)

to be orthonormal, and the length of T = ∂t to be infinite. Then any finite length smooth 
path in H must be tangent to the nonintegrable distribution Dq := Span{Xq, Yq}, q ∈ H. 
We call such a path horizontal. The length of a horizontal path equals the length of its 
projection to the plane by the map

π(x, y, t) = (x, y).

A minimizing Heisenberg geodesic is a shortest horizontal path joining two points of 
H. That any two points in H are connected by a horizontal path is guaranteed by 
Chow’s Theorem and the fact that D satisfies the Hörmander condition (i.e. D is bracket-
generating).

The fiber quadratic Hamiltonian H : T ∗H → R given in canonical coordinates by

H(x, y, t, px, py, pt) = 1
2
(
(px − 1

2ypt)
2 + (py + 1

2xpt)
2) (7)

generates the Heisenberg geodesics. By ‘generate’ we mean that any solution to Hamil-
ton’s equations for H projects, via the canonical projection T ∗H → H, to a sub-
Riemannian geodesic, and conversely, all Heisenberg geodesics arise this way [26, Sec 
1.5]. If we want geodesics parameterized by arclength we only take solutions for which 
H = 1/2. (Thus, we define the unit cotangent bundle U∗H as the set of all (q, p) ∈ T ∗H

for which H(q, p) = 1/2.) These geodesics can be best understood by their projection 
under π to the plane: they are circles or lines. Indeed

ṗt = −∂H

∂t
= 0,

so that λ := pt is a constant of motion. If we interpret λ as the charge of a particle, 
then H, viewed as a Hamiltonian on T ∗R2, is the Hamiltonian for a particle of charge 
λ travelling in the plane under the influence of a constant unit strength magnetic field. 
These solutions are well-known and easy to derive [26, p. 12]. When H = 1/2 they are 
circles of radius R = 1/|λ| for λ �= 0, and lines when λ = 0. See eq. (1) for a concrete 
representation of all geodesics with λ �= 0.
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3.2. The group Fourier transforms

We start by giving a brief description of the representation theory of the Heisenberg 
group. A more detailed discussion can be found in [6]. Denote by U (H) the set of unitary 
operators on Bargmann-Fock space, defined in (4). For each h ∈ R∗ = R \ {0}, the map 
(motivated in Section 6.4)

βh : H → U (H)

given by

βh(z, t)F (ζ) := e2iht−
√
hζz−h

2 |z|
2
F (ζ +

√
hz), F ∈ H, h > 0, (8)

and βh(z, t) = β|h|(z, −t) for h < 0, is a strongly continuous unitary representation of the 
Heisenberg group on H. Moreover, it is known that these representations are irreducible, 
and by the Stone-von Neumann Theorem, up to unitary equivalence, these are all of the 
irreducible unitary representations on H that are nontrivial on the center of H [6].

We define the group Fourier transform of an integrable function on H. Denote by B(H)
the space of bounded operators on H. The Heisenberg Fourier transform of f ∈ L1(H)
is the operator-valued function

FHf : R∗ → B(H)

FHf(h) :=
∫
H

f(q)βh(q)∗dq

where the integral is taken in the Bochner sense [37, p. 11]. Think of h as a semi-classical 
parameter.

Remark 5. Many authors define FH alternatively with the Schrödinger representations. 
Our definition seems more natural for studying the X-ray transform due to the simplicity 
of (5), and is equivalent by conjugation with a unitary intertwining map; the choice is 
largely a personal preference. We also normalize the representations βh in such a way 
that they all act on the same space H, rather than a family of spaces parameterized by 
h ∈ R∗, as in [6].

If f ∈ L1(H) ∩ L2(H), then FH(f)(h) is a Hilbert-Schmidt operator on H [8,9]. Let 
S2 denote the space of Hilbert-Schmidt operators on H, and define the Hilbert Space 
L2(R∗, S2; dμ) = L2(S2) via the inner product

〈A,B〉L2(S2) :=
∫
R∗

tr (A(h)B(h)∗) dμ(h), dμ = π−2|h|dh.
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We will need the following theorems from Geller, normalized to account for the slightly 
different group law for H used here and in [8].

Theorem 6 ([8, Plancherel Theorem]). If f ∈ L1(H) ∩ L2(H), then ||f ||L2(H) =
||FHf ||L2(S2).

Theorem 7 ([8, Fourier Inversion Theorem]). If f ∈ S(H), Schwartz space on R3, then

f(q) =
∫
R∗

tr (βh(q)FHf(h)) dμ(h), q ∈ H. (9)

Thus FH extends to an isometry from L2(H) into L2(S2). In fact, it is onto as well. 
Furthermore if f ∈ L1(H), then by convolving f with an approximation of identity, we 
may use (9) to prove FH is injective on L1(H).

While the definition above is sufficient for our purposes, we remark that FH has been 
extended to much more general classes of function such as tempered distributions [2]. In 
[3,36], and much more generally in [20] the authors use the group Fourier transform to 
develop theory of pseudo-differential operators.

Finally, Γλ := {(0, kπR2) ∈ H : k ∈ Z}, where R = 1/λ, is a discrete subgroup of the 
center of H. Since βh(z, t) = e2ihtβh(z, 0), the representation βh descends to the so-called 
reduced Heisenberg group H/Γλ if and only if h ∈ λ2Z∗. To a function g ∈ L1(H/Γλ), 
we associate the reduced Fourier transform, defined as

FH/Γλ
(g) : Z∗ → B (H)

FH/Γλ
(g)(n) :=

∫
H/Γλ

g(q)βnλ2(q)∗dq, (10)

where Z∗ := Z \ {0}.

Remark 8. The reduced Fourier transform defined above is not invertible unless we also 
consider the representations (z, t) �→ eiz·ξ; ξ ∈ C, which are trivial on the center, in the 
definition. (Indeed, if ∂tg(z, t) = 0, then FH/Γλ

g = 0.) This extension is not necessary 
for our purposes.

4. Proof of Theorems 1 and 2

4.1. The space of geodesics

Recall that H acts transitively on Gλ on the left. Since

(0, πR2)γλ(s) =
(
Reis/R, R

2 (s + 2πR)
)

= γλ (s + 2πR) ; R = 1/λ, (11)
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the subgroup Γλ := {(0, kπR2) ∈ H : k ∈ Z} stabilizes Gλ. Upon fixing γλ, we have the 
identification

Gλ
∼= H/Γλ

(z, t)γλ �→ (z, t)Γλ. (12)

When λ = 1, we omit subscripts and write Γ = Γ1.
Let {dμλ(z, t) ∼= dx ∧ dy ∧ dt be the Haar measure on H/Γλ, and let Gλ inherit a 

multiple of the Haar measure, dGλ := λdx ∧ dy ∧ dt, normalized to satisfy (16). Further-
more, let dG := λe−λdx ∧ dy ∧ dt ∧ dλ, with a weight chosen to ensure boundedness in 
Proposition 11.

4.2. Simplification to the reduced X-ray transform

The dilation map, δλ(z, t) := (λz, λ2t), is an automorphism of the Heisenberg group 
for λ �= 0. Furthermore,

δλ : Γλ � (0, kπλ−2) �→ (0, kπ) ∈ Γ,

so δλ : H/Γλ → H/Γ is well-defined. Denote by δ∗λ the pullback operator (sometimes 
called the pullback relation) defined on functions:

δ∗λ :L1(H) → L1(H) δ∗λf(z, t) = f(λz, λ2t)

δ∗λ :L1(H/Γ) → L1(H/Γλ) δ∗λg ((z, t)Γλ) = g
(
(λz, λ2t)Γ

)
.

Remark 9. In the sequel, we write any function g : H/Γλ → C as g(z, t), in place of 
g ((z, t)Γλ), understanding that the t variable is taken mod πλ−2.

The dilation map δλ is relevant because it is a conformal map for the sub-Riemannian 
metric (with constant conformal factor λ). Consequently, we have the following homo-
geneity of the ray transform:

Proposition 10 (Homogeneity of I). For f ∈ Cc(H),

Iλf(z, t) = (1/λ)δ∗λ
(
I1(δ∗1/λf)

)
(z, t). (13)

Proof. Note that dilation preserves geodesics but rescales their speed:

δ1/λγ1(s) = γλ(s/λ). (14)

Then



10 S. Flynn / Journal of Functional Analysis 280 (2021) 108886
δ∗λ

(
I1(δ∗1/λf)

)
(z, t) = I1

(
δ∗1/λf

)
(λz, λ2t)

=
∫
R

δ∗1/λf
(
(λz, λ2t)γ1(s)

)
ds

=
∫
R

f
(
δ1/λ(λz, λ2t)δ1/λ (γ1(s))

)
ds, because δλ ∈ Aut(H),

=
∫
R

f ((z, t)γλ(s/λ)) ds, by (14),

= λ

∫
R

f ((z, t)γλ(s)) ds = λIλf(z, t). �

Next, we exploit the periodic symmetry of Heisenberg geodesics to reduce the X-ray 
transform to one period.

Proposition 11. For any λ > 0, Iλ : L1(H) → L1(Gλ) is well-defined, bounded, and 
factors in the following way:

L1(H) L1(Gλ
∼= H/Γλ)

L1(H/Γλ)

Pλ

Iλ

Ired
λ

where the maps which we call Central Periodization and the reduced X-ray transform are 
given by

Pλf (z, t) =
∑
k∈Z

f
(
z, t + kπR2) , Ired

λ g(z, t) =
2πR∫
0

g ((z, t)γλ(s)) ds; R = 1/λ.

Furthermore, I : L1(H) → L1(G, dG) is well-defined and bounded.

Proof. By homogeneity (13), and since pullback by δλ is bounded in the above L1 spaces 
for λ �= 0, it suffices to prove the proposition for λ = 1. For this case, we omit subscripts 
and write P and Ired. The map

Cc(H) � f �→
∫

H/Γ

Pf (z, t) dμ1(z, t)

is a left-invariant positive linear functional on Cc(H). By uniqueness of the Haar measure 
on H (which is just the Lebesgue measure), and the Riesz-Representation theorem, 
∃c > 0 such that
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∫
H/Γ

Pf (z, t) dμ1(z, t) = c

∫
H

f(z, t)d(z, t), (15)

and one may check that c = 1 (see [7, Thm. 2.49] for the general statement). So in 
particular, ||Pf ||L1(H/Γ) ≤ ||f ||L1(H).

For g ∈ Cc(H/Γ),

||Iredg||L1(G1)

=
∫
G1

|Iredg (z, t) |dG1

=
∫

H/Γ

∣∣∣∣
2π∫
0

g ((z, t)γ1(s)) ds
∣∣∣∣dμ1(z, t)

≤
2π∫
0

∫
H/Γ

|g ((z, t)γ1(s)) |dμ1(z, t)ds

=
2π∫
0

∫
H/Γ

|g ((z, t)) |dμ1
(
(z, t)γ1(s)−1)ds

=
2π∫
0

∫
H/Γ

|g ((z, t)) |dμ1(z, t)ds, since H/Γ is unimodular (i.e. μ1 is bi-invariant)

= 2π||g||L1(H/Γ).

Thus P and Ired extend to L1 bounded maps. Given f ∈ Cc(H), since Pf ∈ Cc(H/Γ)
and

IredPf(z, t) =
2π∫
0

∑
k∈Z

f ((z, t + kπ)γ1(s)) ds =
2π∫
0

∑
k∈Z

f ((z, t)γ1(s + 2πk)) ds, by (11),

=
∑
k∈Z

2π∫
0

f ((z, t)γ1(s + 2πk)) ds =
∑
k∈Z

2π(k+1)∫
2πk

f ((z, t)γ1(s)) ds = I1f(z, t),

we have ||I1f ||L1(G1) ≤ 2π||f ||L1(H). The third equality follows from uniform convergence 
of the integrand on the interval [0, 2π] � s. Therefore I1 extends to a bounded map
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from L1(H) to L1(G1). In particular one may check, using (13), that ||Iλf ||L1(Gλ) =
||I1f ||L1(G1) ≤ 2π||f ||L1(H).

Finally, for f ∈ L1(H), we have

||If ||L1(G) :=
∫
G

|If(z, t, λ)|dG

=
∞∫
0

∫
Gλ

|Iλf(z, t)|dGλe
−λdλ

≤2π||f ||L1(H)

∞∫
0

e−λdλ = 2π||f ||L1(H)

as desired. �
Remark 12. The reduced X-ray transform Ired : L1(H/Γ) → L1(G1) is not injective. In 
fact, if

g (z, t) = z2e−|z|2e4it,

then Iredg = 0. In Appendix 6.1 we give essentially a Singular Value Decomposition of 
Ired and characterize its kernel on L2(H/Γ).

Remark 13. From these computations, we may also deduce a sub-Riemannian Santaló 
formula: ∫

Gλ

Iλf(z, t)dGλ = 2π
∫
H

f(z, t)d(z, t), f ∈ L1(H). (16)

This is an example of a Santaló formula like those proven in [31], but without the latter’s 
restriction to the “reduced unit cotangent bundle.”

4.3. Lemmas on the group Fourier transform

We now prove a few general properties of the group Fourier transform. The first is 
a Poisson Summation Formula for H → H/Γ - a quick consequence of the classical 
version. The author has not found a reference for this version, but does not believe it is 
new.

Lemma 14 (Poisson Summation Formula). If f ∈ L1(H), then

FH/Γ (Pf) (n) = FHf (n) , ∀n ∈ Z∗.
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Proof. For F, G ∈ H,

〈FH/Γ (Pf) (n)F,G〉H

:=
∫

H/Γ

∑
k∈Z

f(z, t + kπ)〈βn(z, t)∗F,G〉Hdμ1(z, t)

=
∫

H/Γ

∑
k∈Z

f(z, t + kπ)〈βn(z, t + kπ)∗F,G〉Hdμ1(z, t), since βn(z, t) = e2intβn(z, 0),

=
∫
H

f(z, t)〈βn(z, t)∗F,G〉Hd(z, t),

where the third equality follows from (15), and the fact that f(z, t)〈βn(z, t)∗F, G〉H ∈
L1(H) by the Cauchy-Schwartz inequality. Since F and G were arbitrary, the identity 
follows from the definition of the Bochner integral. �

Next, we observe how the Fourier transforms behave with respect to dilations.

Lemma 15 (Dilation property). Fix λ > 0.
If f ∈ L1(H), then

FH (δ∗λf) (h) = λ−4FHf(h/λ2), ∀h ∈ R∗.

And if g ∈ L1(H/Γ), then

FH/Γλ
(δ∗λg) (n) = λ−4FH/Γ(g)(n), ∀n ∈ Z∗.

We expect the above exponent of λ because the homogeneous dimension of the Heisen-
berg group is 4.

Proof.
FH (δ∗λf) (h) =

∫
H

f(λz, λ2t)βh(z, t)∗d(z, t)

= λ−4
∫
H

f(z, t)βh

(
λ−1z, λ−2t

)∗
d(z, t)

= λ−4
∫
H

f(z, t)βh/λ2(z, t)∗d(z, t) = λ−4FHf(h/λ2),

and the proof for FH/Γ is nearly identical. �
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4.4. Proof of Theorem 2

The reduced X-ray transform Ired is equivariant with respect to left translation by H
in the sense that

Ired
(
L∗

(w,s)g
)

(z, t) =
2π∫
0

L∗
(w,s)g ((z, t)γ1(θ)) dθ =

2π∫
0

g ((w, s)(z, t)γ1(θ)) dθ

= Iredg ((w, s)(z, t)) =
(
L∗

(w,s)I
redg

)
(z, t).

Thus, Ired is a convolution operator. In fact, if we define the compactly supported 
distribution κ ∈ E ′(H/Γ) by κ(g) :=

∫ 2π
0 g

(
γ1(θ)−1) dθ then Iredg = κ ∗ g, where 

f ∗ g (z, t) :=
∫
H/Γ f

(
(z, t)(w, s)−1) g(w, s)d(w, s)Γ. Therefore, by an analogous Paley-

Wiener theory [37, Ch. 1], we expect FH/Γ(κ)(n) ∈ B (H), and FH/Γ
(
Iredg

)
(n) =

FH/Γ(κ)(n) ◦ FH/Γ(g)(n). The next proposition makes this heuristic explicit.

Proposition 16. If g ∈ L1(H/Γ), then for all n ∈ Z∗,

FH/Γ
(
Iredg

)
(n) = (2π)Jn ◦ FH/Γ(g)(n)

with Jn defined in (5).

Proof.

FH/Γ
(
Iredg

)
(n)

:=
∫

H/Γ

2π∫
0

g ((z, t)γ1(s))βn(z, t)∗dsdμ1(z, t)

=
2π∫
0

∫
H/Γ

g (z, t)βn

(
(z, t)γ1(s)−1)∗ dμ1(z, t)ds, since H/Γ is unimodular,

=
2π∫
0

∫
H/Γ

g (z, t)βn (γ1(s)) ◦ βn(z, t)∗dμ1(z, t)ds, since βn(z, t) is a unitary rep,

=
2π∫
0

βn (γ1(s)) ds ◦
∫

H/Γ

g (z, t)βn(z, t)∗dμ1(z, t)

= (2π)Jn ◦ FH/Γ (g) (n)

where the “multiplier”



S. Flynn / Journal of Functional Analysis 280 (2021) 108886 15
Jn := 1
2π

2π∫
0

βn (γ1(s)) ds (17)

is given explicitly on F ∈ H by

1
2π

2π∫
0

βn (γ1(s))F (ζ)ds = 1
2π

2π∫
0

βn

(
eis, s/2

)
F (ζ) ds

= 1
2π

2π∫
0

eins−
√
nζe−is−n

2 F
(
ζ +

√
neis

)
ds, z =

√
neis,

= 1
2πi

(
1
en

)n/2 ∮
zn−1e−nζ/zF (ζ + z) dz

which is the same as (5). �
Remark 17. Jn is similar to the “representation integral” considered in [17], though s �→
βn (γ1(s)) is not a homomorphism. Such integration of representations over geodesics also 
appears in [12], where the authors used the Principal Series representations of SL(2, R)
to show that the normal operator I∗I associated to the X-ray transform on constant 
negative curvature surfaces is a nontrivial function of the Laplace-Beltrami operator.

Together with Proposition 11, these imply the Heisenberg Fourier Slice Theorem:

Proof of Theorem 2. Let f ∈ L1(H), λ > 0 and n ∈ Z∗. By Proposition 11 and 16, we 
have

FH/Γ (I1f) (n) = FH/Γ
(
IredPf

)
(n) = (2π)Jn ◦ FH/Γ (Pf) (n) = (2π)Jn ◦ FHf(n).

(18)

Exploiting homogeneity of I,

FH/Γλ
(Iλf) (n) = λ−1FH/Γλ

(
δ∗λI1

(
δ∗1/λf

))
(n), Proposition 10

= λ−5FH/Γ

(
I1

(
δ∗1/λf

))
(n), Lemma 15

= 2πλ−5Jn ◦ FH

(
δ∗1/λf

)
(n), by (18),

= 2πλ−1Jn ◦ FHf(nλ2), Lemma 15

as desired. �
Remark 18. In the special case when n = 0 or h = 0, the group Fourier transforms are 
qualitatively different; they are the Euclidean Fourier transform in the z variable (the 
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precise sense in which this limiting behavior occurs is formalized by Geller in [8]). In this 
case, the Fourier Slice theorem takes the form

˜(Iλf)(λζ, 0) = (2π/λ)J0(|ζ|)f̂(λζ, 0); ∀λ > 0, f ∈ L1(H),

where J0 is the classical Bessel function of order zero, and

f̂(ζ, 0) =
∫
C

∫
R

f(z, t)e−iζ·zdtdz, f ∈ L1(H),

g̃(ζ, 0) =
∫
C

πλ−2∫
0

g(z, t)e−iζ·zdtdz; g ∈ L1(H/Γλ).

4.5. Proof of Theorem 1

We now make use of the Heisenberg Fourier Slice theorem to prove injectivity of I. 
First, we describe an important class of functions which are the cylindrical harmonics of 
the Heisenberg group.

With respect to the standard orthonormal basis {ωk(ζ) = ζk/
√
k! ∈ C : k = 0, 1, ...}

of H the matrix coefficients of the Bargmann-Fock representation, (8), Mh
jk(z, t) :=

〈βh(z, t)ωj , ωk〉H are given for h > 0 via a brute force computation by

Mh
jk(z, t) =

⎧⎪⎨⎪⎩
√

k!
j!

(
+
√
hz

)j−k

L
(j−k)
k

(
h|z|2

)
e−h|z|2/2e2iht j ≥ k√

j!
k!

(
−
√
hz

)k−j

L
(k−j)
j

(
h|z|2

)
e−h|z|2/2e2iht j ≤ k

, (19)

and Mh
jk(z, t) = M

|h|
jk (z, −t) for h < 0 (see Appendix 6.5 for conversion between Folland’s 

[6, p. 64] and our conventions).
Here L(α)

j (x) is the generalized Laguerre polynomial, defined recursively by

L
(α)
0 (x) = 1

L
(α)
1 (x) = 1 + α− x

(j + 1)L(α)
j+1(x) = (2j + 1 + α− x)L(α)

j (x) − (j + α)L(α)
j−1(x). (20)

The following mild generalization of (17) will be useful for subsequent computations.

Definition 19. For n ∈ Z∗, let

Jn(r) := 1
2π

2π∫
βn

(
reiθ, θ/2

)
dθ, r > 0. (21)
0
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In particular, Jn(1) = Jn, defined in (17).

Proposition 20 (SVD of Jn(r)). For every n ∈ Z∗ and r > 0, the operator Jn(r) : H →
H is bounded in the operator-norm topology. Furthermore, J−n(r) = Jn(r), and, with 
respect to the orthonormal basis {ωj = ζj/

√
j! : j = 0, 1, 2, ...} of H, we have

Jn(r)ωj =

√
j!

(j + n)!
(
nr2)n/2 e−nr2/2L

(n)
j

(
nr2)ωj+n, ∀j ∈ N, n > 0. (22)

Proof. Jn(r) : H → H is bounded in the operator-norm topology for any n ∈ Z∗ since

||Jn(r)||op ≤ 1
2π

2π∫
0

||βn

(
reiθ, θ/2

)
||opdθ = 1. (23)

Note that, for n ∈ Z∗,

J−n = 1
2π

2π∫
0

βn(e−iθ,−θ/2)dθ = 1
2π

2π∫
0

βn

(
eiθ, θ/2

)
dθ = Jn.

For n > 0,

〈Jn(r)ωj , ωk〉H = 1
2π

2π∫
0

〈βn

(
reiθ, θ/2

)
ωj , ωk〉Hdθ

= 1
2π

2π∫
0

Mn
jk

(
reiθ, θ/2

)
dθ

= 1
2π

2π∫
0

ei(j−k+n)θdθMn
jk(r, 0) observing symmetry in (19)

= δ(j − k + n)Mn
jk(r, 0) (24)

= Mn
j,j+n(r, 0),

in which case,

Jn(r)ωj = Mn
j,j+n(r, 0)ωj+n,

and, by (19),

Mn
j,j+n(r, 0) =

√
j!

(j + n)!
(
nr2)n/2 e−nr2/2L

(n)
j

(
nr2) , n > 0. �
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Corollary 21. Let r > 0 and n ∈ Z∗ be fixed. The operator Jn(r) is injective if and only 
if L(n)

j

(
nr2) is nonzero for all j ∈ N.

Proof. Since Jn(r) is bounded (by (23)), it is injective if and only if L(n)
j

(
nr2) is nonzero 

for all j ∈ N. �
Proposition 22. The operator Jn : H → H is injective whenever n is an odd integer.

Proof. Given n ∈ 2Z + 1, by Corollary 21, the operator Jn is injective if and only if the 
sequence {L(n)

j (n)}∞j=0 is nonvanishing.
Set a(n)

j = j!L(n)
j (n) ∈ Z. Then a(n)

0 = a
(n)
1 = 1, and by (20),

a
(n)
j+1 =(2j + 1)a(n)

j − j(j + n)a(n)
j−1

=a
(n)
j (mod 2)

since n is odd. Therefore a(n)
j = a

(n)
0 = 1 (mod 2) for all j = 0, 1, 2, ... . In particular, 

L
(n)
j (n) = a

(n)
j /j! �= 0 for j ∈ N. Therefore Jn is injective whenever n is an odd 

integer. �
Remark 23. We know that J2 is not injective since L(2)

2 (2) = 0. However, the author is 
not currently aware of a general statement characterizing all (j, n) ∈ N ×N∗ for which 
L

(n)
j (n) = 0. While knowing this is not essential for proving injectivity of I, it would 

provide more ways to invert I. This is because the space of geodesics is four dimensional, 
and so we only need a subset of the overdetermined data to reconstruct f from If .

The proof of Theorem 1, injectivity of the X-ray transform, is now almost immediate.

Proof of Theorem 1. Suppose Iλf = 0 for all λ ∈ (0, η), where η > 0. By the Heisenberg 
Fourier Slice Theorem (Theorem 2),

0 = Jn ◦ FHf(nλ2), ∀n ∈ Z∗, ∀λ ∈ (0, η).

By Proposition 22

0 = FHf(nλ2), ∀n ∈ 2Z + 1, ∀λ ∈ (0, η). (25)

In which case

0 = FHf(h), ∀h ∈
⋃

n∈2Z+1

n
(
0, η2) = R∗.

Therefore f = 0 by the Fourier Inversion theorem for FH. �
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5. X-ray transform for the taming metric gε

We use the same machinery to prove injectivity of the X-ray transform associated to 
the family of left-invariant taming metrics on H. A taming metric on a sub-Riemannian 
manifold is a Riemannian metric whose restriction to the horizontal distribution equals 
the sub-Riemannian metric. See [26, Sec. 1.9].

Consider the family of left-invariant Riemannian metrics for ε > 0:

gε := dx2 + dy2 + (1/ε)2 Θ2,

where Θ := dt − 1
2(xdy−ydx) is a contact form for the Heisenberg distribution D, defined 

in Section 3.1. Then gε is a taming metric for the sub-Riemannian metric g = dx2+dy2|D. 
Indeed, since Dq = ker Θq, q ∈ H, we have gε|D = g.

Geodesics of (H, gε) converge uniformly to the sub-Riemannian geodesics as ε → 0, 
[5, p. 33]. The explicit expression for gε geodesics is derived in [5, Sec. 2.4.4]. We record 
the exponential map for gε in (42).

Remark 24. To avoid quantifying ε in every proposition of this section, with the exception 
of Theorems 3 and 4, we will assume that we have chosen a fixed ε > 0.

Let Gε be the set of geodesics for gε without orientation and Gε
λ the subset of geodesics 

having charge λ (which is still a constant of motion). Geodesics with λ �= 0 still project 
to circles in the plane, and those with λ = 0 project to lines; gε-geodesics differ from 
sub-Riemannian geodesics only by an ε-dependent velocity in the T = ∂t direction. Left 
translation by any element (z, t) ∈ H is a gε-isometry, and so H acts on Gε by pointwise 
left multiplication. This action does not change the value of λ and is a transitive action 
on each leaf Gε

λ when λ �= 0.
We choose a particular geodesic γε

λ to be the one whose projection to the plane is a 
unit-speed circular path of radius R = 1/|λ| centered at the origin, and parameterize the 
set of gε geodesics having charge λ by

s → (z, t)γλ(s), γε
λ(s) =

(
Reis/R, s

(R2 + 2ε2)
2R

)
∈ H; R = 1/λ. (26)

Remark 25. The geodesics described by (26) are not arclength parameterized; indeed, 
gε(γ̇ε

λ(s), γ̇ε
λ(s)) = 1 + ε2λ2. Instead, we insist that their projections to the plane are 

unit-speed.

We define the X-ray transform associated to the taming metric gε by

Iεf(z, t, λ) := Iελf(z, t) :=
∫
R

f ((z, t)γε
λ(s)) ds, f ∈ Cc(H). (27)
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Note that

γε
λ(s + 2πR) = γε

λ(s)(0, πR2 + 2πε2). (28)

Therefore the isotropy group of γε
λ for the action of H by left translation on Gε

λ is

Γε
λ := {(0, kπ(R2 + 2ε2)) ∈ H : k ∈ Z}.

We have the identification

Gε
λ
∼= H/Γε

λ

(z, t)γε
λ �→ (z, t)Γε

λ.

Remark 26. Again, when λ = 1, we omit subscripts and write Γε = Γε
1. We will also 

write g(z, t), for any function g : H/Γε
λ → C, in place of g ((z, t)Γε

λ).

Let {dμε
λ(z, t) ∼= dx ∧ dy ∧ dt be the Haar measure on H/Γε

λ, and let Gε
λ inherit a 

multiple of the Haar measure

dGε
λ := λdx ∧ dy ∧ dt. (29)

Furthermore, let

dGε := λe−λdx ∧ dy ∧ dt ∧ dλ. (30)

Note the homogeneity of geodesics with respect to dilation:

δ1/λγ
ελ
1 (s) = γε

λ(s/λ); R = 1/λ. (31)

Proposition 27 (Homogeneity of Iε). For f ∈ Cc(H), we have

Iελ(f)(z, t) = λ−1δ∗λI
ελ
1

(
δ∗1/λf

)
(z, t). (32)

Proof. This is essentially the same proof as (13):

δ∗λI
ελ
1

(
δ∗1/λf

)
(z, t) = Iελ1

(
δ∗1/λf

)
(λz, λ2t)

=
∫
R

δ∗1/λf
(
(λz, λ2t)γελ

1 (s)
)
ds

=
∫

f
(
(z, t)δ1/λγελ

1 (s)
)
ds
R
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=
∫
R

f ((z, t)γε
λ(s/λ)) ds, by (31),

= λ

∫
R

δ∗1/λf
(
(λz, λ2t)γελ

1 (λs)
)
ds

= λIελf(z, t). �
Furthermore, in virtually the same way as Proposition 11, we reduce the X-ray trans-

form Iε to one period:

Proposition 28. For any λ > 0, Iελ : L1(H) → L1(Gε
λ) is well-defined, bounded, and 

factors in the following way:

L1(H) L1(Gε
λ
∼= H/Γε

λ)

L1(H/Γε
λ)

P ε
λ

Iε
λ

Iε,red
λ

where

P ε
λf (z, t) =

∑
k∈Z

f
(
z, t + kπ(R2 + 2ε2)

)
,

Iε,redλ g(z, t) :=
2πR∫
0

g ((z, t)γε
λ(s)) ds; R = 1/λ.

(33)

Furthermore, Iε : L1(H) → L1(Gε, dGε) is well-defined and bounded.

Proof. By homogeneity (32), and since pullback by δλ is bounded in the above L1 spaces 
for λ �= 0, it suffices to prove the proposition for λ = 1. For this case, we omit subscripts 
and write P ε and Iε,red.

For exactly the same reason as (15), P ε maps Cc(H) to Cc(H/Γε), and

∫
H/Γε

P εf (z, t) dμε
1(z, t) =

∫
H

f(z, t)d(z, t). (34)

So in particular, ||P εf ||L1(H/Γε) ≤ ||f ||L1(H).
For g ∈ Cc(H/Γε),

||Iε,redg||L1(Gε
1) =

∫
ε

|Iε,redg (z, t) |dGε
1

G1
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=
∫

H/Γε

∣∣∣∣
2π∫
0

g ((z, t)γε
1(s)) ds

∣∣∣∣dμε
1(z, t)

≤
2π∫
0

∫
H/Γε

|g ((z, t)γε
1(s)) |dμε

1(z, t)ds

=
2π∫
0

∫
H/Γε

|g ((z, t)) |dμε
1
(
(z, t)γε

1(s)−1)ds
=

2π∫
0

∫
H/Γε

|g (z, t) |dμε
1(z, t)ds, since H/Γε is unimodular,

= 2π||g||L1(H/Γε).

Thus P ε and Iε,red extend to L1 bounded maps. Given f ∈ Cc(H), since Pf ∈ Cc(H/Γε)
and

Iε,redP εf(z, t)

=
2π∫
0

∑
k∈Z

f
(
(z, t + kπ(1 + 2ε2))γε

1(s)
)
ds =

2π∫
0

∑
k∈Z

f ((z, t)γε
1(s + 2πk)) ds, by (28),

=
∑
k∈Z

2π∫
0

f ((z, t)γε
1(s + 2πk)) ds =

∑
k∈Z

2π(k+1)∫
2πk

f ((z, t)γε
1(s)) ds = Iε1f(z, t),

we have ||Iε1f ||L1(Gε
1) ≤ 2π||f ||L1(H). The third equality follows from uniform convergence 

of the integrand on the interval [0, 2π] � s. Therefore Iε1 extends to a bounded map 
from L1(H) to L1(Gε

1). In particular, one may check, using (32), that ||Iελf ||L1(Gε
λ) =

||Iε1f ||L1(Gε
1) ≤ 2π||f ||L1(H).

Finally we have, for f ∈ L1(H),

||Iεf ||L1(Gε) :=
∫
Gε

|Iεf(z, t, λ)|dGε

=
∞∫
0

∫
Gε
λ

|Iελf(z, t)|dGε
λe

−λdλ

≤2π||f ||L1(H)

∞∫
0

e−λdλ = 2π||f ||L1(H)

as desired. �
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Remark 29. From these computations, we may also deduce a Santaló formula for gε:∫
Gε
λ

Iελf(z, t)dGε
λ = 2π

∫
H

f(z, t)d(z, t), f ∈ L1(H)

which refines the usual Santaló formula.

We note a Poisson Summation Formula for P ε:

Lemma 30. For f ∈ L1(H),

FH/Γε (P εf) (n) = FHf

(
n

1 + 2ε2

)
, ∀n ∈ Z∗. (35)

Proof. This is just a rescaling of Lemma 14. Observe that Γε = (1 + 2ε2)Γ. Using 
Lemma 15 with λ = 1/

√
1 + 2ε2, and noting that δ∗√1+2ε2P

εf = P 1δ∗√1+2ε2f , we are 
done. �

Observe how the Fourier transform respects dilations:

Lemma 31. For g ∈ L1(H/Γε), λ > 0,

FH/Γε
λ

(δ∗λg) = λ−4FH/Γελ(g)(n), ∀n ∈ Z∗. (36)

Proof. Observe that Γε
λ = λ−2(1 + 2ε2)Γ, and Γελ = (1 + 2ε2λ2)Γ. Then apply 

Lemma 15. �
As before, Iε,red is a convolution operator by a compactly supported distribution. We 

compute its generalized Fourier multiplier:

Proposition 32. For g ∈ L1(H/Γε),

FH/Γε

(
Iε,redg

)
(n) = 2πJn

(
1√

1 + 2ε2

)
◦ FH/Γε(g)(n), ∀n ∈ Z∗.

Proof.
FH/Γε

(
Iε,redg

)
(n) =

∫
H/Γε

2π∫
0

g ((z, t)γε
1(s))βn/(1+2ε2)(z, t)∗dsdμε

1(z, t)

=
2π∫
0

∫
H/Γε

g (z, t)βn/(1+2ε2)
(
(z, t)γε

1(s)−1)∗ dμε
1(z, t)ds

=
2π∫ ∫

ε

g (z, t)βn/(1+2ε2) (γ1(s)) ◦ βn/(1+2ε2)(z, t)∗dμε
1(z, t)ds
0 H/Γ
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=
2π∫
0

βn/(1+2ε2) (γε
1(s)) ds ◦ FH/Γε(g)(n).

=: 2πJn

(
1√

1 + 2ε2

)
◦ FH/Γε(g)(n). �

We may now prove the Heisenberg Fourier Slice Theorem for gε:

Proof of Theorem 3. Combining Proposition 28 and 32,

FH/Γε (Iεf) = 2πJn

(
1√

1 + 2ε2

)
◦ FHf

(
n

1 + 2ε2

)
. (37)

Now, exploiting homogeneity of Iε,

FH/Γε
λ

(Iελf) (n)

= λ−1FH/Γε
λ

(
δ∗λI

ελ
1

(
δ∗1/λf

))
(n), by Proposition 27,

= λ−5FH/Γελ

(
Iελ1

(
δ∗1/λf

))
(n), by Lemma 31,

= 2πλ−5Jn

(
1√

1 + 2ε2λ2

)
◦FH(δ∗1/λf)

(
n

1 + 2ε2λ2

)
, by (37),

= (2π/λ)Jn

(
1√

1 + 2ε2λ2

)
◦FHf

(
nλ2

1 + 2ε2λ2

)
, by Lemma 31. �

Proposition 33. Let ε > 0 and n ∈ Z∗ be fixed. Then Jn

(
1√

1+2ε2λ2

)
: H → H is injective 

for almost all λ > 0.

Proof. Set r = 1√
1+2ε2λ2 . By Corollary 21, the operator Jn(r) is injective if and only if 

nr2 is not a zero of L(n)
j for any j ∈ N. Since there are only countably many such zeros, 

the proposition follows. �
We now have the tools to prove injectivity of the taming X-ray transform Iε:

Proof of Theorem 4. Suppose, Iελf = 0 for all λ ∈ (0, η), where η > 0. Then by Theo-
rem 3 and Proposition 33,

0 = FHf

(
nλ2

1 + 2ε2λ2

)
for almost all λ ∈ (0, η), and all n ∈ Z∗. Let A be the set of all such λ ∈ (0, η), and 
B = {λ2/(1 + 2ε2λ2) : λ ∈ A}. Then in other words
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0 = FHf(h) ∀h ∈
⋃
n∈Z

nB.

Since B has full measure on the interval 
(
0, η2

1+2ε2η2

)
, we know FHf = 0 almost every-

where. Therefore f = 0 by the Fourier Inversion Theorem. �
6. Appendix

6.1. SVD of Ired|0L2(H/Γ)

While not strictly necessary for our main result, the computation in Proposition 20
also gives us the SVD of Ired when restricted to a specific subspace. Here, similarly with 
[24], we implicitly exploit the fact that Ired intertwines the Heisenberg Laplacian on H
with another differential operator on H/Γ for which the functions Mh

jk, h ∈ R∗, and 
Mn

jk, n ∈ Z∗, are eigenfunctions, respectively.
Consider the subspaces of L2(H/Γ)

L2(C) ∼={f ∈ L2(H/Γ) : f(z, t) = f(z, 0), ∀(z, t) ∈ H/Γ}

0L2(H/Γ) :={f ∈ L2(H/Γ) :
π∫

0

f(z, t)dt = 0, ∀z ∈ C}.

Lemma 34. We have the orthogonal decomposition

L2(H/Γ) ∼= L2(C) ⊕ 0L2(H/Γ). (38)

Proof. Given f ∈ L2(H/Γ), let

f0(z, t) := 1
π

π∫
0

f(z, t)dt and g = f − f0.

Then f0 ∈ L2(C) and g ∈ 0L2(H/Γ).
Furthermore, for arbitrary f0 ∈ L2(C), and g ∈ 0L2(H/Γ),

∫
H/Γ

f0(z, t)g(z, t)dμ1(z, t) =
∫
C

f0(z)
π∫

0

g(z, t)dtdz = 0.

The orthogonal decomposition (38) follows. �
In what follows, set

ψn
jk :=

√
|n|
π

Mn
jk; j, k ∈ N, n ∈ Z∗ (39)
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for Mn
jk defined in (19). The functions ψn

jk for, n ∈ Z∗ and j, k ∈ N, form an orthonormal 
basis for 0L2(H/Γ). (See [37, Ch. 4], where the author uses slightly different notation.)

Proposition 35.

Ired : L2(H/Γ) → L2(H/Γ)

is well-defined and bounded.

Proof. For g ∈ Cc(H/Γ), the Cauchy-Schwartz Inequality yields

|Iredg(z, t)|2 =

⎛⎝ 2π∫
0

|g
(
(z, t)(eiθ, θ/2)

)
|dθ

⎞⎠2

≤ 2π
2π∫
0

|g
(
(z, t)(eiθ, θ/2)

)
|2dθ. (40)

Then

||Iredg||2L2(H/Γ)

=
∫

H/Γ

|Iredg(z, t)|2{dμ1(z, t)

≤ (2π)
2π∫
0

∫
H/Γ

|g
(
(z, t)(eiθ, θ/2)

)
|2dμ1(z, t)dθ, by (40),

= (2π)2
∫

H/Γ

|g ((z, t)) |2dμ1(z, t), by left-invariance of μ1,

= (2π)2||g||2L2(H/Γ),

so Ired extends to a bounded function from L2(H/Γ) to itself. �
Proposition 36. Ired preserves the orthogonal decomposition in Lemma 34. i.e.,

Ired|L2(C) : L2(C) → L2(C)

Ired|0L2(H/Γ) : 0L2(H/Γ) → 0L2(H/Γ).

Furthermore, the restriction Ired|L2(C) is essentially 2π times the Mean Value Transform 
M1.

Proof. For f ∈ L2(C),

Ired|L2(C)f(z, t) =
2π∫
f
(
(z, t)(eiθ, θ/2)

)
dθ =

2π∫
f
(
z + eiθ, t + θ/2 + 1

2 Im
(
zeiθ

))
dθ
0 0
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=
2π∫
0

f(z + eiθ)dθ = 2πM1f(z),

and so Iredf ∈ L2(C).
For g ∈ 0L2(H/Γ),

π∫
0

Iredg(z, t)dt =
π∫

0

2π∫
0

g
(
z + eiθ, t + θ/2 + 1

2 Im
(
zeiθ

))
dθdt

=
2π∫
0

π∫
0

g(z + eiθ, t)dtdθ = 0,

so that Iredg ∈ 0L2(H/Γ). �
We know that Ired|L2(C) = 2πM1 has a continuous spectrum (see (2), or Remark 18), 

so we restrict the reduced X-ray transform to 0L2(H/Γ), where it has a discrete spectrum, 
and compute the Singular Value Decomposition there.

Theorem 37 (SVD of Ired|0L2(H/Γ)). For all n ∈ Z∗ and j, k ∈ N,

Ired|0L2(H/Γ)ψ
n
jk = 2π

√
j!

(j + |n|)! (|n|/e)|n|/2 L(|n|)
j (|n|)ψn

j+|n|,k.

Proof. Note that, for (w, s), (z, t) ∈ H

Mn
jk ((w, s)(z, t)) = 〈βn ((w, s)(z, t))ωj , ωk〉H = 〈βn((w, s)) ◦ βn((z, t))ωj , ωk〉H

=
∞∑
l=0

〈βn((w, s))ωl, ωk〉H〈βn((z, t))ωj , ωl〉H

=
∞∑
l=0

Mn
jl((z, t))Mn

lk((w, s)).

Then

Ired|0L2(H/Γ)ψ
n
jk(z, t)

=
√

|n|
π

2π∫
0

Mn
jk

(
(z, t)(eiθ, θ/2)

)
dθ

=
√

|n|
π

∞∑
l=0

2π∫
Mn

jl(eiθ, θ/2)Mn
lk(z, t)dθ
0
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=
√

|n|
π

∞∑
l=0

δ(j − l + |n|)Mn
jl(1, 0)Mn

lk(z, t), by (24) in Proposition 22,

= Mn
j,j+n(1, 0)ψn

j+|n|,k(z, t)

= 2π

√
j!

(j + |n|)! (|n|/e)|n|/2 L(|n|)
j (|n|)ψn

j+|n|,k(z, t). �

In view of Proposition 36 and Theorem 37, the kernel of Ired on L2(H/Γ) is given by 
the L2-closure of

Span{ψn
jk : j, k ∈ N, n ∈ Z∗, L

(|n|)
j (|n|) = 0}

We know this kernel contains at least the closure of {ψ2
2,k : k = 0, 1, 2...} since 

L
(2)
2 (2) = 0. Determining the entire kernel will require a number-theoretic argument 

(see Remark 23).

6.2. Exponential map for Heisenberg geodesics

The sub-Riemannian flow maps from the unit cotangent bundle U∗H := H−1(1
2 ) to 

itself. We work in the left-trivialization of the unit cotangent bundle: U∗H ∼= H×U(1) ×
R � (z, t, eiφ, λ). The exponential map exp : R ×U∗H → H is given in these coordinates 
by

exp(z,t)
(
s(eiφ, λ)

)
= (z, t)

⎧⎨⎩
(
eiφ (eiλs−1)

iλ , λs−sin(λs)
2λ2

)
λ �= 0(

seiφ, 0
)

λ = 0
(41)

(see [26, Ch. 1]). As a function of s, this describes the unit-speed geodesic with initial 
point (z, t) whose projection to the plane is a counterclockwise-parameterized circle of 
radius R = 1/|λ| with initial velocity in the direction of φ if λ > 0, and φ + π if λ < 0. 
If λ = 0 the projection is a straight line in the direction φ. The geodesics in (1) are 
obtained by rotations and left translation of (41).

The Riemannian exponential map expε for gε is given in the same coordinates by

expε
(z,t)

(
s(eiφ, λ)

)
= exp(z,t)

(
s(eiφ, λ)

)
(0, ε2λs) (42)

(see [26, Thm. 11.8] for an explanation). Because we are using cylindrical coordinates 
in the fibers, neither of these exponential maps describe geodesics with initial condition 
strictly in the λ direction. In the case of g, these geodesics are fixed points in H, and in 
the case of gε these geodesics are integral curves of the Reeb vector field ε2λT . In both 
cases, the X-ray transforms are inverted without considering these geodesics.
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6.3. Bessel functions

The classical Bessel function of order n is defined by

Jn(r) := 1
2πin

2π∫
0

eir cos θe−inθdθ. (43)

6.4. Infinitesimal representation

Define the complex vector fields on H:

Z := 1
2 (X − iY ) , Z := 1

2 (X + iY )

where X and Y are given in (6). Then βh : H → U(H) as defined in (8) is the unique 
strongly continuous unitary group homomorphism for which, on the level of Lie algebras,

(βh)∗ Z =
√
h∂ζ , (βh)∗ Z = −

√
hζ, (βh)∗T = 2h.

Fix F ∈ H and (z, t) ∈ H. To obtain (8), let Gh(τ, ζ) be unique solution to the differential 
equation

d

dτ
Gh(τ, ζ) = (βh)∗

(
tT + zZ + zZ

)
Gh(τ, ζ) =

(
2iht +

√
h(z∂ζ − zζ)

)
Gh(τ, ζ)

subject to the condition Gh(0, ζ) = F (ζ). Then βh(z, t)F (ζ) := Gh(1, ζ). See [6, Ch. 1 
Sec 3] to see this worked out for the Schrödinger representation.

6.5. Alternate conventions

Folland [6] defines the Bargmann-Fock representation on the 1-parameter family of 
Hilbert spaces

Hh :=
{
F : C → C, holomorphic : h

∫
C

|F (ζ)|2e−πh|ζ|2dζ < ∞
}
, h > 0,

and Hh :=
{
F : F ∈ H|h|} for h < 0.

For h ∈ R∗ and λ > 0, the maps

Sλ : Hh → Hλh; S(F )(ζ) :=F (
√
λζ)

c : Hh → H−h; c(F ) :=F

are all isometries.
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Folland defines the Fock representation, for h > 0, as

βFol
h (z, t)F (ζ) := e2πhit−πhζz−πh|z|2/2F (ζ + z), F ∈ Hh

and βFol
h (z, t) = c ◦ βFol

|h| (z,−t) ◦ c for h < 0.
Our definition is rescaled so that every βh acts on the same space H = H1/π. Folland’s 

definition, βFol
h , is related to ours via

βFol
h (z, t) = Sπh ◦ βπh (z, t) ◦ S−1

πh , h > 0.

An advantage of this convention is that as h varies, βh varies by precomposition with 
automorphisms of H:

βh(z, t) = β1(
√
hz, ht), for h > 0

βh(z, t) = β|h|(z,−t), for h < 0.

Granted, an advantage of Folland’s definition is that the Fourier transform defined with 
βFol
h does “converge” to the Euclidean Fourier transform as h → 0.
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