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1. Introduction

Our object of study is the geodesic X-ray transform associated to the sub-Riemannian

geometry of the Heisenberg group, which is H := C x R with the multiplication law
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and a metric defined in Section 3.1. H is the local model for any 3-dimensional sub-
Riemannian manifold of contact type, in the same sense that 3-dimensional Euclidean
space is the local model for any 3-dimensional Riemannian manifold [23, Thm. 1]. This
property positions H as the natural homogeneous starting point for studying the integral
geometry of contact manifolds, just as Radon first inverted the X-ray transform in R2.

X-ray transforms, which integrate a function on a manifold over its geodesics, have
been extensively studied on Riemannian manifolds and homogeneous spaces [10,14]. Hel-
gason showed in [13] that the X-ray transform on symmetric spaces of noncompact type
is injective. In [21] the authors prove injectivity on compact symmetric spaces excluding
the n-sphere. Ilmavirts in [17] obtains injectivity on compact Lie groups excluding S*
and S3. (For a survey of results on Riemannian manifolds with boundary see [18].) To
the author’s knowledge, X-ray transforms on sub-Riemannian manifolds are virtually
unexplored.

To a function f € L'(H) we associate the function If, its X-ray transform, defined
by

If(y) = / £ ((s)) ds,

where the geodesics v will be cast as (projections of) integral curves of the Hamiltonian
flow on T*H for the degenerate fiber quadratic Hamiltonian later described (7). Related
integral transforms on H have been studied, for example, by Rubin [33], and Strichartz
[35], who consider integration over left translates of hyperplanes. We ask whether If
determines f.

The sub-Riemannian setting, whose general theory is poorly understood, introduces
qualitatively new features to this question. For example, fibers of the unit cotangent
bundle U*H (defined in Section 3.1) are now cylinders, and there is no unique Levi-Civita
connection. Thus U*H has noncompact fibers, and there is no canonical splitting of its
tangent space into vertical and horizontal components like there is in the Riemannian
case as described in [29]. See [26] for background sub-Riemannian geometry or [5] for an
extensive introduction to the Heisenberg group.

A standard geometric obstacle to such inverse problems is presented by the presence of
conjugate points. In [25] and [15] the authors show that conjugate points generally inhibit
stable inversion of the X-ray transform on Riemannian manifolds, with unconditional
loss in two dimensions. Unfortunately, the conjugate points in the Heisenberg group are
ubiquitous; the cut locus to any point passes through that point—a feature generic in
sub-Riemannian geometry, where the exponential map is never a local diffeomorphism
at the origin [34, p. 222]. Therefore, standard tools for proving injectivity, such as Pestov
energy methods, which typically require a positive-definite second fundamental form [18]
do not apply without a closer look. We prove that, nonetheless, the X-ray transform on
the Heisenberg group is injective.

A common recipe for inverting such integral transforms is to compute the normal
operator I*I, for I* defined with a suitable measure in the target space, as in [1,14,32],
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and identify the normal operator as a function of distinguished invariant differential
operators. On the Heisenberg group, I*I is not well-behaved (or immediately well-defined
on C.(H)) due to the singular nature of the sub-Riemannian exponential map, so we focus
on studying the transform I directly. We observe a convenient identification of the space
of geodesics with a quotient of the Heisenberg group (12), which allows us to express I
as a convolution. We then apply the group Fourier transform on the Heisenberg group
and its quotient to express I essentially as a multiplication operator (Theorem 2), from
which we deduce that I is injective (Theorem 1). For background material on the group
Fourier transform and the harmonic analysis of the Heisenberg group, see [6], [8], or [37].

2. Main results

The Heisenberg geodesics exist for all time and are left-translates of helices and
straight lines, as described in Section 3.1. Let G be the set of all maximal Heisenberg
geodesics without orientation, and G, the set of all geodesics having a fixed value A € R,
for the “charge” A, which is a constant of motion. We will parameterize G, using left-
translates of specific model geodesics as in [17], with the caveat that Heisenberg geodesics
are not one-parameter subgroups of the Heisenberg group.

Left translation by any element (z,t) € H is an isometry of H and so H acts on G.
This action does not change the value of A\, and is a transitive action on each leaf Gy,
A # 0. (It is not transitive on Gy since it does not change the direction of the line in
the plane which the A = 0 geodesic projects to.) These facts are verified by inspecting
the exponential map in (41). Thus we can use H to parameterize Gy, A # 0, by fixing a
particular helix ) € G, and left-translating it about. We take this helix to be one whose
projection is a circle of radius |R| = 1/|\| centered at the origin and parameterized by
arclength. Thus our parameterization of that part of G having A #£ 0 is

s (z,0)a(8), a(s) = (Rei(s/R), %SR) eH; R=1/A. (1)

Using this identification, we may parameterize geodesics by (z,t, \) as above, uniquely
modulo the isotropy group T'y := {(0,k7R?) € H : k € Z} stabilizing v,, and write the
X-ray transform concretely as

LFGtA) = Dnf (1) = / (2 tyn(s) ds, € Cu(H).
R

We ignore the degenerate case when A = 0, where the geodesics are straight lines.
Furthermore, since A < 0 corresponds to a A > 0 geodesic with opposite orientation, we
will take A > 0 unless otherwise specified. Fixing A > 0, we prove in Proposition 11 that
I\ : LY(H) — L'(G)), with a natural measure on the codomain given in Section 4.1,
is well-defined and bounded. Existing literature ([16] and [17] for example) profitably
considers the X-ray transform as a family of operators indexed by a directional parameter
in this way.
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In [35, p. 392], Strichartz proves indirectly that a function on the Heisenberg group
may not in general be recovered from its integrals over A = 0 geodesics alone, but does
not consider A # 0 geodesics. Indeed, our main result necessarily involves geodesics with
nonzero charge A:

Theorem 1. The Heisenberg X-ray transform I : L*(H) — LY(G,dG) is injective. In
particular, if f € L*(H), and Ixf = 0 for all X in a neighborhood of zero, then f = 0.

The measure dG on the set of geodesics, G, is defined in Section 4.1.

Thinking of the charge A\ as the restricted directional parameter, Theorem 1 is an
example of limited angle tomography (see [22] and [28, Ch. 6]).

We prove this result using harmonic analysis adapted to the group structure, modi-
fying familiar results in Euclidean space. Consider, for example, the Radon and Mean
Value Transforms on R?:

2

Rf(s,0) ::/f(sew+itew) dt, M"f(z) = %/f(z—i—rew) do (2)
R

0

where, say, f € C.(R?). Taking the Fourier transforms in s and z, respectively, yields

fs»—)URf(o'v 0) = f(o'eie)a FZHCMTf(C) = JO(TKDf(C)v

where Jy is the zeroth-order Bessel function (43). These results are known as Fourier
Slice Theorems, or Projection Slice Theorems [28]. They reveal that R, thought of as
a projection onto {#}, becomes a restriction operator onto the “slice” o — oe?® in the
Fourier domain, and that M" becomes a multiplication operator by Jy(r|¢|) when viewed
in the Fourier domain. Fourier Slice Theorems exist for more general Radon transforms
as well; for example, in [11,19].

The Radon and Mean Value Transforms may be interpreted as integration over
straight lines or magnetic geodesics in Euclidean space. In the case of H—which is a
“flat” sub-Riemannian geometry—we prove a corresponding Fourier Slice Theorem for
Heisenberg geodesics. We use the operator-valued group Fourier transform JFp associated
to the Bargmann-Fock representation 5, (defined in equation (8)), which has proven a
useful tool, for example, by Nachman in [27] to find the fundamental solution for the
wave operator for the Heisenberg Laplacian. The theory of Fyy is extensively developed
in [9,37]. In particular it has a Plancherel Theorem and Inversion Theorem [7,8,37].

We identify G, = H/T') in Section 4.1 and so also define in equation (10) the group
Fourier transform Fy,r, on the quotient. We see that in the generalized Fourier domain
of g and Fpyr, , the Heisenberg X-ray transform is essentially a multiplication operator:

Theorem 2 (Heisenberg Fourier Slice Theorem). If f € L*(H), then

(Fuyry (Inf)) (n) = 27/A) T o (Fuf) (nA?), Vn € Z\ {0},VA > 0. (3)
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Equation (3) is an equality of operators acting on Bargmann-Fock space (originally
described in [4]),

1 2
H = {F : C — C, holomorphic : — / |F(¢)[2e™ 11 d¢ < oo} (4)
T
C
Tn : H — H is the operator

n/2
TFQ =50 () e R (G s w0 (5)

2w \ en

where the contour is a circle around the origin oriented counterclockwise (and where
J-n = Jn). Loosely speaking, the Heisenberg X-ray transform I is “block-diagonalized”
in A by the group Fourier transform, and each block is essentially a multiple of 7,,.

The classical Fourier Slice Theorem for R in (2) states that knowledge of Rf for a
fixed 0y determines the Fourier transform f (¢) for all ¢ || 6y. Similarly, the Heisenberg
Fourier Slice Theorem says that knowledge of I f for fixed A determines the group
Fourier transform Fg f(h), up to multiplication by the operator [J,, for all h € A\2Z*.
Therefore, injectivity of I follows once we show that 7, is an injective operator at least
whenever n is an odd integer (Proposition 22).

Finally, in Section 5, we consider the ray transform I¢ (defined in (27)) associated to
a special family of left-invariant taming metrics g. parameterized by ¢ > 0:

ge = da® +dy? + (1/€)* 0% O :=dt — L (zdy — ydz).
First, we prove a Heisenberg Fourier Slice Theorem for g. geodesics:

Theorem 3 (g. Heisenberg Fourier Slice Theorem). If f € L'(H), and € > 0 then

. 1 nA? .
Fuyrs (I3 f) (n) = 2 /N) Ty, (m) o (Fmf) (m) ;. VnelZ®, YA>0.
Here J,(r), r > 0, is defined in (21).
We then use Theorem 3 in the same way with Proposition 33 to show that I¢ is
injective:

Theorem 4. For all ¢ > 0, the Heisenberg taming X-ray transform I¢ : L'(H) —
LY(G¢,dG*) is injective. In particular, if f € L'(H) and I{f =0 for all X in a neighbor-
hood of zero, then f = 0.

The measure dG¢ on the set of g.-geodesics, G€, is defined in (30).
The first part of Theorem 4 is not new. In [30] the authors prove a support theorem
for geodesics of left-invariant metrics on the Heisenberg group, which implies injectivity
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of the associated X-ray transform. However, to the author’s knowledge, the second part
of Theorem 4 is new.

3. Preliminaries
3.1. Heisenberg geometry

We define the sub-Riemannian metric on H by declaring the left-invariant vector fields
1 1
X:@I — §y8t, Y:ay—FEQ]‘@t, (6)

to be orthonormal, and the length of 7' = 0, to be infinite. Then any finite length smooth
path in H must be tangent to the nonintegrable distribution D, := Span{X,, Y, }, ¢ € H.
We call such a path horizontal. The length of a horizontal path equals the length of its
projection to the plane by the map

m(z,y,t) = (z,y).

A minimizing Heisenberg geodesic is a shortest horizontal path joining two points of
H. That any two points in H are connected by a horizontal path is guaranteed by
Chow’s Theorem and the fact that D satisfies the Hormander condition (i.e. D is bracket-
generating).

The fiber quadratic Hamiltonian H : T*H — R given in canonical coordinates by

H(‘Tvyvtvp:mpyapt) = % ((pg: - %ypt)Q + (py + %mpt)Q) (7)

generates the Heisenberg geodesics. By ‘generate’ we mean that any solution to Hamil-
ton’s equations for H projects, via the canonical projection T*H — H, to a sub-
Riemannian geodesic, and conversely, all Heisenberg geodesics arise this way [26, Sec
1.5]. If we want geodesics parameterized by arclength we only take solutions for which
H = 1/2. (Thus, we define the unit cotangent bundle U*H as the set of all (¢,p) € T*H
for which H(q,p) = 1/2.) These geodesics can be best understood by their projection
under 7 to the plane: they are circles or lines. Indeed

OH

.o 94 0
b ot )

so that A := p; is a constant of motion. If we interpret A as the charge of a particle,
then H, viewed as a Hamiltonian on T*R?, is the Hamiltonian for a particle of charge
A travelling in the plane under the influence of a constant unit strength magnetic field.
These solutions are well-known and easy to derive [26, p. 12]. When H = 1/2 they are
circles of radius R = 1/|)A| for A # 0, and lines when A = 0. See eq. (1) for a concrete
representation of all geodesics with A # 0.
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3.2. The group Fourier transforms

We start by giving a brief description of the representation theory of the Heisenberg
group. A more detailed discussion can be found in [6]. Denote by U (H) the set of unitary
operators on Bargmann-Fock space, defined in (4). For each h € R* =R \ {0}, the map
(motivated in Section 6.4)

ﬁh H—-U (H)
given by
Bz, )F(C) i= XM —Vhiz=51:P p(¢ 4 Vhz), FeH, h>0, (8)

and By (z,t) = By (Z, —t) for h < 0, is a strongly continuous unitary representation of the
Heisenberg group on H. Moreover, it is known that these representations are irreducible,
and by the Stone-von Neumann Theorem, up to unitary equivalence, these are all of the
irreducible unitary representations on H that are nontrivial on the center of H [6].

We define the group Fourier transform of an integrable function on H. Denote by B(H)
the space of bounded operators on H. The Heisenberg Fourier transform of f € L'(H)
is the operator-valued function

Fuf:R* = B(H)

Fauf(h) = / (@) (@) dg

H

where the integral is taken in the Bochner sense [37, p. 11]. Think of  as a semi-classical
parameter.

Remark 5. Many authors define Fy alternatively with the Schréodinger representations.
Our definition seems more natural for studying the X-ray transform due to the simplicity
of (5), and is equivalent by conjugation with a unitary intertwining map; the choice is
largely a personal preference. We also normalize the representations [ in such a way
that they all act on the same space H, rather than a family of spaces parameterized by
h € R*, as in [6].

If f e LY(H) N L*(H), then Fg(f)(h) is a Hilbert-Schmidt operator on H [8,9]. Let
S denote the space of Hilbert-Schmidt operators on H, and define the Hilbert Space
L2(R*, Sa;du) = L*(S3) via the inner product

(A B) sy i= [t (AWBO) ) du(h).  dp =2 |uldh.
R*
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We will need the following theorems from Geller, normalized to account for the slightly
different group law for H used here and in [8].

Theorem 6 (/8, Plancherel Theorem]). If f € L'(H) n L*(H), then ||f||2m) =
1Fr Sl L2 (s,)-

Theorem 7 (/8, Fourier Inversion Theorem]). If f € S(H), Schwartz space on R3, then

f(g) = / tr (Bn(a)Fia f () du(h), g € HL. (9)

R*

Thus Fg extends to an isometry from L?(H) into L?(Ss). In fact, it is onto as well.
Furthermore if f € L'(H), then by convolving f with an approximation of identity, we
may use (9) to prove Fy is injective on L (H).

While the definition above is sufficient for our purposes, we remark that Fy has been
extended to much more general classes of function such as tempered distributions [2]. In
[3,36], and much more generally in [20] the authors use the group Fourier transform to
develop theory of pseudo-differential operators.

Finally, 'y := {(0,k7R?) € H : k € Z}, where R = 1/, is a discrete subgroup of the
center of H. Since 34 (z,t) = €23, (z,0), the representation 3, descends to the so-called
reduced Heisenberg group H/T'y if and only if h € A2Z*. To a function g € L*(H/T)),
we associate the reduced Fourier transform, defined as

Fuyr,(9) : Z* — B(H)

Fityry (9)(n) = / 9(0)Bre ()" da, (10)

H/Ty
where Z* := 7\ {0}.
Remark 8. The reduced Fourier transform defined above is not invertible unless we also
consider the representations (z,t) — e?*'¢; ¢ € C, which are trivial on the center, in the

definition. (Indeed, if dyg(z,t) = 0, then Fg,r,g = 0.) This extension is not necessary
for our purposes.

4. Proof of Theorems 1 and 2
4.1. The space of geodesics
Recall that H acts transitively on Gy on the left. Since

(0, 7TR*)y\(s) = (ReiS/R, B(s+ 27TR)) = (s+27R); R=1/), (11)
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the subgroup I'y := {(0,kmR?) € H : k € Z} stabilizes G,. Upon fixing v, we have the
identification

Gy = H/Ty
(z,6)ya = (2,6)Ta. (12)

When A\ = 1, we omit subscripts and write I' =T';.

Let {dux(z,t) = dx A dy A dt be the Haar measure on H/T'y, and let Gy inherit a
multiple of the Haar measure, dGy := Adx A dy A dt, normalized to satisfy (16). Further-
more, let dG := Xe *dx A dy A dt A d)\, with a weight chosen to ensure boundedness in
Proposition 11.

4.2. Simplification to the reduced X-ray transform

The dilation map, 6x(z,t) := (Az, A’t), is an automorphism of the Heisenberg group
for A # 0. Furthermore,

6x:Tx 3 (0,knA™2) = (0,km) €T,

so 0y : H/T'y — H/I' is well-defined. Denote by J% the pullback operator (sometimes
called the pullback relation) defined on functions:

5% :LY(H) — L' (H) 85 f(z,t) = f(Az, Nt
&3 :L*(H/T) — L'(H/T) 339 ((2,)Tx) = g (A2, A*)T) .

Remark 9. In the sequel, we write any function g : H/T'y — C as g(z,t), in place of
g ((z,t)I'y), understanding that the ¢ variable is taken mod wA~2.

The dilation map 4y is relevant because it is a conformal map for the sub-Riemannian
metric (with constant conformal factor \). Consequently, we have the following homo-

geneity of the ray transform:

Proposition 10 (Homogeneity of I). For f € C.(H),

I (,6) = (1N (16500 (2,0). (13)
Proof. Note that dilation preserves geodesics but rescales their speed:
d1/a71(8) = 1a(s/A). (14)

Then
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8% (1650)) (2:8) = I (375 ) (A2 X%)

Sinf (A2, N*t)71(s)) ds

F(81/x(A2, X28)1 /5 (11(5))) ds, because d) € Aut(H),

B B %\

f((z, ) (s/ X)) ds, by (14),
:)\/f((z,t)’y)\(s))ds: Aof(z,t). O
R

Next, we exploit the periodic symmetry of Heisenberg geodesics to reduce the X-ray
transform to one period.

Proposition 11. For any A > 0, I, : L*(H) — LY(G)) is well-defined, bounded, and
factors in the following way:

) —> L1 g)\ = H/FA)

p{ _—

red
L(H/T) i

where the maps which we call Central Periodization and the reduced X-ray transform are

given by
2TR
Pyf (z,t) Z f(zt+knR?), (2, t) = / g ((z,6)va(s))ds; R=1/A.
keZ 0

Furthermore, I : L*(H) — LY(G,dG) is well-defined and bounded.

Proof. By homogeneity (13), and since pullback by d, is bounded in the above L! spaces
for A # 0, it suffices to prove the proposition for A = 1. For this case, we omit subscripts
and write P and I™9. The map

C.(H) > f+— / Pf(z,t)dus(z,t)

H/T

is a left-invariant positive linear functional on C.(H). By uniqueness of the Haar measure
on H (which is just the Lebesgue measure), and the Riesz-Representation theorem,
Je > 0 such that
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/sztd,ulzt—c/fzt (z,1), (15)

H/T
and one may check that ¢ = 1 (see [7, Thm. 2.49] for the general statement). So in

particular, ||Pf||z1 @/ ry < [|f]: -
For g € C.(H/T),

||Iredg”L1(gl)

- / g (2, ) |dG

g1

2
/ ‘/ (z,t)v1(8)) ds|dp1(z,t)
H/T 0

2
< / / 19 (2 0 (5)) [dpos (2 t)ds

0 H/T

2
- / / 19/ ((2:1)) ldpa (2 B)ma () ™) ds

0 H/T

= / / lg ((2,1)) |du1(z,t)ds, since H /T is unimodular (i.e. p; is bi-invariant)
0 H/T

=27|g| L /Ty

Thus P and I**? extend to L' bounded maps. Given f € C.(H), since Pf € C.(H/T)

and

Irede(z,t):/Zf ((z,t + km)y(s dS—/Zf (z,t)y1(s + 27k)) ds, by (11),

keZ keZ
27 (k+1)
—Z/f st 2mb)ds =Y [ f(ms)ds =LA,
keZ ) kEZ oy

we have ||I1 f[|11(g,) < 27| f||1 ). The third equality follows from uniform convergence
of the integrand on the interval [0,27] > s. Therefore I; extends to a bounded map
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from L'(H) to L'(G;). In particular one may check, using (13), that [|I\f|[r1(g,) =

11 fll o1 gy < 27| fl o -
Finally, for f € L'(H), we have

1 fllore) = / (2, \)|dG

g
://|IAf(z,t)|dgAe’AdA
0 Ggx

o0

<211l a1y / e = 27 || o e
0

as desired. O

Remark 12. The reduced X-ray transform I**¢ : L(H/T) — L!(G;) is not injective. In
fact, if

g(z,t) = Z2€7‘2‘2€4it,

then I"*dg = 0. In Appendix 6.1 we give essentially a Singular Value Decomposition of
I'*d and characterize its kernel on L?(H/T).

Remark 13. From these computations, we may also deduce a sub-Riemannian Santal6
formula:

/Af(z,t)dgA - Qﬁ/f(z,t)d(z,t), e L(H), (16)
H

Gx

This is an example of a Santalé formula like those proven in [31], but without the latter’s
restriction to the “reduced unit cotangent bundle.”

4.83. Lemmas on the group Fourier transform

We now prove a few general properties of the group Fourier transform. The first is
a Poisson Summation Formula for H — H/T - a quick consequence of the classical
version. The author has not found a reference for this version, but does not believe it is
new.

Lemma 14 (Poisson Summation Formula). If f € L'(H), then

Fuyr (Pf)(n) = Fuf(n), VnelZ".
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Proof. For F,G € H,

(Fryr (Pf) (n)F, Gy

= Zf(z,t+k7r)<ﬂn(z,t)*F, G)udps(z,t)
H/T keZ

= Z f(z,t + k) (Bn(z,t + kn)*F, Gyydui(2,t), since Bn(z,t) = e*™3,(z,0),
H/T keZ

_ / P2, B2, 6)° F, G) (2, 1),
H

where the third equality follows from (15), and the fact that f(z,t){(Bn(2,t)*F,G)y €
L'(H) by the Cauchy-Schwartz inequality. Since F' and G were arbitrary, the identity
follows from the definition of the Bochner integral. O

Next, we observe how the Fourier transforms behave with respect to dilations.

Lemma 15 (Dilation property). Fiz A > 0.
If f € L'(H), then

Fu (65f) (h) = X Fuf(h/A?), Vh eR*
And if g € L*(H/T), then

Fuyr, (039) (n) = A\ Fuyr(g)(n), VYneZ".

We expect the above exponent of A because the homogeneous dimension of the Heisen-
berg group is 4.

Proof.
Far (550) (h) = / Oz, X208 (2, 1) d( 2. 1)

i
:)\—4/f(z,t)ﬁh (A2, A72) " d(2,8)
i
= )\_4/f(z,t)5h/,\z (z,8)"d(z,t) = A Fu f(h/X?),
H

and the proof for Fy r is nearly identical. O
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4.4. Proof of Theorem 2

The reduced X-ray transform I™®? is equivariant with respect to left translation by H
in the sense that

I (L9) (22 = [ Ly (0 @) o = [ g ((w.5)(z 0 (6))d0
0 0

= 1"l (w,5)(z1) = ({0 ") (2:1).

Thus, 1™ is a convolution operator. In fact, if we define the compactly supported
distribution « € &'(H/T) by x(g) := fOQﬁg('yl(G)_l) df then I'*dg = K x g, where
f*xg(zt) = f]HI/Ff ((z,t)(w, s)7*) g(w, s)d(w, s)I'. Therefore, by an analogous Paley-
Wiener theory [37, Ch. 1], we expect F r(x)(n) € B(H), and Fy,r (I'*g) (n) =
Fur(k)(n) o Fuyr(g)(n). The next proposition makes this heuristic explicit.
Proposition 16. If g € L' (H/T'), then for alln € Z*,

Fuyr (I'g) (n) = (2m) T © Fayr(g)(n)
with J,, defined in (5).

Proof.

Fur (1°%) (n)

://wmmwmwmmww

H/T 0

27
- / / 9 (2,t) By ((z,)71(s) ™) dpua (2, t)ds, since H/T is unimodular,
0 H/r

2
= / / g (z,t) B (71(8)) o Bz, t) dus (2, t)ds, since f3,(z,t) is a unitary rep,

0 H/T
27
:/mm@Mw/ywwmwmwww
0 H/T

= (2m) T o Fuyr (9) (n)

where the “multiplier”
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T / Ba (1(5)) ds (17)

is given explicitly on F' € H by

—/5n 71(s)) F(C)ds

/ﬂn 5/2) F (C)ds

1

— 2_/eins—\/ﬁge*'i8_%F(C+\/ﬁeis> ds, ,z:\/ﬁeis7
s

0

1 1 n/2
=— (—) 7{2”7167”</ZF (C+2)dz
21 \ en

which is the same as (5). O

Remark 17. 7, is similar to the “representation integral” considered in [17], though s —
Br (71(8)) is not a homomorphism. Such integration of representations over geodesics also
appears in [12], where the authors used the Principal Series representations of SL(2,R)
to show that the normal operator I*I associated to the X-ray transform on constant
negative curvature surfaces is a nontrivial function of the Laplace-Beltrami operator.

Together with Proposition 11, these imply the Heisenberg Fourier Slice Theorem:

Proof of Theorem 2. Let f € L*(H), A > 0 and n € Z*. By Proposition 11 and 16, we
have

Fuyr (11f) (n) = Fayr (I Pf) (n) = (2m)Tn 0 Fuyr (P) (n) = (27)Tn © Fu f ().
(18)

Exploiting homogeneity of I,

F]HI/FA (Inf) (n) = )\*1}‘H/FA (5;‘\]1 (5T/>\f)) (n), Proposition 10

= A% Fap (11 (51"/)\]“)) (n), Lemma 15
=27\, 0 Fua (670f) (), by (1),
=27\ T, 0 F f(n)?), Lemma 15

as desired. O

Remark 18. In the special case when n = 0 or h = 0, the group Fourier transforms are
qualitatively different; they are the Euclidean Fourier transform in the z variable (the
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precise sense in which this limiting behavior occurs is formalized by Geller in [8]). In this
case, the Fourier Slice theorem takes the form

(Inf)(XC,0) = (27 /N Jo(I¢)) F(AC,0); VA>0, f e L'(H),

where Jj is the classical Bessel function of order zero, and

F(¢,0) = flz, e %dtdz, f e L'(H),
/]

A2
g9(¢,0) = g(z,t)e™2dtdz; g € L*(H/Ty).
/]

4.5. Proof of Theorem 1

We now make use of the Heisenberg Fourier Slice theorem to prove injectivity of I.
First, we describe an important class of functions which are the cylindrical harmonics of
the Heisenberg group.

With respect to the standard orthonormal basis {wx(¢) = ¢*/VEk! € C : k=0,1,...}
of H the matrix coefficients of the Bargmann-Fock representation, (8), M jhk(z,t) =
(Bn(2,t)wj, wk) are given for h > 0 via a brute force computation by

i—k . 2 .
\/?(—&—\/Ez)j Ll(cj_k) (h|z\2) e—hlzI?/2 g2iht i>k

M (z,t) = _
ik gl (_\/E2>k ]L('k*j) (hlZP) e—h|z|2/262iht i<k

; (19)
k! J

and Mjhk(z, t) = M]‘Zl (z, —t) for h < 0 (see Appendix 6.5 for conversion between Folland’s
[6, p. 64] and our conventions).
Here Lg-a)(x) is the generalized Laguerre polynomial, defined recursively by

G+ DL (@) = 2 +1+a—2) LS (@) — (j + ) L) (2). (20)

The following mild generalization of (17) will be useful for subsequent computations.

Definition 19. For n € Z*, let
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In particular, J,(1) = J,, defined in (17).

Proposition 20 (SVD of J,(r)). For every n € Z* and v > 0, the operator Jn(r) : H —
H is bounded in the operator-norm topology. Furthermore, J_,(r) = Jn(r), and, with
respect to the orthonormal basis {w; = ¢/ /\/j1:7=10,1,2,...} of H, we have

7!
(7 +n)!

Tn(r)w; = (717"2)“/2 e_”rz/QLgn) (nr?)wjtn, ViEN, n>0. (22)

Proof. 7,(r) : H — H is bounded in the operator-norm topology for any n € Z* since
2m
1 i0
1Tn()lop < 5= [ [0 (re*®,0/2) llopdd = 1. (23)
0

Note that, for n € Z*,

27 2
— 1 —i0 _ i 0 —
0 0
For n > 0,
2

(T (M wj, we)n = % (Bn (re,0/2) w;, wi)2do

0
2m

_ %/ n (re',0/2) df
0

2m
1 iy
=5 etU=k+m0 gg 7:(r,0) observing symmetry in (19)
0
=0(j =k +n)MJ(r,0) (24)

= Mﬁj+n(r7 O),
in which case,
Tn(r)w; = M3 (r,0)wjtn,

and, by (19),

1l
M 10 =\ 0r2) e L () s 0.

(j +n)!
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Corollary 21. Let v > 0 and n € Z* be fized. The operator J,(r) is injective if and only
if Lgn) (nr2) is nonzero for all j € N.

Proof. Since 7, (r) is bounded (by (23)), it is injective if and only if Lg-") (nr?) is nonzero
forallj e N. O

Proposition 22. The operator J, : H — H is injective whenever n is an odd integer.

Proof. Given n € 2Z + 1, by Corollary 21, the operator J, is injective if and only if the

3 (n) 00 i < 1s
sequence {L;"(n)}32, is nonvanishing.

Set ag.n) = j!Lén)(n) € Z. Then a(()n) = aﬁ") =1, and by (20),

'™ =(2j + 1)al™ — j(G +n)al”)

:a§") (mod 2)

since n is odd. Therefore aé") = aé") =1 (mod 2) for all 7 = 0,1,2,.... In particular,
L;n)(n) = ag.")/j! # 0 for j € N. Therefore 7, is injective whenever n is an odd
integer. 0O

Remark 23. We know that J» is not injective since ng)(2) = 0. However, the author is
not currently aware of a general statement characterizing all (j,n) € N x N* for which
Lg-")(n) = 0. While knowing this is not essential for proving injectivity of I, it would
provide more ways to invert I. This is because the space of geodesics is four dimensional,
and so we only need a subset of the overdetermined data to reconstruct f from If.

The proof of Theorem 1, injectivity of the X-ray transform, is now almost immediate.

Proof of Theorem 1. Suppose I f = 0 for all A € (0,7), where n > 0. By the Heisenberg
Fourier Slice Theorem (Theorem 2),

0=JnoFuf(nA?), VYnecZ* YA€ (0,n).
By Proposition 22

0=Fuf(n\?), Vn€2Z+1,VAe (0,n). (25)
In which case

0=Fuf(h), Yhe [J n(0,n°)=R".
ne2Z+1

Therefore f = 0 by the Fourier Inversion theorem for Fy. O
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5. X-ray transform for the taming metric g,

We use the same machinery to prove injectivity of the X-ray transform associated to
the family of left-invariant taming metrics on H. A taming metric on a sub-Riemannian
manifold is a Riemannian metric whose restriction to the horizontal distribution equals
the sub-Riemannian metric. See [26, Sec. 1.9].

Consider the family of left-invariant Riemannian metrics for € > 0:

ge = da® + dy? + (1/€)* 02,

where © := dt — %(mdy—ydm) is a contact form for the Heisenberg distribution D, defined
in Section 3.1. Then g, is a taming metric for the sub-Riemannian metric g = dz?+dy?|p.
Indeed, since D, = ker O4,q € H, we have g.|p = g.

Geodesics of (H, g.) converge uniformly to the sub-Riemannian geodesics as € — 0,
[5, p- 33]. The explicit expression for g. geodesics is derived in [5, Sec. 2.4.4]. We record
the exponential map for g, in (42).

Remark 24. To avoid quantifying € in every proposition of this section, with the exception
of Theorems 3 and 4, we will assume that we have chosen a fixed € > 0.

Let G¢ be the set of geodesics for g. without orientation and G5 the subset of geodesics
having charge A (which is still a constant of motion). Geodesics with A # 0 still project
to circles in the plane, and those with A = 0 project to lines; g.-geodesics differ from
sub-Riemannian geodesics only by an e-dependent velocity in the T' = 0; direction. Left
translation by any element (z,t) € H is a g.-isometry, and so H acts on G¢ by pointwise
left multiplication. This action does not change the value of A\ and is a transitive action
on each leaf G5 when X\ # 0.

We choose a particular geodesic v to be the one whose projection to the plane is a
unit-speed circular path of radius R = 1/|A| centered at the origin, and parameterize the
set of g. geodesics having charge A by

(R? + 2€%)

s= o), a5 = (Retrm U2

) €H; R=1/\ (26)

Remark 25. The geodesics described by (26) are not arclength parameterized; indeed,
9e(75(5),95(s)) = 1 + €A%, Instead, we insist that their projections to the plane are
unit-speed.

We define the X-ray transform associated to the taming metric g. by

FAMAwﬂvww:/}wwﬁ@Mafeam» (27)
R
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Note that
75(5 + 2w R) = ~5(5)(0, TR? 4 27€?). (28)
Therefore the isotropy group of 75 for the action of H by left translation on G5 is
S = {(0,kn(R*+2*)) e H: ke Z}.
We have the identification

GS = H /T
(2, 0)75 = (=, 6)L5.

Remark 26. Again, when A\ = 1, we omit subscripts and write I' = I'{. We will also
write g(z,t), for any function g : H/T'S — C, in place of g ((2,1)T).

Let {dp§(z,t) = dx A dy A dt be the Haar measure on H/I'§, and let Gf inherit a
multiple of the Haar measure

dgGs, := Mz A dy A dt. (29)
Furthermore, let
dG == Xe Mz Ady A dt A d. (30)
Note the homogeneity of geodesics with respect to dilation:
SN (s) =25 (s/A); R=1/A. (31)
Proposition 27 (Homogeneity of I¢€). For f € C.(H), we have
(N1 = A0 (5108 (240): (32)
Proof. This is essentially the same proof as (13):
S (37/08) (51) = I (850 ) (A2, %)

=[St (O 200) ds
R

- / F (2081371 (5)) ds
R
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. /f (2, S (s/\) ds, by (31),
R

= A/é’{//\f (A2, X2ty (Ns)) ds

R
= M5 f(z,1). O

Furthermore, in virtually the same way as Proposition 11, we reduce the X-ray trans-
form I¢ to one period:

Proposition 28. For any A > 0, I§ : L'(H) — L*(G%) is well-defined, bounded, and
factors in the following way:

(H) —2 LY(g5 = H/TY)

J .

e,red
Lim/rs) N
where

P5f(z,t) = Zf (z,t + km(R* + 2€%))
keZ
2mR (33)
1ty = [ 9 t05(e)) dss R =1/

0

Furthermore, I1¢: L*(H) — LY(G¢,dG¢) is well-defined and bounded.

Proof. By homogeneity (32), and since pullback by d, is bounded in the above L! spaces
for A # 0, it suffices to prove the proposition for A = 1. For this case, we omit subscripts
and write P¢ and I¢7¢d,

For exactly the same reason as (15), P¢ maps C.(H) to C.(H/T¢), and

/ PEF (20 1) dpi (2, 1) = / ey en) (34)
H/Te H

So in particular, |[P°f|[z@/re) < |[fll22@m)-
For g € C.(H/T*),

||I€’redg||L1(gf):/|I€’r8dg(z,t) |dgf
g1
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_ / \7g<<z,t>vf<s>>ds

H/T< 0

dps (2, t)

27

< / / 19 (20 0075 (5)) [y (2. £)ds
0 H/Te

27

- / / 19/ ((2:£)) i (2 B)5(s) ™) ds

0 H/T<

:/ / g (2,1) |dpi (2, t)ds, since H/I'* is unimodular,
0 H/Te

=27|g| L (/<)

Thus P¢ and I¢**4 extend to L' bounded maps. Given f € C.(H), since Pf € C.(H/T')
and

Ie,redpef(z, t)

/Zf ((z,t + km(1 4 2€%) ds—/Zf ((z,t)yi(s +27k))ds, Dby (28),

kEZ keZ
27 (k+1)
-y / Ftnitss2mds =3 [ F(E0nie)ds =G0,
keZ ) kEZ ooy

we have [|I{ f||z1(ge) < 27| f|[z1(m)- The third equality follows from uniform convergence
of the integrand on the interval [0,27] > s. Therefore I{ extends to a bounded map
from L'(H) to L'(Gf). In particular, one may check, using (32), that ||I5f||L1(gs) =
M5 flLrgs) < 27|l ey

Finally we have, for f € L'(H),

11l ey = / I F (2, £, V)| dG*

://|I;f(z,t)|dg;e—w

0 gs
<21l e / e\ = 27 £l sy
0

as desired. O
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Remark 29. From these computations, we may also deduce a Santal6 formula for g.:
[ 1550dgs = 2x [ eden, e i)
g5 H

which refines the usual Santal6 formula.
We note a Poisson Summation Formula for P¢:
Lemma 30. For f € L'(H),

n

]:H/Ff (Pf)(n)=TFnf (m

) , VYneZ". (35)

Proof. This is just a rescaling of Lemma 14. Observe that I'¢ = (1 + 2¢2)I'. Using

Lemma 15 with A = 1/4/1 + 2¢2, and noting that 6’\‘/H—262P6f = P15f/1+—2€2f7 we are
done. 0O

Observe how the Fourier transform respects dilations:
Lemma 31. For g € L'(H/T), A > 0,
Fuyre (059) = A_4IH/F6A(Q)(n)7 Vn € Z*. (36)

Proof. Observe that I'§ = A72(1 + 262)I, and I'* = (1 + 262A%)[". Then apply
Lemma 15. O

As before, 174 is a convolution operator by a compactly supported distribution. We
compute its generalized Fourier multiplier:

Proposition 32. For g € L*(H/T¢),

1
e,red _ _ *
Fuyre (197%) (n) = 277, <\/1+7262) o Fryre(g)(n), Yne€Z*.
Proof. o2
Figyre (I9°%g) (n) = / / 9 (2 1175(5)) 12y (2 £)dsdps, (2, 1)
H/re 0
27
- / / 0(201) By 2eny (2 D75 (5)™ )" s (=, s
0 H/Te
27

:/ / g (Za t) Bn/(1+262) (71(5)) © ﬁn/(1+262)(zat)*d:ui(z7t)d5

0 H/re
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2m
— [ Buscaiaen (5(s)) dso Fagre )0
0

1
=2nT, | —
(\/ 1+ 2¢2

) o Fityre(g)(n). ©

We may now prove the Heisenberg Fourier Slice Theorem for g.:

Proof of Theorem 3. Combining Proposition 28 and 32,

1 n
(If)y=2 _— — .
Fuyre (I°f) = 21T, (\/W) Ofo(1+2€2) (37)
Now, exploiting homogeneity of I¢,
Fuyrs (ILf) (n)

= A P (6§\If’\ (5}‘/,\f>) (n), by Proposition 27,

= )\75./_'.]1{[/1"6/\ (IfA (5f//\f)) (n), by Lemma 31,

= 2mA T (Vo Fu (50 f) (s by (37)

C I \UT e )OI (e ) y Al
27/ 0, L Faf (N by Lemma 31. O

= ————— | O s ————— .

A\ VT 2en )7 T T e ) v emma

Proposition 33. Let € > 0 andn € Z* be fized. Then J, (\/ﬁ) :H — H is injective
for almost all A > 0.

Proof. Set r = ﬁ By Corollary 21, the operator J,(r) is injective if and only if

nr? is not a zero of Lg.”) for any j € N. Since there are only countably many such zeros,
the proposition follows. O

We now have the tools to prove injectivity of the taming X-ray transform I°¢:

Proof of Theorem 4. Suppose, I5f = 0 for all A € (0,7), where > 0. Then by Theo-
rem 3 and Proposition 33,

nA?
0=Fuf (1 T 252>\2>

for almost all A € (0,7), and all n € Z*. Let A be the set of all such A € (0,7), and
B ={)\?/(1+2¢2)\?) : A € A}. Then in other words
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0= Fuf(h) vhe | ) nB.

nezZ

Since B has full measure on the interval (0, #), we know Fyf = 0 almost every-
where. Therefore f = 0 by the Fourier Inversion Theorem. 0O

6. Appendix
6.1. SVD Of Ired|0L2(H/F)

While not strictly necessary for our main result, the computation in Proposition 20

Ired

also gives us the SVD of when restricted to a specific subspace. Here, similarly with

[24], we implicitly exploit the fact that I intertwines the Heisenberg Laplacian on H
with another differential operator on H/T" for which the functions M jhk, h € R*, and
M S M E Z*, are eigenfunctions, respectively.

Consider the subspaces of L?(H/T)

L*(C) ={f € LA(H/T) : f(2,t) = f(2,0), ¥(z,t) € H/T}

OL2(H/T) :={f € L2(H/T) : /f(z,t)dt —0, V2 e C}.

Lemma 34. We have the orthogonal decomposition
L*(H/T) = L*(C) @ °L*(H/T). (38)

Proof. Given f € L*(H/T), let

us

fo(z,t) == %/f(zﬂf)dt and g=f—fo.

0

Then fy € L?(C) and g € °L*(H/T).
Furthermore, for arbitrary fo € L?(C), and g € °L?(H/T),

/fozt (z,t)dp(2,t) = /fo / (z,t)dtdz = 0.
H/T

The orthogonal decomposition (38) follows. O

In what follows, set

V T . *
i ::TH 0 SkeN, nelkZ (39)
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for M7, defined in (19). The functions ¢, for,n € Z* and j, k € N, form an orthonormal
basis for °L?(H/T'). (See [37, Ch. 4], where the author uses slightly different notation.)

Proposition 35.
red: L2(H/T) — L*(H/T)
is well-defined and bounded.

Proof. For g € C.(H/T), the Cauchy-Schwartz Inequality yields

27 2 21
gz, 1)) = / 19 (2. 0)(,6/2)) |d8 | < 2 / 19 ((2.0)(,0/2)) [2d6.  (40)
0 0
Then
| |Ired9| |%2(]HI/1")

= [ 19t 0 (dr (210

H/T
2m
<) [ [ 19(00/2) Paat o, by (10),
0 H/T
= (27)? / lg ((z,1)) [Pdpi (2, 1), by left-invariance of 1,
H/T

= (21191132 @)
so I™d extends to a bounded function from L2(H/T) to itself. O
Proposition 36. 1™ preserves the orthogonal decomposition in Lemma 3. i.e.,
1" 2(c) : L*(C) = L*(C)
1Yo p2ayry : °L*(H/T) — °L*(H/T).

Furthermore, the restriction Ired|Lz(C) is essentially 27 times the Mean Value Transform
M.

Proof. For f € L?(C),

27 27

Y2y flz,t) = /f((z,t)(ew,e/Z))dG = /f(z+e“9,t+9/2+ 1Im (ze™)) do

0 0
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27

_ /f(z+ei9)d9 — 2m M’ f(2),

0

and so I'*df € L%(C).
For g € °L2(H/T),

27
/g (z+ € t+0/2 + 1Im (z¢'?)) dodt
0

s

/ Ired

0

/g (z + € t)dtdh = 0,

°\§ o\q

so that I**dg € °L2(H/T'). O

We know that I"4|2(c) = 2rM* has a continuous spectrum (see (2), or Remark 18),
so we restrict the reduced X-ray transform to °L2(H /T"), where it has a discrete spectrum,
and compute the Singular Value Decomposition there.

Theorem 37 (SVD of Ir6d|OL2(]H[/1")). For alln € Z* and j,k € N,

j! nl/2 1 (n
Yo ry ¥y, = 27 m(‘”'/e’ A (G e

Proof. Note that, for (w,s), (z,t) € H
M. ((w, 5)(2,t)) = (Bn (w, 5)(2, 1)) wj, wr)p = (Br((w, 5)) © Bu((2, t))w), wi)
D Bul(w, 8))wr wi)a (Ba((2, )w;, wi)

~
I
o

M

Mji((z, 1)) Mi,((w, 5))-

~
I
o

Then
Yo p2m/my ¥ (2, 1)

Sy e

00 27
Z/ M7 (e,0/2) ML (=, t)do
1=0 0
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/ (oo}
Z J =1+ n|)Mj(1,0) M)} (z,1), by (24) in Proposition 22,
1=0
=M (LO)WT ) k(258)
j' n|/2 n
= 2my | (/e L o0 O

In view of Proposition 36 and Theorem 37, the kernel of I**¢ on L2(H/T) is given by
the L2-closure of

Span{v%, : j,k € N,n € 2%, LI (|n|) = 0}

We know this kernel contains at least the closure of {wgk : k= 0,1,2...} since

Lég)(Q) = 0. Determining the entire kernel will require a number-theoretic argument
(see Remark 23).

6.2. Exponential map for Heisenberg geodesics

The sub-Riemannian flow maps from the unit cotangent bundle U*H := H _1(%) to
itself. We work in the left-trivialization of the unit cotangent bundle: U*H = H x U(1) x
R > (2,t,e'®, \). The exponential map exp : R x U*H — H is given in these coordinates
by

‘ el (eiklsfl) 7 As—sin(As) A 7& 0
eXP(; 1) (s(ew, )\)) = (z,t) (( w O;/\ 222 ) o (41)
se'?, =

(see [26, Ch. 1]). As a function of s, this describes the unit-speed geodesic with initial
point (z,t) whose projection to the plane is a counterclockwise-parameterized circle of
radius R = 1/|A| with initial velocity in the direction of ¢ if A > 0, and ¢ + 7 if A < 0.
If A = 0 the projection is a straight line in the direction ¢. The geodesics in (1) are
obtained by rotations and left translation of (41).

The Riemannian exponential map exp® for g, is given in the same coordinates by

expfzyt) (s(ei¢, )\)) = exp(,) (s(ei¢, )\)) (0, 62)\3) (42)

(see [26, Thm. 11.8] for an explanation). Because we are using cylindrical coordinates
in the fibers, neither of these exponential maps describe geodesics with initial condition
strictly in the A direction. In the case of g, these geodesics are fixed points in H, and in
the case of g. these geodesics are integral curves of the Reeb vector field €2AT. In both
cases, the X-ray transforms are inverted without considering these geodesics.
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6.3. Bessel functions

The classical Bessel function of order n is defined by

27
1 ircos 8 —ind

' = T COS m dg. 4

In (1) S /e e (43)
0

6.4. Infinitesimal representation
Define the complex vector fields on H:
1 ) = 1 )
Z::§(X—2Y), Z::§(X+1Y)

where X and Y are given in (6). Then 8, : H — U(H) as defined in (8) is the unique
strongly continuous unitary group homomorphism for which, on the level of Lie algebras,

(Br), Z = Vho, (Br), Z = —Vh, (Br)T = 2h.

Fix F € H and (z,t) € H. To obtain (8), let G1,(7, () be unique solution to the differential
equation

%Gh(ﬂ C) = (ﬁh>* (tT +zZ +§7) Gh(T, C) = (2iht + \/ﬁ(zag - EC)) Gh(T, C)

subject to the condition G (0,¢) = F(¢). Then B (z,t)F(¢) := Gr(1,(). See [6, Ch. 1
Sec 3] to see this worked out for the Schrodinger representation.

6.5. Alternate conventions

Folland [6] defines the Bargmann-Fock representation on the 1-parameter family of
Hilbert spaces

Hh = {F : C — C, holomorphic : h/ \F(C)|26_’Th‘<|2dc < oo}, h >0,
C
and H" := {F :Fe H'h‘} for h < 0.
For h € R* and A > 0, the maps

Sy = WM S(F)(Q) =F(VAQ)
c:HY - H c(F) :=F

are all isometries.
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Folland defines the Fock representation, for h > 0, as
EOI(Z,t)F(C) — e27rhit77rhCEf7rh|z|2/2F(< + Z), Fe th

and fF°l(z,t) = co ﬁml (z,—t)ocfor h <0.
Our definition is rescaled so that every 8, acts on the same space H = H/™. Folland’s
definition, BEOI, is related to ours via

EOI(Zat) :S‘irhoﬁwh (Z7t)o ;}117 h>0.

An advantage of this convention is that as h varies, ), varies by precomposition with
automorphisms of H:

Br(z,t) = 51(\/Ez,ht), for h >0
Bn(z,t) = Bp|(Z, —t), for h <O0.

Granted, an advantage of Folland’s definition is that the Fourier transform defined with
5}:01 does “converge” to the Euclidean Fourier transform as h — 0.
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