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Abstract

On simple geodesic disks of constant curvature, we derive new functional relations for
the geodesic X-ray transform, involving a certain class of elliptic differential operators whose
ellipticity degenerates normally at the boundary. We then use these relations to derive
sharp mapping properties for the X-ray transform and its corresponding normal operator.
Finally, we discuss the possibility of theoretically rigorous regularized inversions for the X-ray
transform when defined on such manifolds.

1 Introduction

Consider (M, g) a closed, simple1 Riemannian surface with boundary with unit tangent bundle
SM and inward-pointing boundary

∂+SM = {(x, v) ∈ SM, x ∈ ∂M, µ(x, v) := gx(v, νx) > 0},

with νx the inward-pointing unit normal. We equip M with its Riemannian area dV olg and
∂+SM with the area form dΣ2, product of the arclength measure on ∂M and the Euclidean
measure on the tangent circles. Our object of study is the geodesic X-ray transform I0 : L2(M)→
L2(∂+SM, dΣ2), defined by

I0f(x, v) :=

∫ τ(x,v)

0
f(γx,v(t)) dt, (x, v) ∈ ∂+SM, (1)

where γx,v(t) denotes the unit-speed geodesic with initial condition (γ(0), γ̇(0)) = (x, v), whose
first exit time out of M is τ(x, v). Denote I∗0 the adjoint of I0 in this setting. The function I0f is

∗Department of Mathematics, University of California, Santa Cruz CA 95064; email: fmonard@ucsc.edu.
1 A Riemannian surface is called simple if it is non-trapping (no infinite-length geodesic), has strictly convex

boundary (in the sense of the second fundamental form) and has no conjugate points, see e.g. [15].
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really a function on the space of geodesics represented by ∂+SM if M is convex, non-trapping.
This parameterization is referred to as ’fan-beam’ coordinates in the Euclidean literature applied
to X-ray CT [32]. Generally on simple surfaces, such a transform is known to be injective [31],
and Fredholm type inversion formulas were derived in [36, 19] and implemented in [26], with a
compact error term shown to vanish in cases with constant curvature, see also the recent topical
review [15]. The X-ray transform can also be explicitly inverted in certain non-compact,
symmetric spaces, see e.g. [13, 32, 5]. The present article focuses on the compact case, where
every geodesic reaches the boundary in finite time, addressing sharp mapping properties for the
geodesic X-ray transform, that take into account boundary behavior. The results currently hold
in the case where M is a geodesic disk of constant curvature, that is to say, obtained as the
image of a centered ball (on the tangent space of some point on a surface of constant curvature)
by the Riemannian exponential map.

The first issue to be discussed is the choice of co-domain topology for I0. Indeed, the
transform (1) is often studied in the functional setting L2(M) → L2(∂+SM,µdΣ2) for which

the adjoint will be denoted by I]0. In that case, the operator I]0I0 is a classical ΨDO which
can be naturally extended to a simple open neighborhood of M and satisfies a −12 -transmission
condition at ∂M . In particular, the Boutet de Monvel calculus and its generalization have been
used in [29] to obtain mapping properties of I]0I0. In the present case, where I∗0I0 = I]0

1
µI0,

the operator so obtained no longer extends, and thus transmission conditions are not available.
On the other hand, L2(∂+SM, dΣ2) is precisely the co-domain topology where Singular Value
Decompositions for (1) are known in some cases [23, 25].

New functional relations. The first salient feature of this article is the derivation of new
functional relations between the normal operator I∗0I0 and a distinguished second-order differen-
tial operator. In non-compact spaces, the relation RtR = (−∆)−1/2 can be derived for the Radon
transform R on the Euclidean plane (Rt denotes the transpose). More generally, examples of
Radon transforms on two-point homogeneous spaces abound, where the corresponding normal
operator can be inverted using some differential operator [13]; see also [12], where an explicit
relation between I∗0I0 and the Laplace-Beltrami operator on hyperbolic surfaces of constant
curvature was derived.

When restricting these transforms to compact domains, using global functional relations
may not translate into relations on compact domains, see Remark 2. Thus this article presents
a link between X-ray transforms on simple surfaces and second-order elliptic operators whose
ellipticity degenerates non-tangentially at a specific order at the boundary. Such operators also
appear under the name of Kimura type operators studied in the works [9] for their applications
to population genetics, and analyzed through the lens of the calculus of uniformly degenerate (or
0-) operators [24]. In the case of the closed Euclidean unit disk D = {(x, y) ∈ R2, x2 +y2 ≤ 1},
this relation becomes

L(I∗0I0)
2 = (I∗0I0)

2L = 4π id|C∞(D), (2)
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where L is given by, in polar coordinates (ρ, ω)

L = −
(

(1− ρ2)∂2ρ +

(
1

ρ
− 3ρ

)
∂ρ +

1

ρ2
∂2ω

)
+ 1. (3)

Although this specific case can be pieced together using existing literature on Zernike polyno-
mials [41] and the X-ray transform [8, 18], to the author’s knowledge, such a result was not
explicitly stated in the literature. Moreover, we show in this article that this link between X-ray
transforms on simple surfaces and degenerate elliptic operators persists when M is a geodesic
disk of arbitrary radius in constant curvature spaces, see in particular Theorem 1. In fact, more
is at play: there exists a smooth, non-vanishing weight w such that the operator I0w := I0(w·)
intertwines an operator similar to L above, with an operator −T 2, where T is some vector field
on ∂+SM , i.e.

I0w ◦ L = (−T 2) ◦ I0w. (4)

On the Euclidean unit disk, w ≡ 1 and T = ∂β − ∂α in fan-beam coordinates. Similar inter-
twining properties have also been very useful to the analysis of generalized Radon transforms on
symmetric spaces [10, 13, 17] and one-dimensional convolution problems [11, 22], some of which
arise naturally from integral geometric problems.

Mapping properties. Identities (2) and (4) bring us to the second topic of interest of this
article, namely the mapping properties of I0 and I∗0I0. Recently, range characterization and
obtaining sharp mapping properties for X-ray transforms have regained interest [20, 37, 38, 3, 7,
25], with the challenges of accurately taking boundary behavior into account, and finding spaces
on ∂+SM which only require regularity along some but not all directions (unlike usual Sobolev
regularity which requires controlling derivatives along all directions). This is because, as recently
pointed in [3], although ∂+SM is (2d − 2)-dimensional when M has dimension d, only d − 1
vector fields on ∂+SM are needed to be fully elliptic on the image of the canonical relation of
I0 when viewed as an FIO. The typical example of this is in parallel Euclidean geometry, where
regularity with respect to d

ds is sufficient [32]. Recently in [3], a construction of Sobolev spaces
based on extending M and encoding smoothness with respect to a reduced number of vector
fields was indeed possible in order to capture the smoothing properties of the X-ray transform.
In the recent work [34], other spaces involving regularity with respect to tangential-horizontal
directions on ∂+SM are defined, allowing the authors to formulate sharp L2 − H1/2 stability
estimates on manifolds of non-positive curvature for the X-ray transform defined on tensor fields.

To approach this question here, the functional relations (2) and (4) suggest two things:
relation (2) suggest that the mapping properties of I∗0I0 are best described on a Sobolev scale
where smoothness is encoded with respect to L; relation (4) suggests that on the side of ∂+SM ,
smoothness w.r.t. L will be translated into smoothness w.r.t. T . Such statements are made
precise in Section 2.2, where appropriate Sobolev scales are introduced, and where sharp mapping
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properties for I∗0I0 and I0 are formulated for any order order on that scale, see Corollary 4 and

Theorem 6. The Hilbert scale introduced on D, denoted H̃s(D) below, has both a definition in
terms of powers of L, and in terms of decay rate of Zernike polynomial expansions. A similar
though inequivalent scale using different weighting was also defined in [16, Eq. (2.9)] to describe
ad hoc smoothness classes there.

Strikingly, while I]0I0(L
2(M)) ⊂ H1(M) as proved in [29], we now have I∗0I0(L

2(M)) )
H1(M). For higher-order Sobolev spaces, the mapping properties of I]0I0 require Hörmander
type transmission spaces which require microlocal tools in order to be defined, whereas the
present definitions are rather transparent.

Regularization. As a consequence of the previous derivations, we finally discuss a new ap-
proach to regularization of geodesic X-ray transforms. As the transform (1) is smoothing of
order 1

2 , its stable inversion requires regularization, a theory only rigorously developed in the
Euclidean case, and in parallel geometry. There, with the help of the Fourier Slice Theorem,
one may derive filtered-backprojection type formulas [32, Theorem 1.3] (with, e.g., filter h)

Rth ? f = Rt(h ? Rf), (5)

where the left convolution is two-dimensional and the right one is one-dimensional. As h is
typically a smoothing kernel (in the Fourier domain, a low-frequency version of |σ|), these
formulas give a theoretically exact estimation of how the reconstruction f is smoothed out by
the kernel Rth, upon processing the data Rf in a practically efficient way (the column-wise
convolution by h can be carried out by Fast Fourier Transform, and the backprojection Rt is
unavoidable). Unfortunately such formulas do not exist in a curved setting, let alone in fan-beam
coordinates on the Euclidean disk. The last aim of this article is to present a new approach to
tackle this issue, which is theoretically exact on the class of surfaces considered, see Section 2.3.
Implementation of such formulas will appear in future work.

2 Main results

2.1 New functional relations

We will work with simple geodesic disks in constant curvature spaces, modeled over the two-
parameter family of domains DR = {(x, y) ∈ R2, x2 + y2 ≤ R2}, endowed with the metric
gκ(z) = (1 + κ|z|2)−2|dz|2. Such models (DR, gκ) have constant curvature 4κ and are simple if
and only if R2|κ| < 1 (the case R2κ = 1 gives a hemisphere, of totally geodesic boundary; the
case R2κ = −1 gives a Poincaré hyperbolic model, non-compact). The first result of this article
is as follows.

Theorem 1. Let (M, g) a simple geodesic disk of constant curvature, modeled on (DR, gκ) for
some (κ,R) satisfying R2|κ| < 1, and consider the geodesic X-ray transform I0 defined in (1),
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with adjoint I∗0 . Then there exists a second-order differential operator L on M , a first-order
differential operator T on ∂+SM , and a non-vanishing weight function w ∈ C∞(M) such that

L ◦ I∗0 = I∗0 ◦ (−T 2), I0w ◦ L = (−T 2) ◦ I0w. (6)

The operator L is a degenerate elliptic differential operator of Kimura type, positive, coercive
and formally self-adjoint on L2(M,w dV olg). Moreover, the following relation holds

L(I∗0I0w)2 = c2κ,R id|C∞(M), cκ,R :=
4πR

1− κR2
(7)

In the statement above, by ’Kimura type’ we mean that the operator L is elliptic at interior
points, and if r is a boundary defining function for DR and ω is the polar variable, the operator L
is of the form Ar∂2r +B∂2ω (with A > 0 and B > 0) up to lower-order terms near the boundary2.

In (7), that the natural space is C∞(M) is in fact proved slightly later, in Lemma 3 below.
The operators L and T are defined in (52), in terms of the reference case (3) and (18), and
(R, κ)-dependent intertwining diffeomorphisms Φ defined in (37) and s defined in (36).

Remark 2. Note that (7) is a genuinely different scenario even in the Euclidean case, which
could not be obtained from using the classical relation RtR = (−∆)−1/2 and considering a
restriction rMRtReM where eM , rM are operators of extension-by-zero and restriction. Indeed
in the latter case, the following isomorphism property

rMRtReM : d
−1/2
M C∞(M)↔ C∞(M),

is a special case of [29, Theorem 4.4], with dM a boundary defining function for M . Though
the operator is L2(M) − L2(M) self-adjoint, these smooth mapping properties make it difficult
to envision a relation of the kind (7).

2.2 Range characterization and mapping properties

Relations (6)-(7) indicate that, upon defining appropriate Hilbert scales modeled after L and T ,
one may formulate accurate mapping properties for I0. Specifically, one may naturally define
two Sobolev type of scales of spaces indexed over s ∈ R. The first one on M is given by

H̃s(M) :=
{
f ∈ L2(M,w dV olg), Ls/2f ∈ L2(M,w dV olg)

}
, (8)

and an important property is the following:

Lemma 3. Let (M, g) modeled on (DR, gκ) with R2|κ| < 1. Let L as in Theorem 1 and the
Hilbert scale {H̃s(M)} as in (8). Then

∩s≥0H̃s(M) = C∞(M).
2A,B can in general be functions of ω, see [9] for general definitions.
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Then as an immediate consequence of Theorem 1, the following mapping properties are
immediate

Corollary 4. Let M, g, κ,R,L, T, w defined as in Theorem 1. Then,

I∗0I0w(H̃s(M)) = H̃s+1(M), ∀s ∈ R,
I∗0I0(C

∞(M)) = C∞(M).

Remark 5. Corollary 4 is in stark contrast with the isomorphism properties

I]0I0 : H−1/2,(s)(M)←→ Hs+1(M), s > −1,

I]0I0 : d
−1/2
M C∞(M)←→ C∞(M),

proved in [29] for any simple Riemannian surface (M, g). Above, dM is a smooth function on M
equal to dist(x, ∂M) in a neighborhood of ∂M , and H−1/2,(s)(M) denotes a scale of Hörmander

(−1/2)-transmission spaces, whose intersection is d
−1/2
M C∞(M). These differences show in par-

ticular the crucial role played by the weight 1
µ .

To obtain mapping properties of I0, it is not enough to fully understand the smoothing
properties of I0, but one must also account for the infinite-dimensional cokernel of this operator.

On the ∂+SM side, we first define the relation SA which is the composition of the scattering
relation and the antipodal map. An important space in our analysis will be

C∞α,−,+(∂+SM) := {u ∈ C∞(∂+SM), A−u is smooth and fiberwise odd on ∂+SM}, (9)

see also [25, Appendix A], where A− turns a function on ∂+SM into its odd extension to
∂SM with respect to the scattering relation. In our circularly symmetric cases, the space
L2(∂+SM, dΣ2) splits orthogonally into L2

+ ⊕ L2
−, where

L2
±(∂+SM, dΣ2) = L2(∂+SM, dΣ2) ∩ ker(id∓ S∗A).

In our case, the action takes place in L2
+ since I0f does not depend on the orientation of a

geodesic. One may then show that with T defined in Theorem 1, and upon looking at smooth
elements, T (ker(id±S∗A)) ⊂ ker(id∓S∗A), in particular, ker(id±S∗A) is stable under −T 2. This
justifies the construction of the following Hilbert scale:

Hs
T,+(∂+SM) :=

{
u ∈ L2

+(∂+SM, dΣ2), (−T 2)s/2u ∈ L2
+(∂+SM, dΣ2)

}
, (10)

whose intersection can be shown to be nothing but

∩s≥0Hs
T,+(∂+SM) = C∞α,−,+(∂+SM). (11)
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Such a cokernel can in fact be fully described as the L2-orthocomplement of the kernel of a
natural operator

C− : L2
+(∂+SM, dΣ2)→ L2

+(∂+SM, dΣ2), C− :=
1

2
A∗−H−A−, (12)

where A− denotes antisymmetrization with respect to scattering relation, H− is the odd fiberwise
Hilbert transform on the fibers of ∂SM , and A∗− denotes the L2−L2 adjoint of A−. In all cases
considered, C− commutes with −T 2, and this implies that C− : Hs

T,+ → Hs
T,+ is well-defined for

all s ∈ R.
With these definitions, we can now formulate our second main result:

Theorem 6. Let (M, g) modeled on (DR, gκ) with R2|κ| < 1, let L, T, w as in Theorem 1, and
let C− defined in (12). Then,

I0(H̃
s(M)) =

{
w ∈ Hs+ 1

2
T,+ (∂+SM), C−w = 0

}
, ∀s ∈ R,

I0(C
∞(M)) =

{
w ∈ C∞α,−,+(∂+SM), C−w = 0

}
.

Moreover, we have the following equality, for all s ∈ R and f ∈ H̃s(DR)

‖f‖
H̃s(DR)

=
1

√
cκ,R
‖I0(wf)‖

H
s+1/2
T,+ (∂+S(κ)DR)

. (13)

The last equality (13) provides both a continuity estimate and a stability estimate, with
explicit control of the constants. As explained in Proposition 15, the scale H̃s(D) is inequiv-
alent to the classical Sobolev scale on D. As explained in Proposition 16, despite the scale
Hs
T,+(∂+SM) also being inequivalent to the classical Sobolev scale on ∂+SM , it is equivalent to

it on the range of I0. In particular, if one defines as in (33) below a more “classical” Sobolev
scale Hs

+(∂+SM) based on regularity control over all directions, one can formulate continuity

estimates for I0 : H̃s(D) → H
s+1/2
+ (∂+SM). Though these results are formulated for the Eu-

clidean case only, they are expected to carry over straightforwardly to the other cases covered
here.

The proofs of Theorem 1, Lemma 3 and Theorem 6 all rely on explicit calculations. The
case of the Euclidean disk is worked out as reference case, then the general model (DR, gκ) is
deduced from results on the reference case, through the use of intertwining diffeomorphisms.
The latter intertwiners are reminiscent of the definition of the factorization property appearing
in [33], and the recent results on pairs of generalized Funk transforms [1, 2], which heavily rely on
intertwining diffeomorphisms relating the classical Funk transform with generalizations where
integration is done along slices of the sphere by hyperplanes passing through a fixed point that
is different from the origin, see also [6].
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The relation (7) (and the mere existence of such an L) may not be expected to hold for
general surfaces, as the circular symmetry and the constancy of the curvature both seem to
play important roles here. In addition, it is hopeless to expect a relation of the form (6) in the

presence of conjugate points, as the works [39, 30, 14] show that the singular support of I]0I0
in the interior of M (hence of I∗0I0) contains strictly more than the conormal bundle to the
diagonal of M×M , and as such could not possibly be inverted, even microlocally, using a ΨDO.
However, it is fair to ask the following question:

Problem 2.1. Find a characterization of all simple surfaces-with-boundary (M, g) where one
can prove Theorems 1 and 6.

2.3 Inversion formulas and regularization theory

We end with a self-contained description of an important consequence of the results above, for
the purpose of a theorically rigorous approach to regularized inversion in fan-beam coordinates.

The operator L appearing in Theorem 1 is always a self-adjoint, unbounded operator on the
space L2(M,w dV olg), thus by the spectral theorem for unbounded self-adjoint operators, one
can make sense of F (L) for a large class of functions F containing real powers. In addition,
relations (6) imply that for every such F ,

I0w ◦ F (L) = F (−T 2) ◦ I0w, F (L) ◦ I∗0 = I∗0 ◦ F (−T 2). (14)

With F (s) = sα and using (6)-(7), this provides a family of new inversion formulas .

Theorem 7. Let (M, g) modeled on (DR, gκ) with R2|κ| < 1, and let L, T and cκ,R as in
Theorem 1. Then for all f ∈ L2(M,w dV olg)

f =
w

cκ,R
L

1
2
−α ◦ I∗0 ◦ (−T 2)α ◦ I0f. (15)

Proof. Since the proof of (7) is seen at the spectral level, we also have L1/2I∗0I0w = cκ,R id|C∞(M).
We then deduce

cκ,R id|C∞(M) = L1/2 ◦ I∗0 ◦ I0w = L1/2−α ◦ Lα ◦ I∗0 ◦ I0w
(14)
= L

1
2
−α ◦ I∗0 ◦ (−T 2)α ◦ I0w.

The result follows by left-multiplying by w, and right-multiplying by w−1.

This family of formulas is in the spirit of [32, §II.2, Theorem 2.1], where (−T 2)α can be
thought of as a Riesz potential in data space, and Lα can be thought of as a Riesz potential
on M . For α = 1

2 , equation (15) becomes an inversion formula, to be contrasted with the
Pestov-Uhlmann formula [36, 28]

f =
1

4π
I]⊥

(
1

2
A∗+H−A−

)
I0f, (16)
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where the backprojection operator I]⊥ contains the differentiation step and is not the direct
adjoint of I0. On the other hand, the main challenge of the current formula is to find explicit
ways to compute (−T 2)1/2 = |T |. Even more generally, one may be interested in regularizing
(15) or (16), since I0 is smoothing of order 1/2 and its inversion is a mildly unstable process,
sensitive to noise. To this end, the relation (14) gives the possibility of theoretically exact
regularized reconstruction formulas, by combining all three equations above and assuming that
F is a low-pass filter in the sense that lims→∞ F (s) = 0. The strength of the regularization
depends on the rate of decay of F at infinity.

Theorem 8. Let F be a low-pass filter, then the regularized reconstruction formulas hold: for
all f ∈ L2(M,w dV olg),

wF (L)
1

w
f =

w

cκ,R
I∗0 ◦ (−T 2)1/2F (−T 2) ◦ I0f

=
1

4π
I]⊥ ◦

(
1

2
A∗+H−A−

)
F (−T 2) ◦ I0f.

While these formulas hold for general filters, the choice of appropriate filters is guided by var-
ious practical reasons (e.g., methods of implementation, avoiding ’ringing’ effects). A discussion
on these filters and appropriate methods of implementation is reserved for future work.

Outline. The remainder of the article is organized as follows. We first cover proofs of
Theorem 1 and Lemma 3, by first covering the Euclidean unit disk in Section 3, followed by
simple geodesic disks of constant curvature in Section 4. We then prove Theorem 6 in Section 5.
Some facts about Zernike polynomials and proofs of auxiliary lemmas are relegated to Appendix
A.

3 The Euclidean unit disk

In the case of the Euclidean unit disk, the inward pointing boundary ∂+SD is parameterized
by (β, α) ∈ S1 × (−π/2, π/2), where β parameterizes the boundary point x = eiβ and α is

defined via the implicit relation v =
(cos(β+π+α)
sin(β+π+α)

)
, if v is a unit tangent vector above x. Then

the measure on ∂+SM is dΣ2 = dβdα and in particular, we have µ = cosα.

3.1 Intertwiners

Let us define the operator I]0 : C∞α (∂+SD) → C∞(D) defined in the introduction as the formal

adjoint of I0 : L2(D) → L2(∂+SD, µ dΣ2), as well as I∗0 := I]0(
1
µ ·). Such an operator takes the

form

I]0g(x) =

∫
S1
g(β−(x, θ), α−(x, θ)) dθ, (17)
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where β−(x, θ), α−(x, θ) are the fan-beam coordinates of the unique line passing through (x, θ).
In what follows, we will identify x with ρeiω. See Figure 1 for a summary.

x

y

θ

ω
ρ β−

α−
x = ρeiω

eiβ−

Figure 1: Setting of definition of (β−(ρeiω, θ), α−(ρeiω, θ)) (written as (β−, α−) on the diagram).
The rotation invariance implies that if θ and ω are translated by δ, then β− is translated by δ
and α− remains unchanged.

From the observation made in Fig. 1, these functions satisfy the following relation:

β−(ρeiω, θ) = ω + β−(ρ, θ − ω), α−(ρeiω, θ) = α−(ρ, θ − ω).

In particular, the expression of I]0g immediately becomes

I]0g(ρeiω)=

∫
S1
g(ω + β−(ρ, θ − ω), α−(ρ, θ − ω)) dθ =

∫
S1
g(ω + β−(ρ, θ), α−(ρ, θ)) dθ.

We then immediately see the first intertwining property

∂ω ◦ I]0 = I]0 ◦ ∂β, ∂ω ◦ I∗0 = I∗0 ◦ ∂β.

Upon defining

T := ∂β − ∂α, (18)

a second intertwining property is then given as follows.

Theorem 9. Define the operators

L := (1− ρ2) ∂
2

∂ρ2
+

(
1

ρ
− 3ρ

)
∂

∂ρ
+

1

ρ2
∂2

∂ω2
, (19)

10



and D := T 2 + 2 tanαT . Then we have the following intertwining properties:

L ◦ I]0 = I]0 ◦D, (20)

L ◦ I∗0 = I∗0 ◦ (−T 2), L := −L+ 1. (21)

Proof. Proof of (20). In what follows, α− and β− will be short for α−(ρ, θ) and β−(ρ, θ). Note
the easy two properties

β− + α− + π = θ, sinα− = −ρ sin θ.

In particular, this gives ∂α−
∂ρ = − sin θ

cosα−
= 1

ρ tanα−, ∂α−∂θ = −ρ cos θ
cosα−

, and the derivatives of β− can
be deduced through the relations

∂β−
∂ρ

= −∂α−
∂ρ

,
∂β−
∂θ

= 1− ∂α−
∂θ

.

From these relations, we immediately deduce the property that

∂

∂ρ
I]0g = −1

ρ
I]0[tanαTg].

Iterating this formula, we obtain

∂2

∂ρ2
I]0g =

1

ρ2
I]0[tanαTg] +

1

ρ2
I]0[tanαT (tanαTg)] =

1

ρ2
I]0[tan2 αT 2g − tan3 αTg].

Then by direct algebra, using the last two identities, we obtain

[(1− ρ2)∂2ρ + (
1

ρ
− 3ρ)∂ρ]I

]
0g =

1

ρ2
I]0[tan2 αT 2g − tanα(1 + tan2 α)Tg] . . .

− I]0[tan2 αT 2g − tanα(tan2 α+ 3)Tg].

(22)

To obtain further identities, we write

0 =

∫
S1
∂θ(g(ω + β−, α−)) dθ

=

∫
S1

(
∂β−
∂θ

∂β +
∂α−
∂θ

∂α

)
g(ω+β−, α−) dθ

= I]0[∂βg] + ρ

∫
S1

cos θ

cosα−
Tg(ω + β−, α−) dθ,

11



as well as

0 =

∫
S1
∂2θ (g(ω + β−, α−)) dθ

=

∫
S1
∂θ

(
∂βg +

ρ cos θ

cosα−
Tg

)
dθ

=

∫
S1

(
∂2βg +

2ρ cos θ

cosα−
T∂βg −

(
ρ sin θ

cosα−
+ ρ2 cos2 θ

sinα−
cos3 α−

)
Tg +

ρ2 cos2 θ

cos2 α−
T 2g

)
dθ.

From the previous identity and the fact that T∂β = ∂βT , the second term equals −2I]0[∂
2
βg]. In

the remaining terms, we use that −ρ sin θ = sinα− and ρ2 cos2 θ = ρ2(1− sin2 θ) = ρ2 − sin2 α−
and the previous equality becomes

1

ρ2
I]0[tan2 αT 2g − tanα(1 + tan2 α)Tg] = − 1

ρ2
I]0[∂

2
βg] + I]0[− tanα(1 + tan2 α)Tg + (1 + tan2 α)T 2g]

= − 1

ρ2
∂2ωI

]
0g + I]0[− tanα(1 + tan2 α)Tg + (1 + tan2 α)T 2g].

Plugging this relation into the right hand side of (22), we obtain[
(1− ρ2)∂2ρ +

(
1

ρ
− 3ρ

)
∂ρ

]
I]0g = − 1

ρ2
∂2ωI

]
0g + I]0[(T

2 + 2 tanαT )g],

hence (20) is proved. Equation (21) follows immediately once noticing that

D =
1

µ
T 2µ+ 1,

thus Theorem 9 is proved.

An integration by parts with zero boundary terms (notice that ρ and 1− ρ2 both vanish at
the ends of [0, 1]) shows that for all u, v ∈ C∞(D),

(Lu, v)L2(D) =

∫
D

(
(1− ρ2)(∂ρu)(∂ρv) +

1

ρ2
(∂ωu)∂ωv

)
ρ dρ dω + (u, v)L2(D), (23)

in particular L is formally self-adjoint on L2(D). In addition, the operator −T 2 is formally
self-adjoint on L2

+(∂+SM) or C∞α,−,+(∂+SM) defined in (9). Indeed, following notation in [25],
an orthogonal basis of L2

+(∂+SD) whose C∞ span gives C∞α,−,+(∂+SM) is given by

ψn,k :=
(−1)n

4π
ei(n−2k)(β+α)(ei(n+1)α + (−1)ne−i(n+1)α), n ≥ 0, k ∈ Z, (24)

and such that (−T 2)ψn,k = (n+ 1)2ψn,k for all n, k.
From these observations, passing to the adjoints in (21), the further intertwining property

holds

I0 ◦ L = (−T 2) ◦ I0. (25)
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3.2 Functional relation for I∗0I0

In addition to the observations made at the end of last section, we also define

Zn,k = I∗0ψn,k, n ≥ 0, 0 ≤ k ≤ n, (26)

and note that I∗0ψn,k = 0 for k /∈ [0, n]. As proved in [25], such functions coincide with the
Zernike polynomials in the convention of [18], and in light of the results of the previous section,
we provide a short proof of the Singular Value Decomposition (SVD) of I0 (see [22, Introduction]
for a succinct definition of the SVD of a linear operator, and the benefits of knowing it when
approaching a linear inverse problem). This SVD has been known for quite some time, see e.g.
[8, 21], and the idea to use intertwining differential operators for such derivations can be found
e.g. in [22], though they are usually written there for each polar harmonic number separately.
Equation (21) allows to avoid this separation by harmonics. Below, the “hat” notation stands
for vector normalization in their respective spaces.

Theorem 10. The Singular Value Decomposition of I0 : L2(D)→ L2(∂+SD, dΣ2) is given by

(Ẑn,k, ψ̂n,k, an,k)n≥0,0≤k≤n, an,k :=

√
4π√
n+ 1

. (27)

Proof. We obviously have (−T 2)ψn,k = (n+1)2ψn,k and −i∂βψn,k = (n−2k)ψn,k, which by self-
adjointness on L2(∂+SD, dΣ2) of the two operators applied, makes ψn,k and orthogonal system.
In addition, an immediate computation gives

‖ψn,k‖2L2(∂+SM) =
1

4
, n ≥ 0, k ∈ Z.

In addition we have, as explained in [25] I∗0ψn,k = 0 for k < 0 or k > n, and for 0 ≤ k ≤ n, we
define Zn,k := I∗0ψn,k. By Theorem 9, we compute

LZn,k = LI∗0ψn,k = I∗0 (−T 2)ψn,k = (n+ 1)2Zn,k

−i∂ωZn,k = (n− 2k)Zn,k,

which immediately makes them an orthogonal system in L2(D). This gives us orthogonal systems
associated with I0 and I∗0 and to compute the singular values, it suffices to normalize all vectors.
By definition we have

I∗0 ψ̂n,k = an,k Ẑn,k, an,k :=
‖Zn,k‖L2(D)

‖ψn,k‖L2(∂+SD)
,

The SVD for I0 then becomes (Ẑn,k, ψ̂n,k, an,k). To compute an,k it is given in [18] that

‖Zn,k‖2 =
π

n+ 1
, n ≥ 0, 0 ≤ k ≤ n. (28)
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While it is given without proof in [18] and may rely on properties of orthogonal polynomials
or generating functions, we give a functional-analytic proof in the Appendix. The expression of
an,k given in (27) then follows.

While it is unclear whether the statement that follows is written explicitly in the literature,
the ingredients for the proof were known since Zernike’s seminal paper [41].

Theorem 11. The following relation holds:

L(I∗0I0)
2 = (4π)2Id.

Proof. The proof is seen at the level of the spectral decomposition, since we have for every n ≥ 0
and 0 ≤ k ≤ n,

I∗0I0Zn,k =
4π

n+ 1
Zn,k, and LZn,k = (n+ 1)2Zn,k.

3.3 Properties of the operators L and −T 2

The operator L can be defined on C∞(D) (a dense domain in L2(D)), and for any u ∈ C∞(D),
we have

(Lu, u) = −
∫
D

[
1

ρ
∂ρ

(
ρ2(1− ρ2)1

ρ
∂ρu

)
+

1

ρ2
∂2ωu

]
ūρ dρdω + ‖u‖2L2

=

∫
D

(
(1− ρ2)|∂ρu|2 +

1

ρ2
|∂ωu|2

)
ρ dρ dω + ‖u‖2L2 (29)

≥ ‖u‖2L2 .

From the L2(D)-completeness of the Zernike polynomials and the spectral action of L, we can
immediately state the following facts: upon defining the space

D(L) =
{
f ∈ L2(D), Lf ∈ L2(D)

}
=

f =
∑
n,k

fn,kẐn,k,
∑
n,k

(n+ 1)4|fn,k|2 <∞

 ,

the operator L : D(L)→ L2(D) is an unbounded self-adjoint operator, with spectrum

sp L = {(n+ 1)2, n ∈ N0},

with (n+ 1)2 having multiplicity n+ 1. In particular, we have the property

‖Lf‖L2(D) ≥ ‖f‖L2(D), ∀f ∈ D(L), (30)

with equality if and only if f is constant.
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A Sobolev-Zernike scale. For s ∈ R, let us define the scale of Hilbert spaces

H̃s(D) =

{
f =

∞∑
n=0

n∑
k=0

fn,kẐn,k,

∞∑
n=0

(n+ 1)2s
n∑
k=0

|fn,k|2 <∞

}
=
{
f ∈ L2(D), Ls/2f ∈ L2(D)

}
,

(31)

with continuous injections H̃s ⊂ H̃t for s > t. An important property of the scale {H̃s(D)}s is
the following:

Theorem 12. ⋂
s∈R

H̃s(D) = C∞(D)

Proof. The inclusion ⊃ is clear, since a smooth function f is such that for all n ≥ 0, Lnf ∈ L2(D).
The proof of the inclusion ⊂ is based on the next two lemmas, proved in the Appendix A.2.

Lemma 13. For all α > 3/2, we have the continuous injection H̃α(D)→ C(D).

Lemma 14. There exists ` > 0 such that for every α ≥ `, the operators

∂ : H̃α(D)→ H̃α−`(D) and ∂ : H̃α(D)→ H̃α−`(D)

are bounded. The index ` can be chosen as 2 + ε for every ε > 0.

(Note that the threshold ` in the previous lemma may not be sharp, though it is enough for
the present purposes.)

To prove the inclusion ⊂, it is enough to show that if f ∈ ∩s≥0H̃s(D), then for any p, q ≥ 0,

∂p∂
q
f ∈ C(D). With ` a constant as in Lemma 14, since f ∈ H̃(p+q)`+3(D), repeated use of

Lemma 14 gives that ∂p∂
q
f ∈ H̃3(D), and by Lemma 13, this implies that ∂p∂

q
f ∈ C(D). Hence

the result.

At this point, the conclusions of Theorem 1, Lemma 3 and Corollary 4 all hold for the
Euclidean unit disk.

3.4 Mapping properties involving classical Sobolev scales

In light of the result above, one might wonder how to tie these mapping estimates with more
classical Sobolev scales (“classical” in the sense that they are modeled over an elliptic ΨDO).
We now state two consequences describing what happens when using classical Sobolev spaces
on the domain, or on the codomain. Define H1(D) to be

H1(D) :=

{
u ∈ L2(D), (u, u)L2(D) +

∫
D
|∇u|2 <∞

}
. (32)
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Proposition 15. The operator I∗0I0 is not bounded from L2(D) to H1(D).

The above means in particular that when incorporating behavior at the boundary, the scales
of spaces required need not be the classical ones, in spite of the fact that I∗0I0 is a classical
elliptic ΨDO of order −1 in the interior of D. This is in stark contrast with the non-compact
Euclidean case.

Proof of Proposition 15. From (29), we immediately see that

‖u‖
H̃1(D) = (Lu, u)L2(D) . ‖u‖H1(D),

so that H1(D) ⊂ H̃1(D). This inclusion is strict however, as can be seen from the following
calculation. Using (62) and orthogonality of the Zernike basis,

‖∂zZn,k‖2 =

Pn,k∑
p=0

(n− 2p)2‖Zn−1−2p,k−p‖2 = π

Pn,k∑
p=0

(n− 2p)

= π(Pn,k + 1)(n− Pn,k),

with Pn,k defined in (63). In particular, for n even and k = n
2 , Pn,n

2
= n

2 − 1 and thus

‖Zn,k‖2H1 ≥ ‖∂zZn,k‖2L2 = π
n(n+ 2)

4

On the other hand, we have

‖Zn,k‖H̃1 = ‖L1/2Zn,k‖L2 = (n+ 1)‖Zn,k‖L2
(28)
= π
√
n+ 1,

so supn,k ‖Zn,k‖H1/‖Zn,k‖H̃1 =∞.

By Corollary 4, since I∗0I0(L
2(D)) = H̃1(D) ) H1(D), this implies the unboundedness of the

operator I∗0I0 : L2(M)→ H1(D).

Finally, we discuss the possibility of writing continuity statements for I0 on scales of spaces
on ∂+SM which control regularity along all directions. To do so, first note that every vector
field on ∂+SM is a linear combination of T = ∂β − ∂α and ∂β, so the classical Sobolev scale on
∂+SM can be defined using the elliptic operator −(T 2 + ∂2β), which also acts diagonally on the

ψn,k basis of L2
+(∂+SM) as

−(T 2 + ∂2β)ψn,k = ((n+ 1)2 + (n− 2k)2)ψn,k, n ≥ 0, k ∈ Z.

One may then define

Hs
+(∂+SM) := {u ∈ L2

+(∂+SM), (−(T 2 + ∂2β))s/2u ∈ L2
+(∂+SM)}, s ≥ 0. (33)
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Proposition 16. Fix any s ≥ 0. Then the following hold:
(i) Hs

+(∂+SM) ( Hs
T,+(∂+SM).

(ii) The topologies Hs
+(∂+SM) and Hs

T,+(∂+SM) are equivalent on the range of I0. In

particular, the operator I0 : H̃s(D)→ H
s+1/2
+ (∂+SM) is bounded.

Proof. To prove (i), it suffices to notice the equality

‖ψn,k‖Hs
T,+

‖ψn,k‖Hs
+

=

(
1 +

(
n− 2k

n+ 1

)2
)−s/2

, n ≥ 0, k ∈ Z, s ≥ 0. (34)

Since the right hand side is bounded above by 1, this implies Hs
+(∂+SM) ⊂ Hs

T,+(∂+SM).
However the converse inclusion is not true in general since the above right hand side can become
arbitrarily close to zero as k →∞ while keeping n fixed.

To prove (ii), notice that on the range of I0, spanned by those ψn,k for which we have |n−2k| ≤
n, the right hand side in (34) becomes bounded below by 2−s/2. The continuity statement

follows by combining the estimate (13) with the fact that the inclusion H
s+1/2
T,+ (∂+SM) →

H
s+1/2
+ (∂+SM) is bounded when restricted to the range of I0.

4 Simple geodesic disks of constant curvature

Given κ ∈ R and R > 0 such that R2|κ| < 1, let us now equip DR := {(x, y) ∈ R2 : x2+y2 ≤ R2}
with the metric gκ(z) :=

(
1 + κ|z|2

)−2 |dz|2, of constant curvature 4κ. We denote S(κ)DR the
unit tangent bundle

S(κ)DR = {(x, v) ∈ TDR, (gκ)x(v, v) = 1},

with inward boundary ∂+S(κ)DR defined as usual. The latter is parameterized in fan-beam

coordinates (β, α) ∈ S1 × (−π/2, π/2), where β describes the boundary point x = Reiβ, and
α describes the angle of the tangent vector with respect to the unit inner normal νx, i.e. v =
(1 +R2κ)ei(β+π+α). The manifold ∂+S(κ)DR is a model for all geodesics on DR intersecting ∂DR
transversally, equipped with the measure dΣ2 = R(1 +R2κ)−1dβ dα.

4.1 Intertwining diffeomorphisms

Consider the X-Ray transform I0 : L2(DR, dV olκ)→ L2(∂+S(κ)DR, dΣ2)

I0f(β, α) :=

∫ τ(α)

0
f(γβ,α(t)) dt,

where γβ,α is the unit-speed gκ-geodesic passing through (Reiβ, cκ(R)ei(β+α+π)), and where τ(α)
is its exit time out of M .
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Given a point (ρeiω, θ) ∈ SD, denote (β−(ρeiω, θ), α−(ρeiω, θ)) the fan-beam coordinates of
the unique unit-speed geodesic passing through (ρeiω, θ), or ’footpoint map’. Our reference case
is for κ = 0 and R = 1, for which we will denote Ie0 and (βe−, α

e
−). In particular, (βe−, α

e
−) are

uniquely defined by the relations

βe−(ρ, θ) + αe−(ρ, θ) + π = θ, sinαe−(ρ, θ) = −ρ sin θ, ρ ∈ [0, 1], θ ∈ S1. (35)

The adjoint of I0 : L2(D, dV olκ)→ L2
µ(∂+SD) is now defined as

I]0h(ρeiω) :=

∫
S1
h(β−(ρeiω, θ), α−(ρeiω, θ)) dθ

=

∫
S1
h(ω + β−(ρ, θ), α−(ρ, θ)) dθ,

where the last equality follows from the symmetry property

β−(ρeiω, θ) = β−(ρ, θ − ω) + ω, α−(ρeiω, θ) = α−(ρ, θ − ω).

And we have the relation I∗0 = I]0
1
µ between the adjoints for the different codomain topologies.

In the recent article [25], it was proved that the SVD of I∗0 for the case R = 1 could be
obtained from the SVD of (I∗0 )e via specific changes of variables. We now make this relation
hold directly at the level of the operators and show that this actually holds for any κ and R
such that R2|κ| < 1. Define the map s : S1 → S1

s(α) := tan−1
(

1−R2κ

1 +R2κ
tanα

)
, (36)

first defined for |α| ≤ π
2 and extended as a π-periodic function. We can regard s as a map

s : ∂SDR → ∂SDR where, abusing notation s(β, α) := (β, s(α)). This map is such that the
scattering relation S and antipodal scattering relation SA for (DR, gκ) are given by

S(β, α) = (β + π + 2s(α), π − α), SA(β, α) = (β + π + 2s(α),−α).

The proof of this is a similar calculation to [25, Section 2.2]: the gκ-geodesic passing through

the point (R, (1 + κR2)ei(π+α)) ∈ ∂+SDR takes the (non-unit speed) form T (x) = R−xeiα
1+Rκeiαx

for
x in some real open interval. Solving |T (x)| = R gives two roots x = 0 and x∗ > 0, and one
finds that T (x∗) = Rei(π+2s(α)) with s(α) defined in (36).

The following result contains many of the tedious calculations required. Define the map
Ψ: [0, R]× S1 → [0, 1]× S1 by

(ρ, θ) 7→
(
ρ′ = Φ(ρ) :=

1− κR2

1− κρ2
ρ

R
, θ′ = θ − tan−1

(
κρ2 sin(2θ)

1 + κρ2 cos(2θ)

))
(37)

Φ can also be thought of as the diffeomorphism Φ: DR → D1 upon defining Φ(ρeiω) := ρ′eiω.
Similarly, one should think of Ψ, augmented accordingly, as a global diffeomorphism from S(κ)DR
onto S(0)D1 given by Ψ(ρeiω, θ) = (ρ′eiω, ω + θ′).
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Lemma 17. With Ψ: (ρ, θ)→ (ρ′, θ′), Φ, s defined as above, we have

(β−(ρ, θ), s(α−(ρ, θ))) = (βe−(ρ′, θ′), αe−(ρ′, θ′)), ∀(ρ, θ) ∈ [0, R]× S1. (38)

In short, we have s ◦ F = Fe ◦ Ψ, where F : S(κ)DR → ∂+S(κ)DR and Fe : S(0)D1 → ∂+S(0)D1

denote the footpoint maps. In addition, the following relation holds:

∂θ′

∂θ
=

1− κρ2

1 + κρ2
1 + κR2

1− κR2
s′(α−(ρ, θ)), (39)

Proof. Given that the Euclidean footpoint map is uniquely determined by the relations (35),
equation (38) will be established once we can show that

β−(ρ, θ) + s(α−(ρ, θ)) + π = θ′, sin(s(α−(ρ, θ))) = −ρ′ sin θ′. (40)

To this end, we first prove that

β−(ρ, θ) + s(α−(ρ, θ)) + π = θ − tan−1
(

κρ2 sin(2θ)

1 + κρ2 cos(2θ)

)
. (41)

Proof of (41). The proof is similar to [25, Lemma 13], done here for general R. Given (ρ, θ),

the unique gκ-geodesic passing through (ρ, cκ(ρ)eiθ) takes the form T (x) = eiθx+ρ
1−κeiθρx for x in an

open real interval. The endpoints x± are solved for by writing |T (x)|2 = R2. Note also that
T (x−) = Reiβ− and T (x+) = Rei(β−+2s(α−)+π), so that, computing T (x−)T (x+) in two ways,
one obtains the relation

−R2e2i(β−+s(α−)) = −R2e2iθ
1 + κρ2e−2iθ

1 + κρ2e2iθ
.

One then deduces (41) by comparing arguments, and using that in the test case, the offset of π
in the left hand side of (41) is determined from looking at the reference case.

We next prove that

sin(α−) = −1 + κR2

1 + κρ2
ρ

R
sin θ (42)

Proof of (42). The proof is similar to [25, Lemma 13], done here for general R. Upon defining,
for κ ∈ R,

sin4κ(x) := x− (4κ)x3

3!
+

(4κ)2x4

5!
− (4κ)3x7

7!
+ . . . ,
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one may deduce using trigonometric identities that sin4κ(dκ(ρ, o)) = ρ
1+κρ2

. Next apply the

generalized law of sines to the geodesic triangle with vertices o, ρ and Reiβ−(ρ,θ), to make appear

sin(−α−(ρ, θ))

sin4κ(dκ(ρ, θ))
=

sin θ

sin4κ(dκ(R, 0))
.

Equality (42) follows.

To simplify the equations below, we substitute λ := R2κ and ρR := ρ
R . In particular, (42)

reads

sin(α−) = − 1 + λ

1 + λρ2R
ρR sin θ. (43)

To obtain an equation for sin(s(α−)) instead of for sinα− in (43), notice that the relation
between sin(α) and sin(s(α)) is the same as [25] upon substituting κ into λ. The following
identities are thus the same calculation as to obtain [25, Eq. (15)], which now reads:

sin(s(α)) =

√
1− λ
1 + λ

√
s′(α) sinα, cos(s(α)) =

√
1− λ
1 + λ

√
s′(α) cosα, λ = κR2. (44)

The identity for the sines combined with (43) gives

sin(s(α−))√
s′(α−)

= −
√

1− λ2
1 + λρ2R

ρR sin θ. (45)

We move to the properties of the fiber variable θ′ given by

θ′(ρ, θ) := θ − tan−1
(

κρ2 sin(2θ)

1 + κρ2 cos(2θ)

)
= θ − tan−1

(
λρ2R sin(2θ)

1 + λρ2R cos(2θ)

)
, (46)

In the case R = 1, the Jacobian ∂θ′

∂θ is computed in [25, Lemma 14] as well as an identity relating
sin θ and sin θ′. To obtain the present case of general R, it suffices to notice that all derivations
are formally identical upon changing (κ, ρ) into (λ, ρR). One thus finds that

∂θ′

∂θ
=

1− λρ2R
1 + λρ2R

1 + λ

1− λ
s′(α−), (47)

sin θ′ =
1− λρ2R
1 + λρ2R

√
1 + λ

1− λ
√
s′(α−) sin θ. (48)

From (47), Equation (39) follows. Combining (48) with (45), we also have the relation

sin(s(α−)) = − 1− λ
1− λρ2R

ρR sin θ′ = −ρ′ sin θ′.

Together with (41) and the definition of θ′, we see that (40) is fulfilled and thus Lemma 17 is
proved.
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The diffeomorphisms above are essentially all we need to show that I∗0 and (I∗0 )e are in fact
intertwined via changes of variables and their jacobians. Below, given a smooth diffeomorphism
h : X → Y , we denote h∗ the induced pull-back operator C∞(Y ) 3 f 7→ h∗f = f ◦ h ∈ C∞(X).

Theorem 18. Fix κ ∈ R and R > 0 such that R2|κ| < 1, and define Φ : DR → D1 as

Φ(z) := 1−κR2

1−κ|z|2
z
R as well as w(z) := 1+κ|z|2

1−κ|z|2 . Then we have the following intertwining relation

between I∗0 and (I∗0 )e: √
1 + κR2

1− κR2
(Φ−1)∗

1

w
I∗0
√
s′s∗ = (I∗0 )e. (49)

Passing to the adjoints,

Ie0 =
(1− κR2)3/2

R(1 + κR2)1/2
(s−1)∗

1√
s′
I0w

2Φ∗. (50)

Proof. Proof of (49). First note that the second identity in (44) can be written, in terms of
µ = cosα, as

µ ◦ s =

√
1− κR2

1 + κR2

√
s′ µ.

With this in mind, we compute that

I]0

[
1

µ

√
s′g

]
(ρeiω) =

√
1 + κR2

1− κR2
I]0

[
s′

µ ◦ s
g

]
(ρeiω)

=

√
1 + κR2

1− κR2

∫
S1

g(ω + β−(ρ, θ), α−(ρ, θ))

cos(s(α−(ρ, θ)))
s′(α−(ρ, θ)) dθ

=

√
1 + κR2

1− κR2

∫
S1

(s−1)∗g(ω + β−(ρ, θ), s(α−(ρ, θ)))

cos(s(α−(ρ, θ)))
s′(α−(ρ, θ)) dθ

then using (39),

1− κρ2

1 + κρ2

√
1 + κR2

1− κR2
I]0

[
1

µ

√
s′g

]
(ρeiω) =

∫
S1

(s−1)∗g(ω + β−(ρ, θ), s(α−(ρ, θ)))

cos(s(α−(ρ, θ)))

∂θ′

∂θ
dθ

=

∫
S1

(s−1)∗g(ω + β−(ρ, θ), s(α−(ρ, θ)))

cos(s(α−(ρ, θ)))
dθ′,

where θ is implicitly thought of a function of θ′. Now use (38) to obtain

1− κρ2

1 + κρ2

√
1 + κR2

1− κR2
I]0

[
1

µ

√
s′g

]
(ρeiω) =

∫
S1

(s−1)∗g(ω + βe−(ρ′, θ′), αe−(ρ′, θ′))

cos(αe−(ρ′, θ′)))
dθ′

= (I]0)
e

[
1

µ
(s−1)∗g

]
(ρ′eiω).
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In conclusion, we obtain at the level of the operators:√
1 + κR2

1− κR2

1

w
I∗0
√
s′ = Φ∗κ(I∗0 )e(s−1)∗,

which is equivalent to (49).
Proof of (50). To get back to I0, we compute formally

(g, Ie0f)dαdβ = ((Ie0)∗g, f)ρ′dρ′dω

=

√
1 + κR2

1− κR2

(
(Φ−1)∗

1

w
I∗0
√
s′s∗g, f

)
ρ′dρ′dω

.

Now writing ρ′eiω = Φ(ρeiω), with change of volume

ρ′ dρ′ dω =
(1− κR2)2

R2
w3(ρ) dV olκ(ρeiω), (51)

we obtain (
(Φ−1)∗

1

w
h, f

)
ρ′dρ′dω

=
(1− κR2)2

R2

(
h,w2Φ∗f

)
dV olκ

,

and thus, with h = I∗0
√
s′s∗g,

(g, Ie0f)dαdβ =

√
1 + κR2

1− κR2

(1− κR2)2

R2

(
I∗0
√
s′s∗g, w2Φ∗f

)
dV olκ

=

√
1 + κR2

1− κR2

(1− κR2)2

R2

(√
s′s∗g, I0w

2Φ∗f
)

R
1+κR2 dβ dα

=
(1− κR2)3/2

R(1 + κR2)1/2

(√
s′s∗g, I0w

2Φ∗f
)
dβ dα

=
(1− κR2)3/2

R(1 + κR2)1/2

(
g, (s−1)∗

1√
s′
I0w

2Φ∗f

)
dβ dα

,

hence the result.

4.2 Intertwining operators - proof of Theorem 1

Fix κ ∈ R and R > 0 such that R2|κ| < 1. Define

T :=
√
s′s∗Te(s

−1)∗
1√
s′
, L := wΦ∗Le(Φ−1)∗

1

w
. (52)
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Proof of Theorem 1 for constant curvature disks. The relations appearing in (6) are an imme-
diate consequence of the intertwining relations (21) and (25), rewritten here as

Le ◦ (I∗0 )e = (I∗0 )e ◦ (−T 2
e ), Ie0 ◦ Le = (−T 2

e ) ◦ Ie0 ,

combined with relations (49) and (50) and the definition (52) of L and T .
To prove (7), insert (49), (50) and (52) into the relation Le ((Ie0)∗Ie0)2 = (4π)2Id to make

appear (7). The proof of Theorem 1 is complete.

We now make the operators T and L a bit more explicit, in particular we show that −T 2

and L are self-adjoint in appropriate spaces. We first compute

T ◦ (s−1)∗u(β, α) = (∂β − ∂α)
(
u(β, s−1(α))

)
= ∂βu(β, s−1(α)))− (s−1)′(α)∂αu(β, s−1(α))

=

[(
∂β −

1

s′
∂α

)
u

]
(β, s−1(α)),

and thus s∗ ◦ T ◦ (s−1)∗ = ∂β − 1
s′(α)∂α, which is easily seen to be formally skew-adjoint on

L2(∂+SM, s′(α) dΣ2). As a result,

T =
√
s′
(
∂β −

1

s′(α)
∂α

)
1√
s′
, (53)

which is a formally skew-adjoint operator on L2(∂+S(κ)DR, dΣ2).
On to L, similar observations show that, since Le is self-adjoint on L2(D, ρ dρ dω), we obtain

Lemma 19. The operator L defined in (52) is formally self-adjoint on L2(DR, w dV olκ) with
dV olκ = ρ dρ dω

(1+κρ2)2
.

Proof. We compute, using notation ρ′eiω = Φ(ρeiω),∫
D
Lu(ρeiω)v̄(ρeiω)w dV olκ =

∫
D
Le
[
(Φ−1)∗

1

w
u

]
(ρ′eiω)v̄(ρeiω)w2 dV olκ

=

∫
D
Le
[
(Φ−1)∗

1

w
u

]
(ρ′eiω)

[
(Φ−1)∗

1

w
v̄

]
(ρ′eiω)w3 dV olκ(ρeiω),

where ρ′ = 1−κR2

1−κρ2
ρ
R . Using the change of volume (51), we change variable ρ → ρ′ in the last

integral and obtain∫
D
Lu(ρeiω)v̄(ρeiω)w dV olκ =

R2

(1− κR2)2

∫
D
Le
[
(Φ−1)∗

u

w

]
(ρ′eiω)

[
(Φ−1)∗

v̄

w

]
(ρ′eiω)ρ′ dρ′ dω,

which is now a symmetric expression of u and v since Le is formally self-adjoint on L2(D, |dz|2).
The proof is complete.
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Upon denoting ψen,k and Zen,k the functions defined in (24) and (26), from the relations

LeZen,k = (n+ 1)2Zen,k, n ≥ 0, 0 ≤ k ≤ n,
(−T 2

e )ψen,k = (n+ 1)2ψen,k, n ≥ 0, k ∈ Z,

we can combine these relations with the definitions (52) to deduce the relations

LZn,k = (n+ 1)2Zn,k, Zn,k := wΦ∗Zen,k, n ≥ 0, 0 ≤ k ≤ n, (54)

(−T 2)ψn,k = (n+ 1)2ψn,k, ψn,k :=
√
s′s∗ψen,k, n ≥ 0, k ∈ Z. (55)

Note also that

‖Zn,k‖2L2(DR,w dV olκ)

(51)
=

R2

(1− κR2)2
‖Zen,k‖2L2(D)

(28)
=

R2

(1− κR2)2
π

n+ 1
(56)

and

‖ψn,k‖2L2(∂+S(κ)DR,R(1+κR2)−1dβdα) =
R

1 + κR2
‖ψen,k‖2L2(∂+SD,dβdα) =

R

1 + κR2

1

4
. (57)

4.3 Mapping properties of the normal operator I∗0I0 - Proof of Lemma 3

With Zn,k defined in (54), a function f ∈ L2(DR, w dV olκ) decomposes as

f =
∑
n≥0

n∑
k=0

fn,kẐn,k, fn,k = (f, Ẑn,k)L2(DR,w dV olκ) ‖f‖2L2(DR,w dV olκ)
=
∑
n,k

|fn,k|2.

In view of the eigenequation (54), it may be natural to define the following Sobolev-Zernike scale

H̃s(DR) =

{
f =

∞∑
n=0

n∑
k=0

fn,kẐn,k,

∞∑
n=0

(n+ 1)2s
n∑
k=0

|fn,k|2 <∞

}
=
{
f ∈ L2(D, w dV olκ), Ls/2f ∈ L2(DR, w dV olκ)

}
.

Since Zn,k = wΦ∗Zen,k, the following claim is immediate for any s ∈ R

f ∈ H̃s
e (D) if and only if w Φ∗f ∈ H̃s(DR), (58)

where H̃s
e denotes the space of the reference case. This allows to easily prove Lemma 3 for the

case of simple geodesic disks of constant curvature, indeed⋂
s∈R

H̃s(DR) =
⋂
s∈R

(Φ−1)∗
1

w
H̃s
e (D) = (Φ−1)∗

1

w

⋂
s∈R

H̃s
e (D)

(?)
= (Φ−1)∗

1

w
C∞(D) = C∞(DR),

where the equality (?) uses that Lemma 3 is true for the reference case. As a result, the
conclusion of Lemma 3, and a fortiori of Corollary 4 holds for simple geodesic disks of constant
curvature.
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5 Mapping properties of I0 - Proof of Theorem 6

We now discuss a natural Sobolev scale on ∂+SM , where (M, g) is modeled on (DR, gκ) with
R2|κ| < 1. Recall that the space L2(∂+SM) splits into a direct orthogonal sum

L2(∂+SM) = L2
+

⊥
⊕ L2

−, L2
±(∂+SM) = {u ∈ L2(∂+SM), u ◦ SA = ±u},

where the antipodal scattering relation SA : ∂+SM → ∂+SM is defined as

SA(β, α) = (β + π + 2s(α),−α),

and for the purposes of understanding I0, one may forget L2
−. A Hilbert basis for L2

+ that is
adapted to the X-ray transform is {ψn,k, n ≥ 0, k ∈ Z} as defined in (24), whose C∞ span (i.e.
expansions with rapid decay) generates the space C∞α,−,+(∂+SM) defined in (9), as explained in

[25, Proposition 6]. Since the operator −T 2 = −
√
s′
(
∂β − 1

s′(α)∂α

)2
1√
s′

is formally self-adjoint

on L2
+ with spectral decomposition as in (55), we may then define a functional calculus, namely

we may define

f(−T 2)w :=
∑
n,k

f((n+ 1)2)wn,kψ̂n,k, w =
∑
n,k

wn,k ψ̂n,k ∈ C∞α,−,+(∂+SM).

Remark 20. Note that (−T 2)1/2 is quite different from T , as (−T 2)1/2 maps ker(Id−S∗A) into
itself, while T maps ker(Id− S∗A) into ker(Id+ S∗A).

We can then define Sobolev scales associated with −T 2 as follows

Hs
T,+(∂+SM) = {w ∈ L2

+(∂+SM, dΣ2), (−T 2)s/2w ∈ L2
+(∂+SM, dΣ2)}

= {w =
∑
n,k

wn,kψ̂n,k,
∑
n,k

(n+ 1)s|wn,k|2 <∞}.

We now move to the proof of Theorem 6.

Proof of Theorem 6. As mentioned in the introduction, there are two key things to prove: (i)
the description of the cokernel of I0, and (ii) the smoothing properties of I0.

Regarding (i), recall the operator C− : L2
+ → L2

+ defined by C− := 1
2A
∗
−H−A− and intro-

duced in [27, 25]. In [25], it is shown that when R = 1 and |κ| < 1, C− acts diagonally on the
ψn,k basis as follows3

C−ψn,k =
i

2
( sign(2(n− k) + 1) + sign(−(2k + 1)))ψn,k =


iψn,k n ≥ 0, k < 0,

0 n ≥ 0, 0 ≤ k ≤ n,
−iψn,k n ≥ 0, k > n.

3This is initially formulated in the u′p,q basis, followed by a reindexing (n, k) 7→ (p, q) = (n − 2k, n − k) and

defining ψn,k = (−1)n

4π
u′n−2k,n−k
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The generalization to general R and κ such that R2|κ| < 1 is identical and we do not repeat it
here. From their diagonal action on ψn,k, the operators C− and −T 2 commute. Moreover, C−
vanishes exactly on the range of I0 while having spectral values in {±i} on the orthocomplement.
In other words, for every s, the operator

C− : Hs
T,+(∂+SM, dΣ2)→ Hs

T,+(∂+SM, dΣ2),

is bounded, skew-adjoint, with operator norm 1.
On to looking at (ii), we will quantify precisely the gain induced by I0 on the Sobolev scales

we have defined. In the reference case, Theorem 10 implies that

Ie0Z
e
n,k =

4π

n+ 1
ψen,k, n ≥ 0, 0 ≤ k ≤ n.

We now plug in (50) and the definition of Zn,k (54) and ψn,k (55) into the previous equation to
make appear

I0w(Zn,k) =
R(1 + κR2)1/2

(1− κR2)3/2
4π

n+ 1
ψn,k, n ≥ 0, 0 ≤ k ≤ n,

which in turn becomes

I0w(Ẑn,k) =
‖ψn,k‖
‖Zn,k‖

R(1 + κR2)1/2

(1− κR2)3/2
4π

n+ 1
ψ̂n,k =

√
cκ,R√
n+ 1

ψ̂n,k,

upon using (56) and (57). In particular, I0 acts by gaining precisely a
√
n+ 1 decay from the

H̃• scale to the H•T,+ scale, and (13) follows. Theorem 6 is proved.

A Appendix

A.1 Zernike facts

Let us explain how differentiation acts on the Zernike basis. Here we use the convention in [18].
Specifically, [18, Theorem 1] states that

Zn,k(z, z) =
1

k!

∂k

∂zk

[
zn
(

1

z
− z
)k]

, n ≥ 0, 0 ≤ k ≤ n. (59)

Lemma 21. The following properties holds:

∂zZn,k = nZn−1,k − ∂zZn−2,k−1, (60)

∂zZn,k = −nZn−1,k−1 − ∂zZn−2,k−1. (61)
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Proof. To prove (60), we write

∂zZn,k =
1

k!
∂k+1
z

(
zn(z−1 − z)k

)
=

1

k!
∂kz

(
nzn−1(z−1 − z)k

)
− 1

(k − 1)!
∂kz

(
zn−2(z−1 − z)k−1

)
= nZn−1,k − ∂zZn−2,k−1.

Then the proof of (61) follows via

∂zZn,k = −∂zZn,k−1 = −nZn−1,k−1 + ∂zZn−2,k−2,

= −nZn−1,k−1 − ∂zZn−2,k−1.

Applying (60) until going out of bounds, we obtain

∂zZn,k =

Pn,k∑
p=0

(n− 2p)(−1)pZn−1−2p,k−p, (62)

where

Pn,k :=

{
k if k < n− k,

n− k − 1 if k ≥ n− k. n > 0. P0,0 = 0. (63)

Similarly, for k ≥ 1

−∂zZn,k = ∂zZn,k−1 =

Pn,k−1∑
p=0

(n− 2p)(−1)pZn−1−2p,k−1−p.

Zernike expansions of ∂f and ∂f . Turning (62) around, given Zn,k, the only basis elements
Zn′,k′ such that (∂zZn′,k′ , Zn,k) 6= 0 are Zn+1+2p,k+p and such that

∂zZn+1+2p,k+p = · · ·+ (−1)p(n+ 1)Zn,k + . . . , p ≥ 0.

In particular, this means

(∂zZn+1+2p,k+p, Zn,k) = (−1)p π, p ≥ 0.

Any function f ∈ L2(D) can be written as

f =

∞∑
n=0

n+ 1

π

n∑
k=0

(f, Zn,k)Zn,k. (64)
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Then

∂zf =
∞∑
n=0

n+ 1

π

n∑
k=0

(∂zf, Zn,k)Zn,k,

where

(∂zf, Zn,k) =
∞∑
n′=0

n′∑
k′=0

n′ + 1

π
(f, Zn′,k′)(∂zZn′,k′ , Zn,k)

=

∞∑
p=0

(n+ 2 + 2p)(−1)p(f, Zn+1+2p,k+p).

Similar considerations for ∂ yield that

(∂Zn+1+2p,k+1+p, Zn,k) = (−1)p+1π, p ≥ 0,

and this implies the decomposition

∂f =
∑
n=0

n+ 1

π

n∑
k=0

(∂f, Zn,k)Zn,k,

where

(∂f, Zn,k) =
∑
n′,k′

n′ + 1

π
(f, Zn′,k′)(∂Zn′,k′ , Zn,k)

=

∞∑
p=0

(−1)p+1(n+ 2 + 2p)(f, Zn+1+2p,k+1+p).

A.2 Proofs of missing lemmas

Proof of Lemma 13. Since our definition of Zn,k agrees with [18], we have the representation
(see [18, Eq. (4.2)])

Zn,k(ρe
iω) = (−1)kei(n−2k)ωρn−2kP

(0,|n−2k|)
k (2ρ2 − 1),

where P
(a,b)
k refers to Jacobi polynomials. From [40, Theorem 7.2 p. 163], we deduce that

supD |Zn,k| = |Zn,k(1)| = 1. Combining this with (28), we obtain supD |Ẑn,k| = 1√
π

(n + 1)1/2,
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and thus ∑
n,k

|fn,k||Ẑn,k| ≤
1√
π

∑
n,k

|fn,k|(n+ 1)1/2

≤ 1√
π

∑
n,k

(n+ 1)α|fn,k|(n+ 1)
1
2
−α

≤ 1√
π

∑
n,k

(n+ 1)2α|fn,k|2
∑

n,k

(n+ 1)1−2α

≤ 1√
π

∑
n,k

(n+ 1)2α|fn,k|2
∑

n

(n+ 1)2−2α,

where the last sum is finite whenever α > 3/2.

Proof of Lemma 14. We prove the statement for ∂, the estimates for ∂ are similar. Let us recall
the equation

(∂f, Zn,k) =
∞∑
p=0

(n+ 2 + 2p)(−1)p(f, Zn+1+2p,k+p).

Translating into normalized Zernike, this implies the relation

(∂f)n,k =
√
n+ 1

∞∑
p=0

(−1)p(n+ 2 + 2p)
1
2 fn+1+2p,k+p.

In particular, we write

|(∂f)n,k|2 ≤ (n+ 1)

 ∞∑
p=0

(n+ 2 + 2p)1/2|fn+1+2p,k+p|

2

≤ (n+ 1)

 ∞∑
p=0

(n+ 2 + 2p)1−2β

 ∞∑
p=0

(n+ 2 + 2p)2β|fn+1+2p,k+p|2

≤ (n+ 1)ζ(2β − 1, n+ 1)
∞∑
p=0

(n+ 2 + 2p)2β|fn+1+2p,k+p|2,

where ζ(s, q) :=
∑∞

p=0(q+p)−s is the Hurwitz Zeta function, convergent for s > 1 so the estimate
above holds for all β > 1. Moreover, with the obvious crude estimate ζ(s, q) ≤ ζ(s), we write
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the first estimate

|(∂f)n,k|2 ≤ ζ(2β − 1)(n+ 1)
∞∑
p=0

(n+ 2 + 2p)2β|fn+1+2p,k+p|2

We then compute

‖∂f‖2
H̃α−` =

∑
n,k

(n+ 1)2(α−`)|(∂f)n,k|2

≤ ζ(2β − 1)
∑
n,k,p

(n+ 1)2(α−`)+1(n+ 2 + 2p)2β|fn+1+2p,k+p|2

≤ ζ(2β − 1)
∑
n′,k′

|fn′,k′ |2
∑
n,k,p

(n+ 1)2(α−`)+1(n+ 2 + 2p)2β

where the latter sum holds over the n ≥ 0, 0 ≤ k ≤ n and p ≥ 0 such that n + 1 + 2p = n′

and k + p = k′. At fixed n′, k′, given p ≥ 0, n, k are determined. Moreover the two constraints
impose 0 ≤ p ≤ Pn′,k′ as defined in (63). We thus arrive at

‖∂f‖2
H̃α−` ≤ ζ(2β − 1)

∑
n′,k′

|fn′,k′ |2
Pn′,k′∑
p=0

(n′ − 2p)2(α−`)+1(n′ + 1)2β

≤ ζ(2β − 1)
∑
n′,k′

|fn′,k′ |2(n′ + 1)2(α−`)+2+2β,

upon bounding crudely
∑Pn′,k′

p=0 (n′ − 2p)2(α−`)+1 ≤ (n′ + 1)2(α−`)+2. The last right-hand side is

then controlled by ‖f‖2
H̃α

if we choose ` = β + 1. Since β can be chosen as 1 + ε for any ε > 0,
the result follows.

A.3 A functional-analytic proof of (28)

The space H1
0 (D)= H1

0 (D,C) can be endowed with three equivalent norms

‖∂xu‖2D + ‖∂yu‖2D = 4‖∂u‖2D = 4‖∂u‖2D, u ∈ H1
0 (D),

where we denote (u, v)D :=
∫
D uv̄ and ‖u‖2D := (u, u)D. Using Riesz representation on the second

norm, any linear form on H1
0 (D) can be uniquely written as v 7→ (∂f, ∂v)D for some f ∈ H1

0 (D),
or upon setting u = ∂f ∈ (L2(ker ∂))⊥, any linear form on H1

0 (D) can be uniquely written as
v 7→ (u, ∂v)D for some u ∈ (L2(ker ∂))⊥. Now given u ∈ L2(D), the mapping v 7→ −(u, ∂v)D is a
linear form on H1

0 (D) and as such, there exists a unique Bu ∈ (L2(ker ∂))⊥ such that

(Bu, ∂v) = −(u, ∂v), ∀ v ∈ H1
0 (D), (65)
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with the estimate ‖Bu‖D ≤ ‖u‖D. We call B the4 Beurling transform, B : L2(D) → L2(D)
with norm at most 1. If u is smooth enough, then Bu is such that −∂(Bu) = ∂u. Now with the
property that ∂Zn,k+1 = −∂Zn,k and the fact that Zn,k+1 ⊥ 〈Zp,0, p ≥ 0〉, this precisely means
that Zn,k+1 = BZn,k for every 0 ≤ k ≤ n− 1.

Proof of (28). Since Zn,0 = zn and Zn,n = (−1)nzn, the proof that

‖Zn,0‖2 = ‖Zn,n‖2 =
π

n+ 1

is a straightforward computation. In addition, since the Beurling transform has norm not
exceeding 1, and with Zn,k = BkZn,0 for all 0 ≤ k ≤ n, we deduce that

π

n+ 1
= ‖Zn,n‖2 ≤ ‖Zn,n−1‖2 ≤ · · · ≤ ‖Zn,1‖2 ≤ ‖Zn,0‖2 =

π

n+ 1
,

hence all these norms equal π
n+1 .
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