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Abstract

On simple geodesic disks of constant curvature, we derive new functional relations for
the geodesic X-ray transform, involving a certain class of elliptic differential operators whose
ellipticity degenerates normally at the boundary. We then use these relations to derive
sharp mapping properties for the X-ray transform and its corresponding normal operator.
Finally, we discuss the possibility of theoretically rigorous regularized inversions for the X-ray
transform when defined on such manifolds.

1 Introduction

Consider (M, g) a closed, simpleﬂ Riemannian surface with boundary with unit tangent bundle
SM and inward-pointing boundary

0+SM = {(x,v) € SM, x € OM, u(x,v) := gx(v,vx) > 0},

with vy the inward-pointing unit normal. We equip M with its Riemannian area dVol, and
0. SM with the area form d¥2, product of the arclength measure on M and the Euclidean
measure on the tangent circles. Our object of study is the geodesic X-ray transform I: L?(M) —
L?(04SM,d%?), defined by

7(x,v)
Tof(x,v) = /0 Foan(®) dt, (x,0) € D,LSM, (1)

where 7y ,(t) denotes the unit-speed geodesic with initial condition (v(0),4(0)) = (x,v), whose
first exit time out of M is 7(x,v). Denote I§ the adjoint of I in this setting. The function Iy f is
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1 A Riemannian surface is called simple if it is non-trapping (no infinite-length geodesic), has strictly convex
boundary (in the sense of the second fundamental form) and has no conjugate points, see e.g. [I5].



really a function on the space of geodesics represented by 0.+ SM if M is convex, non-trapping.
This parameterization is referred to as ’fan-beam’ coordinates in the Euclidean literature applied
to X-ray CT [32]. Generally on simple surfaces, such a transform is known to be injective [31],
and Fredholm type inversion formulas were derived in [36, [19] and implemented in [26], with a
compact error term shown to vanish in cases with constant curvature, see also the recent topical
review [I5].  The X-ray transform can also be explicitly inverted in certain non-compact,
symmetric spaces, see e.g. [13, B2, [5]. The present article focuses on the compact case, where
every geodesic reaches the boundary in finite time, addressing sharp mapping properties for the
geodesic X-ray transform, that take into account boundary behavior. The results currently hold
in the case where M is a geodesic disk of constant curvature, that is to say, obtained as the
image of a centered ball (on the tangent space of some point on a surface of constant curvature)
by the Riemannian exponential map.

The first issue to be discussed is the choice of co-domain topology for Iy. Indeed, the
transform is often studied in the functional setting L?(M) — L?(0;SM, ud%?) for which
the adjoint will be denoted by Ig. In that case, the operator Ig]o is a classical W DO which
can be naturally extended to a simple open neighborhood of M and satisfies a %—transmission
condition at M. In particular, the Boutet de Monvel calculus and its generalization have been
used in [29] to obtain mapping properties of Ig[o. In the present case, where Ijly = Ig%[o,
the operator so obtained no longer extends, and thus transmission conditions are not available.
On the other hand, L?(0;SM,d>?) is precisely the co-domain topology where Singular Value
Decompositions for are known in some cases [23], 25].

New functional relations. The first salient feature of this article is the derivation of new
functional relations between the normal operator /j/y and a distinguished second-order differen-
tial operator. In non-compact spaces, the relation R'R = (—A)*l/ 2 can be derived for the Radon
transform R on the Euclidean plane (R! denotes the transpose). More generally, examples of
Radon transforms on two-point homogeneous spaces abound, where the corresponding normal
operator can be inverted using some differential operator [13]; see also [12], where an explicit
relation between [jIy and the Laplace-Beltrami operator on hyperbolic surfaces of constant
curvature was derived.

When restricting these transforms to compact domains, using global functional relations
may not translate into relations on compact domains, see Remark [2l Thus this article presents
a link between X-ray transforms on simple surfaces and second-order elliptic operators whose
ellipticity degenerates non-tangentially at a specific order at the boundary. Such operators also
appear under the name of Kimura type operators studied in the works [9] for their applications
to population genetics, and analyzed through the lens of the calculus of uniformly degenerate (or
0-) operators [24]. In the case of the closed Euclidean unit disk D = {(z,y) € R?, 22 4+y? < 1},
this relation becomes

L(I510)* = (I51o)*L = 4 id|cee(m), (2)



where L is given by, in polar coordinates (p,w)
2\ 52 1 L
L=—{1-p)0,+ ;—Bp 8p+?8w + 1. (3)

Although this specific case can be pieced together using existing literature on Zernike polyno-
mials [41] and the X-ray transform [8, [18], to the author’s knowledge, such a result was not
explicitly stated in the literature. Moreover, we show in this article that this link between X-ray
transforms on simple surfaces and degenerate elliptic operators persists when M is a geodesic
disk of arbitrary radius in constant curvature spaces, see in particular Theorem [1| In fact, more
is at play: there exists a smooth, non-vanishing weight w such that the operator Iyw := Iy(w-)
intertwines an operator similar to £ above, with an operator —72, where T is some vector field
on 04+ SM, i.e.

Towo £ = (=T?) o Iyw. (4)

On the Euclidean unit disk, w = 1 and T" = 93 — 0, in fan-beam coordinates. Similar inter-
twining properties have also been very useful to the analysis of generalized Radon transforms on
symmetric spaces [10} [13], [I7] and one-dimensional convolution problems [11} [22], some of which
arise naturally from integral geometric problems.

Mapping properties. Identities and bring us to the second topic of interest of this
article, namely the mapping properties of Iy and Ijlp. Recently, range characterization and
obtaining sharp mapping properties for X-ray transforms have regained interest [20, 37, [38 [3} [7,
25)], with the challenges of accurately taking boundary behavior into account, and finding spaces
on 04.SM which only require regularity along some but not all directions (unlike usual Sobolev
regularity which requires controlling derivatives along all directions). This is because, as recently
pointed in [3], although 04 SM is (2d — 2)-dimensional when M has dimension d, only d — 1
vector fields on 0;.5M are needed to be fully elliptic on the image of the canonical relation of
Iy when viewed as an FIO. The typical example of this is in parallel Euclidean geometry, where
regularity with respect to 4 is sufficient [32]. Recently in [3], a construction of Sobolev spaces
based on extending M and encoding smoothness with respect to a reduced number of vector
fields was indeed possible in order to capture the smoothing properties of the X-ray transform.
In the recent work [34], other spaces involving regularity with respect to tangential-horizontal
directions on 9, SM are defined, allowing the authors to formulate sharp L? — H'/? stability
estimates on manifolds of non-positive curvature for the X-ray transform defined on tensor fields.

To approach this question here, the functional relations and suggest two things:
relation ([2]) suggest that the mapping properties of Il are best described on a Sobolev scale
where smoothness is encoded with respect to £; relation suggests that on the side of 0;.5M,
smoothness w.r.t. £ will be translated into smoothness w.r.t. 7T'. Such statements are made
precise in Section[2.2] where appropriate Sobolev scales are introduced, and where sharp mapping



properties for I5Iy and Iy are formulated for any order order on that scale, see Corollary 4] and
Theorem @ The Hilbert scale introduced on D, denoted H *(D) below, has both a definition in
terms of powers of £, and in terms of decay rate of Zernike polynomial expansions. A similar
though inequivalent scale using different weighting was also defined in [16, Eq. (2.9)] to describe
ad hoc smoothness classes there.

Strikingly, while IgIO(LQ(M)) C HY(M) as proved in [29], we now have I}Io(L*(M)) 2
H'(M). For higher-order Sobolev spaces, the mapping properties of Ig[o require Hormander
type transmission spaces which require microlocal tools in order to be defined, whereas the
present definitions are rather transparent.

Regularization. As a consequence of the previous derivations, we finally discuss a new ap-
proach to regularization of geodesic X-ray transforms. As the transform is smoothing of
order %, its stable inversion requires regularization, a theory only rigorously developed in the
Fuclidean case, and in parallel geometry. There, with the help of the Fourier Slice Theorem,
one may derive filtered-backprojection type formulas [32, Theorem 1.3] (with, e.g., filter h)

R'hx f = R'(hx RYf), (5)

where the left convolution is two-dimensional and the right one is one-dimensional. As h is
typically a smoothing kernel (in the Fourier domain, a low-frequency version of |o|), these
formulas give a theoretically exact estimation of how the reconstruction f is smoothed out by
the kernel R'h, upon processing the data Rf in a practically efficient way (the column-wise
convolution by h can be carried out by Fast Fourier Transform, and the backprojection R! is
unavoidable). Unfortunately such formulas do not exist in a curved setting, let alone in fan-beam
coordinates on the Euclidean disk. The last aim of this article is to present a new approach to
tackle this issue, which is theoretically exact on the class of surfaces considered, see Section [2.3
Implementation of such formulas will appear in future work.

2 Main results

2.1 New functional relations

We will work with simple geodesic disks in constant curvature spaces, modeled over the two-
parameter family of domains Dy = {(z,y) € R?, 22 + y?> < R?}, endowed with the metric
gx(2) = (1 + k|2[%)72|dz|>. Such models (Dg, gx) have constant curvature 4% and are simple if
and only if R?|k| < 1 (the case R?x = 1 gives a hemisphere, of totally geodesic boundary; the
case R%2k = —1 gives a Poincaré hyperbolic model, non-compact). The first result of this article
is as follows.

Theorem 1. Let (M, g) a simple geodesic disk of constant curvature, modeled on (Dg,g) for
some (k, R) satisfying R*|k| < 1, and consider the geodesic X-ray transform Iy defined in (1)),
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with adjoint 1. Then there exists a second-order differential operator L on M, a first-order
differential operator T on 0;+SM, and a non-vanishing weight function w € C*°(M) such that

Lolf=1I;0(-T%), IwoL=(-T%) o lw. (6)

The operator L is a degenerate elliptic differential operator of Kimura type, positive, coercive
and formally self-adjoint on L?(M,w dVoly). Moreover, the following relation holds

4R
* 2 _ 2 . —
L(I5Iow)” = ¢, g id|coo(ar) CxR= T (7)
In the statement above, by 'Kimura type’ we mean that the operator L is elliptic at interior
points, and if r is a boundary defining function for Dy and w is the polar variable, the operator £
is of the form Ard? + B92 (with A > 0 and B > 0) up to lower-order terms near the boundaryﬂ
In , that the natural space is C°°(M) is in fact proved slightly later, in Lemma (3| below.

The operators £ and T are defined in , in terms of the reference case and , and
(R, k)-dependent intertwining diffeomorphisms ® defined in and s defined in (36]).

Remark 2. Note that @ is a genuinely different scenario even in the Fuclidean case, which
could not be obtained from using the classical relation R'R = (—=A)~Y2 and considering a
restriction ryrRIRenr where ey, mar are operators of extension-by-zero and restriction. Indeed
in the latter case, the following isomorphism property

ruR'Rens: dy?C® (M) 5 (M),

is a special case of [29, Theorem 4.4], with dy; a boundary defining function for M. Though
the operator is L*>(M) — L?>(M) self-adjoint, these smooth mapping properties make it difficult
to envision a relation of the kind .

2.2 Range characterization and mapping properties

Relations @— indicate that, upon defining appropriate Hilbert scales modeled after £ and T,
one may formulate accurate mapping properties for Iy. Specifically, one may naturally define
two Sobolev type of scales of spaces indexed over s € R. The first one on M is given by

(M) = {f € IX(M,w aVoly), £72f € L*(M,w dVoly)} (8)

and an important property is the following:

Lemma 3. Let (M,g) modeled on (Dg, gx) with R*|k| < 1. Let L as in Theorem |1 and the
Hilbert scale {H*(M)} as in (8). Then

ﬂszoﬁs(M) = COO(M)

2A, B can in general be functions of w, see [9] for general definitions.




Then as an immediate consequence of Theorem the following mapping properties are
immediate

Corollary 4. Let M,g,r,R,L,T,w defined as in Theorem[1. Then,

Llow(H*(M)) = H*TY(M), Vs €R,
Ig1o(C*(M)) = C=(M).

Remark 5. Corollary[{ is in stark contrast with the isomorphism properties
ILly: HV2O(M) «— B (M), s> -1,
Iy: dy} P C(M) «— C®(M),

proved in [29] for any simple Riemannian surface (M, g). Above, dys is a smooth function on M
equal to dist(x,0M) in a neighborhood of M, and H~'/%() (M) denotes a scale of Hérmander

(—1/2)-transmission spaces, whose intersection is d]_\/[l/QCOO(M). These differences show in par-
ticular the crucial Tole played by the weight i

To obtain mapping properties of Iy, it is not enough to fully understand the smoothing
properties of Iy, but one must also account for the infinite-dimensional cokernel of this operator.

On the 04 5M side, we first define the relation S4 which is the composition of the scattering
relation and the antipodal map. An important space in our analysis will be

Co— 1 (04SM) := {u € C*(0+SM), A_u is smooth and fiberwise odd on 9, SM}, (9)

see also [25, Appendix A}, where A_ turns a function on 04SM into its odd extension to
OSM with respect to the scattering relation. In our circularly symmetric cases, the space
L?(04SM,d%?) splits orthogonally into Li @ L%, where

LA(0,8M,dx?) = L?(9, SM, d¥?) Nker(id F S%).

In our case, the action takes place in Li since Iyf does not depend on the orientation of a
geodesic. One may then show that with 7" defined in Theorem [I} and upon looking at smooth
elements, T'(ker(id + S%)) C ker(id F S%), in particular, ker(id + 8%) is stable under —7. This
justifies the construction of the following Hilbert scale:

Hj (0, SM) = {u € L2 (0, SM,dx2), (—T%)"?u e L2(8,SM, sz)} , (10)
whose intersection can be shown to be nothing but

ﬂszoﬂ%’+(a+SM) = Cg?,,+(8+SM). (11)



Such a cokernel can in fact be fully described as the L?-orthocomplement of the kernel of a
natural operator

C_: L7 (0:SM,d¥?) — L3 (90.SM,d¥?),  C_:= %AiH_A_, (12)

where A_ denotes antisymmetrization with respect to scattering relation, H_ is the odd fiberwise
Hilbert transform on the fibers of 9SM, and A* denotes the L? — L? adjoint of A_. In all cases
considered, C_ commutes with —7"2, and this implies that C_: H} , — Hj is well-defined for
all s € R.

With these definitions, we can now formulate our second main result:

Theorem 6. Let (M, g) modeled on (Dg, g.) with R?|k| < 1, let £, T,w as in Theorem and
let C_ defined in . Then,

Io(H*(M)) = {w € H;ff (0,8M), C_w= o} ,  VseR,
L(C®(M)) = {w e CZ__(0:5M),  C_w=0}.

Moreover, we have the following equality, for all s € R and f € E’S(ID)R)

1
171 o0 = = 0@ 1725, 6.y (13

VCrR T+
The last equality provides both a continuity estimate and a stability estimate, with
explicit control of the constants. As explained in Proposition the scale H® (D) is inequiv-
alent to the classical Sobolev scale on ID. As explained in Proposition despite the scale
Hiy (04 SM) also being inequivalent to the classical Sobolev scale on 9, SM, it is equivalent to
it on the range of Iy. In particular, if one defines as in below a more “classical” Sobolev
scale Hf (04SM) based on regularity control over all directions, one can formulate continuity

estimates for Io: H*(D) — HiH/ 2(8+SM ). Though these results are formulated for the Eu-
clidean case only, they are expected to carry over straightforwardly to the other cases covered
here.

The proofs of Theorem [I, Lemma [3] and Theorem [f] all rely on explicit calculations. The
case of the Euclidean disk is worked out as reference case, then the general model (Dg, gx) is
deduced from results on the reference case, through the use of intertwining diffeomorphisms.
The latter intertwiners are reminiscent of the definition of the factorization property appearing
in [33], and the recent results on pairs of generalized Funk transforms [I], 2], which heavily rely on
intertwining diffeomorphisms relating the classical Funk transform with generalizations where
integration is done along slices of the sphere by hyperplanes passing through a fixed point that
is different from the origin, see also [6].



The relation (7)) (and the mere existence of such an £) may not be expected to hold for
general surfaces, as the circular symmetry and the constancy of the curvature both seem to
play important roles here. In addition, it is hopeless to expect a relation of the form @ in the
presence of conjugate points, as the works [39, [30, [14] show that the singular support of Ig[o
in the interior of M (hence of IjIy) contains strictly more than the conormal bundle to the
diagonal of M x M, and as such could not possibly be inverted, even microlocally, using a WDO.
However, it is fair to ask the following question:

Problem 2.1. Find a characterization of all simple surfaces-with-boundary (M, g) where one
can prove Theorems [1] and [0,

2.3 Inversion formulas and regularization theory

We end with a self-contained description of an important consequence of the results above, for
the purpose of a theorically rigorous approach to regularized inversion in fan-beam coordinates.

The operator £ appearing in Theorem [I]is always a self-adjoint, unbounded operator on the
space L2(M,w dVoly), thus by the spectral theorem for unbounded self-adjoint operators, one
can make sense of F'(£) for a large class of functions F' containing real powers. In addition,
relations @ imply that for every such F,

Iowo F(L) = F(-T2) o Iow,  F(L)o I = I o P(~T2). (14)
With F(s) = s* and using @—, this provides a family of new inversion formulas .

Theorem 7. Let (M,g) modeled on (Dg,g.) with R?|k| < 1, and let L,T and cxr as in
Theorem . Then for all f € L*(M,w dVoly)

w

f= L% [t o (~T2)% o If. (15)

Ck,R

Proof. Since the proof of (7)) is seen at the spectral level, we also have El/QISIOw = Cu,R id]coo(M).
We then deduce

cr,R id|coo(ar) = LY2 60Tk o Tow = LY* %0 LYo I} o Tyw L2 0 I; o (=T%)% o Iyw.
The result follows by left-multiplying by w, and right-multiplying by w™!. O

This family of formulas is in the spirit of [32, §I1.2, Theorem 2.1], where (—72)® can be
thought of as a Riesz potential in data space, and L% can be thought of as a Riesz potential
on M. For a = %, equation becomes an inversion formula, to be contrasted with the
Pestov-Uhlmann formula [36], 28]

1

f47r

1 *
I <2A+HA) If, (16)



where the backprojection operator Iti contains the differentiation step and is not the direct
adjoint of Iy. On the other hand, the main challenge of the current formula is to find explicit
ways to compute (—72)'/2 = |T|. Even more generally, one may be interested in regularizing
or , since Ip is smoothing of order 1/2 and its inversion is a mildly unstable process,
sensitive to noise. To this end, the relation gives the possibility of theoretically exact
regularized reconstruction formulas, by combining all three equations above and assuming that
F is a low-pass filter in the sense that lims o, F'(s) = 0. The strength of the regularization
depends on the rate of decay of F' at infinity.

Theorem 8. Let F' be a low-pass filter, then the regularized reconstruction formulas hold: for
all f € L*(M,w dVoly),

wF(ﬁ)lf = Yo (=T)V2R(=T?) o Iyf
w CH7R
- iﬁi o (;AiH_A_> F(=T?) 0 If.

4

While these formulas hold for general filters, the choice of appropriate filters is guided by var-
ious practical reasons (e.g., methods of implementation, avoiding 'ringing’ effects). A discussion
on these filters and appropriate methods of implementation is reserved for future work.

Outline. The remainder of the article is organized as follows. We first cover proofs of
Theorem [l| and Lemma [3| by first covering the Euclidean unit disk in Section [3| followed by
simple geodesic disks of constant curvature in Section[dl We then prove Theorem [6]in Section [5]
Some facts about Zernike polynomials and proofs of auxiliary lemmas are relegated to Appendix

(Al

3 The Euclidean unit disk

In the case of the Euclidean unit disk, the inward pointing boundary 9,SD is parameterized

by (8,a) € S' x (—=7/2,7/2), where § parameterizes the boundary point x = € and o is
cos(B+m+a)
sin(B8+m+a)
the measure on 9, SM is d¥? = dBda and in particular, we have 1 = cosa.

defined via the implicit relation v = ( ), if v is a unit tangent vector above x. Then

3.1 Intertwiners

Let us define the operator Ig: C*(0+5D) — C*°(D) defined in the introduction as the formal
adjoint of Iy : L*(D) — L2?(0+SD, u d¥?), as well as I} := Ig(%) Such an operator takes the
form

Iho) = [ a(3-(x.0).0-(6)) b, (a7)



where 8_(x,0), a_(x,0) are the fan-beam coordinates of the unique line passing through (x,0).
In what follows, we will identify x with pe™. See Figure [1| for a summary.

Figure 1: Setting of definition of (3_(pe,0), a_(pe™, #)) (written as (B, a_) on the diagram).
The rotation invariance implies that if § and w are translated by 4, then 5_ is translated by d
and a_ remains unchanged.

From the observation made in Fig. [T} these functions satisfy the following relation:
B(pe,0) =w+B_(p,0 —w), o (pe”,0) =a_(p,0—w).

In particular, the expression of Igg immediately becomes

oo )= [ g+ 5-(p.0 =)0 (p0 =) 0 = [ g+ 5(p.0).0-(0.0)) 0.

We then immediately see the first intertwining property
8w013218085, 0,01y = 1Ij00g.
Upon defining
T := 85 — Oa, (18)
a second intertwining property is then given as follows.

Theorem 9. Define the operators
0? 1 o 1 9
L:=(01-p)= - =30 5+ =553 19
=Pyt (530) o+ 2 (19)
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and D :=T? + 2tanoT. Then we have the following intertwining properties:

Loli=1I!0oD, (20)
Lolt=1I30(~-T?%), L:=-L+1. (21)

Proof. Proof of . In what follows, a— and S_ will be short for a_(p,0) and S_(p,0). Note
the easy two properties

B +a_+m=0, sina_ = —psinf.

dar_ —pcosb

sinf _ 1 _
_ptana_’ 00 — cosa—

. . . Oar_
In particular, this gives &~ = —
P Ccos (—
be deduced through the relations

, and the derivatives of f_ can

96— da_ 98- _ | da
9p  9p 90 00

From these relations, we immediately deduce the property that

9 4 Loy
Iig = Ijtan aT'g|.
9,0 ol ]

Iterating this formula, we obtain

82

1 1 1
o 2Iﬁ p Ig [tan aT'g] + ?18 [tan aT (tanaT'g)] = ?Ig [tan? aT?g — tan® aT'g).

Then by direct algebra, using the last two identities, we obtain

1 1
[(1- p2)a§ + (- — 3p)89]lgg = ﬁlg[taHZ aT?g — tana(1 + tan® )Tyl . ..

P p (22)
- Ig [tan? aT?g — tan a(tan® a + 3)T'g).

To obtain further identities, we write

0= /S Oplg(w+ Bran)) db

9p—
:/ (859 g + 898>g(w+5_,a_) do

cos 6
213[369]+p/ Tg(w+ B, o) db,

s1 COS Qi—

11



as well as

2p cos ing ina_ 2 cos? 9
_/ (a g+ L1, - <psm +p? cos? gm0 >Tg—|—p — T29> do.
St COS & — COS O — COS” 0 — COS” ar—

From the previous identity and the fact that T'ds = 95T, the second term equals —2I§ [agg]. In

the remaining terms, we use that —psinf = sina_ and p? cos? @ = p?(1 —sin% ) = p? —sin a_

and the previous equality becomes

1 1
ﬁlg [tan? aT?g — tan (1 + tan® o) Tg] = —ﬁlg[agg] + Ig[— tan (1 + tan® a)Tg + (1 + tan® a)T?g]

1
= —?8‘%[39 + Ig[— tan a(1 + tan® a)Tg + (1 4 tan? a)T?g].
Plugging this relation into the right hand side of , we obtain
1 1
[(1 — p%)02 + (p - 3,0) ap] Ilg = —?agfgg + IA[(T? + 2 tan oT)g),
hence is proved. Equation follows immediately once noticing that
1
D= -T%u+1,
I
thus Theorem [J] is proved. O

An integration by parts with zero boundary terms (notice that p and 1 — p? both vanish at
the ends of [0, 1]) shows that for all u,v € C*(D),

o = [ (1= PHOWG + 5 @00) pdp dot w0z, (2D

in particular £ is formally self-adjoint on L?(D). In addition, the operator —72 is formally
self-adjoint on L3 (845M) or C_ | (04 SM) defined in (9). Indeed, following notation in [25],
an orthogonal basis of Li(&rSD) whose C°° span gives C5°_ | (04.SM) is given by

P = (_41) ei(n—2k)(5+a)(€i(n+l)a + (_1)ne—i(n+1)o¢), n>0 kezZ, (24)
T

and such that (—T%)ty, 1 = (n + 1)*y,  for all n, k.
From these observations, passing to the adjoints in , the further intertwining property
holds

Ipo L= (=T%oI,. (25)
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3.2 Functional relation for IjI,

In addition to the observations made at the end of last section, we also define
Zn,k = If)kwn,ka n > O> 0<k< n, (26)

and note that Igy,, = 0 for & ¢ [0,n]. As proved in [25], such functions coincide with the
Zernike polynomials in the convention of [I8], and in light of the results of the previous section,
we provide a short proof of the Singular Value Decomposition (SVD) of I (see [22, Introduction]
for a succinct definition of the SVD of a linear operator, and the benefits of knowing it when
approaching a linear inverse problem). This SVD has been known for quite some time, see e.g.
[8, 21], and the idea to use intertwining differential operators for such derivations can be found
e.g. in [22], though they are usually written there for each polar harmonic number separately.
Equation allows to avoid this separation by harmonics. Below, the “hat” notation stands
for vector normalization in their respective spaces.

Theorem 10. The Singular Value Decomposition of Iy: L*(D) — L%(0,SD,d%?) is given by
_ Var

(Zn,k:a ¢n,ka an,k)nZ0,0SkSna an.k ‘=

. (27)

d

n

Proof. We obviously have (=T2)ty, x = (n+1)%*¢n x and =it . = (n— 2k)tby, k, which by self-
adjointness on L?(9;SD, d¥?) of the two operators applied, makes ¥y, and orthogonal system.
In addition, an immediate computation gives

1
||wn,k||%2(3+5M) = 1, n >0, keZ.

In addition we have, as explained in [25] I§4, ; = 0 for K < 0 or £ > n, and for 0 < k < n, we
define Z,, j := I§4n . By Theorem [9) we compute

LZy g = LIgYn g = I§(=T*Vhnp = (n+1)2Zy
—z'amek =(n— Qk)ZnJg,

which immediately makes them an orthogonal system in L?(ID). This gives us orthogonal systems
associated with Iy and I and to compute the singular values, it suffices to normalize all vectors.
By definition we have

I Zntll2o
Iak wn,k = an,k Zn,lm an,k = W:HLQ(Q(S)]D»’
n, +

The SVD for Iy then becomes (Z;C, w/n;, ). To compute a, ) it is given in [I§] that

s

Znkll? =
1Zn k™= =

n >0, 0<k<n. (28)
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While it is given without proof in [I8] and may rely on properties of orthogonal polynomials
or generating functions, we give a functional-analytic proof in the Appendix. The expression of
an k; given in then follows. O

While it is unclear whether the statement that follows is written explicitly in the literature,
the ingredients for the proof were known since Zernike’s seminal paper [41].

Theorem 11. The following relation holds:
L(I31o)? = (4n)*Id.

Proof. The proof is seen at the level of the spectral decomposition, since we have for every n > 0
and 0 < k <mn,

. 4
IgIgZy ) = 1

" 12"7’“’ and LZng = (n+1)2Z, .

3.3 Properties of the operators £ and —71"

The operator £ can be defined on C°°(D) (a dense domain in L?(D)), and for any u € C*(D),
we have

1 1 1
@) == [ [20n (0= 1300 + o2u) ap dpdo +

1
-/ ((1—p2>apu\2+pgawu2> p dp do+ [[ullZs (20)
> Jluf2.

From the L?(DD)-completeness of the Zernike polynomials and the spectral action of £, we can
immediately state the following facts: upon defining the space

D(£) = {f € IXD), £f € I3(D))
=0 F = fokZog Y (D farlP <00 g,
n.k n.k
the operator £: D(L£) — L?(D) is an unbounded self-adjoint operator, with spectrum
sp L ={(n+1)? n € No},
with (n + 1)2 having multiplicity n + 1. In particular, we have the property
ILfl2@y = 1 fll2y, VS € D(L), (30)

with equality if and only if f is constant.

14



A Sobolev-Zernike scale. For s € R, let us define the scale of Hilbert spaces

H*(D) = {f =3 kT D (DD fasl < oo}
n=0 k=0 n=0 k=0 (31)

- {f e LA(D), L£%f ¢ L2(]D>)} :

with continuous injections H* C H' for s > t. An important property of the scale {ﬁ *(D)}s is
the following:

Theorem 12.
() H*(D) = C**(D)
seER

Proof. The inclusion D is clear, since a smooth function f is such that for alln > 0, £"f € L*(D).
The proof of the inclusion C is based on the next two lemmas, proved in the Appendix

Lemma 13. For all o > 3/2, we have the continuous injection H*(D) — C (D).

Lemma 14. There exists £ > 0 such that for every a > £, the operators
9: HY(D) — H* ‘D)  and  9: H*(D) — H* *(D)
are bounded. The index  can be chosen as 2 + ¢ for every € > 0.

(Note that the threshold £ in the previous lemma may not be sharp, though it is enough for
the present purposes.)

To prove the inclusion C, it is enough to show that if f € ﬂszofls(]]])), then for any p,q > 0,
P9’ f € C(D). With ¢ a constant as in Lemma since f € HPOH3(D), repeated use of
Lemma gives that 99 f € H?3 (D), and by Lemmal13] this implies that 8?8° f € C(D). Hence
the result. O

At this point, the conclusions of Theorem [I Lemma [3] and Corollary [] all hold for the
Euclidean unit disk.
3.4 Mapping properties involving classical Sobolev scales

In light of the result above, one might wonder how to tie these mapping estimates with more
classical Sobolev scales (“classical” in the sense that they are modeled over an elliptic ¥DO).
We now state two consequences describing what happens when using classical Sobolev spaces
on the domain, or on the codomain. Define H'(DD) to be

HY(D) := {u € L*(D), (u,u) 2y + /ID) |Vu|* < oo} (32)
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Proposition 15. The operator I} 1y is not bounded from L*(D) to H'(D).

The above means in particular that when incorporating behavior at the boundary, the scales
of spaces required need not be the classical ones, in spite of the fact that Ijly is a classical
elliptic DO of order —1 in the interior of ID. This is in stark contrast with the non-compact
Euclidean case.

Proof of Proposition[15. From , we immediately see that
Hqul(D) = (Lu,vw) 2wy S lull ),

so that H*(D) ¢ H(D). This inclusion is strict however, as can be seen from the following
calculation. Using and orthogonality of the Zernike basis,

Pk ,

HazZn,kH2 = Z(” - 2p)2||Zn—1—2p,k—p”2 =7 (n —2p)
p=0 P
= W(Pn,k +1)(n - P’n,k)v

=T
ko

I
=)

with P, j defined in . In particular, for n even and k = 3, Pn,g = 4§ — 1 and thus

1 Zn g7 2 110:Zn g1 72 = 7

n(n + 2)
4

On the other hand, we have

(2
1Zn il g2 = 1£2 Z0 k2 = (0 + D) Znill 2 E ENESY

0 5wy | Zuillps /N Znall g = 0.
By Corollary W4} since I} Io(L*(D)) = HY(D) 2 H'(D), this implies the unboundedness of the
operator I§Iy: L*(M) — H'(D). O

Finally, we discuss the possibility of writing continuity statements for Iy on scales of spaces
on 04+ SM which control regularity along all directions. To do so, first note that every vector
field on 04 SM is a linear combination of T' = d3 — 0, and 93, so the classical Sobolev scale on
0, SM can be defined using the elliptic operator — (72 + 8%), which also acts diagonally on the
Y basis of L2 (9;SM) as

—(T? + ) ng = (n+ 1> + (n = 26) ), n>0, ke
One may then define

H5(0:8M) = {u € L (0+SM), (—(T?+93))**ue L1 (0;SM)},  s>0. (33)
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Proposition 16. Fiz any s > 0. Then the following hold:
(i) Hy(0.SM) C Hj., (0, 5M).
(ii) The topologies H3(04+SM) and Hy ,(0+SM) are equivalent on the range of Iy. In

particular, the operator Iy: ﬁS(ID)) — Hfr+1/2(8+SM) 18 bounded.

Proof. To prove (i), it suffices to notice the equality

—5/2

Y k|| Hs — 2\ 7°

HHszH!H” — (14 (” ff) . n>0, keZ s3>0 (34)
k|| HS n

Since the right hand side is bounded above by 1, this implies H{(9+SM) C Hy ,(0+SM).
However the converse inclusion is not true in general since the above right hand side can become
arbitrarily close to zero as k — oo while keeping n fixed.

To prove (ii), notice that on the range of Iy, spanned by those 1y, j, for which we have |[n—2k| <
n, the right hand side in becomes bounded below by 27%/2. The continuity statement

follows by combining the estimate with the fact that the inclusion H;trl/ 2(8+SM ) —
Hi+1/2(8+SM) is bounded when restricted to the range of Ij. O

4 Simple geodesic disks of constant curvature

Given x € R and R > 0 such that R?|x| < 1, let us now equip Dg := {(z,y) € R? : 22 +y? < R?}
with the metric g.(z) = (1 + /<;|z]2)_2 |dz|?, of constant curvature 4x. We denote S,)Dp the
unit tangent bundle

SwDr = {(z,v) € TDr, (gx)x(v,v) =1},

with inward boundary 0;S(,)Dr defined as usual. The latter is parameterized in fan-beam
coordinates (3,a) € S' x (—m/2,7/2), where 3 describes the boundary point = Re’”, and
« describes the angle of the tangent vector with respect to the unit inner normal v,, i.e. v =
(14 R2%k)e!(B+7+@)  The manifold 04 5()Dg is a model for all geodesics on Dy intersecting ODg
transversally, equipped with the measure d¥? = R(1 + R?x)~'dS da.

4.1 Intertwining diffeomorphisms

Consider the X-Ray transform Io: L*(Dg,dVol,) — L*(04 S Dr, d%?)

T(a)
If(B.0) = /0 F(p.a(8)) dt,

where 75 o is the unit-speed g,-geodesic passing through (Re”, ¢, (R)e!B+o+m)) "and where 7(a)
is its exit time out of M.
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Given a point (pe,6) € SD, denote (B_(pe™, ), a_(pe,0)) the fan-beam coordinates of
the unique unit-speed geodesic passing through (pe®, 6), or "footpoint map’. Our reference case
is for kK = 0 and R = 1, for which we will denote I§ and (8°,a®). In particular, (8¢,a%) are
uniquely defined by the relations

B (p,0) +a(p,0) +m =0, sina(p,0)=—psing, pecl0,1], #eS. (35)
The adjoint of Iy: L*(D,dVol,) — L2,(04 SD) is now defined as

1o i= [ (B (pe™.8), - (pc™.0)) dp

= [ 1o+ 5 (000,00, 0)) .
where the last equality follows from the symmetry property
B_(pe,0) = B(p,0 —w) +w,  a_(pe,0) = a_(p,0 — w).

And we have the relation I = Igl between the adjoints for the different codomain topologies.

In the recent article [25], it was proved that the SVD of I for the case R = 1 could be
obtained from the SVD of ()¢ via specific changes of variables. We now make this relation
hold directly at the level of the operators and show that this actually holds for any x and R
such that R?|x| < 1. Define the map s: S* — S!

1— R’k
N —1
5(0[) = tan (]_—'—_R2K‘/ tan O[> s (36)

first defined for |a| < 7 and extended as a m-periodic function. We can regard s as a map
s: 0SDr — 0SDpg where, abusing notation s(3,a) := (8,8(«)). This map is such that the

scattering relation S and antipodal scattering relation S4 for (Dg, g,) are given by
S(B,a)=(B+m+2s(a),m—a),  SalB,a)=(B+7+2s(a), —a).

The proof of this is a similar calculation to [25, Section 2.2]: the g,-geodesic passing through
the point (R, (1 + kR?)e!™)) € 9, SDy takes the (non-unit speed) form T'(x) = % for
x in some real open interval. Solving |T'(z)| = R gives two roots x = 0 and z* > 0, and one
finds that T'(z*) = Re'(™*25(@) with s(a) defined in (36).

The following result contains many of the tedious calculations required. Define the map
W [0,R] x St — [0,1] x S by

1— kB2 p B Kkp? sin(20)
I — $ = 7 7 =0 — " ———
(p.0) (p ()i=q— g ¢ =0-tan (1 T rp? cos<2e>>> G7

® can also be thought of as the diffeomorphism ®: Dy — D; upon defining ®(pe™) := p'e™.
Similarly, one should think of ¥, augmented accordingly, as a global diffeomorphism from S,)Dg
onto S(gyD1 given by ¥(pe™,0) = (p'e™,w +6').
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Lemma 17. With ¥: (p,0) — (p/,¢'), ®, s defined as above, we have

(B-(p.6), 5(a—(p,0))) = (5° (¢, 6}, a" (0. 6)),  V(p,0) € [0,R] x S (38)

In short, we have s o F' = F, oV, where F': S()Dr — 0:5)Dr and Fe: SgD1 — 015Dy
denote the footpoint maps. In addition, the following relation holds:

00  1—kp®>l+ kR?

Proof. Given that the Euclidean footpoint map is uniquely determined by the relations ,
equation (38]) will be established once we can show that

B(p,9) +s(a_(p,0) +7 =0,  sin(s(a_(p,0))) = ¢ sind. (40)

To this end, we first prove that

2 .

_ Kp® sin(260)

_(p,0 —(p, 0 =0 —tan ! [ ————"—2_ ). 41

B-(p.0) + (. 0)) + 7= 0 — an™t (M0 (41)

Proof of (#1)). The proof is similar to [25, Lemma 13], done here for general R. Given (p,6),
0 +

lilii“)z:t

open real interval. The endpoints x4 are solved for by writing |T'(x)|> = R?. Note also that

T(z_) = Re’’~ and T(zy) = ReP-+25(0-)+m) 5o that, computing T'(z_)T(x1) in two ways,

one obtains the relation

for x in an

the unique g.-geodesic passing through (p, c.(p)e’) takes the form T'(z) =

2 —2i0
_R221(B—Fs(an)) _ _ 2,20 1+ kpZe ’Z ‘
1 + kp?e?if

One then deduces by comparing arguments, and using that in the test case, the offset of 7
in the left hand side of is determined from looking at the reference case. O

We next prove that

1+ kR?

sin(a_) = —Jr’;p”’; sin 6 (42)
Proof of . The proof is similar to |25, Lemma 13], done here for general R. Upon defining,
for k € R,

. 4K) 23 4K)224 4K)327
sm4,{(x):::c—(3)! —i—( 5)! —( 7)! + ...,
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one may deduce using trigonometric identities that sing.(d.(p,0)) = Next apply the

p
T+kp?°
generalized law of sines to the geodesic triangle with vertices o, p and Re?- (P9) to make appear
sin(—a_(p,0)) sin 0
singe(di(p,0))  singe(de(R,0))

Equality follows. O

To simplify the equations below, we substitute A := R?x and pgp := %. In particular,
reads

1+
1+ /\p%%p
To obtain an equation for sin(s(a_)) instead of for sina_ in (43), notice that the relation

between sin(«) and sin(s(«)) is the same as [25] upon substituting x into A. The following
identities are thus the same calculation as to obtain [25, Eq. (15)], which now reads:

sin(a_) = Rrsiné. (43)

1—A 1—A
sin(s(a)) = ”1—#7)\ s'(a) sin a, cos(s(a)) = TIA s'(a) cos a, A =rR%.  (44)
The identity for the sines combined with (43)) gives
i _ V1— )2
Sln(ﬁ(a )) —_ _ 5 PR sin 6. (45)
s'(a) 1+ Apj

We move to the properties of the fiber variable 6’ given by

2 sin(20) Ap% sin(20)
0(p.6) = 0 — tan! | LI g1 (M 16
(p.6) o <1+/-$,02cos(29) an 14+ A\p% cos(20) ) (46)

In the case R = 1, the Jacobian %—%/ is computed in [25, Lemma 14] as well as an identity relating
sinf and sin #’. To obtain the present case of general R, it suffices to notice that all derivations
are formally identical upon changing (k, p) into (A, pr). One thus finds that

00 1—Xph1+ A

= TR ), (47)

90 1+ Xpp1—A

1—Xp% [1+ A
sinf = T )\Zg 1 i_ yV §'(a-)sin 6. (48)

From , Equation follows. Combining with , we also have the relation

1—A
sin(s(a_)) = —WPR sing = —p'sin@’.
R

Together with and the definition of &', we see that is fulfilled and thus Lemma [17] is
proved. ]
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The diffeomorphisms above are essentially all we need to show that I and (I3)€ are in fact
intertwined via changes of variables and their jacobians. Below, given a smooth diffeomorphism
h: X —Y, we denote h* the induced pull-back operator C*°(Y) > f— h*f = foh € C®(X).
Theorem 18. Fiz k € R and R > 0 such that R%|x| < 1, and define ® : Dr — Dy as

2
O(z2) = 11:,5‘1;'22 % as well as w(z) 1= T_r:tk Then we have the following intertwining relation

between I and (I13)°:
1+ kR?
\/m( b —TO\F5 = (Ig)". (49)

o (L—wRY 2,

Proof. Proof of . First note that the second identity in can be written, in terms of
= cosq, as

Passing to the adjoints,
1

1— wR?
jros = Ve

With this in mind, we compute that

I E\/?g} (pe™) = @18 [;;59] (pe™)
1+ KkR? w+ﬁ ,0),a-(p,0)) ,
\/E/Sl cos(s (p7 0))) s'(a—(p,0)) db
1+ KkR2 s 1) w+ﬁ (p;0),5(a—(p,0))) ,
\/; /S cos(s(a—(p,0))) slolp o) o

then using ,
1—kp? |1+ KkR? (s™H*g(w + B-(p,0),5(a—(p,0))) 0
1+ K2V 1—kR? { fg} (pe™) = /Sl cos(s(a—(p,0))) a0 a6
L[ S B sl p0) g
s1 COS( (a—(p,0))) ’

where 6 is implicitly thought of a function of 6’. Now use (38]) to obtain

1—rp® [1+rR2 (s7)*g (w+ﬁe(p’ 0'),0%(p',0") .,
oV T 0[ fg] o= |, cos(a (¢,01)) “

= e [ L] (e
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In conclusion, we obtain at the level of the operators:

1+kR%21 . e vk
\/ m;fo\/;: O (1) (s71)",
which is equivalent to (49).

Proof of (50). To get back to Iy, we compute formally

(9, 5./ )daas = ((16)" 9, f) prdptdeo

1 R? 1
- ,/LQ ((é—l)*fg\/z?g*g,o .
]. - K/R w p’dp’dw

Now writing p/e™ = ®(pe), with change of volume

1 — kR?)? iw
P dp dw = (32)103(,0) dV ol (pe™),
we obtain
—1\* 1 (1 B RR2)2 2 F*
(1w 5) = O O D,
p'dp’ dw

and thus, with h = Ig')‘\/gs*g,

. 1+kR%2(1—kR?*? / y .
(9,16.f)dads = 1—f<cR2( 2 ) (IO\/575 g, w>d f)

1+ kR? (1 - KkR%)? . 9 - x
Vi o (Ve )

dVoly

R
1+xR2
(1 - K'RQ)g/Q 7k 2 & *
SRS Tow?®
R(1 + kR%)1/2 (\@5 9,100 f)dﬁ do
1 — kR2)3/2 1
— ( K’R ) ( ,(51)*Iow2(1)*f> 7
R(1 + kR2)1/2 Vs B da
hence the result.
4.2 Intertwining operators - proof of Theorem
Fix kK € R and R > 0 such that R?|x| < 1. Define
T := \/Es*Te(sfl)*i L= w@*ﬁe(tﬁ’l)*l.
Vs w
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Proof of Theorem[1] for constant curvature disks. The relations appearing in @ are an imme-
diate consequence of the intertwining relations and ([25)), rewritten here as

560(15‘)@:(]5)60(_:/“3), I§°£e=(—T3)OIS,

combined Wlth relations and ( and the definition of L and T.
To prove (7)), insert ., . and into the relatlon Le (I§)*IS)* = (47)2Id to make
appear @ The proof of Theorem [1fis complete. O

We now make the operators T and £ a bit more explicit, in particular we show that —7"2
and L are self-adjoint in appropriate spaces. We first compute

To(s™)u(B,a) = (95 — da) (u(B,5'(a)))
= Jpu(B,s™ () = (s7) (@)dau(B, s~ (a))

= [(95- 5o ) o] s,

and thus s* o T o (s71)* = 95 — 7a )80, which is easily seen to be formally skew-adjoint on
L?(04SM,s'(a) dX?). As a result,
T=1s ag—iaa 1 (53)
s(a) ) Ve

which is a formally skew-adjoint operator on L? (0+S(x)Dr, dx?).
On to L, similar observations show that, since L. is self-adjoint on L?(ID, p dp dw), we obtain

Lemma 19. The operator L defined in is formally self-adjoint on L*(Dg,w dVol,) with
dVol, = f25%.

Proof. We compute, using notation p'e”’ = ®(pe'),
, . 1
[ cutpeyptoeyw avol, = [ . |@y Lul (eyatpetyu avol,
D D
—1\* 1 iw —1\* 1 w W
:/ﬁe [(q) byx— }(p’e )[(q) byx— ](p’e Jw?® dVol,(pe™),
D w w

P2
where p/ = 11_’21;2 2.

integral and obtain

Using the change of volume , we change variable p — p’ in the last

/Eu pe™)o(pe™)w dVol, (1_]12}_{2)2 /Dﬁe [(Q_l)*u} (p'e™) [(q)_l)* T)} (p'e™)p dp' dw,

which is now a symmetric expression of u and v since L, is formally self-adjoint on L?(DD, |dz|?).
The proof is complete. ]
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Upon denoting vy, . and Z¢ . the functions defined in and , from the relations

L Z ) = (n+1)°Z%,, n>0, 0<k<n,
(_T(iQ) Tez (7’L+1> nk7 n207 ]‘CGZ,

we can combine these relations with the definitions to deduce the relations

LZng=+1)Znp,  Zpp=wdZ5, n>0, 0<k<n, (54)
(~THnp = (0 + 1), Unp = Ves™¥e,, n>0, kel (55)
Note also that
2 F) R , @ R? ™
1Zn k22D g Vo) — m\\zﬁ,k”mm) = A swB?)en+l (56)
and
R R 1
2 2
H’(/}nvkHL2(8+S(N)DR,R(1+HR2)71dﬁd(X) = 1 + HRQ sz,kHLQ(8+SD7dﬁda) = 1 _|__ K/RQ Z (57)

4.3 Mapping properties of the normal operator /j/; - Proof of Lemma
With Z,, ;, defined in , a function f € L?(Dg,w dVol,) decomposes as

n
F=I" fanZn, Fode = (F Znk) 120w avols) 11220 dvot) = > fusl®
n,k

n>0 k=0
In view of the eigenequation , it may be natural to define the following Sobolev-Zernike scale
SN WA STINE SIAE
n=0 k=0 n=0 =
- {f € L2(D,w dVol,),  L2f ¢ LQ(DR,w dVolH)} .

Since Z,, j, = u@*Zz,k, the following claim is immediate for any s € R
feH! D) ifandonlyif w ®*fec H*(Dg), (58)

where H 5 denotes the space of the reference case. This allows to easily prove Lemma |3 for the
case of simple geodesic disks of constant curvature, indeed

N 80 @r) = (@) L D) = (@)= () 72(3) 2 (@) - C%(D) = ¢ (D),
seR seR SER

where the equality (x) uses that Lemma [3| is true for the reference case. As a result, the
conclusion of Lemma [3| and a fortiori of Corollary [ holds for simple geodesic disks of constant
curvature.

24



5 Mapping properties of [, - Proof of Theorem [6|

We now discuss a natural Sobolev scale on 01SM, where (M, g) is modeled on (Dg, gx) with
R?|k| < 1. Recall that the space L?(0,SM) splits into a direct orthogonal sum

1
L2(04SM) =12 @ L?,  LA(0:SM) = {uc L*(0;SM), uoSs = +u},
where the antipodal scattering relation S4 : 04+ SM — 04+SM is defined as
Sa(B,a) = (B + 7+ 2s(a), —a),

and for the purposes of understanding Iy, one may forget L2. A Hilbert basis for Li that is

adapted to the X-ray transform is {1, 1, n >0, k € Z} as defined in , whose C* span (i.e.

expansions with rapid decay) generates the space C3°_ , (01 SM) defined in @D, as explained in
2

[25], Proposition 6]. Since the operator —12 = —/s’ ((95 — 5,(%)800 % is formally self-adjoint

on Li with spectral decomposition as in , we may then define a functional calculus, namely

we may define

FETHw =Y f((n+ D wn g, w= D Wk Pog € O (04SM).
n,k n,k
Remark 20. Note that (—T?)Y/? is quite different from T, as (=T?)Y/? maps ker(Id — S%) into
itself, while T maps ker(Id — S%) into ker(Id + S%).

We can then define Sobolev scales associated with —72 as follows
Hi (04SM) = {w € L2 (8, SM,dS?),  (=T%)**w € L2 (8, SM,ds?)}
={w= Zwmkwmk, Z(?’L + 1)S|’wn7k‘2 < 0o}
n,k n,k

We now move to the proof of Theorem [6]
Proof of Theorem[f. As mentioned in the introduction, there are two key things to prove: (i)
the description of the cokernel of Iy, and (ii) the smoothing properties of Ij.

Regarding (i), recall the operator C_: L% — L2 defined by C_ := 3A* H_A_ and intro-

duced in [27, 25]. In [25], it is shown that when R = 1 and |k| < 1, C_ acts diagonally on the
n 1 basis as followsﬂ

i “pn,k n > 07 k< 07
Oty = S(sign(2(n — k) + 1)+ sign(~(2k + D) ={ 0 n>0 0<k<n,
ity n>0, k>n.

3This is initially formulated in the uj, , basis, followed by a reindexing (n,k) — (p,q) = (n — 2k,n — k) and
defining ¥, = (_Zé)n Un ok mk
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The generalization to general R and s such that R?|x| < 1 is identical and we do not repeat it
here. From their diagonal action on 1, j, the operators C_ and —T' 2 commute. Moreover, C_
vanishes exactly on the range of Iy while having spectral values in {+i} on the orthocomplement.
In other words, for every s, the operator

C_: H} (04SM,ds?) — H}  (0..SM,d¥?),

is bounded, skew-adjoint, with operator norm 1.
On to looking at (ii), we will quantify precisely the gain induced by Iy on the Sobolev scales
we have defined. In the reference case, Theorem [10| implies that
reze — AT e n>0 0<k<n
04n,k n+1 n,ks = U, >R >N
We now plug in and the definition of Z,, j, and 1y, into the previous equation to

make appear

R(1+ kR*)'Y? 4r

Iow(Zn,k:) = (1 — KJR2)3/2 n—+ 1

@bn,k, nzo, USkSn,

which in turn becomes

. will R+ kR)Y2 47 —  fChr —
Iow(Zn,k) = ||¢ ’kH ( 2 ; 2 nk — wn,kn
| Znkll (1—rKR2) /2 n41 vn+1

upon using and . In particular, Iy acts by gaining precisely a v/n + 1 decay from the
H?* scale to the H} , scale, and follows. Theorem |§| is proved. ]

A Appendix

A.1 Zernike facts

Let us explain how differentiation acts on the Zernike basis. Here we use the convention in [I8].
Specifically, [I8, Theorem 1] states that

1 o 1 F
Zul2:%) = o [zn <Z_z> ] n>0, 0<k<n. (59)

Lemma 21. The following properties holds:

8zZn,k = nZn—l,k - 8zZn—Q,Ic—la (60)
02y =-—NZp1k-1— O Zn o)1 (61)
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Proof. To prove , we write

0.2y 1 = la’““ (z”(z_l —E)k)

kKl #
— ik (e =) = et (e )

= nZn—l,k - azZn—Z,k—L
Then the proof of follows via

0:Znj = —0.Zpj—1 = Ly -1+ 0:2n_2 12,
= -—NZp-1k-1—050n-2k1-

O
Applying until going out of bounds, we obtain

Pn,k:
azZn,k = Z(n - 2p)(_1)pZn—1—2p,k—p> (62)

p=0

where
k if k<n-—k, -

Pn’k'_{n—]{—l itk >n— k. n > 0. Pov()—o. (63)

Similarly, for £ > 1

Pn,k—l

_&zZn,k = azZn,k—l = Z (n - 2p)(_1)pzn—1—2p,k—1—p-
p=0

Zernike expansions of 9f and 0f. Turning around, given Z, ;, the only basis elements
Zp g such that (0,2, yr, Zn i) # 0 are Zp4149p k+p and such that
Oz Zntrsaphsp =+ (=DP(n+ 1) Zpp + . -, p=0.
In particular, this means
(0:Znt142pJetps Zng) = (=1)P 7w, p=0.

Any function f € L?*(D) can be written as

n

F=> n;: ! > (Fs Znk) Zne- (64)

n=0 k=0
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Then

o) 11 n
azf = 7;) z T kzzo(azf, ka)Zn,lm

where

(0=, Zn Zyt 3o )02 2t jts Zin )

(n+2+2p)(=1)P(f, n+1+2p,k+p)

NER: i M8

I
o

p

Similar considerations for 9 yield that

(52n+1+2p,k+1+p= Zn,k) = (_1)p+17r7 p >0,

and this implies the decomposition

af=> 2 ;: ! > Of, Znk) Zn ks

where

A.2 Proofs of missing lemmas

Proof of Lemma[13 Since our definition of Z, j agrees with [I8], we have the representation
(see [18, Eq. (4.2)])

ka(peiw) _ (_1)k€i(n72k)wpn72kpé0a|n*2k‘)(2p2 - 1),

where Plga’b) refers to Jacobi polynomials. From [40, Theorem 7.2 p. 163], we deduce that

supp | Znk| = |Znk(1)| = 1. Combining this with (28)), we obtain supy, |Z/n\k| = ﬁ(n +1)1/2,
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and thus

— 1
2V nillZuel < 7= D nil(n+ )2
n,k n,k

< \; %m 1) ful (n + 1)3 0

1 _
<= S+ 12 fukl | > (n+ 1)
n,k n,k
1
<— [ Do+ D fnl | D (1),
ﬁ n,k n
where the last sum is finite whenever o > 3/2. O

Proof of Lemma[Ij} We prove the statement for 9, the estimates for d are similar. Let us recall
the equation

oo
8fa Z n+2+ 2]9 )p(f7 Zn+l+2p,k+p)'
p=0

Translating into normalized Zernike, this implies the relation

(af)n r=vn+1 Z (n+2+ 2p) fn+1+2p,k+p-

p=0

In particular, we write

2
o
(OF)nkl* < (n+1) Z(n + 24 2p) | fui1op eyl
p=0
o (e,
<S+D) Y n+2+20)" | D (4 2+ 2p)* | frs1op il
p=0 p=0

o0
<(n+1)¢28-1,n+1) Z n+ 2+ 2p) 5|fn+1+2p,k+p’
p=0

where (s, q) := > % (g+p)~° is the Hurwitz Zeta function, convergent for s > 1 so the estimate
above holds for all 5 > 1. Moreover, with the obvious crude estimate ((s,q) < ((s), we write
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the first estimate

@)kl <C@2B=1)(n+1) Y (n+2+20)*| frsrsophspl

M2

I
o

p

We then compute

10f 1 Fame = D (n+ 1> N0 gl

n,k
<CB—1) Y (n+ )X (24 2p)% | fo 1 yap kol
n,k,p
<CEB-DY  fwpl Y (n+ 1)20% (n 4 2 4 2p)*°
n' k! n,k,p

where the latter sum holds over the n > 0, 0 < k < n and p > 0 such that n + 1+ 2p = n/
and k+p = k'. At fixed n/, k', given p > 0, n, k are determined. Moreover the two constraints
impose 0 < p < P, as defined in . We thus arrive at

Pn/,k’
101100 <C2B=1) D [ fwwl® Y (0 —2p)% " (0" + 1)
n’ kK’ p=0
<(¢(26-1) Z |fn’,k"|2(nl + 1)2(a7£)+2+25’

n’ k'

upon bounding crudely Z;:Z,dk/ (n/ — 2p)2a=0+1 < (p/ 4 1)2(@=0O+2 The last right-hand side is
then controlled by HfH%a if we choose ¢ = 3 + 1. Since [ can be chosen as 1 + ¢ for any ¢ > 0,
the result follows. 0
A.3 A functional-analytic proof of

The space H¢ (D)= H}(D,C) can be endowed with three equivalent norms
10z ul[f + 18yullf = 4|0ullt = 4[dullg,  u € Hy(D),

where we denote (u, v)p := [ uv and |Ju|3 := (u,u)p. Using Riesz representation on the second
norm, any linear form on H¢ (D) can be uniquely written as v — (9f, v)p for some f € H(D),
or upon setting u = df € (L?(ker 0))*, any linear form on H{ (D) can be uniquely written as
v+ (u, Ov)p for some u € (L%(ker 0))*. Now given u € L?(ID), the mapping v +— —(u, Ov)p is a
linear form on H}(D) and as such, there exists a unique Bu € (L?(ker d))* such that

(Bu,dv) = —(u, 0v), Y v e HY(D), (65)

30



with the estimate ||Bullp < |up. We call B thd'] Beurling transform, B: L?(D) — L?(D)
with norm at most 1. If u is smooth enough, then Bu is such that —9(Bu) = du. Now with the
property that 52n7k+1 = —0Z,, and the fact that Z, 41 L (Zp0, p > 0), this precisely means
that Z, 11 = BZy ) for every 0 <k <n — 1.

Proof of . Since Zp 0 = 2" and Z,,,, = (—1)"Z", the proof that

==

1Zaol = 1Znal = =2

is a straightforward computation. In addition, since the Beurling transform has norm not
exceeding 1, and with Z,, ;, = BkZmo for all 0 < k < n, we deduce that

T T
o1 = 1 Znn 2 <N Zunal® < - <N Zaall? < N1 Znpol? = ol
hence all these norms equal ni—&—l O
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