Marine transgression in modern times

- 2 Christopher J. Hein^{1,*} & Matthew L. Kirwan²
- 3 ¹Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA USA;
- 4 hein@vims.edu; orcid: 0000-0002-4990-9405
- 5 ²Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA USA;
- 6 kirwan@vims.edu; orcid: 0000-0002-0658-3038

7

8

1

* - corresponding author

9

- 10 **Keywords:** transgression, coastal erosion, barrier-island migration, marsh migration, sea-level
- 11 rise

12

23

- 13 **Abstract** (150 words max)
- 14 Marine transgression associated with rising sea levels causes coastal erosion, landscape 15 transitions, and displacement of human populations globally. This process takes two general 16 forms. Along open-ocean coasts, active transgression occurs when sediment delivery rates are 17 unable to keep pace with accommodation creation, leading to wave-driven erosion and/or 18 landward translation of coastal landforms. It is highly visible, rapid, and limited to narrow 19 portions of the coast. In contrast, passive transgression is subtler, slower, and impacts broader 20 areas. It occurs along low-energy, inland marine margins, follows existing upland contours, and 21 is characterized predominantly by the landward translation of coastal ecosystems. The nature and 22 relative rates of transgression along these competing margins leads to expansion and/or

contraction of the coastal zone, and—particularly under the influence of anthropogenic

interventions—will dictate future coastal ecosystem response to sea-level rise, and attendant, often iniquitous, impacts on human populations.

Coastal-system response to sea-level rise is non-linear and non-uniform, and has been

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

24

25

1. Introduction

classically explained by the complex interplay between the rate of creation and infilling of accommodation (the space available below sea [or 'base'] level). When relative sea-level rise outpaces the influx of sediment, landward shoreline translation allows marine environments to invade formerly terrestrial ones, a process defined as 'marine transgression' (Curray 1964; Fischer 1961) (Figure 1). Yet, marine environments also invade terrestrial environments far from shorelines, in places above sea level, and with little to no sediment infilling (Tully et al. 2019; Kirwan & Gedan 2019). Thus, coastal-system response to sea-level rise may be described in terms of active transgression at the seaward margin of the coast (i.e., the landward movement of shorelines and landforms) and passive transgression at the landward margin of the coast (i.e., the landward or inland movement of ecosystems). In the traditional view of active transgression, the resulting sedimentary sequences (Figure 2) commonly consist of terrestrial deposits overlain by coastal and then progressively deeper-water marine facies (a classic "fining-upward" sequence of depositional transgression) (Figure 2a). Along many modern continental shelves, however, the processes and resulting sedimentary sequences associated with marine transgression are far more complex. For example, where protected from open-ocean processes by fronting barrier-island systems, passive inundation along the interior transgressive margin allows wetlands (saltmarshes, mangroves, etc.) to migrate into former upland, terrestrial habitats (Kirwan et al. 2016; Figure 3a). Ecological transitions play a predominant role and shoreline translation patterns are complex, following local topography through inundation of low-lying areas. Not only may formerly upland depositional environments be persevered through drowning, but they are often replaced and buried by coastal ecosystems as this former wetland-upland margin is progressively overridden by backbarrier facies of varying sedimentary textures, and the sandy facies of the active, trailing-margin marine margin (Figure 2b). Continued transgression along the latter is planar, largely mainland-perpendicular, and results in removal of coastal deposits by wave action (Figure 3b), forming a transgressive ravinement overlain by shelf facies. Preservation of coastal systems is generally limited to thin lag deposits (Cattaneo & Steel 2003) or those emplaced deeper than the later ravinement, such as tidal-inlet fills (FitzGerald et al. 2012).

The dichotomy between these models of passive inundation and drowning of terrestrial environments and the dynamic competition between depositional and erosional processes along open-ocean coasts provides a framework for exploring modern marine transgression. With sea level already rising along most global coastlines—and >70 % of those projected to experience sea-level rise exceeding the global median of 20 cm with 2° C of atmospheric warming (Jevrejeva et al. 2016)—marine transgression is widespread, affecting sandy, gravel, rocky, barrier, wetland, deltaic, and permafrost coasts globally. Here, we argue that marine transgression should be considered in terms of the marine energy supplied to the shoreline, and that multiple forms can co-exist in close proximity. For example, where waves, tides, and currents are sufficient to deliver, erode, or rework coastal sedimentary deposits and/or bedrock (along 'active' transgressive margins), transgression is predominantly a morphodynamic process, with its rate, and indeed even occurrence, dictated by net sedimentation associated with the balance among accommodation creation, in situ sediment production, and long- and cross-shore

sediment transport. Although transgression in such dynamic systems (particularly those characterized by sandy beaches) has received the abundance of attention (*e.g.*, Mentaschi et al. 2018; Nicholls & Cazenave 2010; Vousdoukas et al. 2020), at least 30% of the coastal landscape will experience transgression through inundation and submergence (Lenz et al. 2016). This 'passive' transgression threatens low-lying, developed coastlines, built infrastructure and hardened landscapes (Hinkel et al. 2018; Vitousek et al. 2017), agricultural lands and forest ecosystems (Kirwan & Gedan 2019), and groundwater resources (Cantelon et al. 2022).

Despite their highly contrasting dynamics, shorelines experiencing active and passive transgression often can coexist within kilometers or less. Highly embayed estuarine coasts, for example, may experience wave-driven erosion along ocean-facing shores, but passive inundation along interior margins. Barrier-island systems are often characterized by two or more transgressive shorelines: the open-ocean beach undergoing erosion and/or migration, and the quiet-water upland margin where marshes, mangroves, or tidal flats onlap upon drowning uplands. Here, we review the processes influencing modern marine transgression along active and passive margins, and how the competition between active and passive transgression influences the spatial extent of the coastal zone. We conclude with implications for human populations living along these transgressing coasts, and a set of forward-looking research questions.

2. Active Transgression Along the Open-Ocean Coast

2.1. Active transgressive-margin processes

The rate of sediment delivery to the coastal zone plays a preeminent role in shoreline change along active, open-ocean coasts, determining the rate of transgression, and indeed

whether a coast is experiencing transgression at all. Controls on sediment supply are beyond the scope of this review, but can range from global tectonics and climate over geologic timescales to in-situ siliciclastic or biogenic sediment production, tidal-inlet dynamics, and shoreface erosion at the local and decadal scales. Examples of modern coastal progradation in spite of rising relative sea level (i.e., 'normal' regression) are found globally. These commonly experience high sediment-input rates, and thus tend to be located at the mouths of rivers, zones of longshore wave convergence, depocenters of headland bypassing, or downdrift of eroding siliciclastic landforms (see review by Hein & Ashton [2020]). As a simple matter of contrast, open-ocean coastal systems experiencing a relative dearth of sediment as compared with the rate of accommodation creation are most likely to undergo transgression. Commonly, this is associated with coastal erosion: net loss of sediment from the active, subaerial coastal zone to reservoirs offshore or downdrift, leading to landward translation of the shoreline. However, transgression need not be net erosional. Beaches and barrier islands, for example, may simply migrate, retaining their sand volume and translating depositional environments landward. Moreover, a change in the rate of sea-level rise or sediment delivery is not a pre-requisite for initiation of transgression along active shorelines: "autoretreat"—a process largely limited to deltaic coasts—results from the progressive increase in the effective area of the subaqueous slope, whereby the constant input of sediment does not allow a steady accretion of the slope (Muto & Steel 1992).

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

Modern, active-margin transgression is commonly step-wise and interrupted by periods of seaward-building; that is, transgression is punctuated (Cattaneo & Steel 2003). For example, over short periods, a temporary transgressive episode (beach erosion) can be revered as beaches naturally "heal" seasonally or following storms, commonly through return of sediment temporarily stored on the shoreface (see reviews by Jackson & Short [2020] and Castelle &

Masselink [2023]). A similar case is that of beach rotation, in which transgression along part of a beach is matched by regression elsewhere through sediment redistribution within headland-bound beaches, typically alternating over timescales associated with individual storms, seasonal wave patterns, or longer-term changes in wave climate (Loureiro & Ferreira 2020). Over mesoscale (multi-decadal to centennial) periods, factors such as changes in wave climate (Kinsela et al. 2016; Vos et al. 2023) or net sediment input rates (Dean & Houston 2016) can lead to interruption of erosion / migration of coastal systems for decades or longer, irrespective of the rate of sea-level rise. One such example is the observed transitions of barrier islands between phases of erosion (transgression), migration (transgression), and growth (regression) (e.g., Robbins et al. 2022). The open-ocean shorelines of such systems may be static or even prograde for years or decades, only to undergo rapid retreat associated with a single storm or the cumulative effect of sequenced storms (Fenster et al. 2022).

At the extreme, modern active-margin transgression can be a catastrophic process, in which the morphodynamic response of the active coastal system cannot keep pace with high rates of sea-level rise. Exhaustion of local sediment may lead to "extinction" of beaches (Luijendijk et al. 2018; Vousdoukas et al. 2020), or—in the case of barrier-island systems—rapid increases in accommodation may lead to overstepping, drowning, and/or rapid erosional retreat (Ciarletta et al. 2019), leading to partial preservation of former barrier deposits, such as those found on continental shelves globally (*e.g.*, Cooper et al. 2018; Emery et al. 2019; Manikam et al. 2022; Mellett & Plater 2018; Rampino & Sanders 1981). Importantly, Mariotti & Hein (2022) found that modern undeveloped barrier islands are primed for rapidly accelerating migration due to system inertia associated with built-up 'geomorphic capital' (*i.e.*, sediment reservoirs such as the shoreface, dunes, and barrier-adjacent tidal channels and deltas) within barrier systems. This

pent-up transgressive response may be even greater in cases of anthropogenically stabilized shorelines where, if hardening removed and nourishment halted, available geomorphic capital may be quickly depleted as the island equilibrates to sea levels decimeters (or more) higher than when those islands could last freely migrate.

FitzGerald et al. (2008, 2018) present a case of transgression that is temporarily catastrophic, leading to large-scale punctuated transgression under only modestly higher rates of sea-level rise (Figure 4a). In this scenario, submergence and loss of broad marsh platforms behind mixed-energy barrier islands will lead to an enlargement of tidal prism and an attendant increase in the size of sandy ebb-tidal deltas (sequestering sand otherwise available to adjacent barriers). This process accelerates erosion-driven narrowing, breaching, and landward migration of those islands, thus leading to a period of "runaway" transgression until barriers re-establish closer to the mainland shoreline (the passive transgressive margin), with a much diminished backbarrier extent. Examples of large-scale, punctuated retreat and upslope re-establishment of active-margin coastal systems are also observed along deltaic, paraglacial, and permafrost coasts, generally associated with the exhaustion of local sediment supplies (Figures 4b–d).

2.2. Examples of active transgression across diverse coastal systems

The morphodynamics of active-margin transgression reflect the geologic, sedimentologic, ecologic, and oceanographic setting of a given coastal system, and resulting rates of long-term landward shoreline movement can vary by several orders of magnitude (Table 1). Here, we briefly review the dynamics of transgression along a subset of such systems, to elucidate key commonalities and differences in factors responsible for the nature and rate of transgression globally. The rate of transgression in response to sea-level rise along any one of these coastal

systems will be determined by a combination of allogenic oceanographic and climatic forcings, intrinsic sedimentologic and geologic factors, and human interference (Table 1).

Mainland-attached beaches: Beach and shoreface morphodynamics have been studied in great detail over many decades. Thorough recent reviews are dedicated to associated processes and factors controlling transgression over event to millennial timescales (e.g., Gallop et al. 2020; Hamon-Kerivel et al. 2020; Jackson & Short 2020). Over long timer periods, where accommodation creation outpaces sediment supply, beaches respond to sea-level rise through either erosion and narrowing via sand loss to the nearshore and downdrift, or upslope profile translation without loss of beach width (Woodroffe 2002). Projections for future transgression are based on myriad cross-shore and planform engineering, morphodynamic, equilibrium-profile-based, and rules-based models, and include strongly disputed (Cooper et al. 2020) predictions of widespread, severe beach erosion in coming decades (Vousdoukas et al. 2020). Recent projections relying on more holistic approaches reveal that only narrow (< 50 m) mainland-attached beaches backed by seawalls are threatened by erosion-style transgression, whereas those free to migrate landward are unlikely to lose any width (McCarroll et al. 2021).

Rocky coasts: Transgression along coasts characterized by coastal cliffs, siliciclastic beaches within rocky headland-bound embayments, and coarse gravel and boulder beaches generally takes the form of landward erosion (Trenhaile 2016). Processes are slower than under equivalent forcings along sandy coastal systems (Table 1). Though driven by short-term, wave-driven processes (Earlie et al. 2017), transgression along rocky coasts responds predominantly to the rate of sea-level rise (Dickson et al. 2007), with studies predicting an acceleration in cliff erosion between twofold and an order of magnitude by 2100 under higher-end sea-level rise scenarios (Limber et al. 2018; Shadrick et al. 2022).

Exposed permafrost coasts: Coastal erosion along the 34% of the world's coasts comprised of permafrost (Lantuit et al. 2012) has been rapidly accelerating due to increases in the frequency, severity, and erosional efficiency of storms due to climate change and declining sea-ice extents (Jones et al. 2009). This process is associated with the release of long-buried soil carbon (Vonk et al. 2012) and can be further accelerated through interactions with warming-induced theromokarst formation in ice-bearing upland sediments (Ruz et al. 1992; Figure 4d). Along much of the Arctic Ocean, coastal erosion has nearly doubled within the last 60 years (Gibbs & Richmond 2015), and is projected to only accelerate further (by up to 0.8 m yr⁻¹ / °C increase in global mean surface air temperature) before the end of the century (Nielsen et al. 2022).

Transgressive dune systems: Although not shoreline-associated sensu stricto, large-scale transgressive dune systems and aeolian sand sheets are common along arid coasts and those with strong rainfall seasonality, where they can translate upon and bury upland, non-coastal facies at rates of 10s of meters per year (Hesp 2013). Future transgressive behavior is likely to be highly site specific, and strongly correlated with climate changes and human activities, but will undoubtedly lead to the burial and replacement of coastal and near-coastal upland environments with sand dunes characterized by variable degrees of mobility and vegetation densities (Hesp et al. 2022).

Barrier-island systems: Barrier islands respond to rising sea level through a combination of erosion (or 'encroachment': cross-shore island narrowing through loss of sand to offshore and/or downdrift reservoirs) and migration (or 'rollover': retrogradation of the full island system via overwash, island breaching, and aeolian transport) (Cowell et al. 1995). For the former, processes are largely aligned with those for mainland beaches. In contrast, barrier migration is

influenced by myriad, complex, and often interwoven autogenic, geologic, morphodynamic, biophysical / ecogeomorphic, and anthropogenic factors (see recent reviews by McBride et al. [2022] and Moore & Murray [2018]), and can be associated with shoreface erosion of wetland "blue" carbon reservoirs (Theuerkauf & Rodriguez 2017) (Figure 3b). Field and model-based studies of barrier migration reveal a range of transgressive behaviors, including multiple forms of profile translation, stochastic processes and autogenic dynamics, and morphologic state changes (e.g., between growth, narrowing, and migration) associated with punctuated transgression. For example, punctuated or discontinuous barrier retreat—in which long-term retrogradation is interrupted by periods of stasis or barrier growth—can be driven by dune dynamics (Reeves et al. 2021), autogenic feedbacks between shoreface slope, onshore-directed sediment fluxes, and overwash (Ciarletta et al. 2019), or exhaustion of erodible sediment reservoirs (Boyd et al. 1997; Forbes et al. 1995; Figure 4c).

Deltaic coasts: Deltas are among the most densely populated and threatened coastal systems (Syvitski and Saito, 2007). The majority of global deltas are likely to experience transgression in the near future, leading to a global loss of ~2% of delta area by 2100 (Nienhuis and Van der Wal, 2021). At a broad scale, transgressive processes will be morphologically complex, and inextricably linked to upstream river processes (see Neinhuis et al. [2023] for a recent comprehensive review). At a finer scale, deltaic coasts are commonly composed of an amalgamation of many different coastal landforms, including barrier islands, marshes and/or mangroves, permafrost, levees and crevasse splays, progradational beach, foredune-ridge, and chenier plains, and widespread shallow-water subaqueous shoals, among others. Along the active, outer margins of deltas, coastal transgressive behavior is expected to largely mimic that of

the associated landforms. For example, Penland et al. (1988) present a model for the coevolution of delta lobes and the barrier islands generated from associated sediments (Figure 4b).

3. Passive Transgression at the Low-Energy Upland Margin

3.1. Ecological transitions at the passive transgressive margin

Inundation-style transgression occurs along low-energy estuaries and lagoons that can be located far inland from the open ocean coast. Unlike active transgression that results in conversion of land to water, passive transgression typically results in the replacement of one type of vegetated ecosystem with another. For example, sea-level rise has led to widespread migration of tidal marshes into upland forests (Kirwan & Chen 2022a), freshwater forested wetlands (White et al. 2021), and agricultural fields (Gedan et al. 2020) (Figure 5a, b). Although not the focus of this review, passive transgression also occurs as salt water intrusion converts freshwater marshes to mangroves (Chambers et al. 2015), and managed realignment converts agricultural land to salt marsh (Temmerman et al. 2015) (Figure 5c, d). These ecological transitions are often visually striking, marked by reduced crop yields, abandoned agricultural fields, and standing dead trees known as "ghost forests" (Kirwan & Gedan 2019; Tully et al. 2019) (Figure 3a).

Ecological transitions associated with passive transgression typically lead to vegetation types that are more flood and salt tolerant (Figure 5). In terrestrial forests, saltwater intrusion causes the expansion of shrubs and replacement of deciduous tree species with more salt-tolerant coniferous species and eventually herbaceous saltmarsh species (Anderson et al. 2022; Jobe & Gedan 2021; Langston et al. 2017). Immature life stages such as seedlings are more sensitive to flooding stress than mature trees, such that sea-level rise leads to a change in the structure of coastal forests even before marsh migration occurs (Kearney et al. 2019; Williams et al. 1999).

Finally, saltwater intrusion into lawns and farmland leads to unique plant assemblages, where abundant sunlight may favor native saltmarsh species (Anisfeld et al. 2017; Gedan & Fernández-Pascual 2019) over stands of invasive *Phragmites australis* that dominate retreating coastal forests (Smith 2013).

Passive transgression within coastal ecosystems also leads to physical and biogeochemical alterations to underlying soils. Progressive inundation of terrestrial forests leads to wetter, anoxic soils that accumulate organic matter and eventually receive mineral sediment from tides. Such a transition is characterized by an increase in porewater salinity, reduction in soil bulk density, and increase in soil organic matter content (Brinson et al. 1995). Responses are more complex where marshes migrate into freshwater forested wetlands. Generally, saltwater intrusion leads to increased ionic strength, alkalization, and sulfidation of soils (Tully et al. 2019). Although not universally observed (Noe et al. 2013), these changes would be expected to enhance decomposition of organic matter and in some cases lead to reduced accretion and peat collapse (Chambers et al. 2015; Charles et al. 2019; Noe et al. 2013), which could potentially increase inundation and accelerate an otherwise passive transgression (Miller et al. 2021).

3.2. Mechanisms and factors responsible for passive transitions

Like active-transgression along high-energy coasts, sea-level rise is the dominant factor driving the inland migration of coastal ecosystems within passive-margin settings. However, unlike active-transgression, clastic sedimentation plays little to no role in passive-transgression, which is instead predominantly influenced by upland slope. For example, observations of ghost forests are extensive along the U.S. mid-Atlantic coast, where rapid relative sea-level rise has inundated large land areas characterized by a gently sloping, coastal plain topography (Kirwan &

Gedan 2019; McDowell et al. 2022). Rates of marsh migration into coastal forests along the U.S. Atlantic Coast began accelerating in the late 19th Century, coincident with an acceleration in eustatic sea-level rise, and have increased roughly synchronously across sites in each succeeding decade (Schieder & Kirwan 2019). Similarly, tidal freshwater forests were largely stable through the Holocene but have transitioned towards marshes in recent decades to centuries (Jones et al. 2017), and rates of saline mangrove migration into freshwater marshes have increased during the last century (Gaiser et al., 2006) (Supplementary Table 1). Like transgression along open-ocean coasts, gradual accommodation-driven forest retreat is punctuated by storm events and other disturbances that lead to abrupt forest mortality and rapid transgression (Fagherazzi et al. 2019; Miller et al. 2021; Ury et al. 2021). Unlike sandy, active-transgression coasts—which can return to pre-storm conditions through natural return or replacement of eroded sand—these ecological transitions are largely nonreversible. However, similar to siliciclastic coasts, forest biomass and forest retreat rates over longer time periods are correlated with rates of sea-level rise and the elevation and slope of adjacent uplands (Chen & Kirwan 2022a; Flester & Blum 2020; Schieder & Kirwan 2019), suggesting sea-level rise as the dominant driver of passive, inland transgression.

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

Mechanistically, increased inundation and salinity of coastal forests leads to tree mortality through the interactive effects of osmotic stress and carbon starvation (McDowell et al. 2022). Salt accumulation in forest soils leads to reduced sap flow (Krauss & Duberstein 2010) and a shorter growing season (Brinson et al. 1985; Chen & Kirwan 2022b), such that respiration demands exceed photosynthetic supply and trees cannot maintain growth (McDowell et al. 2022). At the same time, marsh plants adapted to wet, saline soils migrate landward beneath a thinning forest canopy (Langston et al. 2017; Smith & Kirwan 2021), often led by the invasive

reed, *Phragmites australis* (Jobe & Gedan, 2021; Smith 2013). Predictions of marsh migration into adjacent uplands are based on assumptions of passive inundation of a static topography (Buchanan et al., 2022; Molino et al. 2021; Osland et al. 2022), but newly emerging concepts connecting ecohydrology and root-zone processes likely mediate ecosystem transgression (Guimond & Michael 2021; Messerschmidt et al. 2021; Nordio & Fagherazzi 2022).

Nevertheless, vegetation change occurs more rapidly than shifts in underlying soils (Anisfeld et al. 2017), so that marsh migration and the transgression of coastal ecosystems may even precede the death of canopy trees.

4. The Role of Humans in Active and Passive Transgression

Humans are one of the world's great geomorphic agents, and can both directly and indirectly influence the rate and nature of transgression (Lazarus et al. 2016): even modest amounts of development can override natural processes, altering coastal system behavior across distances of hundreds of kilometers and for time periods lasting many decades (Armstrong & Lazarus 2019; Hapke et al. 2013). Along open-ocean coasts, direct human interference can accelerate transgression by reducing the resilience afforded by dunes (e.g., Nordstrom 2000) or slowing beach recovery following storms (e.g., Wernette et al. 2020); or slow transgression through hardening of eroding cliffs or permafrost (e.g., Griggs & Patsch 2019; Liew et al. 2020), beach nourishment (e.g., Lazarus et al. 2016), and emplacement of hard or soft engineering structures and/or 'living' shorelines (e.g., Alves et al. 2020; Cooper & McKenna 2008a).

Along passively inundating transgressive margins, steep slopes, extensive dykes,

Along passively inundating transgressive margins, steep slopes, extensive dykes, seawalls, and polders can entirely prevent wetland migration into retreating uplands (Enwright et al. 2016; Gilman et al. 2008; Kirwan et al. 2016). Indeed, rates of lateral marsh migration are less

than 0.1 m yr⁻¹ in the steeply sloping Elkhorn Slough Estuary (California, USA) (Wasson et al. 2013), and vary by more than an order of magnitude in different topographic settings even within the relatively gently sloping mid-Atlantic coastal plain (Flester & Blum 2020; Schieder et al. 2018) (Table 1). Globally, ghost forests have not been observed in highly developed coastal regions, such as Northwest Europe and Southeast Asia (McDowell et al. 2022; Kirwan & Gedan 2019). Even largely rural coastal regions such as the U.S. Gulf Coast and Chesapeake Bay include significant portions where transgression may be limited by impervious surfaces, anthropogenic barriers, and landowner desires to prevent migration (Field et al. 2017; van Dolah et al. 2020). Across the U.S., 90% of land expected to be inundated by a 1 m rise is sea level is privately owned (Titus et al. 2009). Landowner decisions to abandon or defend land are often manifested through the construction of ditches, agricultural tiling, and small earthen levees (Bhattachan et al. 2018; Hall et al. 2022) (Figure 5d). Nevertheless, the ability of these features to prevent migration is unclear (Hall et al. 2022), and preliminary work suggests that marsh migration into adjacent lawns and agricultural land operates in a manner that is grossly similar to natural, forested ecosystems (Anisfeld et al. 2017; Gedan & Fernández-Pascual 2019; Gedan et al. 2020).

338

339

340

341

342

343

344

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

5. Migrating Boundaries and the Changing Extent of the Coastal Zone

Sea-level rise is leading to a rapid reorganization of coastal ecosystems (Chen & Kirwan 2022a). Along coasts characterized experiencing both active (trailing-margin) and passive (leading-margin) transgression, these processes act in concert, altering the extent and nature of the coastal systems bounded by these margins (Figure 6). Active transgression typically leads to the loss of coastal ecosystems at their seaward margin, such as through burial and shoreface

erosion of backbarrier salt marshes in response to island rollover (Deaton et al. 2017; Theuerkauf & Rodriguez 2017). Simultaneously, inundation along the passive transgressive margin leads to the expansion of coastal ecosystems, as saltwater intrusion propagates up freshwater tributaries (Ensign & Noe 2018) or into adjacent uplands (Kirwan et al. 2016) (Figure 5b). Therefore, the size of the coastal zone and the ecosystems that it contains can be conserved only if active transgression along trailing-margin, seaward margins is compensated by passive, leading-margin transgression further inland (Figure 6a).

Systems characterized by both rapid trailing-margin transgression and slow leading-margin transgression (*i.e.*, upland slopes that are steep or defended with anthropogenic barriers) are particularly sensitive to coastal-zone contraction (Figure 6b). This may occur in cases characterized by rapid barrier-island migration (Lorenzo-Trueba & Mariotti 2017) or where transgressive dune systems migrate into adjacent saltwater wetlands or lagoons, such as along the coast of southern Mozambique (Tinley 1987). In contrast, the coastal zone may increase in size where inundation along a gentle upland slope is paired with a slowly transgressing (or even regressing) open-ocean shoreline, such as those held in place either by a natural abundance of sediment or artificial stabilization (Figure 6c). Even just development upon barrier islands has been found to decrease storm overwash fluxes (Rogers et al. 2015), thus slowing trailing-margin transgression. Resulting backbarrier expansion can lead to destabilization and eventual deterioration and/or transgressive overstepping of the entire barrier system (Miselis & Lorenzo-Trueba 2017), a process documented in the recent geologic record (*e.g.*, Emery et al. 2019).

However, in reality, the net impact of transgression may be determined as much by the definition of coastal margins and the relative proportion of area influenced by active and passive transgression. For example, the largely undeveloped Virginia Atlantic Coast features barrier-

island migration rates that are among the fastest in the world, driven by generally low sediment supply, rapid sea-level rise, and islands that are free to migrate in the absence of human development (Robbins et al. 2022). Here, landward island migration at ~4.5 m yr⁻¹ (Mariotti & Hein 2022) has exceeded marsh migration rates (0.04–0.45 m yr⁻¹; Flester & Blum 2020), resulting in a narrowing of the coastal zone through an approximate 7 % reduction backbarrier extent since the mid-1800s, and burial and/or shoreface erosion of ~32 km² of backbarrier marsh that was almost entirely uncompensated by migration into uplands (Deaton et al. 2017). However, the length of the barrier-fronted Delmarva Peninsula Atlantic coast subject to active transgression is small (~225 km) relative to the length of the many embayments and tributaries of the adjacent Chesapeake Bay subject to passive inundation (>18,000 km). Therefore, the net impact of active and passive transgression has been to increase marsh area by 48.4 km² (~2%) between 1984 and 2020 for the broader mid-Atlantic coastal region (Chen & Kirwan 2022a).

Anthropogenic barriers within the trailing and leading margins (Section 4) in modern, coupled active-passive transgressive systems fundamentally impacts coastal ecosystem size and functionality. Coastal New Jersey and North Carolina may be examples of systems where transgression leads to net backbarrier (marsh, lagoon) expansion, as barrier migration is slowed in part by human management (Pilkey et al. 1998; Riggs & Ames 2003) and wetlands migrate into an extensive, undeveloped coastal plain (Smith et al. 2013; Ury et al. 2021). In contrast, coasts and estuaries in Northwest Europe or the U.S. Pacific Coast are examples of systems where transgression leads to net marsh loss, because erosion at the seaward margin cannot be compensated by inland migration which is prevented by anthropogenic barriers (*i.e.*, "coastal squeeze") (*e.g.*, Schuerch et al. 2018). Therefore, the specific location of anthropogenic influence within the transgressing coastal landscape potentially has a fundamental impact on the future

evolution of coastal systems: stabilization of the seaward margin favors ecosystem expansion during transgression while stabilization of the landward margin favors ecosystem loss (Figure 6).

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

Despite local wetland losses associated with coastal squeeze in coupled active-passive systems, transgression at the global scale could potentially lead to a net increase in marsh area. Twenty-first century sea-level rise is predicted to lead to changes in saline wetland area that range from a 30% loss to a 60% grain, depending principally on the likelihood of coastal flood defense for growing coastal populations (Schuerch et al. 2018). Historically, processes that create wetlands (restoration, delta growth, and migration) have roughly balanced those that destroy wetlands (direct human alterations, erosion, inundation, barrier migration), leading to general conservation in marsh area globally over the last several decades (Murray et al. 2022). These observations suggest that wetland expansion along natural coasts could potentially compensate for transgression-induced contraction along developed coasts over large spatial scales (Schuerch et al. 2018; Molino et al. 2021). However, anthropogenic and topographic constraints to passive transgression lead to a highly heterogenous coastal response, where inland transgression occurs extensively in some locations but not at all in others (Brochert et al. 2018; Molino et al. 2021). Indeed, predictions of passive transgression suggest that compensation of marsh area may occur at large spatial scales (e.g., Chesapeake Bay or Louisiana Gulf Coast), but that responses within individual watersheds could include either extensive marsh expansion or catastrophic marsh degradation (Brochert et al. 2018; Molino et al. 2021). These countervailing forces have important implications not only for ecosystem dynamics, but also for carbon cycling. Vegetated intertidal ecosystems sequester carbon in their soils at rates far surpassing terrestrial ecosystems (Mcleod et al. 2011), suggesting that passive transgression could increase soil carbon storage at the landward margin of the coastal landscape as carbon-rich wetlands replace

terrestrial ecosystems (Wang et al. 2021). In contrast, active transgression at the seaward margin reduces the area of vegetated coastal ecosystems contributing to carbon sequestration, and at the same time releases carbon stored in soils into environments where its fate is unknown (e.g., Theuerkauf & Rodriguez 2017). Preliminary numerical modeling at the global scale suggests that the combined impacts of active and passive transgression are to increase soil carbon accumulation rates in the coastal zone (Wang et al. 2021), but with important thresholds and a fundamental shift from carbon stored in the biomass of trees to carbon stored in wetland soils (Valentine et al., 2023).

6. Marine Transgression and Environmental Justice

6.1. Global inequities in the impacts of active and passive transgression

Marine transgression—both active erosion and passive inundation—is already impacting human populations globally, with hundreds of millions more soon to be threatened (Kulp & Strauss 2019). Adaptation measures range from the individual to the collective, and include advancement (anthropogenic regression through, for example, land reclamation), defense (shoreline stabilization through beach nourishment, living shorelines, hardening structures, etc.), accommodation (improved design, planning, construction, and management), and retreat (e.g., managed realignment, housing buybacks) (Williams et al. 2018; Mach & Siders 2021). Each approach comes with significant costs and benefits. For example, along the passive transgressive margin, those defense measures can help maintain the economic value of the adjacent upland (a local gain), but at the cost of the ecosystem services provided by the displaced wetlands (a global loss) (e.g., Fagherazzi et al. 2019). Along open-ocean coasts, communities face significant political and financial pressures to maintain or expand existing protective structures or shoreline-

stabilization strategies, thereby mitigating against adaptation and potentially increasing hazards (Fallon et al. 2017). Indeed, the global cost of defending the coast with dikes is far less than that of avoided flood damages (Hinkel et al. 2014). However, as the spatial scale or time window for considering coastal impacts of climate change and attendant public intervention grow, the case for public intervention becomes weaker, requiring the need to incorporate a social justice framework into management decisions (Cooper & McKenna 2008b). For example, inundation affects a large area of interior coast (including along the many necks, embayments, and tributaries of estuaries), much of which tends to be rural and home to socially vulnerable communities (Barbier 2015). It is also a relatively slow process as compared with active-margin transgression (Table 1), with impacts felt over lifetimes or generations. In contrast, processes such as storm flooding and beach erosion associated with active-margin transgression are fast, concentrated in a small area of the coast (near beaches), and—at least in much of the global north—predominantly impact relatively wealthy coastal communities with more political and social capital: characteristics that make these settings better targets for disaster relief funding (Lincke & Hinkel 2018).

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

Sea-level rise is likely to lead to widespread displacement of human populations, with the timing and nature of migration determined by myriad environmental, political, socioeconomic, and cultural factors (Hauer et al. 2020). Differences in both the physical vulnerability of the landscape—and of the social vulnerability of its inhabitants—to marine transgression highlight deep disparities in the societal impacts of transgression globally and regionally (Siders et al. 2019). Countries and population centers built upon deltas and small, low-lying islands and archipelagos are among the most immediately and disproportionally at risk from drowning and saltwater incursion associated with passive transgression, as well as land loss from along erosive

active margins (Edmonds et al. 2020; Mycoo et al. 2022; Weir et al. 2017). Regions such as the Asia Indian Ocean, and East and Southeast Asia are particularly at risk for population displacement (Nicholls et al. 2011), affecting, for example, up to 2.1 million people in Bangladesh by 2100 (Davis et al. 2018).

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

At a much finer scale, discriminatory historical policies and practices such as redlining the now-illegal practice in the U.S. of denying loans or restricting services based on the racial characteristics of a neighborhood—forced communities of color and those with less social capital into predominantly flood-prone areas of major cities, leaving them particularly vulnerable to the effects of ongoing transgression (e.g., Herreros-Cantis et al. 2020). Outside of major urban areas, these same disparities often exist along socioeconomic lines. For example, along the lowgradient coasts of Chesapeake Bay, inland marsh migration is often to the detriment of rural coastal communities, destroying agricultural lands, flooding everything from transportation infrastructure to cemeteries, and displacing residents (van Dolah et al. 2020). Elsewhere, a combination of small population size, non-vital or deteriorating infrastructure, and extreme threats from transgression may leave relocation as the only economically and socially feasible response. Decisions to raise homes or build levees based on cost-benefit logic promote disproportionate retreat in low-income or minority communities (Siders 2019). These conditions are particularly salient for minoritized or otherwise socially vulnerable populations, such as Alaska Native communities located along the eroding Arctic coast (Bronen & Chapin 2013) or the American Indian community of Isle de Jean Charles, which is currently being relocated within the Mississippi River Delta (Simms et al. 2021). Decisions surrounding such actions, or indeed the broader range of coastal adaptation strategies in the face of marine transgression, are

inherently fought and, as noted by Barra (2021), a "geophysical and social process upon which racial inequality is forged and contested."

6.2. A case study of the human impacts of dual-shoreline transgression

Here, we present a case study of the interplay of active and passive transgression, and the implications for physically and socially vulnerable coastal communities, focusing on the present-day evolution of Tangier Island (Virginia, USA), home to an isolated community within Chesapeake Bay recognized for its rich cultural history. The population of Tangier has declined from ~1000 to ~400 residents in the last 120 years, driven by a combination of socioeconomic factors and transgression-driven reductions in upland area (Wu & Schulte 2021). Scientific, media, and policy-based discussions have largely focused on mitigating active transgression (*i.e.*, coastal erosion) (Swift 2018). Shoreline erosion has consumed roughly 2/3 of the island area since 1850 (Schulte et al. 2015). A rock revetment was constructed in 1990 to stabilize the island's exposed western shore, where erosion (3.6–4.8 m yr⁻¹) historically was most rapid (Mills et al. 2005) (Figure 7); and the community continues to request revetments to stabilize other portions of the island (Schulte et al. 2015; Wu & Schulte 2021).

However, passive transgression on Tangier remains largely unaddressed. The inhabited portions of the island are located along narrow ridges at elevations of 1.0–1.5 m above mean sea level (Mills et al. 2005). In these areas, passive transgression has reduced upland area from 32.8 to 12.5 ha (1967–2019) (Wu & Schulte 2021). Indeed, the northern portion of Tangier Island ("Uppards"; Figure 7) has converted entirely to marsh and was last inhabited in 1928 (Swift, 2018). While the rock revetment has stabilized the eroding western shoreline (Mills et al. 2005), passive transgression is predicted to convert remaining uplands to wetlands by 2051 (Wu &

Schulte 2021). Mitigation strategies for passive transgression (*e.g.*, small dykes and ditch networks) have not been proposed on Tangier, and benefits have been inconclusive elsewhere in the region (Hall et al. 2022). Thus, the fate of small island communities, such as Tangier, depend on the management of both highly visible active transgression (conversion of land to water) and less visible passive transgression (conversion of upland to wetland); with decisions surrounding defense, accommodation, or retreat driven not only by the physical realities of the systems, but the social, political, and economic capital of their peoples.

7. Future Issues

- 1. What role do nonlinearities and time lags in coastal-system response to sea-level rise play in leading to unanticipated complexities associated with future marine transgression?
- 2. Will transgression result in the global maintenance, expansion, or contraction of the coastal landscape, and how will the ecosystem and human responses vary regionally?
- 3. How will transgression influence the function of the coastal zone? Will shifting coastal ecosystems simply result in the shifting of ecosystem services (*i.e.*, habitat, primary productivity, flood protection, carbon sequestration, and nutrient cycling) or does the age and location of ecosystems matter?
- 4. How will an emerging understanding of ecogeomorphic and socio-ecological couplings improve predictions along co-evolving active (trailing) and passive (leading) transgressive margins?
- 5. What unseen intersectionalities between socioeconomic and environmental factors drive human risk and response to marine transgression?

527 6. To what extent could passive transgression (salinization of freshwater ecosystems, and 528 development of new marshes) help compensate for the effects of active transgression 529 (erosion and submergence of barrier islands and associated marshes) on the strength of 530 the coastal carbon sink? 531 7. Disclosure Statement 532 533 The authors declare that they have no known competing financial interests or personal 534 relationships that could have appeared to influence the objectivity of this review. 535 536 8. Acknowledgements 537 C.J.H. is supported by National Science Foundation (#2022987). M.L.K. is supported by 538 the National Science Foundation (#1654374, 1832221, and 2012670) and the U.S. Geological 539 Survey Coastal and Marine Hazards and Resources Program. Both authors are supported in part 540 by the Commonwealth of Virginia. This work is a contribution to IGCP Project 725: 541 'Forecasting Coastal Change'. 542 543 9. References 544 Alves B, Angnuureng DB, Morand P, Almar R. 2020. A review on coastal erosion and flooding 545 risks and best management practices in West Africa: what has been done and should be done. 546 Journal of Coastal Conservation. 24(3):1-22 547 Anderson SM, Ury EA, Taillie PJ, Ungberg EA, Moorman CE, et al. 2022. Salinity thresholds 548 for understory plants in coastal wetlands. Plant Ecology. 223(1):1-15

549 Anisfeld SC, Cooper KR, Kemp AC. 2017. Upslope development of a tidal marsh as a function 550 of upland land use. Glob. Chang. Biol. 23(2):755–766 551 Armstrong SB, Lazarus ED. 2019. Masked shoreline erosion at large spatial scales as a collective 552 effect of beach nourishment. Earth's Future. 7(2):74-84 553 Barbier EB. 2015. Climate change impacts on rural poverty in low-elevation coastal zones. 554 Estuarine, Coastal and Shelf Science. 165:A1-A13 555 Barra MP. 2021. Good sediment: Race and restoration in coastal Louisiana. Annals of the 556 American Association of Geographers. 111(1):266-282 557 Bhattachan A, Jurjonas MD, Moody AC, Morris PR, Sanchez GM, et al. 2018. Sea level rise 558 impacts on rural coastal social-ecological systems and the implications for decision making. 559 Environmental Science & Policy. 90:122-134 560 Boyd R, Bowen AJ, Hall RK. 1987. Evolutionary model for transgressive sedimentation on the 561 Eastern Shore of Nova Scotia. In *Glaciated Coasts*, ed. D Fitzgerald, P Rosen, pp. 87-114. 562 New York, NY: Academic Press Inc 563 Brinson MM, Christian RR, Blum LK.1995. Multiple states in the sea-level induced transition 564 from terrestrial forest to estuary. Estuaries. 18(4):648-659 565 Bronen R, Chapin III FS. 2013. Adaptive governance and institutional strategies for climate-566 induced community relocations in Alaska. Proceedings of the National Academy of Sciences. 567 110(23):9320-9325 568 Buchanan MK, Kulp S, Strauss B. 2022. Resilience of US coastal wetlands to accelerating sea 569 level rise. Environmental Research Communications. 4(6):061001

5/0	Castelle B, Masselink G. 2023. Morphodynamics of wave-dominated beaches. Cambridge
571	Prisms: Coastal Futures. 1: p.e1
572	Cantelon JA, Guimond JA, Robinson CE, Michael HA, Kurylyk BL. 2022. Vertical saltwater
573	intrusion in coastal aquifers driven by episodic flooding: A review. Water Resources
574	Research. 58(11):e2022WR032614
575	Cattaneo A, Steel RJ. 2003. Transgressive deposits: a review of their variability. Earth-Science
576	Reviews. 62(3-4):187-228
577	Chambers LG, Davis SE, Troxler TG, Entry JA. 2015. Sea level rise in the Everglades: plant-
578	soil-microbial feedbacks in response to changing physical conditions. In Microbiology of the
579	Everglades Ecosystem. pp.89-112. CRC Press
580	Charles SP, Kominoski JS, Troxler TG, Gaiser EE, Servais S et al. 2019. Experimental saltwater
581	intrusion drives rapid soil elevation and carbon loss in freshwater and brackish Everglades
582	marshes. Estuaries and Coasts. 42(7):1868-1881
583	Chen Y, Kirwan ML. 2022a. Climate-driven decoupling of wetland and upland biomass trends
584	on the mid-Atlantic coast. Nature Geoscience. 15(11):913-918
585	Chen Y, Kirwan ML. 2022b. A phenology-and trend-based approach for accurate mapping of
586	sea-level driven coastal forest retreat. Remote Sensing of Environment. 281:113229
587	Ciarletta DJ, Lorenzo-Trueba J, Ashton AD. 2019. Mechanism for retreating barriers to
588	autogenically form periodic deposits on continental shelves. Geology. 47(3):239-242
589	Cooper JAG, McKenna J. 2008a. Working with natural processes: the challenge for coastal
590	protection strategies. Geographical Journal. 174(4):315-331

591 Cooper JAG, McKenna J. 2008b. Social justice in coastal erosion management: The temporal 592 and spatial dimensions. *Geoforum*. 39(1):294-306 593 Cooper JAG, Masselink G, Coco G, Short AD, Castelle B, et al. 2020. Sandy beaches can 594 survive sea-level rise. *Nature Climate Change*. 10(11):993-995 595 Cooper JAG, Meireles RP, Green AN, Klein AH, Toldo EE. 2018. Late Quaternary stratigraphic 596 evolution of the inner continental shelf in response to sea-level change, Santa Catarina, 597 Brazil. Marine Geology. 397:1-14 598 Cowell PJ, Roy PS, Jones RA. 1995. Simulation of large-scale coastal change using a 599 morphological behaviour model. *Marine Geology*. 126(1-4):45-61 600 Curray JR. 1964. Transgressions and regressions. In *Papers in Marine Geology*, ed. Miller RL, 601 pp. 175–203. New York: MacMillan 602 Davis KF, Bhattachan A, D'Odorico P, Suweis S. 2018. A universal model for predicting human 603 migration under climate change: examining future sea level rise in Bangladesh. 604 Environmental Research Letters. 13(6):064030 605 Dean RG, Houston JR. 2016. Determining shoreline response to sea level rise. Coastal 606 Engineering. 114:1-8 607 Deaton CD, Hein CJ, Kirwan ML. 2017. Barrier island migration dominates ecogeomorphic 608 feedbacks and drives salt marsh loss along the Virginia Atlantic Coast, USA. Geology. 609 45(2):123-126 610 Dickson ME, Walkden MJ, Hall JW. 2007. Systemic impacts of climate change on an eroding 611 coastal region over the twenty-first century. Climatic Change. 84(2):141-166

612	Earlie C, Masselink G, Russell P. 2018. The role of beach morphology on coastal cliff erosion
613	under extreme waves. Earth Surface Processes and Landforms. 43(6):1213-1228
614	Edmonds DA, Caldwell RL, Brondizio ES, Siani SM. 2020. Coastal flooding will
615	disproportionately impact people on river deltas. Nature communications. 11(1):4741
616	Emery AR, Hodgson DM, Barlow NL, Carrivick JL, Cotterill CJ, et al. 2019. Topographic and
617	hydrodynamic controls on barrier retreat and preservation: an example from Dogger Bank,
618	North Sea. Marine Geology. 416:105981
619	Ensign SH, Noe GB. 2018. Tidal extension and sea-level rise: recommendations for a research
620	agenda. Frontiers in Ecology and the Environment. 16(1):37-43
621	Enwright NM, Griffith KT, Osland MJ. 2016. Barriers to and opportunities for landward
622	migration of coastal wetlands with sea-level rise. Frontiers in Ecology and the Environment.
623	14(6):307-316
624	Fallon AR, Hoagland P, Jin D, Phalen W, Fitzsimons GG, Hein CJ. 2017. Adapting without
625	retreating: Responses to shoreline change on an inlet-associated coastal beach. Coastal
626	Management. 45(5):360-383
627	Fagherazzi S, Anisfeld SC, Blum LK, Long EV, Feagin RA, et al. 2019. Sea level rise and the
628	dynamics of the marsh-upland boundary. Frontiers in Environmental Science. 7:25
629	Fenster MS, Dominguez R. 2022. Quantifying coastal storm impacts using a new cumulative
630	storm impact index (CSII) model: application along the Virginia coast, USA. Journal of
631	Geophysical Research: Earth Surface. 127(9):e2022JF006641
632	Fischer AG. 1961. Stratigraphic record of transgressing seas in light of sedimentation on Atlantic
633	coast of New Jersey. AAPG Bulletin. 45(10):1656-1666

634 FitzGerald D, Buynevich I, Hein C. 2012. Morphodynamics and facies architecture of tidal inlets 635 and tidal deltas. *Principles of Tidal Sedimentology*. pp.301-333 636 FitzGerald DM, Fenster MS, Argow BA, Buynevich IV. 2008. Coastal impacts due to sea-level 637 rise. Annu. Rev. Earth Planet. Sci. 36:601-647 638 FitzGerald DM, Hein CJ, Hughes Z, Kulp M, Georgiou I, Miner M. 2018. Runaway barrier 639 island transgression concept: Global case studies. In Moore LJ, Murray AB, eds. Barrier 640 Dynamics and Response to Changing Climate. Springer. pp.3-56 641 Flester JA, Blum LK. 2020. Rates of mainland marsh migration into uplands and seaward edge 642 erosion are explained by geomorphic type of salt marsh in Virginia coastal lagoons. 643 Wetlands. 40(6):1703-1715 644 Forbes DL, Orford JD, Carter RWG, Shaw J, Jennings SC. 1995. Morphodynamic evolution, 645 self-organisation, and instability of coarse-clastic barriers on paraglacial coasts. Marine 646 Geology. 126(1-4):63-85 647 Gallop SL, Kennedy DM, Loureiro C, Naylor LA, Muñoz-Pérez JJ, et al. 2020. Geologically 648 controlled sandy beaches: Their geomorphology, morphodynamics and classification. 649 Science of the Total Environment. 731:139123 650 Gaiser EE, Zafiris A, Ruiz PL, Tobias FAC, Ross MS. 2023. Tracking rates of ecotone migration 651 due to salt-water encroachment using fossil mollusks in coastal South Florida. Hydrobiolgia. 652 569:237-257. 653 Gedan KB, Fernández-Pascual E. 2019. Salt marsh migration into salinized agricultural fields: a 654 novel assembly of plant communities. Journal of Vegetation Science. 30(5):1007-1016

655	Gedan KB, Epanchin-Niell R, Qi M. 2020. Rapid land cover change in a submerging coastal
656	county. Wetlands. 40:1717-1728
657	Gibbs AE, Richmond BM. 2015. National assessment of shoreline change: historical shoreline
658	change along the north coast of Alaska, US-Canadian border to Icy Cape: US Department of
659	the Interior, US Geological Survey. pp.96
660	Gilman EL, Ellison J, Duke NC, Field C. 2008. Threats to mangroves from climate change and
661	adaptation options: a review. Aquatic Botany. 89(2):237-250
662	Griggs G, Patsch K. 2019. The protection/hardening of California's coast: Times are changing.
663	Journal of Coastal Research. 35(5):1051–1061
664	Guimond JA, Michael HA. 2021. Effects of marsh migration on flooding, saltwater intrusion,
665	and crop yield in coastal agricultural land subject to storm surge inundation. Water Resources
666	Research. 57(2):e2020WR028326
667	Hall EA, Molino GD, Messerschmidt TC, Kirwan ML. 2022. Hidden levees: Small-scale flood
668	defense on rural coasts. Anthropocene. 40:100350
669	Hamon-Kerivel K, Cooper A, Jackson D, Sedrati M, Pintado EG. 2020. Shoreface mesoscale
670	morphodynamics: A review. Earth-Science Reviews. 209:103330
671	Hapke CJ, Kratzmann MG, Himmelstoss EA. 2013. Geomorphic and human influence on large-
672	scale coastal change. Geomorphology. 199:160-170
673	Hauer ME, Fussell E, Mueller V, Burkett M, Call M, et al. 2020. Sea-level rise and human
674	migration. Nature Reviews Earth & Environment. 1(1):28-39
675	Hein CJ, Ashton AD. 2020. Long-term shoreline morphodynamics: processes and preservation
676	of environmental signals. In Sandy Beach Morphodynamics. pp.487-531

677 Herreros-Cantis P, Olivotto V, Grabowski ZJ, McPhearson T. 2020. Shifting landscapes of 678 coastal flood risk: environmental (in) justice of urban change, sea level rise, and differential 679 vulnerability in New York City. *Urban transformations*. 2(1):1-28 680 Hesp PA. 2013. Conceptual models of the evolution of transgressive dune field systems. 681 Geomorphology. 199:138-149 682 Hesp PA, DaSilva M, Miot da Silva G, Bruce D, Keane R. 2022. Review and direct evidence of 683 transgressive aeolian sand sheet and dunefield initiation. Earth Surface Processes and 684 *Landforms.* 47(11):2660-2675 685 Hinkel J, Aerts JC, Brown S, Jiménez JA, Lincke D et al. 2018. The ability of societies to adapt 686 to twenty-first-century sea-level rise. *Nature Climate Change*. 8(7):570-578 687 Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ, et al. 2014. Coastal flood damage and 688 adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of 689 Sciences. 111(9):3292-3297 690 Jackson D, Short A, eds. 2020. Sandy Beach Morphodynamics. Elsevier. 1st ed. 691 Jevrejeva S, Jackson LP, Riva RE, Grinsted A, Moore JC. 2016. Coastal sea level rise with 692 warming above 2 C. Proceedings of the National Academy of Sciences. 113(47):13342-693 13347 694 Jobe IV JGD, Gedan K. 2021. Species-specific responses of a marsh-forest ecotone plant 695 community responding to climate change. *Ecology*. 102(4):e03296 696 Jones BM, Arp CD, Jorgenson MT, Hinkel KM, Schmutz JA, Flint PL. 2009. Increase in the rate 697 and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters. 36(3)

698 Jones MC, Bernhardt CE, Krauss KW, Noe GB. 2017. The impact of late Holocene land use 699 change, climate variability, and sea level rise on carbon storage in tidal freshwater wetlands 700 on the southeastern United States coastal plain. *Journal of Geophysical Research*: 701 Biogeosciences. 122(12):3126-3141 702 Kearney WS, Fernandes A, Fagherazzi S. 2019. Sea-level rise and storm surges structure coastal 703 forests into persistence and regeneration niches. *PloS one.* 14(5):e0215977 704 Kinsela MA, Morris BD, Daley MJ, Hanslow DJ, 2016. A flexible approach to forecasting 705 coastline change on wave-dominated beaches. Journal of Coastal Research. 75(10075):952-706 956 707 Kirwan ML, Gedan KB. 2019. Sea-level driven land conversion and the formation of ghost 708 forests. *Nature Climate Change*. 9(6):450-457 709 Kirwan ML, Walters DC, Reay WG, Carr JA. 2016. Sea level driven marsh expansion in a 710 coupled model of marsh erosion and migration. Geophysical Research Letters. 43(9):4366-711 4373 712 Krauss KW, Duberstein JA. 2010. Sapflow and water use of freshwater wetland trees exposed to 713 saltwater incursion in a tidally influenced South Carolina watershed. Canadian Journal of 714 Forest Research. 40(3):525-535 715 Kulp SA, Strauss BH. 2019. New elevation data triple estimates of global vulnerability to sea-716 level rise and coastal flooding. *Nature communications*. 10(1):1-12 717 Langston AK, Kaplan DA, Putz FE. 2017. A casualty of climate change? Loss of freshwater 718 forest islands on Florida's Gulf Coast. Global Change Biology. 23(12):5383-5397

- Lantuit H, Overduin PP, Couture N, Wetterich S, Aré F, et al. 2012. The Arctic coastal dynamics
- database: A new classification scheme and statistics on Arctic permafrost coastlines.
- 721 *Estuaries and Coasts.* 35:383-400
- Lazarus ED, Ellis MA, Murray AB, Hall DM. 2016. An evolving research agenda for human—
- 723 coastal systems. *Geomorphology*. 256:81-90
- Lentz EE, Thieler ER, Plant NG, Stippa SR, Horton RM, Gesch DB. 2016. Evaluation of
- dynamic coastal response to sea-level rise modifies inundation likelihood. *Nature Climate*
- 726 *Change*. 6(7):696-700
- 727 Limber PW, Barnard PL, Vitousek S, Erikson LH. 2018. A model ensemble for projecting
- multidecadal coastal cliff retreat during the 21st century. *Journal of Geophysical Research*:
- 729 *Earth Surface*. 123(7):1566-1589
- 730 Lincke D, Hinkel J. 2018. Economically robust protection against 21st century sea-level rise.
- 731 Global Environmental Change. 51:67-73
- 732 Liew M, Xiao M, Jones BM, Farquharson LM, Romanovsky VE. 2020. Prevention and control
- 733 measures for coastal erosion in northern high-latitude communities: a systematic review
- based on Alaskan case studies. *Environmental Research Letters*. 15(9):093002
- 735 Lorenzo-Trueba J, Mariotti G. 2017. Chasing boundaries and cascade effects in a coupled
- barrier-marsh-lagoon system. *Geomorphology*. 290:153-163
- Loureiro C, Ferreira Ó. 2020. Mechanisms and timescales of beach rotation. In Sandy Beach
- 738 *Morphodynamics*. pp. 593-614. Elsevier
- Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S. 2018. The state
- of the world's beaches. Scientific reports. 8(1):1-11

- Mach KJ, Siders AR. 2021. Reframing strategic, managed retreat for transformative climate
- 742 adaptation. Science. 372(6548):1294-1299
- Manikam SL, Green AN, Cooper A, Deacon G, Flemming B. 2022. Development and
- preservation of transgressive sandy versus rocky shorelines: Observations from the SE
- 745 African shelf. *Geomorphology*. 419:108485
- Mariotti G, Hein CJ. 2022. Lag in response of coastal barrier-island retreat to sea-level rise.
- 747 *Nature Geoscience*. 15(8):633-638
- McBride RA, Anderson JB, Buynevich IV, Byrnes MR, Cleary W, et al. 2022. Morphodynamics
- of modern and ancient barrier systems: An updated and expanded synthesis. In Shroder, JF.
- 750 *Treatise on Geomorphology 2nd Edition.* 8:289–417.
- 751 McCarroll RJ, Masselink G, Valiente NG, Scott T, Wiggins M, et al. 2021. A rules-based
- shoreface translation and sediment budgeting tool for estimating coastal change: ShoreTrans.
- 753 *Marine Geology.* 435:106466
- McDowell NG, Ball M, Bond-Lamberty B, Kirwan ML, Krauss KW, et al. 2022. Processes and
- mechanisms of coastal woody-plant mortality. Global Change Biology. 28(20):5881-5900
- Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, et al. 2011. A blueprint for blue carbon:
- toward an improved understanding of the role of vegetated coastal habitats in sequestering
- 758 CO₂. Frontiers in Ecology and the Environment. 9(10):552-560
- Mellett CL, Plater AJ. 2018. Drowned barriers as archives of coastal-response to sea-level rise.
- In Moore LJ, Murray AB, eds. Barrier Dynamics and Response to Changing Climate.
- 761 Springer. 57-89

762 Mentaschi L, Vousdoukas MI, Pekel JF, Voukouvalas E, Feyen L. 2018. Global long-term 763 observations of coastal erosion and accretion. Scientific Reports. 8(1):12876 764 Messerschmidt TC, Langston AK, Kirwan ML. 2021. Asymmetric root distributions reveal 765 press–pulse responses in retreating coastal forests. *Ecology*. 102(10): e03468 766 Miller CB, Rodriguez AB, Bost MC. 2021. Sea-level rise, localized subsidence, and increased 767 storminess promote saltmarsh transgression across low-gradient upland areas. *Quaternary* 768 Science Reviews. 265:107000 769 Mills WB, Chung CF, Hancock K. 2005. Predictions of relative sea-level change and shoreline 770 erosion over the 21st century on Tangier Island, Virginia. Journal of Coastal Research. 771 21(2): e36-e51 772 Miselis JL, Lorenzo-Trueba J. 2017. Natural and human-induced variability in barrier-island 773 response to sea level rise. Geophysical Research Letters. 44(23):11-922 774 Molino GD, Defne Z, Aretxabaleta AL, Ganju NK, Carr JA. 2021. Quantifying slopes as a driver 775 of forest to marsh conversion using geospatial techniques: application to Chesapeake Bay 776 coastal-plain, United States. Frontiers in Environmental Science. 9:149 777 Moore LJ, Murray AB, eds. 2018. Barrier Dynamics and Response to Changing Climate. 778 Springer. 1st ed. 779 Murray NJ, Worthington TA, Bunting P, Duce S, Hagger V, et al. 2022. High-resolution 780 mapping of losses and gains of Earth's tidal wetlands. Science. 376(6594):744-749 781 Muto T, Steel RJ. 1992. Retreat of the front in a prograding delta. Geology. 20(11):967-970 782 Mycoo M, Wairiu M, Campbell D, Duvat V, Golbuu Y, et al. 2022. Small Islands. Climate 783 Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to

- the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 2043–
 2121
- Nicholls RJ, Cazenave A. 2010. Sea-level rise and its impact on coastal zones. Science.
- 787 328(5985):1517-1520
- Nicholls RJ, Marinova N, Lowe JA, Brown S, Vellinga P, et al. 2011. Sea-level rise and its
- possible impacts given a 'beyond 4 C world' in the twenty-first century. *Philosophical*
- 790 transactions of the Royal Society A: mathematical, physical and engineering sciences.
- 791 369(1934):161-181
- Nielsen DM, Pieper P, Barkhordarian A, Overduin P, Ilyina T, et al. 2022. Increase in Arctic
- coastal erosion and its sensitivity to warming in the twenty-first century. *Nature Climate*
- 794 *Change.* 12(3):263-270
- Nienhuis JH, van de Wal RS. 2021. Projections of global delta land loss from sea-level rise in the
- 796 21st century. *Geophysical Research Letters*. 48(14): e2021GL093368
- Nienhuis JH, Kim W, Milne GA, Quock M, Slangen AB, Törnqvist TE. 2023. River Deltas and
- 798 Sea-Level Rise. *Annual Review of Earth and Planetary Sciences*. 51
- Noe GB, Krauss KW, Lockaby BG, Conner WH, Hupp CR. 2013. The effect of increasing
- salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal
- freshwater forested wetlands. *Biogeochemistry*. 114:225-244
- Nordio G, Fagherazzi S. 2022. Salinity increases with water table elevation at the boundary
- between salt marsh and forest. *Journal of Hydrology*. 608:127576

804 Osland MJ, Chivoiu B, Enwright NM, Thorne KM, Guntenspergen GR, et al. 2022. Migration 805 and transformation of coastal wetlands in response to rising seas. Science Advances. 806 8(26):eabo5174 807 Penland S, Boyd R, Suter JR. 1988. Transgressive depositional systems of the Mississippi Delta 808 plain; a model for barrier shoreline and shelf sand development. *Journal of Sedimentary* 809 Research. 58(6):932-949 810 Pilkey OH, Neal WJ, Riggs SR, Webb CA, Bush DM, Bullock J, Cowan BA. 1998. The North 811 Carolina Shore and its Barrier Islands: Restless Ribbons of Sand. Duke University Press 812 Rampino MR, Sanders JE. 1981. Evolution of the barrier islands of southern Long Island, New 813 York. Sedimentology. 28(1):37-47 814 Reeves IRB, Moore LJ, Murray AB, Anarde KA, Goldstein EB. 2021. Dune dynamics drive 815 discontinuous barrier retreat. Geophysical Research Letters. 48(13): e2021GL092958 816 Riggs SR, Ames DV. 2003. Drowning the North Carolina Coast: Sea-Level Rise and Estuarine 817 Dynamics. Raleigh, NC: North Carolina Sea Grant 818 Robbins MG, Shawler JL, Hein CJ. 2022. Contribution of longshore sand exchanges to 819 mesoscale barrier-island behavior: Insights from the Virginia Barrier Islands, US East Coast. 820 Geomorphology. 403:108163 821 Rogers LJ, Moore LJ, Goldstein EB, Hein CJ, Lorenzo-Trueba J, Ashton AD. 2015. 822 Anthropogenic controls on overwash deposition: Evidence and consequences. *Journal of* 823 Geophysical Research: Earth Surface. 120(12):2609-2624 824 Ruz MH, Héquette A, Hill PR. 1992. A model of coastal evolution in a transgressed thermokarst 825 topography, Canadian Beaufort Sea. Marine Geology. 106(3-4):251-278

- Schieder NW, Kirwan ML. 2019. Sea-level driven acceleration in coastal forest retreat. *Geology*.
- 827 47(12):1151-1155
- 828 Schieder NW, Walters DC, Kirwan ML. 2018. Massive upland to wetland conversion
- compensated for historical marsh loss in Chesapeake Bay, USA. *Estuaries and coasts*.
- 830 41:940-951
- Schuerch M, Spencer T, Temmerman S, Kirwan ML, Wolff C, et al. 2018. Future response of
- global coastal wetlands to sea-level rise. *Nature*. 561(7722):231-234
- Schulte DM, Dridge KM, Hudgins MH. 2015. Climate change and the evolution and fate of the
- Tangier Islands of Chesapeake Bay, USA. Scientific reports. 5(1):1-7
- Shadrick JR, Rood DH, Hurst MD, Piggott MD, Hebditch BG, et al. 2022. Sea-level rise will
- likely accelerate rock coast cliff retreat rates. *Nature Communications*. 13(1):7005
- 837 Siders AR. 2019. Social justice implications of US managed retreat buyout programs. *Climatic*
- 838 *Change.* 152(2):239-257
- 839 Siders AR, Hino M, Mach KJ. 2019. The case for strategic and managed climate retreat. *Science*.
- 840 365(6455):761-763
- Simms JR, Waller HL, Brunet C, Jenkins P. 2021. The long goodbye on a disappearing, ancestral
- island: a just retreat from Isle de Jean Charles. Journal of Environmental Studies and
- 843 *Sciences.* 11(3):316-328
- 844 Smith JA. 2013. The role of Phragmites australis in mediating inland salt marsh migration in a
- mid-Atlantic estuary. *PloS ONE* 8(5):e65091
- 846 Smith AJ, Kirwan ML. 2021. Sea level-driven marsh migration results in rapid net loss of
- carbon. Geophysical Research Letters. 48(13): e2021GL092420

- Swift E. 2018. Chesapeake Requiem: A Year with the Watermen of Vanishing Tangier Island.
 New York, NY: HarperCollins
- Syvitski JP, Saito Y. 2007. Morphodynamics of deltas under the influence of humans. *Global* and Planetary Change. 57(3-4):261-282
- Temmerman S, Kirwan ML. 2015. Building land with a rising sea. Science. 349(6248):588-589
- Theuerkauf EJ, Rodriguez AB. 2017. Placing barrier-island transgression in a blue-carbon
- 854 context. *Earth's Future*. 5(7):789-810
- Tinley KL. 1985. Coastal dunes of South Africa. National Scientific Programmes Unit: CSIR,
- 856 SANSP Rep. 109, pp. 304
- Titus JG, Hudgens DE, Trescott DL, Craghan M, Nuckols WH, et al. 2009. State and local
- governments plan for development of most land vulnerable to rising sea level along the US
- Atlantic coast. *Environmental Research Letters*. 4(4):044008.
- Trenhaile A. 2016. Rocky coasts—their role as depositional environments. Earth-science
- 861 *reviews.* 159:1-13
- Tully K. Gedan K, Epanchin-Niell R, Strong A, Bernhardt ES, et al. 2019. The invisible flood:
- The chemistry, ecology, and social implications of coastal saltwater intrusion. *BioScience*.
- 864 69(5):368-378
- Ury EA, Yang X, Wright JP, Bernhardt ES. 2021. Rapid deforestation of a coastal landscape
- driven by sea-level rise and extreme events. *Ecological Applications*. 31(5):e02339
- Valentine K, Herbert ER, Walters DC, Chen Y, Smith AJ, Kirwan ML. 2023. Climate-driven
- tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink.
- 869 *Nature Communications*. In press

870 Van Dolah ER, Miller Hesed CD, Paolisso MJ. 2020. Marsh migration, climate change, and 871 coastal resilience: Human dimensions considerations for a fair path forward. Wetlands. 872 40:1751-1764 873 Vitousek S, Barnard PL, Limber P. 2017. Can beaches survive climate change?. *Journal of* 874 Geophysical Research: Earth Surface. 122(4):1060-1067 875 Vonk JE, Sánchez-García L, Van Dongen BE, Alling V, Kosmach D, et al. 2012. Activation of 876 old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. *Nature*. 489(7414):137-140 877 878 Vos K, Harley MD, Turner IL, Splinter KD, 2023. Pacific shoreline erosion and accretion 879 patterns controlled by El Niño/Southern Oscillation. Nature Geoscience, 16:140-146 880 Vousdoukas MI, Ranasinghe R, Mentaschi L, Plomaritis TA, Athanasiou P, et al. 2020. Sandy 881 coastlines under threat of erosion. Nature climate change. 10(3):260-263 882 Wang F, Sanders CJ, Santos IR, Tang J, Schuerch M, et al. 2021. Global blue carbon 883 accumulation in tidal wetlands increases with climate change. National Science Review. 8(9): 884 nwaa296 885 Wasson K, Woolfolk A, Fresquez C. 2013. Ecotones as indicators of changing environmental 886 conditions: rapid migration of salt marsh-upland boundaries. Estuaries and Coasts. 36:654-887 664 888 Weir T, Dovey L, Orcherton D. 2017. Social and cultural issues raised by climate change in 889 Pacific Island countries: an overview. Regional Environmental Change. 17:1017-1028 890 Wernette P, Houser C, Lehner J, Evans A, Weymer B. 2020. Investigating the Impact of 891 Hurricane Harvey and Driving on Beach-Dune Morphology. Geomorphology. 358:107119

892	White EE, Ury EA, Bernhardt ES, Yang X. 2021. Climate change driving widespread loss of
893	coastal forested wetlands throughout the North American coastal plain. Ecosystems. pp.1-16
894	Williams K, Ewel KC, Stumpf RP, Putz FE, Workman TW. 1999. Sea-level rise and coastal
895	forest retreat on the west coast of Florida, USA. Ecology. 80(6):2045-2063
896	Williams AT, Rangel-Buitrago N, Pranzini E, Anfuso G. 2018. The management of coastal
897	erosion. Ocean & Coastal Management. 156:4-20
898	Woodroffe CD. 2002. Coasts: Form, Process and Evolution. Cambridge: Cambridge University
899	Press
900	Wu Z, Schulte D. 2021. Predictions of the Climate Change-Driven Exodus of the Town of
901	Tangier, the Last Offshore Island Fishing Community in Virginia's Chesapeake Bay.
902	Frontiers in Climate. 3:151

10. Tables and Figures

903

904

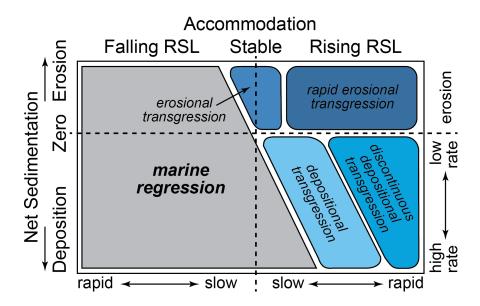

905

Table 1. Summary of rates and processes shaping modern marine transgression across active and passive transgressive margins.

Source information for average rates is provided in Supplemental Table 1.

Coastal System	Transgressive Process	Transgression Rate (avg. (range))	Allogenic Factors Influencing Transgression	Intrinsic Factors Influencing Transgression	Anthropogenic Factors Influencing Transgression
Active Transgres	sive Coasts				
Mainland- Attached Beaches	Erosion or migration	0.6 (-0.5 – 8.5) m yr ¹	Wave climate; frequency, intensity, and sequencing of storms; longshore and cross-shore sediment availability and delivery rates	Upland slope; coastal orientation; bedrock- controlled planform accommodation; sediment texture; pre-storm beach and dune morphology; cementation of intertidal beach sediments	Beach nourishment; shoreline hardening; soft engineering structures
Rocky Coasts	Erosion	0.1 (0.05 – 0.1) m yr ¹	Wave climate; frequency, intensity, and sequencing of high-energy wave events	Bedrock / cliff lithology; shore platform profile; weathering rates; prevalence of bioerosion; autogenic sediment production rates; volume and texture of sediments on fronting beach (if any); ground-ice content (high-latitude coasts)	Cliff hardening
Permafrost Coasts	Erosion	1.0 (0.0 – 5.5) m yr ¹	Frequency and severity of storms; erosional efficiency of storms as associated with fetch, sea ice, sea level, and sea-surface and air temperatures	Ground near-surface temperature	Shoreline hardening
Transgressive Dunes and Sand Sheets	Erosion or migration	7.0 (0.5 – 13.0) m yr ⁻¹	Wind and wave climate; precipitation amount and/or seasonality; frequency and intensity of storms, high-wind events, and fires	Availability and texture of sand in the upper shoreface and beach and erosional dune edge; vegetation cover; water table level	Alteration of vegetation cover through, planting / removal of vegetation, creation of artificial blowouts, and introduction of fertilizers, among others

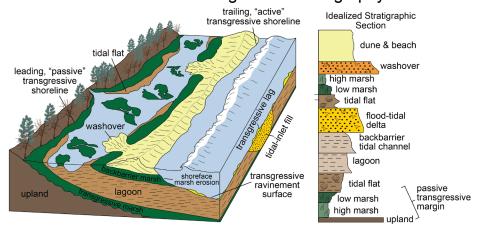

Barrier Islands	Erosion or migration	5.0 (-1 – 16) m yr ⁻¹	Wave climate; frequency, intensity, and sequencing of storms; longshore and cross-shore sediment availability and delivery rates Wave climate; frequency, intensity, and sequencing of storms: fluvial	Framework / antecedent geology and topography; barrier lithosome sediment texture; biophysical / ecogeomorphic feedbacks arising from foredune dynamics and marsh-island couplings (e.g., dune height and width; extent of backbarrier marsh); autogenic processes; inlet dynamics	Beach nourishment; shoreline hardening; soft engineering structures; overwash-inhibiting development				
Deltaic Coasts	Erosion or migration (sub- system specific)	variable (3 – 38 m yr ⁻¹)	sediment delivery rates to the delta front; frequency of avulsion; migration of the location of river switching	Shallow delta lithosome sediment texture; biophysical / ecogeomorphic feedbacks; autogenic processes; inlet and distributary channel dynamics	Beach nourishment; shoreline hardening; soft engineering structures				
Passive Transgressive Coasts									
Upland- Migrating Marsh	Inland migration	20 (0 – 55) m yr ⁻¹	Frequency, intensity, and timing of storms; insect outbreaks; fire	Upland slope; estuarine salinity; root-zone subsidence; vegetation-groundwater feedbacks	Water management; dykes, ditches, levees, canals, & agriculture				
Estuarine Elongation	Upstream migration	unquantified	Watershed freshwater discharge	River slope and upland slope; estuarine salinity; root-zone subsidence; vegetation-groundwater feedbacks	Water management; dams				
Mangrove- Marsh Transitions	Inland migration	variable (0 – 61 m yr¹)	Precipitation; freeze events; frequency, intensity, and timing of storms	Peat collapse; marsh accretion processes	Water management; dykes, ditches, levees, canals, agriculture, aquaculture				
Adaptation & Managed Retreat	Inland and upstream migration	variable	Land use; populations; socio- economic variables	Upland slope; exposure to waves and currents	Flood-control structures; levees, dykes, agriculture, & aquaculture				
	Deltaic Coasts assive Transgree Upland- Migrating Marsh Estuarine Elongation Mangrove- Marsh Transitions Adaptation & Managed	Erosion or migration Deltaic system specific) assive Transgressive Coasts Upland-Migrating Inland Marsh migration Estuarine Upstream Elongation migration Mangrove-Marsh Inland Transitions migration Adaptation & Inland and Managed upstream	Erosion or migration yr1 Erosion or migration (subsystem specific) wariable (3 – 38 m yr1) Essive Transgressive Coasts Upland-Migrating Inland 20 (0 – 55) m yr1 Marsh migration yr1 Estuarine Upstream Elongation migration unquantified Mangrove-Marsh Inland variable (0 – 61 m yr1) Adaptation & Inland and Managed upstream	Barrier Erosion or Islands Erosi	Wave climate; frequency, intensity, and sequencing of storms; longshore and cross-shore sediment availability and delivery rates wave climate; frequency, intensity, and sequencing of storms; longshore and cross-shore sediment availability and delivery rates wave climate; frequency, intensity, and sequencing of storms; fluvial sediment delivery rates to the delta front; frequency of avulsion; migration (subspecific) wave climate; frequency, intensity, and sequencing of storms; fluvial sediment delivery rates to the delta front; frequency of avulsion; migration of the location of river switching states. Upland-Migrating Inland warsh migration wignation wignat				

Figure 1. Marine transgression as a function of accommodation creation (stable to rapidly rising sea level) and net sediment deposition. Modified from Curray (1964).

"Classic" Transgressive Stratigraphy Idealized Stratigraphic Section "active" transgressive shoreline transgressive dunes beach shoreface foreshore shoreface foreshore open shelf beach / transgressive transgressive ravinement surface lag upland

Multi-Shoreline Transgressive Stratigraphy

910

911

912

913

Figure 2. Transgressive succession in (a) simplified fining-upward form along open-ocean coasts; and (b) with more complex (and realistic) facies stacking patterns along barrier-island coasts characterized by both active, trailing-edge and passive, leading-edge transgressive shorelines.

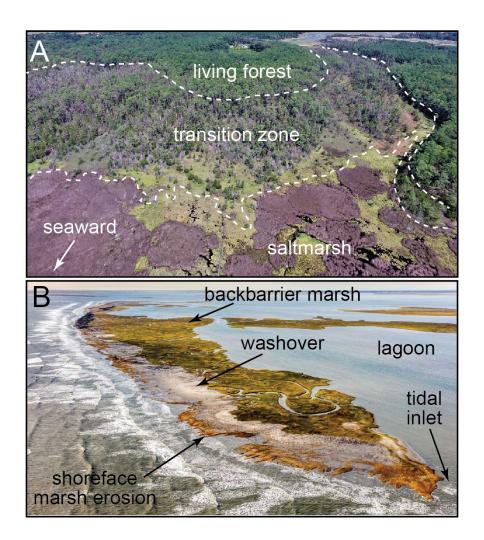
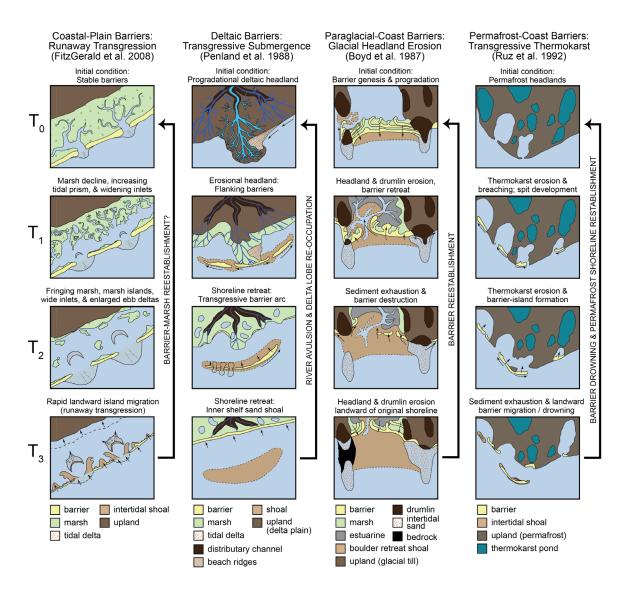
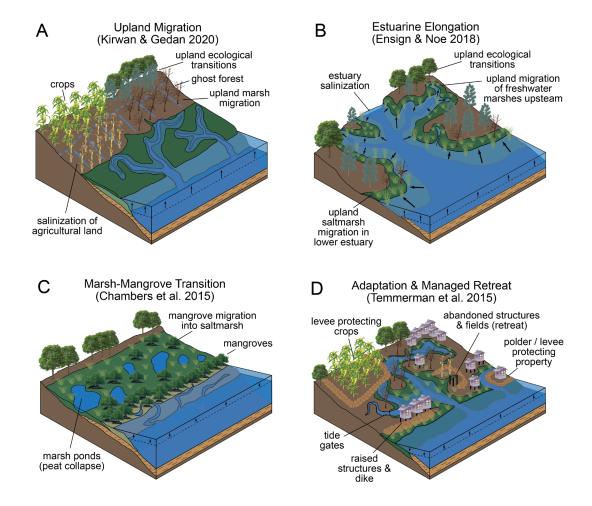




Figure 3. Examples of modern marine transgression in the form of (a) changes in vegetation distribution along a passive marsh-upland transgressive margin, highlighting a "ghost forest" transition zone with dead and stressed trees (Phillips Creek, Virginia, USA); and (b) burial and shoreface erosion of backbarrier saltmarsh by an actively transgressing, landward-migrating barrier island (Cobb Island); both along the rapidly transgressing Virginia Eastern Shore, USA. Image credits: T. Messerschmidt (a) and G. Campbell, At Altitude Gallery (Cape Charles, Virginia) (b).

Figure 4. Models of punctuated transgression in response to increasing accommodation in active coastal settings. Following catastrophic collapse in the "Runaway Transgression" model (left), barriers may re-establish upslope, closer to the mainland, where tidal prism is lessened due to the smaller backbarrier area, or may be lost entirely (FitzGerald et al. 2018). In deltaic, paraglacial, and thermokarst coastal settings, rapid backstepping and barrier drowning is cyclical, and associated with exhaustion of local sediment reservoirs from deltaic headlands, glacial deposits, and eroding permafrost, respectively. Figure parts are modified from (left to right) FitzGerald et al. (2008), Penland et al. (1988), Boyd et al. (1987), and Ruz et al. (1992), respectively.

Figure 5. Styles of passive transgression. a) saltmarsh migration into upland, terrestrial ecosystems including forests and farmland. b) elongation and salinization of estuaries, leading to the replacement of forested wetlands by freshwater marshes, and the replacement of freshwater marshes by salt marshes, c) migration of mangroves into landward marshes, which may be accompanied by peat collapse, d) managed retreat resulting in replacement of upland land uses by saline marshes.

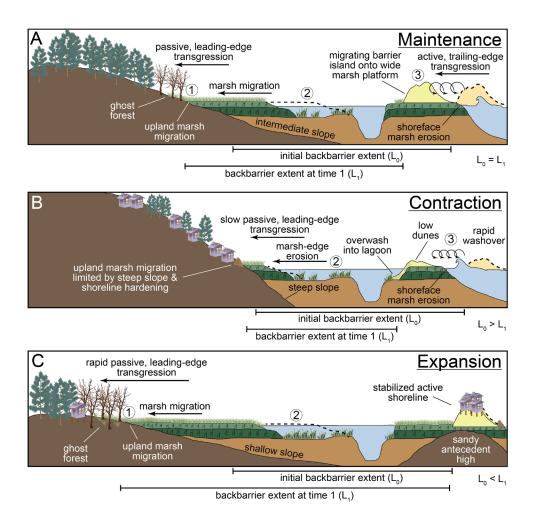
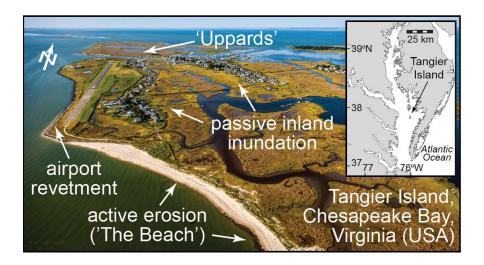



Figure 6. Competition between co-evolving passive transgression at the leading, upland margin, and active transgression at the trailing, seaward margin can lead to the (a) maintenance, (b) contraction, or (c) expansion of the coastal zone. Marshes migrate into terrestrial ecosystems and forested wetlands at rate proportional to topographic slope (1), whereas factors such as sediment supply, slope, and biophysical feedbacks control the rate of overwash, burial of intertidal ecosystems, and attendant barrier-island migration at the open-ocean shoreline (3). Between these margins, erosion, submergence, and/or accretion of intertidal environments can lead to backbarrier ecosystem transitions (2). Coastal infrastructure at the seaward margin favors expansion by reducing island migration, but infrastructure at the landward margin favors contraction by reducing marsh migration.

951

- 952 Figure 7. Aerial view of Tangier Island (Chesapeake Bay, Virginia, USA). Image credit: G.
- 953 Campbell, At Altitude Gallery (Cape Charles, Virginia) (with permission).