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The water content in the soil regulates exchanges between soil and
atmosphere, impacts plant livelihood, and determines the antecedent
condition for several natural hazards. Accurate soil moisture estimates are
key to applications such as natural hazard prediction, agriculture, and water
management. We explore how to best predict soil moisture at a high resolution
in the context of a changing climate. Physics-based hydrological models
are promising as they provide distributed soil moisture estimates and allow
prediction outside the range of prior observations. This is particularly important
considering that the climate is changing, and the available historical records
are often too short to capture extreme events. Unfortunately, these models
are extremely computationally expensive, which makes their use challenging,
especially when dealing with strong uncertainties. These characteristics make
them complementary to machine learning approaches, which rely on training
data quality/quantity but are typically computationally efficient. We first
demonstrate the ability of Convolutional Neural Networks (CNNs) to reproduce
soil moisture fields simulated by the hydrological model ParFlow-CLM. Then,
we show how these two approaches can be successfully combined to predict
future droughts not seen in the historical timeseries. We do this by generating
additional ParFlow-CLM simulations with altered forcing mimicking future
drought scenarios. Comparing the performance of CNN models trained on
historical forcing and CNN models trained also on simulations with altered
forcing reveals the potential of combining these two approaches. The CNN
can not only reproduce the moisture response to a given forcing but also learn
and predict the impact of altered forcing. Given the uncertainties in projected
climate change, we can create a limited number of representative ParFlow-
CLM simulations (ca. 25 min/water year on 9 CPUs for our case study), train
our CNNs, and use them to efficiently (seconds/water-year on 1 CPU) predict
additional water years/scenarios and improve our understanding of future
drought potential. This framework allows users to explore scenarios beyond
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past observation and tailor the training data to their application of interest (e.g.,
wet conditions for flooding, dry conditions for drought, etc...). With the trained
ML model they can rely on high resolution soil moisture estimates and explore
the impact of uncertainties.

KEYWORDS

machine learning, physics-based hydrological model, ParFlow-CLM, 2D soil moisture
field, convolutional neural networks, meteorological forcing scenarios

1. Introduction

Soil moisture, defined as the water content in the
unsaturated soil top layer, is an essential dynamic hydrological
property (e.g., Ochsner et al, 2013). Being at the interface
between land and atmosphere, it plays an important role in
the water and energy balance processes (e.g., Pauwels et al,
2001). It impacts the energy partitioning between latent and
sensible heat at the surface (e.g., Seneviratne et al., 2010) but
also affects the generation of surface runoff (e.g., Merz and
Plate, 1997) and several biogeochemical cycles (e.g., Seneviratne
et al., 2010). Knowledge of the soil moisture state is essential
for diverse applications which require high-resolution estimates
over large areas, in the field of natural hazards, but also for
management decisions (e.g., Dobriyal et al., 2012). For instance,
soil moisture estimates are frequently used for agricultural
drought monitoring (e.g., Narasimhan and Srinivasan, 2005;
Bolten et al., 2010; Martinez-Fernandez et al., 2016) or for the
prediction of natural hazards such as floods (e.g., Norbiato et al.,
2008; Massari et al., 2014) and landslides (e.g., Bogaard and
Greco, 2018; Mirus et al., 2018; Leonarduzzi et al., 2021).

Estimates of soil moisture retrieved from in-situ
measurements or remote-sensing (e.g., Sharma et al., 2018)
tend to be sparse or at a coarse resolution. Hydrological models
are often used to improve spatial coverage and resolution.
Furthermore, physics-based models allow us to go beyond past
observations, which is becoming more and more important
as we face unprecedented climatic conditions (e.g., IPCC,
2021) and can no longer rely only on past observations as
a reliable guide for the future. Improvements in computing
capabilities, and in particular, parallel computing, over
the past decades (e.g., Kollet and Maxwell, 2008; Bierkens
et al,, 2015; Kurtz et al., 2016; Kuffour et al., 2019) have
enabled the use of these hydrological models even over large
domains at high resolutions (e.g., Maxwell et al., 2015; O’'Neill
et al, 2021). However, running them multiple times (e.g.,
in sensitivity, uncertainty, or for future climate scenario
analysis) is still computationally challenging. At the same
time, Machine-Learning (ML) approaches are becoming more
widely used to address hydrological problems. ML models

are generally very computationally efficient, at least once they
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are set-up and trained, which makes them very attractive
to solve computationally expensive hydrological problems.
Nevertheless, their performances depend heavily on the quality
of the data used to train them. Historically hydrological ML
models have been trained on point observations (refer to
overview in Lange and Sippel, 2020; Shen et al., 2021). The
most widespread application of machine learning in hydrology
is for the prediction of streamflow with Long-Short Term
memory (LSTM) models (e.g., Kratzert et al, 2019; Chen
et al, 2020). However, few recent studies have shown the
potential of machine learning approaches also in the prediction
of distributed hydrological variables (ElSaadani et al., 2021;
Maxwell et al., 2021; Tran et al., 2021), and advanced techniques
have also been explored in the field of the weather forecast (e.g.,
Weyn et al., 2019) and in particular precipitation nowcasting
(e.g., Shi et al., 2008; Chen et al., 2020; Su et al., 2020).

Here, we take advantage of the complementary nature of
physics-based models, which are informative and suited for
experimenting beyond past observations but computationally
expensive, and ML models, which are very efficient but
dependent on training data quality and quantity. We use a
physics-based hydrological model to run simulations using both
historical forcing and forcing scenarios created by modifying
precipitation or temperature. We then train ML-models to
address the following questions:

e Can an ML model reproduce the soil moisture fields (2D)
and dynamics as simulated by a physics-based hydrological
model? If so, how accurately?

e Can such a tool be used to predict soil moisture fields with
lead times of up to 1 year?

e Can we successfully combine physics-based modeling and
machine learning to predict efficiently the hydrological
response to an unprecedented climate (i.e., different from
historical forcing)?

2. Methods

In this study, we focus on the headwater catchment
Upper Taylor to study whether physics-based hydrological
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FIGURE 1

Slopes in x and y directions, surface porosity, and surface permeability.

In (A) the mask of the Upper Colorado River Basin and the Taylor river catchment used in this analysis, as well as the USGS gage 09110000
(Taylor River at Almont) used for the definition of the domain. In (B), the elevation map at 1 km resolution (resolution of the analysis), and in (C),
the three static inputs used in the training of the machine learning models which are consistent with the corresponding ParFlow-CLM inputs:

modeling and machine learning can be successfully
combined to predict 2D fields of surface soil moisture.
Here, we introduce the study area (Section 2.1) and the
different components: the physics-based hydrological
model (ParFlow-CLM, Section 2.2) and the 2D and 3D
convolutional neural network (Section 2.3), their respective
set-ups and workflows, as well as the different experiments

carried out.

2.1. Case study: Taylor, CO

The chosen study area is the headwater catchment Taylor,
in the Upper Colorado River Basin (Figure 1). This catchment
is at an elevation of 2,451-3,958 m and has a surface area
of ca. 1,144 km?. It was defined by using the Taylor at
Almont USGS gage (id gage: 09110000) as the outlet. This
catchment is snowmelt dominated. The lowest average monthly
discharges are recorded in January/February, with values of
ca. 3 m3/s, after which there is a steady increase of discharge
and generally wetness in the catchment up until June when an
average discharge of ca. 25 m?/s is recorded. The Taylors is an
important mountain headwater system for flood control and
water supply.
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2.2. Physics-based model: ParFlow-CLM

To generate the reference simulations, we use the integrated
hydrological model ParFlow. It simultaneously solves 3D
Richards” equations in the subsurface and the 2D shallow water
equation (kinematic wave approximation) for surface flow. It
is coupled with the Common Land Model (CLM), which is
responsible for simulating the land surface processes (i.e., water
and energy balance), as described in Maxwell and Miller (2005)
and Kollet and Maxwell (2008): CLM obtains the soil moisture
distribution over the top 4 soil layers from ParFlow as well as the
hydrological forcing and returns to ParFlow the net infiltration
into the soil.

All the required input files, i.e., soil properties, landcover,
and meteorological forcing, are a subset of those used for Upper
Colorado River Basin ParFlow-CLM simulations in Tran et al.
(2020). The boundary conditions are set to no flow for all lateral
domain edges as well as the bottom of the domain, while the
overland flow is computed on the domain’s surface. The spatial
resolution of the different inputs and the solver grid is 1 x 1 km,
with 5 vertical layers of increasing thickness for a total depth of
102 m. The simulation is run with hourly timesteps for 36 water
years, from 1983 to 2018.

In addition to the historical simulations (Historical Forcing,
HF), we also generate 12 synthetic drought scenarios. We
decrease historical precipitation by a random multiplicative

frontiersin.org
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TABLE 1 The first 3 columns summarize the forcing scenarios run with ParFlow-CLM and used for the training and testing of the machine learning

models.
HF All
Scenario Temperature correction Precipitation correction Train Test Train Test
HF 0 X X
D1 0.5 0.8 x
D2 0.44 0.58 x
D3 0.51 0.63 x
D4 0.56 0.52 x
D5 0.62 0.83 x
D6 0.68 0.93 x
D7 045 0.81 x
D8 0.51 0.81 x
D9 0.25 0.9 x
D10 0.65 0.65 x
D11 0.8 0.65 X
D12 0.6 0.58 x x

The temperature correction is additive relative to historical forcing (HF) temperature, precipitation correction is a multiplicative factor relative to historical forcing. The forcing scenarios

are named Drought scenario 1-12 (D1-D12). The last 2 columns show which of the scenarios are used for the training and testing in the case in which only historical forcing is used for

training (HF), or also the additional forcing scenarios (all).

correction factor between 0.5 and 1 (Pscenario = Cp *
Phistoricalforcing) and increase the historical temperature by an
additive factor between 0 and 1° (Tscenario = Thistoricalforcing +
cr) for each of the historical water years. These corrections
are homogeneous in space and time and are, therefore,
the simplest way to have forcing which is still realistic (as
intermittency and spatial variability changes are kept consistent
with historical observations), but different from what was
previously observed. The corrections are designed to mimic a
drought climate scenario (scenarios and respective correction
factors are indicated in Table 1). All the other meteorological
inputs required by ParFlow-CLM (radiation, specific humidity,
wind speed, and atmospheric pressure) are kept as in the
corresponding historical water year.

ParFlow-CLM is run with all of the forcing scenarios for 10
water years, selected as the driest between 1983 and 2018 (lowest
annual precipitation and highest mean temperature, refer to
Figure 9). Additionally, the 12 additional forcing scenarios are
generated for each of those water years (i.e., 10 water years *
12 scenarios = 120 additional sets of forcing). In addition to
the input slopes, permeability, and porosity (Figure 1C), three
ParFlow-CLM outputs are utilized here for the training and
testing of the ML models: soil infiltration (gflx_infl in ParFlow-
CM), vegetation transpiration (qflx_tran_veg in ParFlow-CM),
and surface soil moisture. The latter is obtained by multiplying
the 2D fields of surface saturation simulated by ParFlow-CLM
by the surface porosity (top right in Figure 1C). We choose to
consider surface soil moisture as it controls exchanges to the
atmosphere, it is very dynamic, and it is comparable to the
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available product such as remote sensing measurements. For
most of the results, unless otherwise specified, only the 10 driest
years are considered.

2.3. Convolutional neural networks

We use the simulations introduced in Section 2.2 to train
and test two machine learning models designed to predict 2D
soil moisture fields. We choose to use Convolutional Neural
Network to take advantage of the strong spatial structures in
the soil moisture fields and the different variables affecting
its distribution. In fact, we choose the inputs to capture
the main drivers of soil moisture temporal changes (net
infiltration and transpiration) and the spatial variable properties
controlling water redistribution both vertically and laterally
(surface permeability and porosity, and slopes).

Building upon the model exploration carried out in Maxwell
et al. (2021), we select two CNNs: a 2D CNN consisting of
2 Convolution+ReLu layers, each followed by a Max Pooling
layer, and two fully connected linear layers (refer to Table
A3 in Maxwell et al., 2021), and a 3D CNN which has
the same architecture as the 2D model, but an additional
Convolution+ReLu first layer (refer to Table Al in Maxwell et al.,
2021).

The inputs for both CNNs are porosity, permeability, slopes
and net infiltration, transpiration, and soil moisture. For 3D
ParFlow-CLM variables (static variables and soil moisture), the
surface layer is considered. All dynamic variables are resampled

frontiersin.org
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Training/Testing workflows for 2D CNN
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FIGURE 2

(static) inputs are repeated for the 3rd (time) dimension.

Workflow for the training and testing of the 2D (left) and 3D (right) Convolutional Neural Network. For the 2D architecture at every timestep, the
static and dynamic inputs as well as the soil moisture simulated by ParFlow-CLM are fed to the model, while the soil moisture of the next day is
provided as the label (or predicted in testing mode). This operation is repeated on all days of the year. For the 3D architecture, the 3rd dimension
is time, and all static inputs (including soil moisture at day 0) and dynamic ones are fed to the model, while the label is the 3D moisture field. 2D

to daily resolution, by averaging the values in the hours within
each day. Furthermore, all inputs are scaled into 0:1 or -1:1
ranges to facilitate training of the CNNs.

The 2D CNN treats all timesteps (i.e., days in the year) as
independent and uses the soil moisture field on the following
day as the label (left panel in Figure 2). The 3D CNN is built
by considering time as the 3rd dimension. The 2D arrays of
static inputs, as well as the day-one ParFlow-CLM surface soil
moisture (initial conditions), are repeated in the 3rd dimension
to match the size of the dynamic inputs, of shape ny, nx, nt (with
y being South-North direction, x being West-East direction, and
t being time). The label for 3D CNN is the (ny, nx, nt) matrix of
soil moisture for the water year. Both these models are trained on
5 water years (1988, 1990, 2015, 2016, and 2018), and 3 different
water years (2000, 2012, and 2013) are used for validation and
early stopping. When the mean loss (smooth L1 loss) over the
last 100 epochs on the validation set is lower than the mean
loss over the antecedent 100 epochs, the training is stopped.
This is done to avoid over-fitting the machine learning model.
Every set-up and model configuration (i.e., model architecture
or training data set) is repeated 10-15 times to verify the
impact that initialization (initial weights) of the CNNs has on
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the final results and performances. Unless otherwise stated,
individual lines plotting one specific experiment in the results
represent the median among the ensemble of initialisations for a
given architecture.

First, we train both 2D and 3D CNNs with the ParFlow-CLM
simulations obtained with historical forcing. This allows us to
explore whether these models are capable of reproducing the soil
moisture fields as simulated by ParFlow-CLM and compare the
2D and 3D CNNs. Then, we explore the potential of combining
physics-based modeling and machine learning in the context of
a changing climate by training the CNN either only on historical
forcing simulations or both historical forcing and 11 of the
forcing scenarios (D1-D11 in Table 1) simulations, and testing
on the twelfth scenario (D12).

To compare the performances over the testing year (2002),
we use the Root Mean Square Difference (RMSD), the Nash-
Sutcliff Efficiency (NSE), and the Kling-Gupta efficiency (KGE,
Gupta et al., 2009), computed as follows:

N
_ X o MIA2
RMSD = | Z(PFl ML;) (1)

i=1
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FIGURE 3
In (A), the timeseries of ParFlow-CLM (PF) domain average in time for the water year 2002 (mean SMpr) and the simulated net infiltration
(gfix_infl-gflx_tran_veg ParFlow-CLM variables). Below, the timeseries of Root Mean Square Difference, Nash-Sutcliff Efficiency, and
Kling-Gupta Efficiency comparing each day the PF soil moisture field to that of the 2D Convolutional Neural Network (CNN) when predicting 1
day to the next (I Day) or the entire water year starting from day 0 (Recursive). The semi-transparent bands represent the 0.2-0.8 interquartile
ranges among repetition of the same ML configuration (i.e., different initialization). In (B), the temporal statistics comparing the timeseries at
each pixel of PF and the 2D CNN in the two configurations, as well as the persistent case in which PF soil moisture is assumed to remain
constant either over the entire water year (Persistent, t = 0, meaning that the soil moisture is assumed to remain as of 1st October of the chosen
water year) or 1 day to the next (Persistent, t-1).

N (PF; — ML;)?

NSE =1 — = 5
Y (PF; — upF)?

2

KGE=1—
Cov(PF, ML) 2 OML 2 WML z
(S ) -
OPFOML OPF UPF

where PF and ML are respectively the soil moisture as simulated

by ParFlow-CLM and the machine learning model, u is the
mean, o the standard deviation, and Cov the covariance.

All these statistics are computed both in space: i.e., the 2D
fields of PF and ML are compared at each timestep (i is the spatial
index, in xand y); and in time: i.e., the timeseries of PF and ML at
every lkmx 1km grid-cell within the catchment are compared (i
is the temporal index). The first operation results in a timeseries
of these statistical metrics while the latter is summarized in a
map (one value for each domain grid-cell).

3. Results

3.1. 2D convolutional neural network

We train the 2D CNN with historical forcing simulations
and test it on the water year 2002 (I Day: blue line in Figure 3A
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and left column in Figure 3B). Overall the CNN model performs
well, with the RMSD typically lower than 0.025, and NSE
and KGE higher than 0.9. Inspecting the temporal statistics
(Figure 3B, 2D 1 Day), we can see that the trained machine
learning model is performing well in most locations. NSE and
KGE seem to worsen at the river network, especially in upstream
locations (in the North-Western part of the domain, see the
mean soil moisture for the water year 2002 in Figure 7 to identify
the river network). Surprisingly, the performance of this CNN
model is worse than those obtained assuming persistence 1
day to the next, i.e., assuming that the soil moisture does not
change (Persistent (t-1) in Figures 3A,B). The explanation for
this result is that the soil moisture changes are so small within
most timesteps (changes over 1 day), that the CNN model
overestimates them, leading to larger RMSD. Proof of this is in
the performances during the rainfall events in the later part of
the water year, when sharp peaks in net infiltration, mirrored by
sharp peaks in soil moisture, lead to better performances of the
CNN model than in the persistent case.

Models for soil moisture predictions are typically used to
simulate over time periods of weeks or months, rather than
just the following day. We test the applicability of the CNN
model to longer-running simulations. We use the same trained
2D CNN model, but carry out the testing in a different way:
instead of using the soil moisture field at ¢ simulated by ParFlow-
CLM to make the t 4+ 1 prediction, we use the CNN output
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FIGURE 4

Comparison of soil moisture predictions with the trained 2D
CNN and persistence from the peak soil moisture. (A) shows the
timeseries of domain average soil moisture as simulated by
ParFlow-CLM since the peak soil moisture of Water Year and the
corresponding net infiltration (gflx_infl - gflx_tran_veg
ParFlow-CLM variables). In (B), the timeseries of Root Mean
Squared Differences for the 2D CNN model and the persistent
case, in which the 2D soil moisture at the peak is just assumed
to remain constant throughout the rest of the year. The markers
in (A,B) highlight the time of the snapshot (columns), as reported
on top of the figure. In (C), the snapshots of ParFlow-CLM soil
moisture fields at the different time steps, and in (D,E), the
corresponding RMSD maps for the 2D CNN (2D Recursive) and
assuming soil moisture does not change in time (Persistent
(t=0), soil moisture is assumed to remain constant as on the day
of the peak soil moisture).

field of the previous timestep (Recursive). That means that ¢
will be predicted by using the soil moisture field predicted
from t — 1 (i.e., on the left side of Figure 2, we replace SMpr
with SMcnn for t>0). This way, we are only using the soil
moisture field from PF on the first day of the year. If we look
at the performances in this experiment (Recursive: red lines in
Figure 3A and second column in Figure 3B), they expectedly
worsen compared to just predicting 1 day to the next. While
they still remain reasonably good (RMSD<0.1), all the statistical
measures decline. Furthermore, the sensitivity of the results
to the initial conditions increases (refer to semi-transparent
regions around the median line in Figure 3A, which corresponds
to the 0.2-0.8 quantile band of the trained 2D CNN models). The
corresponding persistence case (Persistent (t=0) in Figures 3A,B)
is now performing much worse, especially during/after the
snowmelt season when soil moisture peaks and then return to
drier conditions, more similar to the beginning of the water
year. The same is true also looking at the spatial statistics map
(Figure 3B), where the RMSD is highest, especially in the Eastern
part of the catchment. The NSE is smaller than 0 over the entire
catchment and KGE is not available (correlation with a constant
cannot be computed).
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To further study the performances of the 2D CNN with
increasing lead time, we analyse after how many days the 2D
CNN outperforms the persistence case. We focus on the latter
part of the year, following the peak of domain averaged soil
moisture (Figure 4). We compare the RMSD of the 2D CNN and
the persistent case as a function of the number of days since
the peak soil moisture. The crossover in RMSD occurs after
12 days for the water year 2002 and 7 days for the water year
2017 (other “drought” years not used in training/validation).
For wetter years, which the model has not seen in training as
the focus was on drier/hotter years, the crossover occurs slightly
later, after 20 (water year 1994) and 26 days (water year 2014).

3.2. 3D convolutional neural network

The 2D CNN designed here learns the behavior from one
timestep to the next and while there is some natural encoding
of the temporal behavior in the spatial patterns, this is not
enough to persist over long times. Each day, only the static
and dynamic inputs at the current time are used to predict the
next day’s soil moisture. The reasoning behind this choice is
that also ParFlow-CLM uses only the current meteorological
forcing to simulate each timestep and encodes the model
temporal memory in the 3D subsurface states, but because here
we are only looking at surface soil moisture we are missing
other variables which represent the "memory" of ParFlow-
CLM (deeper soil moisture/water pressure). To account for the
temporal dimension, we decide to train a 3D CNN, where time
is the 3rd dimension. This experiment is comparable to the 2D
CNN recursive case, as only soil moisture on the first day is input
to the neural network.

The 3D CNN improves model performance compared to the
2D CNN in both space and time (Figure 5). All the statistics
considered (RMSD, NSE, and KGE) are better for the 3D CNN
model for most of the water year (Figure 5A). Furthermore,
the performances are superior also over a larger part of the
domain (Figure 5B). The 3D CNN model is performing well
over the entire catchment, reproducing the gradual decline in
soil moisture during winter, better capturing both the high soil
moisture during snowmelt (central column in Figure 6, when
2D CNN underestimates wetness, especially in the North-East),
and also the low soil moisture toward the latter part of the
water year (right column in Figure 6; while both models seem
to overestimate wetness, the overestimation is more evident for
the 2D CNNgs).

Over the river network (refer to mean soil moisture as
simulated by ParFlow-CLM in Figure 7), the performances drop,
mostly due to the fact that ParFlow-CLM surface soil moisture
is constant, at saturation, over the entire water year. This is
particularly evident looking at the timeseries of ParFlow-CLM
and CNN soil moisture for some selected points within the
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FIGURE 5
In (A) the timeseries of ParFlow-CLM (PF) domain average in time for water year 2002 (mean SMpr) and the simulated net infiltration
(gfix_infl-gflx_tran_veg ParFlow-CLM variables). Below the timeseries of Root Mean Square Difference, Nash-Sutcliff Efficiency, and Kling-Gupta
Efficiency comparing the PF mean to that of the 2D Convolutional Neural Network (CNN) (2D) or the 3D CNN (3D). The semi-transparent bands
represent the 0.2-0.8 interquantile ranges among repetition of the same ML configuration (i.e., different initialization). In (B) the temporal
statistics comparing the timeseries at each pixel of PF and the 2D and 3D CNNs.
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FIGURE 6

Comparison of soil moisture fields at 3 different timestamps
(t=100, 240, 340 d) in Water Year 2002 (day O is the 1st of
October 2001). On top the timeseries of the ParFlow-CLM soil
moisture field average, with a red marker indicating the
timestamp, then the fields simulated by ParFlow-CLM, those
produced by the 2D trained CNN model, and at the bottom
those produced by the 3D trained CNN model.

catchment (refer to Location B in Figure 7). As the ParFlow-
CLM soil moisture remains stable at its maximum, the NSE
and KGE drop to very low (KGE) or very negative (NSE)

Frontiersin Water

values. Looking at soil moisture timeseries for some chosen
representative locations (Figure 7), it can be seen how the
2D CNN seems to smooth out the soil moisture response,
overestimating soil moisture during the drying phase at the
beginning of the year and underestimating the snowmelt
induced soil moisture peak (consistently with what shown
in Figure 6). The 3D CNN seems to match well all parts of
the water year soil moisture changes, but anticipate the soil
moisture increase (especially at locations A and C in Figure 7).
Furthermore, it also introduces a lot of variability (fluctuations
around a “constant” value) in the locations where soil moisture
is at its maximum (saturation, Location B). The latter period
of the water year, following the soil moisture peak, is very
well captured, especially by the 3D CNN, with the exception
of the river network locations (e.g., Location B), where a
decrease in soil moisture is introduced which is not present
in ParFlow-CLM simulations. Comparing the timeseries of soil
moisture of the CNN models with the long term mean timeseries
(computed considering all 36 years, 1983-2018), facilitates the
understanding of the behavior of the two models. The 2D CNN
model treats every day as completely independent and sees
only 1-day timesteps. It, therefore, responds very strongly to
forcing (net infiltration in Figure 7). On the other hand, the 3D
CNN sees all timesteps within the year and learns much better
the seasonal patterns. In other words, the 3D CNN is biased
toward the mean and responds less strongly to individual forcing
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FIGURE 7
Soil moisture timeseries at the 4 locations (A, B, C, and D) identified in the map of average Parflow-CLM soil moisture for the water year 2002.
These are arbitrary locations selected to show the model behavior at different locations (e.g., B is on the river network, D is upstream, A is further
from the river network, and C is next to an upstream contributor). The timeseries of ParFlow-CLM (continuous black line) are compared to the
estimates with a 2D convolutional neural network (2D) and a 3D convolutional neural network. The semi-transparent lines represent the
different ML models trained (different weight initialization), while the darker lines show the median of those lines for the 2D and 3D models. The
corresponding performances are reported in the Table. The dashed line represents the long term mean timeseries of soil moisture simulated by
ParFlow-CLM at each location, computed over the 36 years available (i.e., for each day, the mean over the 36 years for that day).

events. This explains the superior performances of the 3D CNN
in the snowmelt season. It also explains the earlier peak for
some of the locations, where soil moisture responds to positive
infiltration with a delay not present in training years, and the
more smoothed behavior toward the end of the water year, where
the 2D CNN responds better to strong rainfall events.

3.3. Forcing scenarios

Finally, we test the potential of combining physics-based
modeling and machine learning in the context of a changing
climate by looking at the performances when predicting a
climate outside the range of that observed in training. We
focus on the 3D CNN due to its superior performances but
the same results could also be observed also with the 2D
CNN model. We compare two sets of 3D CNN models, with
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the same architecture but trained either only on historical
forcing ParFlow-CLM simulations, or also on those with altered
forcing (11 scenarios, mimicking drought scenarios by randomly
decreasing precipitation and increasing temperature).

Model performances with the additional training scenarios
are superior both in time and space (Figure 8). In fact, the
RMSD is lower, and NSE and KGE are higher over the entire
water year when training not only on historical forcing and
the performances are also improved over a large portion of
the domain. The 3D CNN model trained only on historical
forcing performs worse on the testing scenario used here (D12
in Table 1) rather than on the historical forcing, both for the
water year 2002 (comparing the yellow line in Figures 5, 8).
This means that indeed when experiencing a climate outside
the range of the training data, the performances worsen. The
same is not true if the CNN model is also exposed to drought
scenario simulations in the training. In fact, the performances
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In (A), the timeseries of ParFlow-CLM (PF) domain average in time for the water year 2002 and the testing forcing scenario (mean SMpf) and the
simulated net infiltration (gflx_infl-gflx_tran_veg ParFlow-CLM variables). Below, the timeseries of Root Mean Square Difference, Nash-Sutcliff
Efficiency, and Kling-Gupta Efficiency comparing the PF mean to that of the 3D Convolutional Neural Network (CNN) trained only on the
historical forcing simulations (Historical Forcing, HF) or also on the additional forcing scenarios (all). The semi-transparent bands represent the
0.2-0.8 interquartile ranges among repetitions of the same ML configuration (i.e., different initialization). In (B), the temporal statistics comparing
the timeseries at each pixel of PF and the 3D CNN trained just on historical forcing simulations or also on those with additional forcing scenarios.

are better in the testing even if the specific testing scenario is not
used in training (training is done with scenarios D1-D11 and
historical forcing).

4. Discussion

In this work, we explore how machine learning and physics-
based hydrological modeling can be successfully combined
to predict efficiently 2D moisture fields. The former being
strongly dependent on the training/input data quality and
quantity but extremely computationally efficient makes it very
compatible with a physics-based model which is informative
but computationally expensive. For the case study presented
here, ParFlow-CLM runs one water year simulation in ca. 25
min when using 9 CPUS. We demonstrate how a CNN can be
trained by using the simulations generated with ParFlow-CLM
and reproducing its soil moisture estimates. Making a 1 water
year prediction with the trained ML models takes few seconds
on one CPU. As a reference, the performances of a very simple
water balance model based on the same inputs as the CNN,
are much worse than the ones obtained here with the machine
learning models (RMSD>0.2 and negative NSE and KGE).

Having an informative physics-based model, allows us to
go beyond past observations and create simulations that are
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generated using forcing altered to resemble expectations of
the future climate. With this training set, the CNN model
not only learns how to emulate ParFlow-CLM response to
forcing but also how changes in forcing manifest in the soil
moisture response. In fact, the model has learned what the
effect of an increase in temperature and decrease in precipitation
have on soil moisture. The CNN model can then be used
to better predict the soil moisture response to climate which
has similar properties (in this case, reduced precipitation and
increased temperature), but it is different from what was seen in
training. This tool can be used to explore many different possible
scenarios, in the context of an uncertain future, which would
be computationally unfeasible with ParFlow-CLM directly. It
is interesting to notice that the two models (trained on just
historical forcing or also on the additional forcing scenarios)
perform very similarly if tested on a validation year (i.e., water
year that has not been used in training) but with historical
forcing (refer to Supplementary Figure S2). This confirms that
indeed exposing the model to a “different climate” is not simply
improving the model because it is trained on more data (5 water
years * 11 forcing scenarios = 55 extra water years to train on),
but it’s also learning the impact of increasing temperature and
decreasing precipitation. In the testing scenario (D12) which
neither model has seen in training, the superiority of the one
that has seen altered forcing is evident.
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The mean root mean square error (RMSD, first row of plots), Nash-Sutcliffe Efficiency (NSE, middle row of plots), and Klige-Gupta Efficiency
(KGE, lower row of plots) as a function of the total precipitation (left column of plots) or the mean hourly temperature (right column of plots)
computed for each water year. The color identifies water years used in training, validation, or testing. The water year 2002, used for all the
results reported here is marked blue. Black lines represent the trends of a linear fit.

One of the biggest limitations of this study is the
choice of forcing scenarios. These are chosen to reproduce a
plausible (intra-annual variability) field of forcing variables with
altered statistics (changing the precipitation and temperature
homogeneously in space and time). This choice allows for
a controlled experiment, where only a small perturbation is
applied, but the resulting scenarios are not actually realistic
as future climates. More complex changes are expected in the
future, with temporally and spatially heterogeneous impacts on
precipitation and temperature, but also the other considered
meteorological inputs (e.g., Trenberth, 2005). This could
be considered in future work, by using weather generators
(e.g., Semenov and Barrow, 1997; Kilsby et al, 2007; Peleg
et al., 2017), which produce realistic fields of the different
meteorological variables, provided (some) statistical properties.
Using more realistic future climate scenarios, that are not just
homogeneously modified, would probably harden the training
of the CNNs to the impact that changing the climate has
on soil moisture and require more training simulations with
altered forcing.

The same conclusions of the scenarios experiment are also
true for wetter or drier water years. The focus here is on droughts
and therefore we select drier years (higher mean temperature
and lower mean precipitation) between 1983 and 2018. If the
trained model is used to predict wetter years, the performances
worsen. To show this, while it was not the purpose of the study
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presented here, we look at the performances of the trained 3D
CNN when we predict all 36 water years available (Figure 9,
refer to Supplementary Figure S1). While a lot of scattering can
be observed the trends are clear across all statistical metrics:
the performances worsen with increasing total precipitation
and decreasing mean hourly temperature. This confirms once
again the importance of the training data quality and specifically
whether they are representative (ergodicity). Similar conclusions
can be drawn by looking at the comparison of the performances
using the 3D CNN or the long term mean (LTM) timeseries
(Figure 10). The 3D CNN is outperforming the LTM for drier
years (lower yearly precipitation) but is performing worse on
wetter ones. Where CNN is really outperforming is on the
scenarios, which are much drier than the "average year". These
conclusions are consistent with the out-of-sample testing results
in Maxwell et al. (2021). When developing a framework such
as the one presented here, it is important not only to ensure
that enough training data are generated with the physics-based
model, but also that those are tailored to the specific application
of interest and intended use.

The benefits of the combination of physics based modeling
and machine learning have been shown here in the context of a
changing climate but they extend to other potential applications
which require a large number of simulations such as improving
physics based models parametrisation (refer to e.g., Maxwell
etal., 2021).
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FIGURE 10
The mean root mean square error (RMSD, first row of plots),
Nash-Sutcliffe Efficiency (NSE, middle row of plots), and
Klige-Gupta Efficiency (KGE, lower row of plots) as a function of
the total precipitation (left column of plots) or the mean hourly
temperature (right column of plots) computed for each water
year. The color identifies water years used in training, validation,
and testing. The water year 2002, used for all the results
reported here is marked blue. Black lines represent the trends of
a linear fit.

5. Conclusion

In this manuscript, we show how convolutional neural
networks can be trained to efficiently predict soil moisture fields
as simulated by the physics-based hydrological model ParFlow-
CLM. Furthermore, we show how these complementary
approaches can be successfully combined to compensate for
the computational costs of the physics-based model and the
need for tailored training data to properly train a machine
learning approach to predict an unprecedented climate. The
main findings of this study are:

e Convolutional Neural Networks (CNNs) can be trained
and used to predict the soil moisture fields simulated by
ParFlow-CLM,

e 3D CNNs, which consider time as the third dimension,
outperform 2D CNN both in space in time, better capturing
the soil moisture dynamics in space and time, but the 2D
CNN reproduced better the soil moisture peaks following
strong rainfall events (i.e., rapid soil moisture changes),

e Using the physics-based model to generate additional
simulations representative of the expected future changes,
can improve the prediction of a “new” forcing scenario
(unseen in the training),
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e CNNs can predict 2D soil moisture fields very efficiently,
within just few seconds for an entire water year (ca. 500
times faster than running ParFlow-CLM),

e The representativeness of the training data is key for the
success of the CNNs and ParFlow-CLM simulations should
be tailored to the specific application of interest (here
drought conditions).

Although future climate scenarios considered in this study
are not realistic, the results are proof of how complementary
these two approaches are and provide a framework that could
be further developed by improving forcing scenarios e.g., with
weather generators, and tailoring the training simulations to any
application of interest.
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