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ABSTRACT
Coevolving teams of agents promises effective solutions for many
coordination tasks such as search and rescue missions or deep
ocean exploration. Good team performance in such domains gener-
ally relies on agents discovering complex joint policies, which is
particularly difficult when the fitness functions are sparse (where
many joint policies return the same or even zero fitness values). In
this paper, we introduce Novelty Seeking Multiagent Evolutionary
Reinforcement Learning (NS-MERL), which enables agents to more
efficiently explore their joint strategy space. The key insight of
NS-MERL is to promote good exploratory behaviors for individual
agents using a dense, novelty-based fitness function. Though the
overall team-level performance is still evaluated via a sparse fitness
function, agents using NS-MERL more efficiently explore their joint
action space and more readily discover good joint policies. Our
results in complex coordination tasks show that teams of agents
trained with NS-MERL perform significantly better than agents
trained solely with task-specific fitnesses.
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1 INTRODUCTION
Multiagent systems (MAS) have been successfully applied to many
real-world applications from air-traffic management [9], to multi-
UAV surveillance systems [1]. In these applications, it is critical for
agents to closely coordinate their actions so that they can achieve
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their common objective. This makes it difficult to discover desirable
joint actions because all agents need to take the correct actions
simultaneously. Evolutionary MAS algorithms that directly max-
imize a scalar—and team-based—fitness often struggle to explore
the joint-state space sufficiently to unearth these key joint-actions.

Novelty-search methods [7, 14, 15, 19, 36] alleviate this problem
by explicitly searching for diverse behaviors. They therefore cover
a larger portion of the solution space than would methods directly
aimed at achieving a particular objective. However, they require a
pre-defined diversity metric to distinguish behaviors based on their
contribution to diversity. In MAS, deriving a diversity metric that
balances the need to maintain both similar and distinct behaviors in
a population is problematic, and incorrect choices can lead signifi-
cant reduction of behavioral diversity. Evolutionary Reinforcement
Learning (ERL) [29] aims to balance this by using a policy-gradient
algorithm to focus on locally defined objectives. The Evolutionary
Algorithm (EA) then incorporates the Reinforcement Learning (RL)
policies into its population to ensure both local and global objec-
tives are met. However, this approach is brittle and fails to learn
coordination in complex tasks, primarily due to the vastly differing
convergences [21, 23, 27, 28] between the RL and EA modules.

In this paper, we introduce Novelty Seeking Multiagent Evo-
lutionary Reinforcement Learning (NS-MERL) that explores the
agents’ joint-state space through both providing diversity-based
fitnesses to the gradient-based algorithms and seeking to increase
diversity directly during evolutionary learning.

NS-MERL relies on a count-based estimate of the novelty of
states to construct the fitness function. Individually exploring the
state space more widely leads agents to discover those joint-states
that represent coordination with their teammates. This increases
the likelihood of receiving non-zero team fitness values.

Our main contribution is to balance exploration at agent-level
and exploitation at team-level within the framework of Multiagent
ERL (MERL) [29]. NS-MERL provides novelty-seeking fitness shap-
ing forMAS that enables agents to explore their joint behavior space
efficiently. Our experiments show that our agents out-perform cur-
rent state-of-the-art methods in the tightly-coupled multi-rover
exploration domain where agents need to coordinate to observe
points of interest (POIs). We show that our fitnesses (which encour-
age exploration of the environment rather than task performance)
result in an evolutionary search which is resilient to increasing task
complexity. The performance of behaviors learned with the aide
of our method is robust to increases in the numbers of agents, and
the degree to which the success of an individual agent’s strategy
depend on the strategies of its teammates.
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2 BACKGROUND AND RELATED WORK
We consider cooperative multiagent tasks formalized as decentral-
ized partially-observable Markov decision processes or Dec-POMDPs
[33]. We focus specifically on tightly-coupled tasks, by which tasks
in which several agents must select compatible strategies in order
to succeed [2, 10, 22, 26, 30]. Here the coupling factor of a task
will refer to the number of agents that need to coordinate their
strategies to solve the task (or a specific sub-task).

A Dec-POMDP is defined by a tuple J = {𝑁,S,A, 𝑃,O,𝐺, 𝑏0, ℎ,
𝑙, 𝜋}, where 𝑁 is the number of agents in the environment, S
is the state space, A =

∏
𝑖∈𝑁 A𝑖 is the joint action space and

O =
∏

𝑖∈𝑁 O𝑖 is the joint observation space. 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is the
state transition distribution, 𝑂 (𝑜𝑡 |𝑠 , 𝑎) is the joint observation dis-
tribution, and 𝑏0 (𝑠0) is the initial state distribution. All episodes
end after 𝑙 steps, with a total fitness of 𝐺 =

∑ℎ−1
𝑡=0 𝐺 (𝑠𝑡 ), where 𝐺

is the per-step fitness function. However, 𝐺 is often available at
the end of 𝑙 steps, so it is a sparse fitness. Agents do not directly
observe the state, but instead only have access to their individual
observations 𝑜𝑡

𝑖
. Therefore, agent 𝑖 ∈ 𝑁 can only condition their

actions on their individual action-observation history up to time
𝑡 , which we denote as ℎ𝑡

𝑖
= (𝑜0

𝑖
, 𝑎0

𝑖
, . . . , 𝑜𝑡−1

𝑖
, 𝑎𝑡−1

𝑖
, 𝑜𝑡

𝑖
). As states,

observations and actions may all be stochastic, the fitness of a team
is defined as the expectation of 𝐺 . Our goal in Dec-POMDPs is to
learn a joint policy 𝜋 = (𝜋1, . . . , 𝜋𝑁 ) for all agents that maximizes
this expectation.

2.1 Evolutionary Reinforcement Learning
Evolutionary algorithms (EAs) are advantageous in reinforcement
learning (RL) tasks with sparse fitness functions and/or challenging
credit assignment problems, as their behavior depends only on the
final expected fitness of a policy [35]. At the same time, in high-
dimensional policy spaces they can be slow to converge relative to
RL methods that leverage the structural information provided by
the gradients of the policy. The evolutionary reinforcement learning
(ERL) framework [23] combines the benefits of both approaches,
utilizing a gradient-based RL algorithm to train policies based on
dense, heuristic fitness functions [24], while using and EA to fine-
tune the final, sparse fitness of the policy.

Multiagent Evolutionary Reinforcement Learning (MERL) [29]
applies ERL to MAS, with the EA optimizing the true, global fitness
function, while the RL algorithm learns from denser and more infor-
mative local fitness functions defined for each individual agent. Our
implementation of MERL uses the same configuration as [29], and
we use the same neuroevolution mechanism [16] to optimize the
global fitness of the joint policy. ERL (and by extension MERL) rely
on dense, task-specific fitness functions that can be thought of as
heuristics to help the agents learn useful skills and representations.
In this work, we consider how task-independent individual fitness
functions can be used to encourage good exploratory behavior. We
summarize the MERL framework in Figure 1.

2.2 Related Work
In the literature, novelty can be searched at various levels. On one
hand, some works [11, 14, 20, 36] achieve diversity within a set
of behaviors by searching in the action-space. On the other hand,
there is a good amount of research, e.g. [3, 4, 7, 39], achieving

exploration by searching for novel states that are observed not
as frequently as the other visited states. Overall, although these
techniques search for novelty at different levels, they all aim to
enhance the information gain during training.

In our method, the main driving force of exploration is count-
based exploration. It is a popular novelty search method that pio-
neered the literature on intrinsic motivation [5]. These methods
often aim to reduce the frequency of states throughout an episode
[7] or training [4] (or both), so that agents are encouraged to de-
tect more novel states or state transitions that allow them to learn
behaviors that are of high fitness. Depending on the nature of a
task, some state transitions can be more significant than the others.
These events are often referred as salient events and these events
can be incorporated into the count function counting the number of
times a state has been visited through the errors in the prediction of
salient events and significant changes during state transitions [6, 7].
In continuous domains where we might have raw images, sensor
values, or other high-dimensional state-spaces, applying a standard
count-based method does not function well, since most states will
likely occur once. Some methods [3, 4, 7, 17, 34, 39] use different
types of discretization techniques, such as dynamic hashing [39],
nearest neighbor search [4] or with density models [34]. However,
counting states (or observations) throughout an episode does not
consider occurrences of the same states, the work [4] counts the
occurrences of states during training as well, so that their algorithm
is able to compare different episodes according to their novelty. In
MAS, counting states is of difficulties, due to the dynamic nature of
state-space affected by the actions of multiple agents. In addition,
every agent or sub-teams of agents can desire different set of novel
states and keeping a track of this during training is another chal-
lenging avenue. In the RL framework, count-based fitnesses have a
non-Markovian nature, but it has been shown that they help agents
reduce the uncertainty about the environment in the work [7].

In the algorithms searching for novel behaviors explicitly during
training has been gaining traction especially in the recent years.
Among EA-based methods, Quality Diversity (QD) methods offer a
path to novelty search by specifically searching for diverse behav-
iors that are of high quality [11, 31, 36]. However, for multiagent
problems, searching exhaustively through a large behavior space is
often not tractable and requires the acceptance of significant loss
of information by reducing the dimensions of a behavior space. In
continuous RL settings, some works utilized information theory, e.g.
[14, 20, 43], to define novelty through a more probabilistic metric.

3 NOVELTY-SEEKING AGENTS
While dense local fitness functions can help individual agents learn
useful skills, they do not necessarily address the challenge of coor-
dination between agents in tightly-coupled tasks. For example, in
the Rover domain described in Section 4.1, we can provide a fitness
to agents for moving towards the nearest point of interest (POI), but
this may conflict with the need for multiple rovers to converge on a
single POI, or the need to spread out to cover multiple POIs. In order
to identify these types of coordinated behaviors, during training
the agents need to effectively explore the joint strategy space. In
this section we describe how an intra-episode novelty-seeking local
fitness can be used to encourage such exploration.
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Figure 1: MERL with novelty seeking agents. Individual poli-
cies are trained via local fitnesses. The final joint policies are
optimized via an EA optimizing the lobal fitness. [29]

3.1 Novelty-Seeking Fitness Function
A novelty-seeking local fitness function encourages each agent to
efficiently explore its own observation space within a single episode.
For discrete observation spaces, the fitness for agent 𝑖 is

𝑓ns (ℎ𝑡𝑖 ) =
1

count(𝑜𝑡
𝑖
, ℎ𝑡

𝑖
)

(1)

where count(𝑜𝑡
𝑖
, ℎ𝑡

𝑖
) is the number of times 𝑖’s most recent observa-

tion 𝑜𝑡
𝑖
occurs in its observation history up to time 𝑡 . Therefore, if

𝑜𝑡
𝑖
has never been observed previously, 𝑓ns (ℎ𝑡𝑖 ) = 1. This function is

maximized by policies that cover as much of the observation space
as possible within an episode. For continuous, vectored observa-
tion spaces, we found that using a coarse discretization to estimate
count(𝑜𝑡

𝑖
, ℎ𝑡

𝑖
) was sufficient to encourage exploration. This mod-

ification is only applied to compute the fitness value, the states
provided to the policy networks do not go through this change.

As maximizing intra-episode novelty alone may not lead to ef-
fective behavior under the global fitness function, we combine the
novelty-seeking fitness with a task-specific heuristic local fitness
function. Heuristic fitnesses ease the search by rewarding specific
states, so they improve the effectiveness of the search in S [8]. The
resulting fitness function encourages exploration over salient parts
of the state space. Let 𝑉 (ℎ) be a heuristic local fitness function for
agent 𝑖 , we then define the combined local fitness

𝑓salient (ℎ𝑡𝑖 ) =
{
𝑓ns (ℎ𝑡𝑖 )𝑉 (ℎ

𝑡
𝑖
), if 𝑉 (ℎ𝑡

𝑖
) > 1

𝑓ns (ℎ𝑡𝑖 ), otherwise
(2)

Incorporating this information via multiplication allows agents
to experience the values of salient events during an episode. This
leads agents to experience a saliency as a value discounting over
time to encourage exploration of other salient events.While the true
state 𝑠𝑡 is not observable during deployment, and so the policies
themselves cannot depend on it, it is available during training, and
so in principle the heuristic function could depend on 𝑠𝑡 directly. If
𝑉 (ℎ𝑡

𝑖
) is less than 1, the value needs to be scaled in some domians.

Difference Evaluation Functions. As the heuristic fitness func-
tions do not directly capture a team’s ability to coordinate, we also
consider combining the novelty-seeking fitness with a signal de-
rived from the global fitness. We use difference evaluation functions
(DEFs) [2] to evaluate each agent based on its individual contri-
bution to the global (team) fitness. DEFs compute the difference
between the true global fitness and the fitness that would have been
achieved without the contribution of a given agent, and have been
shown to be effective in a number of different settings [2, 12, 32, 40–
42]. While DEFs help each agent evaluate their own actions, they
are only non-zero when the global fitness is also non-zero, and so
are as sparse as the global fitness. We therefore combine them with
both the novelty-seeking and heuristic fitness functions. In general,
the difference evaluation function for agent 𝑖 ∈ 𝑁 is

𝐷𝑖 (𝑠) = 𝐺 (𝑠) −𝐺 (𝑠−𝑖 ∪ 𝑐𝑖 ) (3)

where 𝑠−𝑖 ∪ 𝑐𝑖 is a version of state 𝑠 in which agent 𝑖’s contri-
bution has been removed and replaced with their counterfactual
contribution under the default behavior 𝑐𝑖 . In our experiments this
is calculated by simply removing agent 𝑖 from the environment
altogether. The local fitness incorporating the DEF is then

𝑓 𝑖𝐷 (𝑠
𝑡 , ℎ𝑡𝑖 ) =

{
𝑓𝑠𝑎𝑙𝑖𝑒𝑛𝑡 ((ℎ𝑡𝑖 )𝛽𝐷𝑖 (𝑠𝑡 ), if 𝐷𝑖 (𝑠𝑡 ) > 0
𝑓𝑠𝑎𝑙𝑖𝑒𝑛𝑡 ((ℎ𝑡𝑖 ), otherwise

(4)

where 𝛽 is scaling factor to not interrupt the effect of salient events.
DEFs may be a value between 0 and 1, so we scale them to a value
that does not decrease the value obtained by 𝑓salient (ℎ𝑡𝑖 ). As the
DEF will typically be sparse, we only include it when its value
is non-zero. 𝛽 is set to 10 for all experiments. We summarize the
calculation of local fitness for a single agent in Algorithm 1

Algorithm 1: Computes a sequence of local novelty-
seeking fitnesses for agent 𝑖 over a single episode.
1 Initialize state 𝑠0, history ℎ0

𝑖
= {𝑜0

𝑖
}.

2 for 𝑡 ∈ [0, 𝑙 − 1] do
3 Retrieve action 𝑎𝑡

𝑖
, state 𝑠𝑡+1 and observation 𝑜𝑡+1

𝑖

4 count← 1
5 for 𝑜𝑖 ∈ ℎ𝑡𝑖 do
6 if quantize(𝑜𝑡+1

𝑖
) == quantize(𝑜𝑖 ) then

7 count← count + 1

8 fitness← 1
count

9 ℎ𝑡+1
𝑖
← ℎ𝑡

𝑖
∪ {𝑎𝑡

𝑖
, 𝑜𝑡+1

𝑖
}

10 if 𝑉 (ℎ𝑡+1
𝑖
) then

11 fitness← fitness ∗𝑉 (ℎ𝑡+1
𝑖
) (from Eq. 2)

12 if use_DEF and 𝐷𝑖 (𝑠𝑡+1) > 0 then
13 fitness← fitness ∗ 𝐷𝑖 (𝑠𝑡+1) (from Eq. 4)
14 Yield fitness

3.2 MERL Algorithm
A key idea behind our approach is that efficient exploration of the
joint strategy space can be achieved by encouraging agents to ex-
plore their individual strategy spaces. Good exploratory behavior,
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however, is often very different from the behavior that maximizes
team-level fitness. The MERL algorithm provides a natural frame-
work for resolving this conflict. Within our implementation of
MERL, the gradient-based TD3 algorithm [18] learns exploratory
policies for individual agents based on our novelty-seeking fitness
function, while the evolutionary algorithm [16] coordinates team-
level behavior to maximize global fitness.

Algorithm 2: Multiagent Evolutionary Reinforcement
Learning (MERL) [29] with Novelty Shaped Fitnesses
1 Initialize a population of𝑀 multi-head actor teams each

having 𝑁 agents, 𝑝𝑜𝑝𝜋 (see Figure 1)
2 Initialize a set of N replay buffers and N local TD3 agents
3 for 𝑔𝑒𝑛 ∈ [1,∞] do
4 foreach team 𝜋 ∈ 𝑝𝑜𝑝𝜋 do
5 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 0
6 for 𝑡 ∈ [0,𝑇 𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠] do
7 foreach 𝑎𝑔𝑒𝑛𝑡 𝐴 ∈ 𝐴1, . . . , 𝐴𝑁 do
8 Compute local fitness, 𝑓 𝑡 ,
9 (via Algorithm 1)

10 foreach ReplayBuffer 𝑅 ∈ 𝑅1, . . . , 𝑅𝑁 do
11 append (𝑜𝑡 , 𝑜𝑡+1, 𝑎𝑡 , 𝑓 𝑡 ) to R

12 Compute team fitness 𝐺
13 Assign 𝐺 as 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 of 𝑡𝑒𝑎𝑚 𝜋

14 // Evolve 𝑝𝑜𝑝𝜋
15 Rank lineage according to the fitness of each 𝑡𝑒𝑎𝑚

16 Sample elites via a roulette wheel [25]
17 Mutate Sampled Elites
18 Return the 𝐶ℎ𝑎𝑚𝑝𝑖𝑜𝑛

19 Send the policy gradient team to 𝑝𝑜𝑝𝜋 replace with the
team having the lowest fitness

In Algorithm 2, each team is represented by a multi-headed actor
with 𝑁 heads, which allows each agent to learn a distinct policy,
while still sharing learned state representations. MERL maintains
an evolutionary population pop𝜋 of 𝑀 teams, along with a team
policy that is updated using TD3. We define separate replay buffers
for each agent, which store histories of observations, actions, and
fitness signals on which the RL algorithmwill train. A mini-batch of
each agent’s transitions, (𝑜𝑡 , 𝑜𝑡+1, 𝑎𝑡 , 𝑓 𝑡 ), from each team of 𝑝𝑜𝑝𝜋 ,
are stored in each agent’s replay buffer. In each generation of the
EA, each member of the population is evaluated by “rolling-out”
the joint policy multiple times in the environment, and observing
the average fitness. Experience data from these rollouts is also
added to the replay buffers of each agent, along with local fitness
values computed during each rollout. After the evaluation data is
collected, TD3 updates are then performed on the RL policy using
data sampled from the replay buffers, training each agent’s policy
to maximize its own local fitness. Neuroevolution is then used to
update the EA population based on the global fitness. Finally, the
team with the lowest fitness is discarded, after ranking, we sample
group of teams (teams with higher fitness values), then we choose
the best team (the champion) for evaluation.

4 EXPERIMENTS
Our experiments seek to answer the following questions:
• How does the coupling factor affect the performance of our
approach relative to other methods?
• How well does our method scale as the numbers of agents
and the size of the joint-state space grow?
• How does the coupling factor affect the behavior of the
exploration policies learned with our method?

We conduct our experiments in several configurations of the
multi-rover exploration domain, a tightly-coupled cooperative task
in which agents must organize themselves into smaller teams to
solve different sub-tasks. The rover domain allows us to vary the
number of agents and sub-tasks, as well as the coupling factor, that
is, the number of agents required to solve each sub-task.

4.1 Multi-rover Exploration Domain
In this well-established domain [37], a team of rovers must learn to
navigate to several different points of interest (POIs) in a continuous
2D environment. The domain is tightly coupled because for a single
POI to be considered “explored” it must be observed simultaneously
by multiple rovers. To observe a POI, a rover must be within the
activation radius. The number of rovers required is the same for
every POI, and we will refer to this as the coupling factor. When a
POI is observed it is removed from the environment.

The rover domain is partially observable, with each agent only
observing the environment through its own sensors. Each rover
has 8 sensors, 4 rover sensors and 4 POI sensors. These sensors
are positioned in 4 quadrants covering 90°each, and each quadrant
has one POI and one rover sensor. The sensors can only detect if
the objects are within a fixed distance. If there are more than one
POI or rover within their observation area, they can only detect the
objects resulting in the maximum value by functions in Eqs 6.

If the distance to an object is smaller than a fixed value, it is
rounded to that value. This is given in the equation 5, where x and
y are the points and 𝑑 is a fixed minimum value like 0.1.

𝛿 (𝑥,𝑦) =𝑚𝑎𝑥{| |𝑥 − 𝑦 | |2, 𝑑2} (5)
POI sensors’ readings are calculated as in equation 6,𝑊𝑃𝑂𝐼 𝑗 is

the worth of a 𝑃𝑂𝐼 𝑗 in a quadrant from the sensors of an agent, 𝐴𝑖 .

𝑠𝑃𝑂𝐼 =𝑚𝑎𝑥 (
𝑊𝑃𝑂𝐼 𝑗

𝛿 (𝐴𝑖 , 𝑃𝑂𝐼 𝑗)
), 𝑠𝑟𝑜𝑣𝑒𝑟 =𝑚𝑎𝑥 ( 1

𝛿 (𝐴𝑖 , 𝐴 𝑗 )
) (6)

A rover𝐴𝑖 ’s sensors convert the input signal reflected by a team-
mate 𝐴 𝑗 to values as in equation 6.

The sensor readings of each rover forms the joint state of the
environment. The global fitness is computed via Equation 7 where
𝐺 represents the global fitness, 𝑁 is the number of POIs,𝑊𝑃𝑂𝐼𝑘 is
the value of the 𝑘th POI, and 𝐼 (𝑃𝑂𝐼𝑘 ) is the Boolean function that
returns 1, if 𝑃𝑂𝐼𝑘 is observed, 0, otherwise. The ratio between the
sum of the values of observed POIs by the sum of the all POI values
gives the 𝐺 of a team. To achieve this fitness partially, agents need
to learn to coordinate to accomplish tasks, otherwise, it stays as 0.

𝐺 =

∑𝑁
𝑘=1𝑊𝑃𝑂𝐼𝑘 𝐼 (𝑃𝑂𝐼𝑘 )∑𝑁

𝑖=1𝑊𝑃𝑂𝐼 𝑗

(7)
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4.2 Hyperparameters
The hyper-parameters of MERL are provided in Table 1. These
parameters are consistent with the parameters used in the paper
[29]. Our main claim is that agents trained via novelty-oriented
fitnesses have the potential to perform even under high complexity.
We use mainly coupling factor and number of agents as our
parameters influencing the complexity level within a global task.
Task diversity (in terms of their values) and task distribution
are used as environmental parameters. Those are to set a level-of-
difficulty for exploration in the environment.

Table 1: Hyper-parameters used for MERL and other two
components, EA and RL

Component Hyper-parameter Setting
MERL Population Size 10

Rollout Size 50
Actor Learning Rate 5e-5
Critic Learning Rate 0.1
Replay Buffer Size 1e5
Batch Size 512

EA Number of elites 4
Specifics Number of anchors 5

CCEA Reduction Leniency
Mutation Prob 0.9
Crossover Prob 0.1

RL Actor Actor Architecture [100, 100]
Specifics Critic Architecture [100, 100]

TD3 Noise variance 0.2
TD3 Noise Clip 0.5
TD3 Update Frequency 2

Rover Domain State Dim (8sens+ID+vel) 11
Action Dim 2

Baseline Methods for Comparisons: In multi-rover explo-
ration domain, the objective is to observe POIs as a team of rovers;
therefore, Khadka et al. [29] defines the objective function, 𝑓𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 ,
to minimize the distance to the closest POI [29].

𝑓𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 =
𝑅𝑎𝑐𝑡

𝑑𝑃𝑂𝐼𝑐

(8)

where 𝑅𝑎𝑐𝑡 is the activation radius of a POI, 𝑑𝑃𝑂𝐼𝑐 is the distance
to the closest POI (cannot be captured by the sensors), 𝑃𝑂𝐼𝑐 . Here,
we refer 𝑓𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 as task-oriented objective, because the global
objective is to observe POIs within a certain radius and it is based on
maximizing a specific extrinsic objective. This is a greedy approach,
because they only construct a fitness toward the closest (the easiest
to experience) saliency. Never Give Up (NGU) [4] intrinsic fitness
function is a state-of-the-art novelty-oriented fitness for single-
agent systems. Its episodic fitness function utilizes an embedding
network to embed states into the history of states given in Sec. 3.1
to count high-dimensional states. We compare with NGU fitness
function to show that having an embedding network is difficult
to train in tightly-coupled MAS without a pre-training phase on
task-oriented fitnesses. We use the same hyperparameters as in
the paper [4]. We only compare our coarse discretization based
counting to KNN search based counting of embedded states (by
a neural network), so we do not consider the general learning
framework of NGU.

Our agents are challenged under four main configurations test-
ing them against, increasing coupling factor, increasing team and

task complexity, increasing growth in the state-space, and densely
distributed tasks. In the first set of configurations agents are tested
with the same valued and randomly distributed POIs. We keep the
number of agents, and POIs constant and increase the coupling
factor. The second set is to test agents’ exploratory behaviors un-
der different couplings. There are two types of POIs, low-valued,
and high-valued. Low-valued POIs are randomly distributed on an
inner circle and high-valued POIs are distributed on an outer circle.
Agents are expected to learn a behavior allowing them not to get
stuck around low-valued POIs, so that they discover high-valued
POIs. This setup includes experiments under both different cou-
pling factors and numbers of agents. The third configuration has a
constant coupling factor, but we change the number of available
sub-tasks (POIs) and the number of agents (to grow state-space).
Last setup has a dense distribution of POIs with different numbers
of coupling, where agents can discover policies in a wider range.

To introduce salient events to our novelty-shaped fitness (see Eq.
2), we include the value of the POI,𝑊 of Eq. 6, as 𝑉 (ℎ𝑡

𝑖
), when an

agent enters its the activation radius in multi-rover domain. The
coarse discretization mentioned in Sec. 3.1 is done by converting
the values of observations to binary values. The sensor values not
detecting any object are converted to 0, any detection’s value is 1.

5 RESULTS
We report the global team performance of a multiagent team by
computing as: Champion of Alg. 2, the team with the highest fitness,
is selected (in Algorithm 2) in each generation, then it is tested on
10 rollouts of the test environment. We record the average score
of these 10 rollouts achieved by the champion. The x-axis shows
the number of gradient steps (number of times local fitnesses are
provided to agents) during training. These metrics are determined
according to the work [29]. Each plot is average of 5 statistical runs.

Note that our novelty seeking agents are represented as NS (using
the fitness given in Eq. 2), and NS𝐷 (given in Eq. 4) in the plots.
Task-oriented agents (using the fitness of Eq. 8) are represented
as TO, D and NGU appears only on one set of figures (Figure 2).
𝐷 represents the case when we use pure DEF (of Eq. 3), and NGU
represents when we use an embedding network and a KNN search
to count states without any discretization.

5.1 Increasing Coupling
In our primary set of experiments, we analyze the behavior of our
agents for different coupling factors. This dependency certainly
affects the exploratory behavior of the team, because only a small
portion of the joint-state space yields a positive team fitness. In this
setup, we compare our baseline with 1) other fitness construction
strategies, D, and TO, 2) a state-of-the-art novelty-search strategy,
NGU. The first setup has 4 randomly distributed and equally valued
POIs. Figure 2 shows the results for the degrees of coupling 1, 2,
and 4. In the simplest task, where only one agent is required to
successfully observe a POI, the team task is easy to learn for the
embedding network, and NGU outperforms NS agents. Our agents
achieve the same performance only by injection of DEFs into the fit-
ness function represented as NS𝐷 . As the coupling factor increases,
the embedding network fails to achieve an effective performance to
embed states, and this results in failure of all agents. All methods
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Coupling 1 Coupling 2 Coupling 4

Figure 2: Performances achieved during 250 generations of EA’s training in the first environmental setup - 6 rovers and 4
randomly distributed and equally valued POIs on a 15x15 map and episode length is 50. Dashed (–) lines represent the threshold
for maximum G (Global Team Performance). Novelty seeking (NS) and NS with DEFs agents outperform the task-oriented (TO)
agents, pure DEF (D), and Never Give Up (NGU) in each configuration.

generally achieves a similar score, but only NS𝐷 and NGU agents
reach the full team performance. As coupling increases, pure D
agents do not exhibit an effective performance in general, because
DEFs provide a sparse fitness that agents only achieve when they
contribute to a collaborative task.

5.2 Increasing Team Size and Coupling
In these experiments we examine the effects of increasing the num-
ber of agents and the number of POIs. The environment has 3 POIs
valued 2 and placed on an inner circle, and 3 other POIs valued 5
are distributed on an outer circle. Each circle represents equally
distant three POIs. So, we expect agents to first observe the POIs
on the inner circle, then the outer ones. Parameters setting the
level of complexity are both the degree of coupling (1, 2, 3, 4, 5,
6) and the number of agents (3, 6, 9, 12, 15, 18) (Figure 3). We set
the number of agents according to the coupling requirement. The
effect of DEFs can be seen for the simplest scenario (as in the first
setup). TO agents outperform both NS and NS-D agents in simpler
scenarios, for the coupling factors, 1 and 2. With the increase in
both the degree of coupling and number of agents, we observe that
TO agents get affected significantly more than NS agents. Figure
3a shows that NS agents’ performances stay almost constant.

The second setup requires agents to learn an exploratory behav-
ior. To analyze this we use heat-maps to compare our agents with
TO agents. In Figure 3c, agents learning via our method expand over
the environment and POIs more uniformly. The warmer parts of the
figure represent the circles where we locate the POIs on. POIs are
all equally distant from each other; therefore, we can see a uniform
distribution of agents over the tasks. The heat is more concentrated
on the inner circle where POIs are closer to each other, whereas this
heat is more widely distributed over the outer circle. As we know
from Figure 3a, TO agents fail under couplings 4, 5 and 6. Figure 3b
shows that TO agents get stuck around center of the environment
mostly and they are not able to expand in a useful manner for the
whole team. TO agents first try to observe the inner POIs; however,
due to high dependency on each other’s behavior, they fail. NS
agents are exploration driven; hence, RL agents provide policies
that observe outer POIs, EA learns to observe all POIs successfully.

5.3 Scalability
Scalability to tasks with different numbers of agents and numbers of
POIs is important to see how agents’ performances are affected by
the growth in their joint-state space. In our third set of experiment,
we use a fixed coupling factor of 4 and change the number of POIs
and the number of agents. We still us a circular distribution of
POIs; however, we now vary the number of POIs on each circles
For instance, the case with the 2 sets of POIs, the inner circle has
2 POIs valued 2, and 2 outer POIs valuing 5. The POIs are equally
distant from each other; however, when we locate the POIs on the
outer circle we shift their positions within a randomly chosen angle
between 0°and 30°. When there are only for 4 agents, and only one
set of POIs, a promising behavior would be to first observe the
closest POI, then the outer POI. However, when there are POIs
on multiple directions, then expanding over those POIs gets more
difficult, because agents need to learn to expand uniformly over
POIs. Therefore, we see a much higher performance when there
is a set of POIs as Figure 4 shows. NS agents scale better as their
state-space gets larger, whereas we see a slight, but constant decay
in the performance of TO agents.

5.4 Densely Distributed POIs
Our fourth setup challenges agents’ both exploratory and exploita-
tive skills by requiring agents to learn to visit as many POIs as
possible. They should not do this greedily, but more efficiently.
We do not expect them to learn to observe all of the POIs, due to
time limitation. Hence, we show the normalized scores of teams
of agents. The environment has 3 layers of POIs on a 60°chord of
a circle. The closest chord to the center has 3 POIs with the value
of 2, the middle one has 3 POIs valuing 5, and the farthest one has
another 3 that worth 10 each. Because POIs are distributed on three
chords, as they move away from the center, the distance between
the POIs of every chord increases. Therefore, we expect agents to
not observe the all of the POIs on the low valued chords, but to
observe a POI with a higher value. This setup allows agents to learn
from a larger policy space that results in non-zero team fitness,
because a team can learn to observe various combinations of POIs.
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(a) Scaling over Task Complexity

Gavg = 0.05

(b) Coupling 5 - Task-Oriented Agents

Gavg = 0.40

(c) Coupling 5 - Novelty Seeking Agents

Figure 3: Scaling of Novelty seeking (NS) and Task-Oriented (TO) Agents over different numbers of agents and coupling.
Performances (Fig. 3a) in second experimental setup - 6 randomly distributed POIs on two circles on a 20x20 map, the number
of agents increases as the coupling requirement increases and the episode length is 40. POIs located on the inner circle have the
value of 2, and the outer POIs value 5. Heatmaps represent how the map is explored during 300 generations of EA’s training
when there are 15 agents and coupling is 5. Dashed white circles represent the circles where POIs are on. Exploration by TO
agents is on Fig. 3b, by NS agents is provided on Fig. 3c

Figure 4: Performances achieved after 300 generations of
EA’s training under the third settings. A set of POIs repre-
sents a low valued POI and an accordingly positioned high
valued POI. The degree of coupling is constant, 4, but we have
varying numbers of agents, 4, 8, 12, 16 and sets of POIs, 1, 2,
3, 4 on a 20x20 map and duration is 40 time-steps.

We test agents against a high coupling factor and Figure 5 shows
that both NS and NS𝐷 agents achieve similar performances. TO
agents achieves much less than our agents.

We also test the effect of the different components of our novelty-
seeking fitness function. When we train V agents solely on the
heuristic fitness, value of saliency (only 𝑉 of Eq. 2), EA learns
slower, but it finally achieves a score similar to TO agents. Pure
count-based (CB) bonus (𝑓𝑁𝑆 of Eq. 1) is certainly a fitness resulting
in better search, but we see that NS agents experiencing salient
events via their fitnesses (𝑓salient of Eq. 2), achieves much better.

In this paper, we are not generating diversity by searching on a
behavior map that has a lower dimension than the agents’ actual
behavior-space, but we represent behaviors generated on two dif-
ferent behavior spaces to understand what kind of behaviors our
agents generate that are different than TO agents. We expect NS

Figure 5: Performances achieved after 300 generations of
EA in the forth experimental setup - 8 agents, Densely Dis-
tributed 9 POIs on three layers and the episode length is 50.
The inner-most layer has the POIs with the lowest values,
the outer-most layer has the highest values on a 20x20 map.

agents to search in a larger part of behavior space than the TO
agents do during the EA’s training. To visualize the behavior diver-
sity, we represent behaviors in a 2D plot (Figure 6). The work [13]
scatters a behavior via the average speed and the observation radius
of agents. However, in the traditional settings of the multi-rover
domain, observation radius stays constant, but we expect agents to
maneuver to observe POIs on different chords. Therefore, we adopt
their average speed axis and replace average observation radius
with average steering. We do rollouts for each behavior in the pop-
ulation of every generation. All rollouts are conducted in the same
configuration of the environmental setup. NS agents cover a wider
portion of the behavior-space, while TO agents are concentrated on
the high-speed region. Also, behaviors generated within the teams
with higher fitness are mostly distributed in the lower average
speed region, but TO agents do not cover those areas. Particularly,
we expect agents to generate behaviors on a wider average speed
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(a) Task-Oriented (b) Novelty Seeking

Figure 6: Behavior spaces covered during the 300 generations
of EA’s training. There are 8 agents and coupling factor is
7. Each behavior is represented by the average speed and
steering by a single agent throughout an episode. Covered
space by task-oriented (TO) agents is on the Left, by novelty
seeking (NS) agents is provided on the Right. The color gra-
dient represents the team fitness of a behavior’s episode
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Figure 7: Analysis of the behaviors (in Figure 6). Each behav-
ior is represented by the cumulative contribution to its team
and entropy representing the state diversity covered through-
out an episode. Generated behaviors by task-oriented (TO)
agents is on the Left, by novelty seeking (NS) agents is pro-
vided on the Right. The color gradient represents the team
fitness of a behavior’s episode

scale, because of our mathematical implementation of the fitness
function. We combine the value of saliency with our exploration
bonus (Eq. 2) that enables agents to continuously explore. Ergo,
agents receive feedback according to the ratio between the time
experiencing a saliency and the value of that saliency.

Additionally, we analyze generated behaviors through a novel
behavior diversity representation that we present in this paper. We
utilize DEFs as a measure to analyze how a behavior contributes
to its team’s success. Agents are not necessarily provided DEFs as
their fitness, but we only use it as a measure here. On the other
axes, we measure the diversity of the states visited during the
generation of a behavior. This diversity is measured via Shannon
entropy [38] and we use the distributions of quantized states. Figure
7 represents the behaviors with these two measures and the team
fitness values (color gradient). Self-evidently, behaviors that have
higher contribution to their teams’ success are mostly present in
the teams with higher fitnesses. A key fact is that behaviors having
higher contribution to their teams visit more distinct states.

6 DISCUSSION
Based on these results, we can answer the questions raised in Sec-
tion 4. Our experiments show that the coupling factor has the
largest effect on the team behavior of agents. In our first two sets of
experiments we varied the coupling factor. The first setup (Figure
2) has the coupling factor as the only changing parameter. Because
coupling requires agents to be present at certain states simultane-
ously, as the coupling increases the global task gets much more
difficult to solve unless we add more agents to the system. We see
that TO (greedy) agents do well when tasks are simple; however,
they are affected more dramatically than NS agents by the increase
in this parameter. When we introduce more agents to the system,
even when systems gets more tightly-coupled, the performance of
the NS agents is much more robust than the TO agents’(Figure 3).

We argue that the greater robustness of the NS agents to larger
tasks and higher coupling factors stems from their ability to provide
near uniform coverage of the space of POIs (Figure 3). For higher
coupling factors, coverage of the task space increases the likelihood
that a sufficient number of agents will visit each POI simultaneously
at some point during an episode. Without this coverage, agents
trained with task-oriented local fitness are prone to concentrating
on a small number of POIs, and missing out on the opportunity to
observe other POIs as well.

In environments with higher-dimensional observation spaces,
we need methods to approximate the visitation counts used to
compute the novelty-seeking fitness(e.g. [4, 7, 39]). In Figure 2
we evaluate MERL with a Never-Give-Up [4] style pseuodocount
estimator, but found that it does not preserve the performance of
the discretized count estimate for larger coupling factors. Finally,
our results show that while incorporating a DEF into the local
fitness function helps in simple scenarios, its effect is minimal, and
diminishes as the task becomes more complex. This likely reflects
the sparsity of the DEF signal in more tightly-coupled tasks.

7 CONCLUSION AND FUTUREWORK
We proposed a general and principled approach to novelty-search
in MAS that balances exploration at agent-level with exploitation
at team-level. Our fitness structure enables teams to perform well
even with large numbers of agents and high coupling factors. We
argue that being exploration-driven at team level and experienc-
ing saliency increases team performance significantly in tightly-
coupled systems. When the degree of coupling between the agents
is low, greedy individual behavior may lead to better performance
in simple tasks, but as we increase task complexity, these task-
oriented individual policies fail to sufficiently explore the joint-
strategy space in the way that our novelty-seeking agents do. In
these more complex settings our approach is therefore superior.

As a direction for future work, we suggest that an embedding
network (like that used in NGU [4]) can be trained via novelty-
oriented fitnesses, so that it can be incorporated into our framework
for tightly-coupled MAS with high-dimensional state-spaces.
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