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Abstract— Many have used equivalent representation of
metamaterials with isotropic or anisotropic media. Analyses were
basically based on matching measured or calculated scattering
parameters of metamaterial design with those of a material slab
with, in general, 18 terms permittivity and permeability tensors
were developed for the equivalent material representation. The
objective is to provide better understanding of the propagation
and scattering characteristics of the metamaterial designs, based
on fundamental wave materials interaction, and to examine
avenues for achieving advanced characteristics, e.g., broader
band, enhanced absorbability, improved focus efficiency, etc.
With the continued advances in metamaterials designs, many
unintuitively and dimensionally multiscale configurations were
reported and many hours if not days of computational time were
required to develop these designs. This brings additional benefits
of the equivalent material representation of complex, and
intuitively difficult to explain metamaterial structures, and the use
of fundamentally established concepts of wave interaction with
complex media, to help improve computational efficiency in
optimizing the characteristics, in addition to providing critically
needed fundamental understanding of the achieved results. This
is where we believe Professor Ishimaru’s foundational work on
wave propagation in random and complex mediums will play a key
role.

We were fortunate to share some common research interest
with Professor Ishimaru’s group back in the 2000s [1, 2]. At
that time the application of time reversal to wireless
communications was an important topic to many researchers in
the area. We were particularly interested in the ultra-wide band
radios because they were promising in enhancing time reversal
effect through random media. In [2] we examined how a single
transmitter can realize time reversal effect in a realistic indoor
office environment. Our approach is numerical simulation
using the finite-difference time-domain method. The results
showed that when small furniture help increase the focusing
resolution. Professor Ishimaru and his colleagues investigated
time reversal effect using a theoretical approach [1]. Many
effects including superresolution provide a foundation for our
numerical simulation results.

More recently our group have been working on
metamaterials to achieve different goals [3-8]. The genetic
programming (GP) method is adopted to obtain designs that can
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has strange, complicated, and unintuitive shapes or structures
[5-7]. We found it is difficult to explain why these designs work
and their performance is better than the designs by human
experts. Some of these designs are shown in Fig.1 for a variety
of applications including perfect magnetic conductors (PMC),
2D and 3D designs, graphene-based metamaterial absorbers,
and microwave lenses.
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Fig. 1. Examples of Genetic Programming designed metamaterial structures.
This includes, perfect magnetic conductors (PMC), (a), (b), and results in (d),
3D PMC in the 225-450 MHz band (e), metamaterial absorbers using Laser
Induced Graphene patterning (f), and a 10 GHz metamaterial lens (g). The
design in (c) is from literature included here for comparison.

It can be seen from the figure that the shapes of the GP-
designed structures are complicated and unintuitive, Fig. 1 (a),
(b), (e) and (f) while the performance are exceeding human-
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experts’ designs. Initial efforts to explain the advanced
performance of these designs were based on either equivalent
circuit models or using Prony’s method to identify overlapping
natural frequencies that resulted in the achieved broadband
characteristics [8]. In Fig. 2, we show an example of GP-
designed artificial magnetic conductor (AMC) composed of
many unit cells. Using Prony’s method, extracted three resonant
frequencies at 11.9 GHz, 12.9 GHz, and 16.5 GHz.
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Fig. 2. Features of an AMC. (a) The unit cell. (b) Unit cells combined with
neighbors. (c) Resonant frequencies identified using Prony’s method.
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(b) Considering all coupling paths
Fig. 3. Equivalent circuit models for the AMC in Fig. 2.

To explain the wideband feature using equivalent-circuit
model, we noticed that mutual couplings between the different
parts of the patches can be associated with the resonant
frequencies in Fig. 2(c). For example, the mutual coupling
between the larger patch with a small patch gives rise to the ~17
GHz resonant frequency and its equivalent circuit is shown in
Fig. 3(a). If the mutual coupling between the all the neighboring

components is considered and using the equivalent circuit in
Fig. 3(b), we find that the resonant frequency shifts to the ~12
GHz band.

These methods are clearly useful in helping with some
electromagnetic-based understanding of the achieved
characteristics, and possibly with some guidance on avenues on
how to further optimize the performance of these designs, but
they are far limited in providing help with reducing the
computational time and effort. Using the equivalent material
representation [9,10], on the other hand, accomplishes this goal,
and thanks to Professor Ishimaru’s scholarly work and brilliant
career in studying wave interaction with random and complex
media [11,12] that lead to computationally efficient advances
in metamaterials designs and characterization.

In the conference presentation we will give more details
about the status and advances in metamaterial designs and
highlight how Professor’s Ishimaru’s brilliant contributions in
the field of wave propagation and scattering in random media
will continue advances and speed up progress in the
metamaterials design and application field.
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