
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021 921

Integrating Future Smart Home Operation Platform

With Demand Side Management via Deep

Reinforcement Learning
Tan Li , Student Member, IEEE, Yuanzhang Xiao, Member, IEEE, and Linqi Song , Member, IEEE

Abstract—Residential demand side management (DSM) is a
promising technique in smart grids to improve the power system
robustness and to reduce the energy cost. However, the ongoing
paradigm shift of computation, such as mobile edge comput-
ing for smart home, poses a big challenge to residential DSM.
Therefore, it is important to schedule the new smart home com-
puting tasks and traditional DSM in a smart way. In this paper,
we investigate an integrated home energy management system
(HEMS) that participates in a DSM program and implements
smart home computation tasks by offloading tasks with the help
of a Smart Home Operation Platform (SHOP). The goal of
HEMS is to maximize the user’s expected total reward, defined
as the reward from completing computing tasks minus the cost of
energy consumption, execution delay, running the SHOP servers,
and the penalty of violating the DSM requirements. We solve this
task scheduling based DSM problem using a deep reinforcement
learning method. The DSM program considered in this paper
requires the household to reduce a certain amount of energy con-
sumption within a specified time window, which, in stark contrast
to the well-studied real-time pricing, results in a long-term tem-
poral interdependence and thus a high-dimensional state space
in our formulated problem. To address this challenge, we use the
Deep Deterministic Policy Gradient (DDPG) method to charac-
terize the high-dimensional state space and action space, which
uses deep neural networks to estimate the state and to generate
the action. Experimental results show that our proposed method
achieves better performance gains over reasonable baselines.

Index Terms—Demand side management, edge computing, task
offloading, deep reinforcement learning.

I. INTRODUCTION

L
EVERAGING bidirectional information and power flows

between the utilities and consumers, smart grids are

deployed to diversify the power supply, to reduce green house

Manuscript received December 20, 2020; revised March 17, 2021; accepted
April 11, 2021. Date of publication April 19, 2021; date of current version
May 20, 2021. This work was supported in part by the Hong Kong RGC under
Grant ECS 21212419; in part by the Guangdong Basic and Applied Basic
Research Foundation through Key Project under Grant 2019B1515120032; in
part by the City University of Hong Kong SRG-Fd under Grant 7005561;
and in part by NSF IIP under Grant 1822213. This article was presented in
part at the 2019 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm), Beijing,
China. The editor coordinating the review of this article was B. Kantarci.
(Corresponding authors: Tan Li; Yuanzhang Xiao; Linqi Song.)

Tan Li and Linqi Song are with the Department of Computer Science, City
University of Hong Kong, Hong Kong, and also with the City University of
Hong Kong Shenzhen Research Institute, Shenzhen, China (e-mail: tanli6-
c@my.cityu.edu.hk; linqi.song@cityu.edu.hk).

Yuanzhang Xiao is with the Department of Electrical Engineering,
University of Hawaii at Mãnoa, Honolulu, HI 96822 USA (e-mail:
yxiao8@hawaii.edu).

Digital Object Identifier 10.1109/TGCN.2021.3073979

gas emissions, and to improve the power efficiency [2], [3]. In

smart grids, demand side management (DSM) is an important

mechanism which conducts efficient customer-side energy

management to reduce the peak-hour energy supply of the

power grid and hence the operational cost in the power grid.

As a result, the DSM program has been widely adopted by

residential customers [4].

Residential DSM strategies motivate consumers to re-shape

their load profiles and limit peak energy demands through

smart meters based on real-time pricing or incentives [5].

However, it is facing challenges under the ongoing paradigm

shift of intelligent computation. A rapidly increasing number

of Internet of Things (IoT) devices are deployed, such as smart

appliances (e.g., smart TV and smart refrigerators), healthcare

monitoring devices, and surveillance networks [6], [7]. These

devices often require high-performance computation to han-

dle complex computing tasks, such as voice recognition and

image processing. Above tasks are preferred to be done on or

near the devices rather than being offloaded to the remote

cloud servers due to the latency requirement and privacy

concerns [8]. However, the surge in local device computing

will definitely increase the household energy consumption and

make it more challenging for residential DSM. Smart Home

Operation Platform (SHOP), offering the storage and computa-

tion resources at the edge computing server, is considered as a

promising solution to fix the weakness of long-distance cloud

computing [9] as well as the poor computing capacity of local

equipment. In future smart home, SHOP will be deployed as a

key component to support various intelligent household appli-

cations. It allows users to offload some computation-intensive

tasks to the SHOP servers for execution. Since the SHOP

server is often deployed closer to the edge and trustworthy, it

will not introduce as large transmission delay as remote cloud

computing or reveal user’s privacy. Considering the restriction

of residential DSM, we can choose to offload some non-

urgent computing tasks to the SHOP server during peak hours

at the expense of introducing some transmission delays and

server payment compared to local computing. Therefore, it is

important to jointly consider DSM and SHOP in an integrated

framework. In other words, we have to balance a trade-off

between satisfying user’s requirements, complying with the

utility company’s DSM restrictions, and reducing user’s energy

consumption cost. In this paper, we study for the first time

how to perform DSM in an integrated network with SHOP by

deciding how to offload computational tasks. We consider an

2473-2400 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

922 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

incentive-based DSM program, which requires the household

to reduce a certain amount of energy consumption within a

specified time window. However, the traditional DSM program

may not be widely accepted by consumers [10] since power

shifting often leads to poor user satisfaction. Here we con-

sider a different scheme from power shifting. The integrated

home energy management system (HEMS) allows users do

not need to (or slightly) perform power load shifting during

the peak hours, instead they could offload tasks to the SHOP

in order to realize DSM. This framework was first presented

in our previous work [1]. The SHOP is equipped with more

powerful computing capacity compared with local devices and

is considered to be reliable. Users can choose to allocate

the computational task load among the local devices and the

SHOP, where the computation on local devices will result in

more power consumption and the computation in the SHOP

will lead to some transmission delay and monetary cost. This

task allocation problem can be formulated as an interactive

process between the HEMS and smart home environment. In

the environment, smart appliances randomly generate tasks

with different features. For example, face recognition task

requires a large amount of calculation (usually processed by

the neural network inference) and a short response time, while

the heart rate monitoring requires less computation and no

need for rapid response. When computing loads are allocated

by the HEMS after observing the task features, the environ-

ment will react with the energy consumption, execution time

and whether it violates the requirements of DSM. Then the

HEMS needs to further adjust the task allocation strategy

based on the feedback. In smart home, HEMS will contin-

uously observe new tasks, such as tasks generated from a new

household appliance, thus online learning is suitable for solv-

ing this problem. Our goal is to design an efficient online

learning algorithm to cope with complex smart home environ-

ment and obtain the optimal task allocation policy. Our main

contributions are summarized as follows.

1) We investigate an integrated HEMS framework who par-

ticipates in a DSM program and can realize task offloading

with the help of the SHOP. We analyze the interaction between

the HEMS and the smart home environment by dividing the

system into local computing, SHOP computing, battery and

demand response model. The HEMS aims to maximize the

user’s expected total reward induced by these models by decid-

ing how to offload computational tasks and charge/discharge

the battery.

2) We formulate the above reward maximum problem as a

Markov Decision Process (MDP) and use a deep reinforcement

learning approach to solve it. The proposed method is able to

overcome the challenges of a high-dimensional state space and

a large continuous action space in our model. The key is to

use the critic network to estimate the action-value function

and the actor network to output a parameterized policy.

3) Experimental results show that under the same environ-

mental setting, our algorithm outperforms other baselines. In

addition, it could achieve better performance gains over other

task offloading strategies in different environmental scenarios.

The rest of the paper is organized as follows. Related work

is discussed in Section II. System model and problem formula-

tion is introduced in Section III. A deep reinforcement learning

(DRL)-based approach is proposed in Section IV. In Section V,

several experiments are presented. Section VI concludes the

paper.

II. RELATED WORK

There has been extensive research on how to perform

residential DSM, which can be roughly categorized into

price-driven and incentive-driven mechanisms [5]. Price-driven

DSM mechanisms provide time-varying prices, encouraging

the customers to reduce their energy consumption when prices

are high. Consumers are rewarded when signing up for the

incentive-driven DSM program and may be penalized if they

did not adjust their energy consumption when asked by the

utility company to do so [11]. Online learning methods are

used to learn the strategies for realizing residential DSM. The

learning process is often modeled as the interaction between

the users and environment (including electricity consump-

tion, electricity price, etc.), and the set of decisions may

include how to shift peak power consumption and sched-

ule the working time of household appliances. For example,

reinforcement learning (RL) is utilized for online schedul-

ing of building energy [12] and electric vehicle charging

systems [13]. However, most of these works did not consider

the urgent requirements of smart devices for high-performance

computing, nor combine with the edge computing framework.

More general paradigm of mobile edge computing (MEC)

have been widely studied in [14]–[18] for task offloading

scheduling. Some works restrict the task execution to be on

the local devices only or on the server only [19], while others

allow the tasks to be decomposed and executed locally and

online in parallel [20]. However, these works mainly focus

on the communication and networking features of MEC, such

as bandwidth and computing resource limitations in cellular

networks, and hope to find an optimal decision that minimizes

the overall offloading cost in terms of computation cost, and

delay cost.

Although MEC can tackle the problem of insufficient local

computing resources, it may compromise the efficiency of

DSM under a paradigm shift of household energy consump-

tion patterns [21]. In fact, the usage of household appliances

is heavily dependent on the real-time electricity price, which

should not be neglected when making task offloading deci-

sions. The importance of integrating MEC and smart grid

framework has been recognized by some researchers [6],

[7]. Indeed, MEC offers a platform for collecting and stor-

ing data from smart meters and other sensors, as well as

for the associated computational tasks, and thus can act

as a bridge of the smart grid and the household, result-

ing in reduced latency, increased privacy and locality for

smart grids. These benefits prompt more works that con-

sider the problem of joint task scheduling, computational

offloading, and energy management under the edge com-

puting architecture [22], [23]. The survey [24] summarized

state-of-the-art research works on energy-aware edge comput-

ing, including architectures, operating systems, applications

services, and computational offloading. These works usually

have different decision rules and learning objectives. Some

works focus on maximizing the number of finished tasks

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM 923

Fig. 1. Residential demand side management with edge computing.

with limited battery capacity of edge devices [25], [26].

Other works investigate the goal of optimization in the smart

grid [27], [28].

III. SYSTEM MODEL

A. System Setup

In this section, we propose the integrated system with local

and SHOP domain. The system model is illustrated in Fig. 1.

We consider a residential user who runs several household

appliances and participates in a DSM program. In the local

domain, there are two types of devices: 1) the smart devices

with computationally intensive tasks to be completed and

2) the ordinary device with non-time-constrained tasks. In the

SHOP domain, the SHOP deploys several edge servers with

more powerful computation and storage resources compared

with the local domain. A base station is connected directly

with the SHOP through the wireless channel. The household

employs an intelligent HEMS, which schedules the energy

consumption of the entire household and acts as the interface

between the user and the utility company. Besides, the HEMS

is equipped with a battery that can purchase and sell electricity

from/to the grid. The HEMS can monitor the state of tasks,

battery, and DSM restrictions. Based on the above observa-

tions, it determines how to perform the tasks on devices (i.e.,

local computing) or in the SHOP server (i.e., mobile edge com-

puting) and informs the battery to buy or sell electricity. The

whole system consists of three flows: 1) the decision flow indi-

cates the task assignment and dis/charge action decided by the

HEMS; 2) the information flow contains the state information

of tasks, the battery, and DSM requirements; and 3) the power

flow includes electricity sold from the grid to the end user

or the opposite way. We adopt a discrete-time system model

where time is divided into slots of equal length Ts (in seconds)

and indexed by t = {1, 2, . . .}. Next, we describe the models

for devices, tasks, battery, and demand response programs in

detail.

B. Smart Device Model

There are a growing number of computationally intensive

tasks within a household. Examples of such tasks include

smart devices such as smart refrigerators, voice assistant

speakers and entertainment devices like smart TVs.

Common features of these tasks include: 1) requirement

of high-performance computing and storage for voice recog-

nition or image processing and 2) desire for local execution

due to time-sensitivity and privacy issues; high energy

consumption induced from high-performance computing.

Bearing these common features in mind, we model these

tasks mathematically as follows. At each time t, the HEMS

maintains a sequence of nS ∈ Z+ devices requesting to

execute tasks. Each device needs to complete one task ki ,

i = 1, 2, . . . ,nS , which is characterized by a tuple (Ci ,Ei),
where Ci ∈ R+ is the total amount of computing resources

required for completing task i (i.e., task computing load) and

Ei ∈ R+ is the time before the task expires. We use the CPU

cycles to measure the workload of computational tasks Ci ,

as is widely used in works on resource allocation and task

offloading. The state of each task ki at time slot t includes the

remaining task load ci (t) ∈ [0,Ci] and the elapsed time of

the task ei (t) ∈ [0,Ei]. For example, in incremental learning,

it usually takes several hours every day to update the neural

network model with the newly generated data.

At the beginning of each time slot t, the HEMS makes

the task allocation decisions and forward them to the devices

and the SHOP server. In our paper, we adopt the latter set-

ting, namely the task loads of the local device and the cloud

server are additive. Specifically, HEMS determines the amount

aL
i (t) ∈ R+ of task executed on local devices and the amount

aS
i (t) ∈ R+ of task offloaded to the SHOP server for task

ki in time slot t. To show the details of such task offloading,

we first introduce the wireless network environment settings

where there is a multi-user SHOP system with one base station

(BS). We denote W as the bandwidth of the wireless channel,

which is equally allocated to the nS devices offloading tasks to

the SHOP server simultaneously at time slot t. Thus, according

to the Shannon channel capacity, the achievable upload data

rate for device i is:

ri =
(

W /nS
)

· log

(

1 +
PU

i hi
(

W /nS
)

N0

)

, (1)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

924 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

Fig. 2. (a) Task execution time of smart device i during time slot t. (b) Server
running time during time slot t.

where PU
i is the transmission power of device i when

uploading data, hi is the channel gain of device i and N0

is the variance of white Gaussian channel noise. We next ana-

lyze the required time and energy cost for computing aL
i (t)

and aS
i (t) respectively.

1) Task Execution Time: In the local domain, the execution

time of aL
i (t) amount of task ki is,

TL
i (t) = aL

i (t)/f L
i , (2)

where f L
i is the computation capacity of local processor (i.e.,

CPU cycles per second) of device i. Clearly, the computing

capacity differs among devices. Devices with image process-

ing capabilities (e.g., mobile phones) are enabled with more

powerful CPUs, or even GPUs.

In contrast to local computing, aS
i (t) amount of task ki

needs to be offloaded and executed by the SHOP server. The

whole SHOP computing procedure consists of three steps.

First, device i uploads the required data to the HEMS through

the wireless channel and the HEMS forwards the data to the

SHOP server. The corresponding transmission time is:

TU
i (t) = bU

i (t)/ri = α · aS
i (t)/ri . (3)

where bU
i (t) is the data size (bits) of task aS

i (t), which can

be calculated by a coefficient α. Second, the SHOP server

executes the task ki for:

TS
i (t) = aS

i (t)/f S , (4)

Finally, the SHOP server returns the computational result to

device i. The time can be reasonably ignored of this step due to

the small size of the computational result. Thus, the time cost

by SHOP computing is the sum of data uploading stage and

server computing stage: TU
i (t) + TS

i (t). Since the local and

server computing are performed simultaneously, see Fig. 2, the

total execution time is the maximum of these two: Ti (t) =
max{TL

i (t),TS
i (t) + TU

i (t)}.

2) Energy Consumption: Since DSM is only related to the

local energy consumption, we only need to consider the energy

consumed in local domain.

We first use the features of the CPU to characterize the

energy consumption of local task execution:

CL
i (t) = ǫia

L
i (t), (5)

where ǫi is the energy consumption per CPU cycle.1

Then, the data transmission leads to the following energy

consumption:

CU
i (t) = PU

i TU
i (t) (6)

The total energy consumption at time slot t of device i is

the sum of these two stage: Ci (t) = CL
i (t) + CU

i (t).

C. Demand Response Model

The user participates in a demand response program that

may require the user to consume a reduced amount of elec-

tricity within a specified time frame (e.g., a few hours). Such a

demand reduction is usually mandated by a contract signed by

the user and the utility company. The user is rewarded when

signing up for the program and may need to pay a penalty if

failing to fulfill the load reduction requirement. At a certain

time slot t, the utility company may send a signal (l(t), d(t)) to

the user, which requires the user to restrict its electricity load to

a total amount of l(t) kilowatt hour (kWh) in the next d(t) time

frame. The demand response events will not overlap, namely

a new event will always happen after the previous event has

ended. In other words, we can view l(t) as the “quota” for

electricity consumption in the next d(t) time frame, starting

from time slot t. This quota decreases over time as the user

consumes more electricity. Note that the computing resources

in the SHOP server will not be counted when calculating the

local electricity consumption.

D. Ordinary Device Model

In order to make our model more practical, in addition to

the smart devices listed above, we also consider some ordi-

nary household appliances. We assume that these appliances

neither have intelligent computing functions, nor scheduled

tasks. Consider there are totally nO ordinary devices in our

system, where device j only has two states: {idle, work} at

each time slot t. The corresponding energy consumption in

time slot t of device j is:

Cj (t) =

{

P I
j Ts if j is in idle state

PW
j Ts if j is in work state

(7)

where P I
j , PW

j are the power of idle and working state

respectively. Our strategy does not require scheduling the state

of these devices. However, their energy consumption affects

the remaining quote of DSM and thus our decision-making.

For example, when most original devices are in work state,

in order not to violate DSM, we may need to offload more

computational intensive tasks to the SHOP for completion.

1We set ǫi = 10−27(f L
i

)2 in the experiment according to some previous
works [29].

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM 925

E. Battery Model

With the rapid development of smart grids and electric

vehicles (EVs), the batteries have become the most signifi-

cant energy storage equipments and have attracted widespread

attention. Whether to charge/discharge the battery can be con-

trolled by the HEMS wisely based on the current electricity

price and the remaining capacity, e.g., charging the battery

when the electricity price is low and discharging the battery

when the price is on-peak.

In this paper, we consider a battery with capacity CB .

Let B(t) represent the state of charge (SOC) of the battery

at time slot t. At time slot t, the HEMS chooses the charg-

ing/discharging action aB (t), where aB (t) ∈ {−1, 0, 1} is

positive when the battery is charging and negative when dis-

charging. We further denote the charge and discharge currents

and voltages by I in , I out ,U in ,U out . To model the energy

loss during charging and discharging, we define the charging

and discharging efficiency of the battery as βin ∈ (0, 1) and

βout ∈ (0, 1), respectively. Thus, the change of the energy

level in the battery at time slot t can be computed as:

b(t) =

⎧

⎨

⎩

βin I inU inTs if aB (t) = 1
−

(

1/βout
)

I outU outTs if aB (t) = −1
0 aB (t) = 0.

(8)

The net amount of electricity purchased from the utility at

time slot t is:

Cb(t) =

⎧

⎨

⎩

I inU inTs if aB (t) = 1
−I outU outTs if aB (t) = −1
0 otherwise,

(9)

where a negative Cb(t) indicates energy export to the grid.

From (8) and (9), we can see that due to efficiency loss

of the battery, the actual increase of the SOC is less than the

energy purchased from the grid, and the actual reduction of

the SOC is greater than the energy sold to the grid.

F. Problem Formulation

We define J(t) as the overall system cost at time slot t,

J (t) =
nS
∑

i=1

[

ωEC local
i (t) + ωTC time

i (t) + ωSC server
i (t)

]

+
nO
∑

j=1

ωECj (t) + ωECb(t) (10)

where the first term demonstrates the total cost of tasks exe-

cuted by the nS smart devices. In particular, C local
i , C time

i
and C server

i are the cost of local energy, task completing time

and the server rental fee of task ki at time slot t. We give their

specific definitions in the next section. The second term illus-

trates the energy cost of nO original devices while the last

term states the energy cost of battery charging. The coefficients

ωE , ωT , ωS demonstrates the trade-off between the cost of

energy (including the consumption of smart devices, original

devices and the battery), time-delay and the server.

TABLE I
DEFINITION OF NOTATIONS

The objective of this paper is to minimize the long-term

discounted sum cost of the system, which is computed as

min
aL,aS ,aB

J γ = E

[

∞
∑

t=1

γtJ (t)

]

C1: aL
i (t) + aS

i (t) ≤ ci (t),
nS
∑

i=1

αaS
i (t) ≤ CS ,

aL
i (t) ≤ CL

i ∀ i ∈ n(t)

C2: Ti (t) ≤ Ts ∀ i ∈ n(t)

C3: ei (t) ≤ Ei (t), ∀ i ∈ n(t)

C4: l(t) > 0, for d(t) = 0

C5: η × CB ≤ B(t) ≤ CB , (11)

γ is a discount factor. C1−C5 are constraints. C1 repre-

sents that the constraints on allocated computation resource.

In particular, the amount aL
i (t) should be no more than the

total computation capacity CL
i of device i. And all offloaded

amount of task load
∑nS

i=1 αaS
i (t) should be limited by the

server cache size CS . Besides, since each device must exe-

cute its allocated amount of task either locally or in the SHOP

within one time slot, we have C2. C3 indicates that the task

must be completed before the expired time. C4 is on behalf

of the DMS constraints that the energy consumption should

be lower than the limitation of the utility company. C5 states

that the remaining capacity of the battery must not be less

than a certain percentage η of the total capacity CB and not

larger than CB . Here, CS ,CL
i and CB are both constants. We

summarize the parameters in Table I for ease of reading.

The optimal solution to Eq. (11) requires complete

information regarding the mathematical models of the system,

such as the statistical distributions of the tasks and expired

time. Such information is in general not available in a practical

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

926 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

system. One feasible approach to overcome these challenges is

to design an online solution that can efficiently make the deci-

sions regarding charging and computation resource allocation

in real time through interactions with the system. Therefore,

instead of applying conventional optimization methods to

solve the problem Eq. (11), we propose a DRL-based method

to find the optimal aL, aS , aB .

IV. DEEP REINFORCEMENT LEARNING-BASED SOLUTION

In this section, we first convert the above optimization

problem into a Markov decision process (MDP) which can

be solved by the deep reinforcement learning algorithm.

A. Formulation of Markov Decision Process

As we can see that the current HEMS states are com-

pletely determined by the previous states and task assignment

decisions. Therefore, we can formulate the decision making

problem as an MDP with infinite time horizon. An MDP is

a five-tuple (S ,A, P(s |s ′,a),R(s,a), γ), where S is the set

of states, A is a set of actions, P(s|s ′) represents the state

transition probability, R(s, a) is the immediate reward and γ
is a discount factor. The details about the MDP formulation

are shown as follows.

1) States: For compact presentation, we define the vectors

c(t) = [c1(t), . . . , cnS (t)] and e(t) = [e1(t), . . . , enS (t)] as

the states of all the tasks at time slot t. Then the state s(t)

encapsulates five types of information: 1) the price of elec-

tricity pE (t) ∈ R+; 2) the price of mobile server computing

pS (t) ∈ R+; 3) the state of demand response (l(t), d(t)) ∈

R+×R+; 4) the status of tasks c(t), e(t) ∈ R
nS

+ ×R
nS

+ ; and

5) the state of the battery B(t) ∈ R+. We define the collection

of all the above status as the state of the MDP.

s(t) = (pE (t), pS (t), l(t), d(t), c(t), e(t),B(t)). (12)

2) Actions: The task offloading action at each time slot

t specifies how much computing resources, both on the

devices and on the SHOP server, allocated to each task.

We define the vectors aL(t) = [aL
1 (t), . . . , aL

nS (t)] and

aS (t) = [aS
i (t), . . . , aS

nS (t)] as the task offloading decisions.

Besides, the action aB (t) represents the charged (aB (t) = 1)

or discharged (aB (t) = 1) decision in the battery during time

slot t. Considering the constraint C5 in Eq. (11), aB (t) will

always be set as 1 until B(t) achieve the threshold ηCB . Then

the whole action vector can be written as

a(t) =
(

a
L(t),aS (t), aB (t)

)

∈ R
nS

+ × R
nS

+ × Z+. (13)

From the constraints C1−C2 in Eq. (11), we can obtain the

set of feasible actions at each time slot t

A(t) =
{(

aaaL(t),aaaS (t), aB (t)
)

| aL
i (t), aS

i (t) ≥ 0,

aL
i (t) + aS

i (t) ≤ ci (t),
nS
∑

i=1

αaS
i (t) ≤ CS

aL
i (t) ≤ CL

i , ∀ i ∈ nS
}

. (14)

3) Rewards: Designing a good reward function is essential

to achieve high-quality policies. The reward function must be

consistent with our optimization goal Eq. (11), besides that it

satisfies all the constraints. Given a state-action pair (s(t), a(t)),

the reward at each time slot t has five components.

The first component is the positive reward of completing the

task on time. For task ki , the reward function is written as:

uT ,i : (ci (t), ei (t)) �→ uT ,i (ci (t), ei (t)). (15)

In general, the reward is realized only when the task is com-

pleted before the deadline (C3). An example reward function

could be

uT ,i (ci (t), ei (t)) =

{

γi if ci (t) = 0 and ei (t) ≤ Ei

0 otherwise,
(16)

where γi > 0 is the reward of completing task ki .

The second component of the reward is the cost of local

electricity consumption. It is main incurred by smart devices

for executing task, original devices for staying in work/idle

state and battery’s dis/charging decision. As suggested by [30],

the price of selling electricity to the grid is the same as

purchasing. Thus the whole local energy cost is defined as:

C energy (t) = pE (t) ·

⎛

⎝

nS
∑

i=1

Ci (t) +

nO
∑

j=1

Cj (t) + Cb(t)

⎞

⎠

(17)

The third component of the reward is the cost of running

the computation in the SHOP server. Here we do not need to

consider the energy consumption of the SHOP server, as this

is constant over time. Instead, we consider the running time

of the computing task on the SHOP server since the server

is always charged by the rent time. Since all offloaded tasks

are executed in parallel, we use the time between the start of

the first task and the completion of the last task to indicate

the time duration when there is a task running on the server,

shown in Fig. 2. Then the cost can be computed as:

C server (t) = pC (t) ·

(

max
i

{

TU
i (t) + TS

i (t)
}

− min
i

{

TU
i (t)

}

)

. (18)

The fourth component of the reward is the time cost of all

nS tasks:

C time(t) =
nS
∑

i=1

Ti (t) (19)

The final component of the reward, following the constraint

C4, is the potential penalty of violating the demand response

requirement, which is defined as

uD (l(t), d(t)) =

{

ρ if d(t) = 0 and l(t) < 0
0 otherwise,

(20)

where ρ > 0 is the (usually large) penalty of violating the

DSM requirement. In other words, the user will be charged

by ρ if the local energy consumption exceeds l(t) when the

time frame d(t) ends.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM 927

According to the definition of the above reward functions,

we change the problem of cost minimization (11) into the

reward maximization problem. As such, the reward function

is then

u(s(t),a(t)) =

nS
∑

i=1

uT ,i (ci (t), ei (t)) − wEC energy (t)

− wTC time(t) − wSC server (t)

− uD (l(t), d(t) . (21)

Here, ωE , ωT , ωS are coefficients, which indicate the trade-

off relation ship between the energy consumption, time-delay

cost and server cost.

4) State Transitions: We specify the state transition for each

component in (12). Given the task allocation decision, the state

of task ki will be updated in time slot t + 1 according to

ci (t + 1) = ci (t) − aL
i (t) − aS

i (t), (22)

ei (t + 1) = ei (t) + Ts . (23)

Given the charging decision, the battery SOC transits

according to

B(t + 1) = B(t) + b(t). (24)

The state of the demand response event transits according to

l(t + 1) = l(t) + B(t) −

nS
∑

i=1

Ci (t) −

nO
∑

j=1

Cj (t) + b(t),

(25)

d(t + 1) = d(t) − Ts . (26)

B(t) can be regarded as an additional supplementary power.

Noting that, l(t) is only related to the local energy consumption

rather than the server. The pricing states pE (t) and pS (t) are

drawn randomly and independently of each other and other

state components.

From (22)-(25) we can see that there is some certain stable

state transition probability P(s|s ′,a) for the system starting

from state s ′ to state s when taking action a.

The joint decision π is defined as the mapping from the

state vector s(t) to the action vector a(t):

π : s(t) �→ a(t), (27)

and the set of all policies is defined as ΠM .

Our goal is to find the optimal joint policy that maximizes

the expected total reward starting from any initial state s(1)

over horizon T, namely

π∗ = arg max
π∈ΠM

E
π

{

∞
∑

t=1

γtu(s(t),a(t))

}

, (28)

where γ ∈ (0, 1) is the discount factor, and the expectation

E
π depends on the policy π. Intuitively, there is a trade-off

between the local execution and task offloading. Constrained

by the poor local computing capacity, executing all tasks

locally may cause the task expires. It also may introduce high

local energy consumption which results in the violation of

DSM requirements. In contract, offloading all tasks to the

SHOP server means the huge transmission delays and expen-

sive server rental fees. Our following algorithm is to find an

optimal joint allocation scheme between the trade-off.

B. DDPG-Based Solutions

After formulating the objective problem as an MDP, we can

obtain the optimal policy through the reinforcement learning

methods. Many reinforcement learning algorithms utilize the

action-value function Qπ(s(t),a(t)) to solve (28), which is

defined as the total reward under policy π choosing action

a(t) at state s(t). It also can be written as following recursive

form including Qπ(s(t +1),a(t +1)), known as the Bellman

equation:

Qπ(s(t),a(t)) = u(s(t),a(t)) + γEs(t+1),a(t+1)∼π

× [Qπ(s(t + 1),a(t + 1))]. (29)

where s(t + 1) denotes the next state being transitioned from

state s(t) under a(t). Given the optimal action-value func-

tion Q∗(s(t),a(t)), the optimal Markov policy π∗ can be

defined as

π∗(s(t)) = arg max
a(t)∈A(t)

Q∗(s(t),a(t)). (30)

Traditional reinforcement learning algorithms, such as Q-

learning [31], maintain a “Q table” to compute and store the

Q-value by enumerating each state-action pair. The scale of the

“Q table” is related to the size of state and action space. Recall

that in our problem formulation, the joint decision at time

slot t a(t) = {aL
1 (t), . . . , aL

nS (t), aS
1 (t), . . . , aS

nS (t), aB (t)}

is a (2nS + 1)-dimensional vector, and the state s(t) =
(pE (t), pS (t), l(t), d(t), c(t), e(t),B(t)) is a (2nS + 5)-
dimensional vector.

Therefore, the state space grows exponentially in the num-

ber of tasks, resulting in the “curse of dimensionality” and

failure to maintain the “Q table.” Besides, the joint actions

aL
i (t), aS

i (t) and aB (t) are continuous values (or discrete

values with high granularity), thus searching through the large

action space to find the optimal action with the highest Q value

may lead to very low convergence.

To address this problem, some deep learning based meth-

ods, such as deep Q network (DQN) [32], utilize deep neural

networks as function approximators of the action-value func-

tion. The DQN takes state and action vectors as input and

outputs the corresponding estimated value. When there are

sufficient state-action samples, that is, after sufficiently sam-

pling of the entire environment, the output of the DQN can

be approximated as a Q value to help us to choose actions.

However, the DQN mainly focus on the high-dimensional

state space rather than overcome the continuous action space

problem. It still needs to compare the Q value under different

actions to choose the best one at current state.

The DDPG algorithm [33], which combines the actor-critic

structure and neural networks, makes up for the lack of DQN.

The key is to parameterize both the Q-value function and

the policy. As illustrated in Figure 3, the DDPG algorithm is

integrated in HEMS. Both the Actor and Critic networks are

composed of deep neural networks. First, the Action network

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

928 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

Fig. 3. Deep deterministic policy gradient based residential demand side management framework.

makes the joint decision based on the compacted state from

the HEMS under the current policy. Then, the Critic network

takes the HEMS state, the output of Actor, and the imme-

diate reward as input to calculate the approximated Q-value.

These two networks are updated alternately until the training

process ends. The training details of the DDPG algorithm is

shown in Algorithm 1. We define the parameterized Actor and

Critic networks as µ(s|θµ) and Q(s,a |θQ) with parameters

θµ and θQ respectively. Noting that we do not update the

model after we collect one state transition sample. Instead,

we initialize a replay buffer with size R. When every training

episode starts, the state transition tuple (s(t), a(t), u(t), s(t + 1))

following current policy θµ is stored in the replay buffer. Once

the replay buffer is up to its capacity limitation, the Actor

and Critic networks are updated by sampling a minibatch of

transition tuples from the buffer. The Critic network can be

optimized using gradient descent θQ ← θQ − rQ∇θQ L(θQ)
by minimizing the Mean Square Error (MSE) loss:

L
(

θQ
)

= Ea(t)∼π,s(t),u(t)

[

(

Q
(

s(t),a(t)|θQ
)

− y(t)
)2

]

,

(31)

where y(t) = u(s(t),a(t)) + γQ(s(t + 1),a(t + 1)|θQ).
The Actor network updates the policy parameter θµ with

respect to the direction of the Q-value gradient θµ ← θµ −
rµ∇θµJ (θµ):

∇θµJ (θµ) = E
[

∇θµQ
(

s,a |θQ
)

|s=s,a=µ(s(t)|θµ)

]

= E

[

∇aQ
(

s,a |θQ
)

s=s(t),a=µ(s(t)|θµ)

× ∇θµµ(s|θµ)
s=s(t)

]

. (32)

To solve the expectations in (31) and (32), we can use

Monte Carlo estimators to obtain estimated values over the

Algorithm 1 Deep Deterministic Policy Gradient Algorithm

Initialization: Randomly initialize the Critic network Q(s,a |θQ),
the Actor network µ(s|θµ), and the target network and

Q ′(s,a |θQ
′

), µ′(s|θµ′

)
Input: Replay buffer size R, batch size k, number of the episodes

m, number of time steps in each episode T, learning rate rQ and

rµ for Critic and Actor network, update rate τQ and τµ for target
Critic and Actor network.
Output: The optimal action a

1: for episode = 1 to m do
2: Initialize a random process for action exploration;
3: Receive initial state:

s(1) = (pE (1), pS (1), l(1), d(1),ccc(1),eee(1),B(1))
4: for t = 1 to T do
5: Select task allocation and charging action: a(t) =

µ(s(t)|θµ) + σ according to the current policy µ and
exploration noise σ.

6: Execute action a(t), observe the reward u(s(t),a(t)) and
the next state s(t + 1).

7: Store transition (s, a(t), u(s(t), a(t)), s(t + 1)) in the replay
buffer R

8: if Stored transitions > Replay buffer capacity then
9: Discard the oldest transition samples.

10: end if
11: Sample a random batch of k transitions from R
12: Update Critic using the gradient descent:

θQ ← θQ − rQ∇θQ Lk using Eq. (34).
13: Update Actor using the policy gradient descent:

θµ ← θµ − rµ∇θQ J k using Eq. (35)

14: Update the target networks Q ′ and µ′:

15: θQ
′

← τθQ + (1 − τ)θQ
′

16: θµ′

← τθµ + (1 − τ)θµ′

17: end for
18: end for

mini-batches

Ez∼q(z |xi)[f (z)] ≈
1

M

M
∑

m=1

f (z), z ∼ q(z |xi). (33)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM 929

For the mini-batch of state transition {s i , a i , u(s i , ja i),
s i+1}

k
i=1 with size k, (31) and (32) can be written as:

Lk =
1

k

k
∑

i=1

(

Q
(

s i ,a i |θ
Q

)

− yi

)2
(34)

∇θµJ k =
1

k

k
∑

i=1

∇aQ
(

s,a |θQ
)

s=si ,a=µ(si |θµ)

× ∇θµµ(s|θµ)
s=si

(35)

Since even a small update of θQ , θµ will lead to a great

change in action-value and policy, two target networks with

parameters Q ′(s,a |θQ ′

) and µ′(s|θµ′

) are used to give con-

sistent targets during training process. The weights of these

target networks are updated slowly by following the learned

networks in the way: θQ ′

← τQθ + (1 − τ)θQ ′

, θµ′

←
τµθ + (1 − τµ)θµ′. As τQ ≪ 1, τµ ≪ 1, the target values

change slowly.

V. EXPERIMENTAL RESULTS

In this section, we measure the performance of our proposed

algorithm using both simulated and real world data. We

first introduce four approaches as comparison methods. The

training performance of our proposed model is shown in

Section V-B. Then, we carefully compare our algorithm with

other methods in terms of the cost weights, number of devices

and server cache size in Sections V-C. Finally, we use the real

world data to demonstrate the efficiency of our algorithm in

Section V-D.

A. Comparison Algorithm

We first introduce four comparison algorithms used in this

paper. The first two are popular DRL algorithms and other two

are heuristic methods.

1) A3C stands for Asynchronous Advantage Actor-Critic

algorithm [34], which is a DRL framework. It is originally

proposed for acceleration of policy training in parallel. The

agent optimizes both policy and approximation of a state-

value function. Note that A3C and DDPG are both Actor-Critic

based DRL methods, which utilize DNNs to learn both the Q-

value and policy networks. The main difference between A3C

and DDPG lies in the training process where the former use

the asynchronous way.

2) DQN stands for the Deep Q Network algorithm, which

is also a popular DRL method. However, it only uses neural

network to estimate the action-value function and selects the

optimal action with the highest ‘Q-value’. Since DQN can

not handle large or continuous action dimensions, we define

a small discrete action space: for each task ki at each time

slot t, the HEMS can only chose a value from 0, 1 for aL
i (T)

and aS
i (T), which stands for either execute the task locally

or offload it to the SHOP server. However, the amount of

allocated tasks should not exceed the upper limitation of the

local or server computing capacity.

3) Full local execution means that all the computation tasks

are executed locally; in other words, aS
i (t) = 0. In this way,

we have C server
i (t) = 0 and C time

i (t) = TL
i (t) for all task

ki at time slot t.

4) Full SHOP execution scheme offloads all tasks to the

SHOP server, i.e., aL
i = 0. Similarly, we have C time

i = TS
i +

TU
i for all tasks ki . Since except for the smart devices, the

original device and the battery contribute to the local energy

consumption, we have C
energy
i (t) = PE (t) · (

∑nO

j=1 Cj (t) +
Cb(t)) rather than 0.

B. Training Performance

We firstly present the details about parameter settings to

train the DRL model.

1) System and Task Parameters: The number of smart

devices, i.e., the number of tasks to be executed nS , is fixed

to be 20. The CPU frequency for each device are uniformly

distributed between [1, 2] GHz. Specifically, for each task

ki , the computation requirement Ci (i.e., the CPU cycles)

is uniformly distributed between [0, 10] Gigacycles and the

data size bS
i is uniformly distributed between [0, 100] Mbits

with α = 0.001. The elapsed time Ei is uniformly distributed

between [1, 5] seconds. Typically, it need 10s to compute a

10 Gigacycles task using a 1 GHz CPU, which is larger than

5s. Thus, the smart devices need to offload the part of tasks to

server before it is expired. The SHOP server, equipped with

more powerful capacity and larger storage size, is configured

with CS = 800 Mbits storage and fS = 5 Ghz CPU frequency.

To characterize the wireless environment, we set the channel

bandwidth W = 10 MHz.

2) Energy Parameters: We set the transmission power as

PU
i = 1W for all smart devices. For the original devices,

the idle power is uniformly distributed between [1, 2]W,

and the working power is uniformly distributed between

[1000, 2000] W. The time that the original devices stayed in

idle and work state accounts for 30% and 70% respectively.

The DSM signal released by the utility company is modeled

as random variables. In particular, it is usually released in

advance to cope with the upcoming peak hour, which is usually

predicted by the utility company based the historical residen-

tial usage. For example, it may require that the total electricity

consumption limited to 10 kW before 18:00. Considering that

we set each time slot Ts = 1s, it is not conducive to model

learning if the DSM signal only appears once in hours (tens of

thousands time slots). Therefore, in our training process, we

set a frequent DSM signal, such that, the constrained electric-

ity load l(t) is distributed between [0, 0.5] kW with constraint

response time d(t) between [5, 10] minutes.

3) Network structure parameter: The details for network

structure and training process are summarized in Table II. As

we analyzed before, the state_dim and action_dim here should

be a function of the smart device number nS .

The training processes of our proposed DDPG method

and another DRL method-DQN with the number of training

episodes over 20 runs are shown in Fig. 4. In a whole, the

curves show that DDPG algorithm has a good convergence

and gain more reward than DQN. At the beginning of every

episode, we reset the environment with a new initial state s(1).

For the DDPG algorithm,we compute the cumulative reward

and update the model parameters for 10000 steps. In the first

5 episodes, the decision is randomly selected by the Actor

network for collecting the memory buffer, resulting in a low

reward. After this phase, the Critic and Actor networks begin

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

930 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

TABLE II
NETWORK STRUCTURE PARAMETER

Fig. 4. Training performance of DDPG and DQN algorithm.

to update using the stored transitions in the memory buffer.

It can be observed from Fig. 4 that the training reward starts

to increase gradually after episode 5. Then at around episode

20, the cumulative reward converges around 100 with small

oscillations. Compared to the DQN algorithm, our proposed

algorithm converges faster to a higher average reward with

smaller variance. The main reason is that DQN can only select

actions in discrete values.

C. Testing Performance

After the training process, the proposed approach can be

deployed for energy scheduling. We test the performance of

the model from the following aspects:

1) Performance of Cumulative Rewards: We first fix the

environmental parameters (i.e., PS (t) and PE (t)) and com-

pare the cumulative rewards obtained by different algorithms

after 10 test episodes. Fig. 5 shows the cumulative rewards of

the aforementioned methods. From the parameter setting, we

can see that the required computation amount, expired time

of each task, and the DSM signal are all concentrated to a

narrow interval. Therefore, even though we randomly sample

the task and the DSM signal, the cumulative reward we obtain

in each episode is close. It leads to some approximate linear

results in the Fig. 5.

The A3C (black dash curve) and DDPG (red dash curve)

methods, both of which are as Actor-Critic based algorithms,

have achieved similar results and are higher than the DQN

(green dash curve) methods. This indicates that the policy gra-

dient methods perform better in our problem. The Full Edge

policy obtains the lowest reward. This is because if all the tasks

are executed locally, the rapid increasing ωEC energy leads to a

significant decrease in l(t), which may become negative before

d(t) = 0, resulting in the penalty uD (l(t), d(t)) easily. If the

Fig. 5. Testing cumulative rewards of different algorithms.

Fig. 6. Testing cumulative rewards of different number of smart devices.

user offloads all tasks to the SHOP server, the cost of running

the server ωSC Server could be higher. Moreover, offloading

all tasks introduce a huge transmission delay, which increase

the term ωTC time .

Fig. 5 also demonstrates that the existence of the battery

achieve more benefits. Using the same DDPG algorithm, the

scenario with a battery can achieve higher cumulative reward

than that without a battery (i.e., aB (t) = 0,∀t) . The main two

reasons for the difference are: 1) the battery can sell electricity

to the grid when the electricity price is high to obtain more

gain and 2) the energy stored in the battery can avoid the

possible loss of DSM by increasing the value of l(t).

2) Effect of the Number of Smart Devices: In this section,

we use four approaches: 1) DDPG; 2) DQN; 3) full-local; and

4) Full-SHOP to demonstrate the scalability of our proposed

methods. We test the case where the number of devices is 5,

10, 15, 20 by setting the task workload generated by some

devices as 0. The averaged cumulative rewards in Fig. 6.

Intuitively, more devices generates more tasks, leading to

more benefits from completing tasks. The DRL methods grad-

ually outperform the full local and full SHOP schemes, while

DDPG achieves higher rewards than DQN. We can also

see that the rewards obtained by the DRL methods increase

almost linearly with the number of devices, while the rewards

obtained by the other two methods tend to saturate as the num-

ber of devices grows. The reasons are as follows. For the Full

local scheme, the losses caused by violating the DSM offset

the part of the gains from completing the tasks. For the Full-

SHOP method, limited by the cache size of the server, there is

an upper limitation on the amount of tasks that the server can

handle during each time slot. Therefore, although the number

of generated tasks increases, not all of them can be offload

and completed at the server. Besides, too many tasks will also

cause an increase in ωTC time .

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM 931

Fig. 7. Testing cumulative rewards of different sever cache size.

Fig. 8. Task allocation results of different values of weights ωE , ωT , ωS .

3) Effect of the Server Cache Size: We then investigate

how the server cache size effect the learning performance.

We set the server cache size equals to 400Mbits, 800Mbits,

1000Mbits, 2000Mbits. Generally, when the server cache size

increases, more tasks can be offloaded and can be executed

before expiration, resulting in more rewards. In Fig. 7, we

can see that the Full-local method is almost not affected by

the server cache size, while other three methods both achieve

more rewards with the increase server cache size.

4) Effect of the Cost Weights: We use Fig. 8 to show the

effects of trade-off weights ωE , ωT and ωS . We first explore

the ratio of the tasks allocated to the edge and to the SHOP

with different weights settings. Specifically, we vary ωE and

set ωT = ωS = 1−ωE

2 . We can see that when ωE = 0.2 is

small, the energy cost ωEC energy is lower than the cost of

time C time and server C server . Our proposed method tends

to allocate more task to the edge. With the increase of ωE ,

the ratio decreases. The ratio changes with the same trend as

ωS , since when the server cost is large, the algorithm tends

to allocate more tasks locally. However, we found that the

change of ωT has little impact on decision-making results. It

can be seen that only when ωT is very small, the algorithm

tends to offload more tasks to server. One possible reason

is that the designed reward function has already contains the

time-tolerance limitation. That is, completing the task as soon

as possible leads to more rewards.

The above experimental results cannot directly reflect the

impact of the weights on overall performance, so we next carry

out experiments to show the cumulative rewards with respect

of different weights settings. We consider 3 particular settings:

1) in env 1, we set ωE as 0; 2) in env 2, wet set ωE , ωT , ωS

Fig. 9. Testing cumulative rewards of different weights settings.

are basically equal; and 3) ωS is set as 0 in env 3. The DMS

constraints exist in both settings.

In env 1, the cost of local electricity consumption

ωEC energy tends to be 0. Therefore, local execution is the

better action . Fig. 9 shows that three DRL methods achieve a

little more reward than Full local execution, while the DDPG

algorithm has the smallest variance and largest mean reward.

This indicates that even though local computing can avoid

energy cost, the DRL methods chooses to upload some of

the tasks to the SHOP server to avoid the DSM penalty.

Similarly, in env 3, since ωSC server = 0, the terms ωTC time

and ωEC energy dominate. Thus, the optimal action tends to

offload all tasks to the SHOP server. We can see that our

method performs better than the Full SHOP execution method,

while the Full local execution performs the worst. The Full

SHOP execution can minimize the ωEC energy but maximize

the ωTC time . DRL algorithms can choose to execute some

tasks locally to find the “balance point” minimizing the sum

of ωEC energy and ωTC time . env 1 and env 3 show that our

strategy can achieve nearly optimal performance at the extreme

situation when energy cost (or SHOP cost) is 0. env 2 is more

practical and our proposed DDPG strategy achieves similar

mean reward with A3C but with smaller variance. Besides, it

outperforms DQN and other three heuristic methods.

5) User Side Performance: The above test experiments are

analyzed from the perspective of cumulative reward, we further

define two components to present user side performance in this

subsection:

1) Disappoint coefficient (DC): The value indicates that the

loss due to task expired. Let ni ,task be the total number of

tasks generated by smart devices i over the testing process.

Let ni ,expired be the total number of time slots that satisfies

ei (t) = 0, ci (t)
= 0, i.e., uT ,i (ci (t), ei (t)) = 0. Then DC

can be computed as:

DC =

nS
∑

i

ni ,expired/ni ,task (36)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

932 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

TABLE III
USER SIDE PERFORMANCE OF DIFFERENT ALGORITHMS

TABLE IV
IDLE AND WORK POWER OF COMMON ORIGINAL DEVICES

2) Penalty coefficient (PC): This value indicates the loss due

to the violation of DSM signals. We denote nDSM be the total

number of times that the DSM signals are generated during

test process. And nV is the total number of time slots that

satisfies d(t) = 0, l(t) < 0, i.e., u(l(t), d(t))
= 0. Then PC can

be computed as:

PC = nV /nDSM (37)

As shown in Table III, the DC for both Full local and Full

SHOP are relatively high since it is difficult to complete all

tasks with only one computing resource. Three DRL methods

obtained smaller DC while the A3C perform best. For the

Full SHOP scheme, the PC is always be 0 since no tasks

are performed locally while it is close to 1 for the Full local

scheme. Three DRL methods also achieve smaller PC while

the DDPG and A3C have achieved similar results and are

better than DQN.

D. Performance With Real World Data

The real-world hourly electricity price dataset [35] is used

to represent dynamic price state. The hourly data file contains

load, day-ahead and real-time prices for the ISO New England

Control Area in 2016. Specifically, we choose the real time

price from 2016/1/1 to 2016/3/31 for testing. The rental price

charged by the server on time also comes from the real-world

data. We refer to [36], in which a general server with 8 core

and 16GB memory is charged by 0.5 USD/hour. We consider

a household battery with parameter 200AH and 24V, which

can store 4.8kW electricity. We set the charge current as 20A

and it can charge 0.48kW (ignoring the conversion loss) for

each hour. For the energy consumption of original devices, we

refer the following table.

1) Setting: The blue curve in Fig. 10 represents the average

value of the hourly electricity price using above dataset. We

can roughly see that 18:00-22:00 is the peak period while the

minimal electricity price happens from 00:00-6:00. In order

to better simulate the real environment, we divide 24 hours

into three stages with distinct modes and use red, green, blue

regions to illustrate the stages:

Stage 1: In 0:00 - 6:00, we assume that there is no DSM sig-

nals. Since most appliances stay idle at night, both the amount

Fig. 10. From top to bottom: (a) electricity price. (b) Energy consumption
of original devices. (3) Task allocation percentage of local domain and SHOP.
(d) SOC of the battery.

of computational intensive tasks and energy generated by the

original devices are small.

Stage 2: In 6:00 - 16:00, we assume that the DSM signal

exists. Both the amount of computational intensive tasks and

the energy consumption of original devices increase.

Stage 3: In 16:00 - 24:00, we assume that the DSM signal

keeps existing . The amount of intensive tasks and the energy

of original devices are more than Stage 2 since appliances are

more likely to be used during night.

2) Performance Illustration: We use the task allocation per-

centage and the state of charge to show the efficiency of our

methods. In Fig. 10, we can see that the charging and dis-

charging decisions learned by our algorithm are reasonable

and intuitive: we charge and discharge to take advantage of

the lows and ups of electricity prices while respecting the SOC

constraints. We can also see that, in Stage 1, almost all tasks

are chosen to be computed locally. Starting from Stage 2, the

number of computing tasks increases, so does the task allo-

cated the SHOP server. In Stage 3, we can see that the task

allocated of the SHOP server has exceeded local devices. On

the one hand, local computing resources are not enough to

cope with the large number of computing tasks. Also, the price

of electricity has increased significantly at this stage.

VI. CONCLUSION

In this paper, we have studied an integrated smart grid

system model for DSM with SHOP. We firstly formulate

the task scheduling problem as an MDP problem aiming to

maximize the residential user’s reward consisting of energy

cost, execution time, SHOP server fee and the penalty of DSM.

Then we have developed the deep reinforcement learning-

based algorithm to solve this problem where we use neu-

ral networks to approximate the action-value function and

the parameterized optimal action. Experimental results show

that our proposed scheme works well and could achieve

significant performance gains over other baselines under

various environmental parameters.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM 933

REFERENCES

[1] T. Li, Y. Xiao, and L. Song, “Deep reinforcement learning based
residential demand side management with edge computing,” in Proc.

IEEE Int. Conf. Commun. Control. Comput. Technol. Smart Grids

(SmartGridComm), 2019, pp. 1–6.

[2] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid—The new and
improved power grid: A survey,” IEEE Commun. Surveys Tuts., vol. 14,
no. 4, pp. 944–980, 4th Quart., 2012.

[3] Z. Fan et al., “Smart grid communications: Overview of research chal-
lenges, solutions, and standardization activities,” IEEE Commun. Surveys

Tuts., vol. 15, no. 1, pp. 21–38, 1st Quart., 2013.

[4] B. P. Esther and K. S. Kumar, “A survey on residential demand side man-
agement architecture, approaches, optimization models and methods,”
Renew. Sustain. Energy Rev., vol. 59, pp. 342–351, Jun. 2016.

[5] Q. Qdr, “Benefits of demand response in electricity markets and recom-
mendations for achieving them,” U.S. Dept. Energy, Lawrence Berkeley
Nat. Lab., Berkeley, CA, USA, Rep. 1252, 2006.

[6] R. K. Barik et al., “FogGrid: Leveraging fog computing for enhanced
smart grid network,” in Proc. 14th IEEE India Council Int. Conf.

(INDICON), Dec. 2017, pp. 1–6.

[7] S. Zahoor, N. Javaid, A. Khan, B. Ruqia, F. J. Muhammad, and
M. Zahid, “A cloud-fog-based smart grid model for efficient resource
utilization,” in Proc. 14th Int. Wireless Commun. Mobile Comput. Conf.

(IWCMC), Jun. 2018, pp. 1154–1160.

[8] M. Mukherjee et al., “Security and privacy in fog computing:
Challenges,” IEEE Access, vol. 5, pp. 19293–19304, 2017.

[9] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[10] J. Wang, M. Biviji, and W. M. Wang, “Case studies of smart grid
demand response programs in North America,” in Proc. ISGT, Jan. 2011,
pp. 1–5.

[11] P. Siano, “Demand response and smart grids—A survey,” Renew.

Sustain. Energy Rev., vol. 30, pp. 461–478, Feb. 2014.

[12] E. Mocanu et al., “On-line building energy optimization using deep
reinforcement learning,” IEEE Trans. Smart Grid, vol. 10, no. 4,
pp. 3698–3708, Jul. 2019.

[13] Z. Wan, H. Li, H. He, and D. Prokhorov, “Model-free real-time EV
charging scheduling based on deep reinforcement learning,” IEEE Trans.

Smart Grid, vol. 10, no. 5, pp. 5246–5257, Sep. 2019.

[14] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug. 2017.

[15] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for MEC,” in Proc. IEEE

Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1–6.

[16] A. Khalili, S. Zarandi, and M. Rasti, “Joint resource allocation and
offloading decision in mobile edge computing,” IEEE Commun. Lett.,
vol. 23, no. 4, pp. 684–687, Apr. 2019.

[17] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[18] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency IoT services
in multi-access edge computing,” IEEE J. Sel. Areas Commun., vol. 37,
no. 3, pp. 668–682, Mar. 2019.

[19] C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-end
task offloading in mobile-edge computing networks with limited com-
munication capability,” IEEE Trans. Cogn. Commun. Netw., early access,
Aug. 20, 2020, doi: 10.1109/TCCN.2020.3018159.

[20] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading schedul-
ing and power allocation for mobile edge computing systems,” IEEE

Internet Things J., vol. 6, no. 4, pp. 6774–6785, Aug. 2019.

[21] E. Ahvar, A.-C. Orgerie, and A. Lebre, “Estimating energy
consumption of cloud, fog and edge computing infrastructures,”
IEEE Trans. Sustain. Comput., early access, Mar. 18, 2019,
doi: 10.1109/TSUSC.2019.2905900.

[22] C. You, Y. Zeng, R. Zhang, and K. Huang, “Asynchronous mobile-edge
computation offloading: Energy-efficient resource management,” IEEE

Trans. Wireless Commun., vol. 17, no. 11, pp. 7590–7605, Nov. 2018.

[23] Z. Chang, Z. Zhou, T. Ristaniemi, and Z. Niu, “Energy efficient
optimization for computation offloading in fog computing system,” in
Proc. IEEE Glob. Commun. Conf. (GLOBECOM), 2017, pp. 1–6.

[24] C. Jiang et al., “Energy aware edge computing: A survey,” Comput.

Commun., vol. 151, pp. 556–580, Feb. 2020.

[25] Q. Yang and P. Li, “Deep reinforcement learning based energy schedul-
ing for edge computing,” in Proc. IEEE Int. Conf. Smart Cloud

(SmartCloud), 2020, pp. 175–180.
[26] Y. Chen, Y. Zhang, Y. Wu, L. Qi, X. Chen, and X. Shen, “Joint task

scheduling and energy management for heterogeneous mobile edge com-
puting with hybrid energy supply,” IEEE Internet Things J., vol. 7, no. 9,
pp. 8419–8429, Sep. 2020.

[27] Y. Liu, S. Xie, Q. Yang, and Y. Zhang, “Joint computation offload-
ing and demand response management in mobile edge network with
renewable energy sources,” IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 15720–15730, Dec. 2020.

[28] M. Gao et al., “Computation offloading with instantaneous load billing
for mobile edge computing,” IEEE Trans. Services Comput., early
access, May 25, 2020, doi: 10.1109/TSC.2020.2996764.

[29] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
Proc. IEEE INFOCOM, 2012, pp. 2716–2720.

[30] A. R. Khan, A. Mahmood, A. Safdar, Z. A. Khan, and N. A. Khan,
“Load forecasting, dynamic pricing and DSM in smart grid: A review,”
Renew. Sustain. Energy Rev., vol. 54, pp. 1311–1322, Feb. 2016.

[31] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 279–292, 1992.

[32] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[33] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015. [Online]. Available: arXiv:1509.02971.

[34] V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” in Proc. 33rd Int. Conf. Mach. Learn., Jun. 2016, pp. 1928–1937.
[Online]. Available: http://proceedings.mlr.press/v48/mniha16.html

[35] Hourly Electricity Price Dataset. Accessed: 2016. [Online]. Available:
https://github.com/Electromaxim/electricity_load_forecast

[36] Huawei Cloud Price. Accessed: 2021. [Online]. Available: https://www.
huaweicloud.com/intl/zh-cn/pricing/index.html#/ecs

Tan Li (Student Member, IEEE) received the
B.S. degree from the Central South University,
Changsha, China, in 2016, and the M.S. degree
from the University of Science and Technology
of China, Hefei, China, in 2019. She is currently
pursuing the Ph.D. degree with the Department of
Computer Science, City University of Hong Kong.
Her research interests lie in the edge computing,
distributed computing, and machine learning for
wireless communication.

Yuanzhang Xiao (Member, IEEE) received the B.E.
and M.E. degrees in electronic engineering from
Tsinghua University in 2006 and 2009, respectively,
and the Ph.D. degree in electrical engineering from
UCLA in 2014. He is an Assistant Professor with
the University of Hawaii at Mãnoa. He was a
Postdoctoral Fellow with Northwestern University
from 2015 to 2017. His research interests include
game theory, mechanism design, and optimization,
with applications in socio-technological networks,
smart grids, and wireless communication.

Linqi Song (Member, IEEE) received the B.S.
and M.S. degrees in electronic engineering from
Tsinghua University, China, and the Ph.D. degree in
electrical engineering from University of California
at Los Angeles (UCLA), Los Angeles, where he
was a Postdoctoral Scholar with the Electrical
and Computer Engineering Department. He is
an Assistant Professor with the Department of
Computer Science, City University of Hong Kong.
He received a UCLA Fellowship for his graduate
studies. His research interests are in algorithms, big

data, and machine learning.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

