IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021 921

Integrating Future Smart Home Operation Platform
With Demand Side Management via Deep
Reinforcement Learning

Tan Li

Abstract—Residential demand side management (DSM) is a
promising technique in smart grids to improve the power system
robustness and to reduce the energy cost. However, the ongoing
paradigm shift of computation, such as mobile edge comput-
ing for smart home, poses a big challenge to residential DSM.
Therefore, it is important to schedule the new smart home com-
puting tasks and traditional DSM in a smart way. In this paper,
we investigate an integrated home energy management system
(HEMS) that participates in a DSM program and implements
smart home computation tasks by offloading tasks with the help
of a Smart Home Operation Platform (SHOP). The goal of
HEMS is to maximize the user’s expected total reward, defined
as the reward from completing computing tasks minus the cost of
energy consumption, execution delay, running the SHOP servers,
and the penalty of violating the DSM requirements. We solve this
task scheduling based DSM problem using a deep reinforcement
learning method. The DSM program considered in this paper
requires the household to reduce a certain amount of energy con-
sumption within a specified time window, which, in stark contrast
to the well-studied real-time pricing, results in a long-term tem-
poral interdependence and thus a high-dimensional state space
in our formulated problem. To address this challenge, we use the
Deep Deterministic Policy Gradient (DDPG) method to charac-
terize the high-dimensional state space and action space, which
uses deep neural networks to estimate the state and to generate
the action. Experimental results show that our proposed method
achieves better performance gains over reasonable baselines.

Index Terms—Demand side management, edge computing, task
offloading, deep reinforcement learning.

I. INTRODUCTION

EVERAGING bidirectional information and power flows
between the utilities and consumers, smart grids are
deployed to diversify the power supply, to reduce green house

Manuscript received December 20, 2020; revised March 17, 2021; accepted
April 11, 2021. Date of publication April 19, 2021; date of current version
May 20, 2021. This work was supported in part by the Hong Kong RGC under
Grant ECS 21212419; in part by the Guangdong Basic and Applied Basic
Research Foundation through Key Project under Grant 2019B1515120032; in
part by the City University of Hong Kong SRG-Fd under Grant 7005561;
and in part by NSF IIP under Grant 1822213. This article was presented in
part at the 2019 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm), Beijing,
China. The editor coordinating the review of this article was B. Kantarci.
(Corresponding authors: Tan Li; Yuanzhang Xiao; Lingi Song.)

Tan Li and Lingi Song are with the Department of Computer Science, City
University of Hong Kong, Hong Kong, and also with the City University of
Hong Kong Shenzhen Research Institute, Shenzhen, China (e-mail: tanli6-
c@my.cityu.edu.hk; lingi.song@cityu.edu.hk).

Yuanzhang Xiao is with the Department of Electrical Engineering,
University of Hawaii at Manoa, Honolulu, HI 96822 USA (e-mail:
yxiao8 @hawaii.edu).

Digital Object Identifier 10.1109/TGCN.2021.3073979

, Student Member, IEEE, Yuanzhang Xiao, Member, IEEE, and Lingi Song

, Member, IEEE

gas emissions, and to improve the power efficiency [2], [3]. In
smart grids, demand side management (DSM) is an important
mechanism which conducts efficient customer-side energy
management to reduce the peak-hour energy supply of the
power grid and hence the operational cost in the power grid.
As a result, the DSM program has been widely adopted by
residential customers [4].

Residential DSM strategies motivate consumers to re-shape
their load profiles and limit peak energy demands through
smart meters based on real-time pricing or incentives [5].
However, it is facing challenges under the ongoing paradigm
shift of intelligent computation. A rapidly increasing number
of Internet of Things (IoT) devices are deployed, such as smart
appliances (e.g., smart TV and smart refrigerators), healthcare
monitoring devices, and surveillance networks [6], [7]. These
devices often require high-performance computation to han-
dle complex computing tasks, such as voice recognition and
image processing. Above tasks are preferred to be done on or
near the devices rather than being offloaded to the remote
cloud servers due to the latency requirement and privacy
concerns [8]. However, the surge in local device computing
will definitely increase the household energy consumption and
make it more challenging for residential DSM. Smart Home
Operation Platform (SHOP), offering the storage and computa-
tion resources at the edge computing server, is considered as a
promising solution to fix the weakness of long-distance cloud
computing [9] as well as the poor computing capacity of local
equipment. In future smart home, SHOP will be deployed as a
key component to support various intelligent household appli-
cations. It allows users to offload some computation-intensive
tasks to the SHOP servers for execution. Since the SHOP
server is often deployed closer to the edge and trustworthy, it
will not introduce as large transmission delay as remote cloud
computing or reveal user’s privacy. Considering the restriction
of residential DSM, we can choose to offload some non-
urgent computing tasks to the SHOP server during peak hours
at the expense of introducing some transmission delays and
server payment compared to local computing. Therefore, it is
important to jointly consider DSM and SHOP in an integrated
framework. In other words, we have to balance a trade-off
between satisfying user’s requirements, complying with the
utility company’s DSM restrictions, and reducing user’s energy
consumption cost. In this paper, we study for the first time
how to perform DSM in an integrated network with SHOP by
deciding how to offload computational tasks. We consider an

2473-2400 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

922 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

incentive-based DSM program, which requires the household
to reduce a certain amount of energy consumption within a
specified time window. However, the traditional DSM program
may not be widely accepted by consumers [10] since power
shifting often leads to poor user satisfaction. Here we con-
sider a different scheme from power shifting. The integrated
home energy management system (HEMS) allows users do
not need to (or slightly) perform power load shifting during
the peak hours, instead they could offload tasks to the SHOP
in order to realize DSM. This framework was first presented
in our previous work [1]. The SHOP is equipped with more
powerful computing capacity compared with local devices and
is considered to be reliable. Users can choose to allocate
the computational task load among the local devices and the
SHOP, where the computation on local devices will result in
more power consumption and the computation in the SHOP
will lead to some transmission delay and monetary cost. This
task allocation problem can be formulated as an interactive
process between the HEMS and smart home environment. In
the environment, smart appliances randomly generate tasks
with different features. For example, face recognition task
requires a large amount of calculation (usually processed by
the neural network inference) and a short response time, while
the heart rate monitoring requires less computation and no
need for rapid response. When computing loads are allocated
by the HEMS after observing the task features, the environ-
ment will react with the energy consumption, execution time
and whether it violates the requirements of DSM. Then the
HEMS needs to further adjust the task allocation strategy
based on the feedback. In smart home, HEMS will contin-
uously observe new tasks, such as tasks generated from a new
household appliance, thus online learning is suitable for solv-
ing this problem. Our goal is to design an efficient online
learning algorithm to cope with complex smart home environ-
ment and obtain the optimal task allocation policy. Our main
contributions are summarized as follows.

1) We investigate an integrated HEMS framework who par-
ticipates in a DSM program and can realize task offloading
with the help of the SHOP. We analyze the interaction between
the HEMS and the smart home environment by dividing the
system into local computing, SHOP computing, battery and
demand response model. The HEMS aims to maximize the
user’s expected total reward induced by these models by decid-
ing how to offload computational tasks and charge/discharge
the battery.

2) We formulate the above reward maximum problem as a
Markov Decision Process (MDP) and use a deep reinforcement
learning approach to solve it. The proposed method is able to
overcome the challenges of a high-dimensional state space and
a large continuous action space in our model. The key is to
use the critic network to estimate the action-value function
and the actor network to output a parameterized policy.

3) Experimental results show that under the same environ-
mental setting, our algorithm outperforms other baselines. In
addition, it could achieve better performance gains over other
task offloading strategies in different environmental scenarios.

The rest of the paper is organized as follows. Related work
is discussed in Section II. System model and problem formula-
tion is introduced in Section III. A deep reinforcement learning

(DRL)-based approach is proposed in Section I'V. In Section V,
several experiments are presented. Section VI concludes the

paper.

II. RELATED WORK

There has been extensive research on how to perform
residential DSM, which can be roughly categorized into
price-driven and incentive-driven mechanisms [5]. Price-driven
DSM mechanisms provide time-varying prices, encouraging
the customers to reduce their energy consumption when prices
are high. Consumers are rewarded when signing up for the
incentive-driven DSM program and may be penalized if they
did not adjust their energy consumption when asked by the
utility company to do so [11]. Online learning methods are
used to learn the strategies for realizing residential DSM. The
learning process is often modeled as the interaction between
the users and environment (including electricity consump-
tion, electricity price, etc.), and the set of decisions may
include how to shift peak power consumption and sched-
ule the working time of household appliances. For example,
reinforcement learning (RL) is utilized for online schedul-
ing of building energy [12] and electric vehicle charging
systems [13]. However, most of these works did not consider
the urgent requirements of smart devices for high-performance
computing, nor combine with the edge computing framework.

More general paradigm of mobile edge computing (MEC)
have been widely studied in [14]-[18] for task offloading
scheduling. Some works restrict the task execution to be on
the local devices only or on the server only [19], while others
allow the tasks to be decomposed and executed locally and
online in parallel [20]. However, these works mainly focus
on the communication and networking features of MEC, such
as bandwidth and computing resource limitations in cellular
networks, and hope to find an optimal decision that minimizes
the overall offloading cost in terms of computation cost, and
delay cost.

Although MEC can tackle the problem of insufficient local
computing resources, it may compromise the efficiency of
DSM under a paradigm shift of household energy consump-
tion patterns [21]. In fact, the usage of household appliances
is heavily dependent on the real-time electricity price, which
should not be neglected when making task offloading deci-
sions. The importance of integrating MEC and smart grid
framework has been recognized by some researchers [6],
[7]. Indeed, MEC offers a platform for collecting and stor-
ing data from smart meters and other sensors, as well as
for the associated computational tasks, and thus can act
as a bridge of the smart grid and the household, result-
ing in reduced latency, increased privacy and locality for
smart grids. These benefits prompt more works that con-
sider the problem of joint task scheduling, computational
offloading, and energy management under the edge com-
puting architecture [22], [23]. The survey [24] summarized
state-of-the-art research works on energy-aware edge comput-
ing, including architectures, operating systems, applications
services, and computational offloading. These works usually
have different decision rules and learning objectives. Some
works focus on maximizing the number of finished tasks

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM

923

=————> Decision Flow
""""""" > Information Flow

Power Flow

Edge cloud

[IE%H

Smart Home Operation
Platform

()
A

‘ Original devices |

1 IIII ‘. >

i
i

i

i

i

i

i

i

i

: Smart devices with computation
i intensive tasks e > execution
! —

i

i

i

i

i

i

i

i

i

i

Server task
execution

0 Oe«nnn

Fig. 1. Residential demand side management with edge computing.

with limited battery capacity of edge devices [25], [26].
Other works investigate the goal of optimization in the smart
grid [27], [28].

III. SYSTEM MODEL
A. System Setup

In this section, we propose the integrated system with local
and SHOP domain. The system model is illustrated in Fig. 1.
We consider a residential user who runs several household
appliances and participates in a DSM program. In the local
domain, there are two types of devices: 1) the smart devices
with computationally intensive tasks to be completed and
2) the ordinary device with non-time-constrained tasks. In the
SHOP domain, the SHOP deploys several edge servers with
more powerful computation and storage resources compared
with the local domain. A base station is connected directly
with the SHOP through the wireless channel. The household
employs an intelligent HEMS, which schedules the energy
consumption of the entire household and acts as the interface
between the user and the utility company. Besides, the HEMS
is equipped with a battery that can purchase and sell electricity
from/to the grid. The HEMS can monitor the state of tasks,
battery, and DSM restrictions. Based on the above observa-
tions, it determines how to perform the tasks on devices (i.e.,
local computing) or in the SHOP server (i.e., mobile edge com-
puting) and informs the battery to buy or sell electricity. The
whole system consists of three flows: 1) the decision flow indi-
cates the task assignment and dis/charge action decided by the
HEMS; 2) the information flow contains the state information
of tasks, the battery, and DSM requirements; and 3) the power
flow includes electricity sold from the grid to the end user
or the opposite way. We adopt a discrete-time system model
where time is divided into slots of equal length 7’5 (in seconds)
and indexed by t = {1,2,...}. Next, we describe the models
for devices, tasks, battery, and demand response programs in
detail.

B. Smart Device Model

There are a growing number of computationally intensive
tasks within a household. Examples of such tasks include

Home energy
management system

Localtask 1 HEH HE EE

tm‘ -, . Bartery charge
Oen() |

Local domain

A4

Utility Company

|

smart devices such as smart refrigerators, voice assistant
speakers and entertainment devices like smart TVs.
Common features of these tasks include: 1) requirement
of high-performance computing and storage for voice recog-
nition or image processing and 2) desire for local execution
due to time-sensitivity and privacy issues; high energy
consumption induced from high-performance computing.

Bearing these common features in mind, we model these
tasks mathematically as follows. At each time 7, the HEMS
maintains a sequence of nd e Zy devices requesting to
execute tasks. Each device needs to complete one task k;,
i =1,2,...,n5, which is characterized by a tuple (Ci, Ey),
where C; € Ry is the total amount of computing resources
required for completing task i (i.e., task computing load) and
E; € R4 is the time before the task expires. We use the CPU
cycles to measure the workload of computational tasks Cj,
as is widely used in works on resource allocation and task
offloading. The state of each task k; at time slot 7 includes the
remaining task load ¢;(t) € [0, C;] and the elapsed time of
the task e;(t) € [0, E;]. For example, in incremental learning,
it usually takes several hours every day to update the neural
network model with the newly generated data.

At the beginning of each time slot ¢z, the HEMS makes
the task allocation decisions and forward them to the devices
and the SHOP server. In our paper, we adopt the latter set-
ting, namely the task loads of the local device and the cloud
server are additive. Specifically, HEMS determines the amount
aiL(t) € R4 of task executed on local devices and the amount
aiS (t) € R4 of task offloaded to the SHOP server for task
k; in time slot ¢. To show the details of such task offloading,
we first introduce the wireless network environment settings
where there is a multi-user SHOP system with one base station
(BS). We denote W as the bandwidth of the wireless channel,
which is equally allocated to the nS devices offloading tasks to
the SHOP server simultaneously at time slot 7. Thus, according
to the Shannon channel capacity, the achievable upload data

rate for device i is:
PUh,
L) @)

r=(w/n%) .10g<1+ I

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

924 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

time slot t
— T

ai(t) TED) time slot t
task ky [f— T,

Bo | Yo o

—

Time duration when there are
tasks running on the server
— —

4o | o {ORERD)
task k, : ‘
a@® | 0] ‘

¥ () e | o

task ke, [af(®) TH®) i e

server finishes
the last task

server receives
the first task

task ki (afi, (0) TH4(t) T4(8)

(a) (b)

Fig. 2. (a) Task execution time of smart device i during time slot ¢. (b) Server
running time during time slot .

where PZ-U is the transmission power of device i when
uploading data, h; is the channel gain of device i and Ny
is the variance of white Gaussian channel noise. We next ana-
lyze the required time and energy cost for computing aiL (1)
and af (t) respectively.

1) Task Execution Time: In the local domain, the execution
time of a(¢) amount of task ; is,

TF(t) = o (1) /fF,)

where fiL is the computation capacity of local processor (i.e.,
CPU cycles per second) of device i. Clearly, the computing
capacity differs among devices. Devices with image process-
ing capabilities (e.g., mobile phones) are enabled with more
powerful CPUs, or even GPUs.

In contrast to local computing, af(t) amount of task k;
needs to be offloaded and executed by the SHOP server. The
whole SHOP computing procedure consists of three steps.
First, device i uploads the required data to the HEMS through
the wireless channel and the HEMS forwards the data to the
SHOP server. The corresponding transmission time is:

TV (8) = b7 (8)/ri = - a (1) /. 3)
where bY(t) is the data size (bits) of task af (t), which can
be calculated by a coefficient «. Second, the SHOP server
executes the task k; for:

TS (t) = af (t)/f7,)

Finally, the SHOP server returns the computational result to
device i. The time can be reasonably ignored of this step due to
the small size of the computational result. Thus, the time cost
by SHOP computing is the sum of data uploading stage and
server computing stage: TiU(t) + TZ-S (t). Since the local and
server computing are performed simultaneously, see Fig. 2, the
total execution time is the maximum of these two: T;(¢) =
max{ TH(t), TE (1) + T (1)}

2) Energy Consumption: Since DSM is only related to the
local energy consumption, we only need to consider the energy
consumed in local domain.

We first use the features of the CPU to characterize the
energy consumption of local task execution:

CE(t) = e;al (1), (5)

where ¢; is the energy consumption per CPU cycle.!
Then, the data transmission leads to the following energy
consumption:
() =PI Tl (1) (6)

The total energy consumption at time slot ¢ of device i is
the sum of these two stage: C;(t) = CiL(t) + CiU(t).

C. Demand Response Model

The user participates in a demand response program that
may require the user to consume a reduced amount of elec-
tricity within a specified time frame (e.g., a few hours). Such a
demand reduction is usually mandated by a contract signed by
the user and the utility company. The user is rewarded when
signing up for the program and may need to pay a penalty if
failing to fulfill the load reduction requirement. At a certain
time slot ¢, the utility company may send a signal (I(¢), d(?)) to
the user, which requires the user to restrict its electricity load to
a total amount of /(¢) kilowatt hour (kWh) in the next d(f) time
frame. The demand response events will not overlap, namely
a new event will always happen after the previous event has
ended. In other words, we can view [(f) as the “quota” for
electricity consumption in the next d(¢) time frame, starting
from time slot 7. This quota decreases over time as the user
consumes more electricity. Note that the computing resources
in the SHOP server will not be counted when calculating the
local electricity consumption.

D. Ordinary Device Model

In order to make our model more practical, in addition to
the smart devices listed above, we also consider some ordi-
nary household appliances. We assume that these appliances
neither have intelligent computing functions, nor scheduled
tasks. Consider there are totally n© ordinary devices in our
system, where device j only has two states: {idle, work} at
each time slot r. The corresponding energy consumption in
time slot 7 of device j is:

Colr) - P/ Ty if j is in idle state .
i(t) = PjW Ty if j is in work state @

where PjI , PjW are the power of idle and working state
respectively. Our strategy does not require scheduling the state
of these devices. However, their energy consumption affects
the remaining quote of DSM and thus our decision-making.
For example, when most original devices are in work state,
in order not to violate DSM, we may need to offload more
computational intensive tasks to the SHOP for completion.

Twe set € = 10*27(fZ.L)2 in the experiment according to some previous
works [29].

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM

E. Battery Model

With the rapid development of smart grids and electric
vehicles (EVs), the batteries have become the most signifi-
cant energy storage equipments and have attracted widespread
attention. Whether to charge/discharge the battery can be con-
trolled by the HEMS wisely based on the current electricity
price and the remaining capacity, e.g., charging the battery
when the electricity price is low and discharging the battery
when the price is on-peak.

In this paper, we consider a battery with capacity Cp.
Let B(r) represent the state of charge (SOC) of the battery
at time slot ¢. At time slot #, the HEMS chooses the charg-
ing/discharging action ap(t), where ap(t) € {—1,0,1} is
positive when the battery is charging and negative when dis-
charging. We further denote the charge and discharge currents
and voltages by I 1°% U™ U°“, To model the energy
loss during charging and discharging, we define the charging
and discharging efficiency of the battery as ™ (0,1) and

8% € (0,1), respectively. Thus, the change of the energy
level in the battery at time slot ¢ can be computed as:
g Ut Ty if ag(t) =1
b(t) = (1/ﬁ0“t)]°“tU°“tT if ag(t)=-1 (8
ap(t) = 0.

The net amount of electricity purchased from the utility at
time slot 7 is:

mmymnT if ag(t) =1
Cy(t) = —I°UUoU Ty if ag(t) = —1)
0 otherwise,

where a negative Cj(¢) indicates energy export to the grid.

From (8) and (9), we can see that due to efficiency loss
of the battery, the actual increase of the SOC is less than the
energy purchased from the grid, and the actual reduction of
the SOC is greater than the energy sold to the grid.

FE. Problem Formulation

We define J(¢) as the overall system cost at time slot 7,

S

3

M

[EClocal _|_ oJTC«tzme() + wS Ciserver(t)]
O

s
Il
3 [

) WEC(t) +wP Cy(t) (10)

J

Il
—

where the first term demonstrates the total cost of tasks exe-
cuted by the n° smart devices. In particular, Cil"c“l, Cfime
and C7¢™°" are the cost of local energy, task completing time
and the server rental fee of task k; at time slot 7. We give their
specific definitions in the next section. The second term illus-
trates the energy cost of n© original devices while the last
term states the energy cost of battery charging. The coefficients
wF wT w9 demonstrates the trade-off between the cost of
energy (1nclud1ng the consumption of smart devices, original

devices and the battery), time-delay and the server.

925

TABLE I
DEFINITION OF NOTATIONS

Notion Definition
nS,nO Number of smart and original devices

C; Computing load of task k;

E; Expiration time of task k;

T Duration of time slot ¢ (in seconds)
ci(t) Remaining task load of task k; at slot ¢
ei(t) Elapsed time if task k; at slot ¢
aiL(t) Amount of task k; executed locally at slot ¢
af (1) Amount of task k; offloaded at slot ¢
ap(t) Battery charge/discharge decision at slot ¢
B(t) Battery storage

fiL Local computation capacity of device i

€ Energy cost per cycle of device i

T Upload data rate of device i
PZ.U Transmission power of device i

Pt.I Power of device i in idle state
PZW Power of device i in work state

a Coefficient between CPU cycle and data size

1(t),d(t) DSM requirements
PE(1) Electricity price at slot ¢
P (1) Server rent fee at slot ¢
n Minimum battery percentage level

The objective of this paper is to minimize the long-term
discounted sum cost of the system, which is computed as

ngn JT = Z’y 1
Cl: aX(t) + a? (1) < ci(t),iaaf(t) < (g,
=1
a; (t)<C’LVzEn(t)
C2: T;(t) < Ts ¥V i € n(t)
C3: e;(t) < Ei(t), Vien(t)
C4: I(t) > 0, for d(t) =0

C5:mx Cp < B(t) < Cp, (11)

v is a discount factor. C1—C5 are constraints. C1 repre-
sents that the constraints on allocated computation resource.
In particular, the amount a’(#) should be no more than the
total computation capa01ty C L of device i. And all offloaded

amount of task load Y 1", ava; S(t) should be limited by the
server cache size Cg. Be31des since each device must exe-
cute its allocated amount of task either locally or in the SHOP
within one time slot, we have Cy. ('3 indicates that the task
must be completed before the expired time. C'4 is on behalf
of the DMS constraints that the energy consumption should
be lower than the limitation of the utility company. C'5 states
that the remaining capacity of the battery must not be less
than a certain percentage 7 of the total capacity C'p and not
larger than C'g. Here, Cg, CZ»L and Cp are both constants. We
summarize the parameters in Table I for ease of reading.
The optimal solution to Eq. (11) requires complete
information regarding the mathematical models of the system,
such as the statistical distributions of the tasks and expired
time. Such information is in general not available in a practical

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

926 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

system. One feasible approach to overcome these challenges is
to design an online solution that can efficiently make the deci-
sions regarding charging and computation resource allocation
in real time through interactions with the system. Therefore,
instead of applying conventional optimization methods to
solve the problem Eq. (11), we propose a DRL-based method
to find the optimal aL, aS, ag.

IV. DEEP REINFORCEMENT LEARNING-BASED SOLUTION

In this section, we first convert the above optimization
problem into a Markov decision process (MDP) which can
be solved by the deep reinforcement learning algorithm.

A. Formulation of Markov Decision Process

As we can see that the current HEMS states are com-
pletely determined by the previous states and task assignment
decisions. Therefore, we can formulate the decision making
problem as an MDP with infinite time horizon. An MDP is
a five-tuple (S, A,P(s|s’, a), R(s, a),v), where S is the set
of states, A is a set of actions, P(s|s’) represents the state
transition probability, R(s, a) is the immediate reward and -y
is a discount factor. The details about the MDP formulation
are shown as follows.

1) States: For compact presentation, we define the vectors
c(t) =[e1(t),...,c,s(t)] and e(t) = [e1(t),...,e,s(t)] as
the states of all the tasks at time slot . Then the state s(¢)
encapsulates five types of information: 1) the price of elec-
tricity pg(t) € R4; 2) the price of mobile server computing
ps(t) € Ry; 3) the state of demand response ((! dgt
Ry xRy ; 4) the status of tasks c(t), e(t) € Rl xR}
5) the state of the battery B(t) € Ry. We deﬁne the collectlon
of all the above status as the state of the MDP.

s(t) = (pe(t), ps(t), 1(t), d(t), c(t), e(t),

2) Actions: The task offloading action at each time slot
t specifies how much computing resources, both on the
devices and on the SHOP server, allocated to each task.
We define the vectors a’(t) = [af(t),..., aﬁs(t)] and
a®(t) = [af(t), e afs(t)] as the task offloading decisions.
Besides, the action ap(t) represents the charged (ag(t) = 1)
or discharged (ap(t) = 1) decision in the battery during time
slot 7. Considering the constraint C'5 in Eq. (11), ap(t) will
always be set as 1 until B(¢) achieve the threshold 1 Cg. Then
the whole action vector can be written as

B(1). (12)

ap(t)) €RY xRY x Zy. (13)

From the constraints C'1 — C'2 in Eq. (11), we can obtain the
set of feasible actions at each time slot ¢

At) = { (ak(1). a5 (1), ap() | o (1), a7 (1) = 0,

nS

al(t) + af (1) < ci(1),) " aal (1) < Cg

1=1
ak(ty<cl vie nS}.

3) Rewards: Designing a good reward function is essential
to achieve high-quality policies. The reward function must be
consistent with our optimization goal Eq. (11), besides that it
satisfies all the constraints. Given a state-action pair (s(¢), a()),
the reward at each time slot ¢ has five components.

The first component is the positive reward of completing the
task on time. For task k;, the reward function is written as:

(ci(t), ei(t)) — ur i(ci(t), ei(t))-

In general, the reward is realized only when the task is com-
pleted before the deadline (C3). An example reward function
could be

(R (15)

. if ¢;(t) =0 and ¢;(t) < F;
ur gl (o) = { g7) et Al < B g

where 7; > 0 is the reward of completing task ;.

The second component of the reward is the cost of local
electricity consumption. It is main incurred by smart devices
for executing task, original devices for staying in work/idle
state and battery’s dis/charging decision. As suggested by [30],
the price of selling electricity to the grid is the same as
purchasing. Thus the whole local energy cost is defined as:

Zc

nO

+.C

J=1

cener () 50+ Cy(1)

a7

)=pe(t

The third component of the reward is the cost of running
the computation in the SHOP server. Here we do not need to
consider the energy consumption of the SHOP server, as this
is constant over time. Instead, we consider the running time
of the computing task on the SHOP server since the server
is always charged by the rent time. Since all offloaded tasks
are executed in parallel, we use the time between the start of
the first task and the completion of the last task to indicate
the time duration when there is a task running on the server,
shown in Fig. 2. Then the cost can be computed as:

crer(s) = poto) - (max{ V(0 + 750}

- mjn{ TiU(t)}) . 38)

(]

The fourth component of the reward is the time cost of all
nS tasks:

nS

ciime () = 37 13(1)

i=1

(19)

The final component of the reward, following the constraint
(4, is the potential penalty of violating the demand response
requirement, which is defined as

uDuuxaw>={p if d(t) = 0 and U(t) < 0

0 otherwise,
where p > 0 is the (usually large) penalty of violating the
DSM requirement. In other words, the user will be charged
by p if the local energy consumption exceeds I(f) when the
time frame d(¢) ends.

(20)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM

According to the definition of the above reward functions,
we change the problem of cost minimization (11) into the
reward maximization problem. As such, the reward function
is then

u(s(t), a(t)) = Z uT,i(Ci(t)7 €i(t)) _ wECenergy(t)
=1

_ chtime(t) _ wS Cserver(t)

— up(l(t), d(?).

Here, wf , W T7 W are coefficients, which indicate the trade-

off relation ship between the energy consumption, time-delay
cost and server cost.

4) State Transitions: We specify the state transition for each
component in (12). Given the task allocation decision, the state
of task k; will be updated in time slot r + 1 according to

ci(t+1) = ¢i(t) — al(t) — a? (1), (22)
ei(t+1) = e (t)+ Ts. (23)

2n

Given the charging decision, the battery SOC transits
according to

B(t+1) = B(t) + b(t).

The state of the demand response event transits according to

(24)

I(t+1) = 1(t) + B(t) - i Ci(t) — nz Cj(t) + b(1),
=1 =1
’ (25)
d(t+1) = d(t) — Ts. (26)

B(1) can be regarded as an additional supplementary power.
Noting that, I(7) is only related to the local energy consumption
rather than the server. The pricing states pg(t) and pg(t) are
drawn randomly and independently of each other and other
state components.

From (22)-(25) we can see that there is some certain stable
state transition probability P(s|s’, a) for the system starting
from state s’ to state s when taking action a.

The joint decision 7 is defined as the mapping from the
state vector s(f) to the action vector a(r):

7w 8(t) — a(t), 27

and the set of all policies is defined as II;;.

Our goal is to find the optimal joint policy that maximizes
the expected total reward starting from any initial state s(1)
over horizon T, namely

welly

7% = arg max EW{Z ylu(s(t), a(t))}, (28)
t=1

where v € (0,1) is the discount factor, and the expectation
E™ depends on the policy m. Intuitively, there is a trade-off
between the local execution and task offloading. Constrained
by the poor local computing capacity, executing all tasks
locally may cause the task expires. It also may introduce high
local energy consumption which results in the violation of
DSM requirements. In contract, offloading all tasks to the

927

SHOP server means the huge transmission delays and expen-
sive server rental fees. Our following algorithm is to find an
optimal joint allocation scheme between the trade-off.

B. DDPG-Based Solutions

After formulating the objective problem as an MDP, we can
obtain the optimal policy through the reinforcement learning
methods. Many reinforcement learning algorithms utilize the
action-value function Q7 (s(¢), a(t)) to solve (28), which is
defined as the total reward under policy 7 choosing action
a(r) at state s(¢). It also can be written as following recursive
form including Q™ (s(t+1), a(t+1)), known as the Bellman
equation:

Q" (s(1),a(t)) = u(s(t), a(t)) + VEs(141),a(t+1)~r
x [Q@"(s(t+1),a(t+1))]. (29)

where s(# + 1) denotes the next state being transitioned from
state s(f) under a(r). Given the optimal action-value func-
tion Q*(s(t), a(t)), the optimal Markov policy 7* can be
defined as

7 (s(1)) = arg

Q" (s(t), a(t)). (30)

max
a(t)eA(t)

Traditional reinforcement learning algorithms, such as Q-
learning [31], maintain a “Q table” to compute and store the
Q-value by enumerating each state-action pair. The scale of the
“Q table” is related to the size of state and action space. Recall
that in our problem formulation, the joint decision at time
slot £ a(t) = {af(t),...,als(t),al (1),..., a%s(t), ap(t)}
is a (2n° + 1)-dimensional vector, and the state s(¢) =
(0 (1), ps (1), 1(2), (1), e(t), e(1), B(t)) is a (205 + 5)-
dimensional vector.

Therefore, the state space grows exponentially in the num-
ber of tasks, resulting in the “curse of dimensionality” and
failure to maintain the “Q table.” Besides, the joint actions
al (1), af (t) and ap(t) are continuous values (or discrete
values with high granularity), thus searching through the large
action space to find the optimal action with the highest Q value
may lead to very low convergence.

To address this problem, some deep learning based meth-
ods, such as deep Q network (DQN) [32], utilize deep neural
networks as function approximators of the action-value func-
tion. The DQN takes state and action vectors as input and
outputs the corresponding estimated value. When there are
sufficient state-action samples, that is, after sufficiently sam-
pling of the entire environment, the output of the DQN can
be approximated as a Q value to help us to choose actions.
However, the DQN mainly focus on the high-dimensional
state space rather than overcome the continuous action space
problem. It still needs to compare the Q value under different
actions to choose the best one at current state.

The DDPG algorithm [33], which combines the actor-critic
structure and neural networks, makes up for the lack of DQN.
The key is to parameterize both the Q-value function and
the policy. As illustrated in Figure 3, the DDPG algorithm is
integrated in HEMS. Both the Actor and Critic networks are
composed of deep neural networks. First, the Action network

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

928 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

7 o : o Action
Task ofﬂoadmg decmop Charging decision) at (o), as (o), ag(t)
| ak@®) af@) - (aps(®) | aps(®) | ag(t) <
HEMS environment State compact Decision
Actor Net k
{[a®y) (G - - cps(®) | clonietworky]
Task state n
‘ : : u(s(©)[6%)
e1(t) e(t) | o eps(®)
¥ DsMstate [I(2) ® t o0
Evaluation
Price state pe(®) ps(t) Critic Network
Battery state B(t) 0(s(6), a(t)[69) | <=
State transition: (21)-(25)
Reward Function u(s(t),a(t)) = Z ur; (¢i(t), ei(t)) — wBCe neray(t) — wrgHme (t) — u."g("*"""'(f) —up (I(t),d(t)

i=1

Fig. 3.

makes the joint decision based on the compacted state from
the HEMS under the current policy. Then, the Critic network
takes the HEMS state, the output of Actor, and the imme-
diate reward as input to calculate the approximated Q-value.
These two networks are updated alternately until the training
process ends. The training details of the DDPG algorithm is
shown in Algorithm 1. We define the parameterized Actor and
Critic networks as 1(s|0") and Q(s, a|0?) with parameters
9" and 09 respectively. Noting that we do not update the
model after we collect one state transition sample. Instead,
we initialize a replay buffer with size R. When every training
episode starts, the state transition tuple (s(¢), a(t), u(t), s(t + 1))
following current policy #* is stored in the replay buffer. Once
the replay buffer is up to its capacity limitation, the Actor
and Critic networks are updated by sampling a minibatch of
transition tuples from the buffer. The Critic network can be
optimized using gradient descent #% — % — T'QVQQ L(9)
by minimizing the Mean Square Error (MSE) loss:

2
L(09) = Eutiyomatn.uin | (Q(s(0). a(t)|09) — u()”].
(€20
where y(t) = u(s(t), a(t)) +vQ(s(t + 1), a(t +1)|69).
The Actor network updates the policy parameter 8% with

respect to the direction of the Q-value gradient 6# «— OV —
TV gu J (OF):

VouJ(0#) = FE [Veu Q (57 a|9Q) |s:s,a:,u(s(t)|9“)}

—F [VQQ(S’ ““’Q)S:s(t),a:

< Vons(al6) o |

n(s(t)|0m)
(32)

To solve the expectations in (31) and (32), we can use
Monte Carlo estimators to obtain estimated values over the

Deep deterministic policy gradient based residential demand side management framework.

Algorithm 1 Deep Deterministic Policy Gradient Algorithm

Initialization: Randomly initialize the Crific network Q(s, a|0Q),
the Actor network u(s|0"), and the target network and
Q'(s,al0?). 1/ (s[6")

Input: Replay buffer size R, batch size k, number of the episodes
m, number of time steps in each episode 7, learning rate ¥ and
r# for Critic and Actor network, update rate 7% and 7" for target
Critic and Actor network.

Output: The optimal action a

1: for episode = 1 to m do

2: Initialize a random process for action exploration;

3: Receive initial state:

s(1) = (pp(1), ps (1), [(1), d(1), e(1), e(1), B(1))
4. fort=1to T do
5: Select task allocation and charging action: a(t) =
u(s(t)|0") + o according to the current policy p and
exploration noise o.

6: Execute action a(r), observe the reward u(s(t), a(t)) and
the next state s(z + 1).
7: Store transition (s, a(t), u(s(?), a(t)), s(t + 1)) in the replay
buffer R
8: if Stored transitions > Replay buffer capacity then
9: Discard the oldest transition samples.
10: end if
11: Sample a random batch of k transitions from R
12: Ugdate Critic usmg the gradlent descent:
— Qv QL using Eq. (34).
13: Update Actor using the policy gradient descent:
O — oF — r“VeQJ using Eq (35)
14: Update the target networks Q and ,u
/
15: s <—7'9Q—|—()0Q
! !
16: OF — TOH 4+ (1 — 7)o
17: end for
18: end for

mini-batches
M

Ezrvq(z\:nl)[f(z)] ~ M Z f(2),2 ~ q(z|z;).

m=1

(33)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM

For the mini-batch of state transition {s;, a;, u(s;,ja;),
Si+1}i~€:1 with size k, (31) and (32) can be written as:

k
Ik — %Z(Q(si, a,—|0Q) - yi)2 (34
=1
k
1 Q
Vgqu =% ;VGQ(S’ ald)s=S¢,a=#(5i‘€“)
x Vo u(s]6®) ©3)

S$=8;

Since even a small update of ¢, 04 will lead to a great
change in action-value and policy, two target networks with
parameters Q' (s, a|0%) and 4/ (s]6"') are used to give con-
sistent targets during training process. The weights of these
target networks are updated slowly by following the learned
networks in the way: 09 — 790 + (1 — 7)09’, o4 —
™0 + (1 — Tp)0p/. As 79 < 1, 7# < 1, the target values
change slowly.

V. EXPERIMENTAL RESULTS

In this section, we measure the performance of our proposed
algorithm using both simulated and real world data. We
first introduce four approaches as comparison methods. The
training performance of our proposed model is shown in
Section V-B. Then, we carefully compare our algorithm with
other methods in terms of the cost weights, number of devices
and server cache size in Sections V-C. Finally, we use the real
world data to demonstrate the efficiency of our algorithm in
Section V-D.

A. Comparison Algorithm

We first introduce four comparison algorithms used in this
paper. The first two are popular DRL algorithms and other two
are heuristic methods.

1) A3C stands for Asynchronous Advantage Actor-Critic
algorithm [34], which is a DRL framework. It is originally
proposed for acceleration of policy training in parallel. The
agent optimizes both policy and approximation of a state-
value function. Note that A3C and DDPG are both Actor-Critic
based DRL methods, which utilize DNNs to learn both the Q-
value and policy networks. The main difference between A3C
and DDPG lies in the training process where the former use
the asynchronous way.

2) DON stands for the Deep Q Network algorithm, which
is also a popular DRL method. However, it only uses neural
network to estimate the action-value function and selects the
optimal action with the highest ‘Q-value’. Since DQN can
not handle large or continuous action dimensions, we define
a small discrete action space: for each task k; at each time
slot 7, the HEMS can only chose a value from 0, 1 for aiL(T)
and af(T), which stands for either execute the task locally
or offload it to the SHOP server. However, the amount of
allocated tasks should not exceed the upper limitation of the
local or server computing capacity.

3) Full local execution means that all the computation tasks
are executed locally; in other words, aiS (t) = 0. In this way,
we have CF¢Ver(¢) = 0 and C}™e(t) = TZ.L (t) for all task
k; at time slot t.

929

4) Full SHOP execution scheme offloads all tasks to the
SHOP server, i.e., aiL = 0. Similarly, we have C}"¢ = TZ-S +
TZ-U for all tasks k;. Since except for the smart devices, the
original device and the battery contribute to the logal energy
consumption, we have C;"“"%Y(t) = Pg(t) - (;»1:1 Cj(t) +
Cy(t)) rather than 0.

B. Training Performance

We firstly present the details about parameter settings to
train the DRL model.

1) System and Task Parameters: The number of smart
devices, i.e., the number of tasks to be executed nS, is fixed
to be 20. The CPU frequency for each device are uniformly
distributed between [1, 2] GHz. Specifically, for each task
k;, the computation requirement C; (i.e., the CPU cycles)
is uniformly distributed between [0, 10] Gigacycles and the
data size bf is uniformly distributed between [0, 100] Mbits
with a = 0.001. The elapsed time E; is uniformly distributed
between [1, 5] seconds. Typically, it need 10s to compute a
10 Gigacycles task using a 1 GHz CPU, which is larger than
5s. Thus, the smart devices need to offload the part of tasks to
server before it is expired. The SHOP server, equipped with
more powerful capacity and larger storage size, is configured
with C5 = 800 Mbits storage and f = 5 Ghz CPU frequency.
To characterize the wireless environment, we set the channel
bandwidth W = 10 MHz.

2) Energy Parameters: We set the transmission power as
PlU = 1W for all smart devices. For the original devices,
the idle power is uniformly distributed between [1, 2]W,
and the working power is uniformly distributed between
[1000, 2000] W. The time that the original devices stayed in
idle and work state accounts for 30% and 70% respectively.
The DSM signal released by the utility company is modeled
as random variables. In particular, it is usually released in
advance to cope with the upcoming peak hour, which is usually
predicted by the utility company based the historical residen-
tial usage. For example, it may require that the total electricity
consumption limited to 10 kW before 18:00. Considering that
we set each time slot T = 1s, it is not conducive to model
learning if the DSM signal only appears once in hours (tens of
thousands time slots). Therefore, in our training process, we
set a frequent DSM signal, such that, the constrained electric-
ity load I(¢) is distributed between [0, 0.5] kW with constraint
response time d(f) between [5, 10] minutes.

3) Network structure parameter: The details for network
structure and training process are summarized in Table II. As
we analyzed before, the state_dim and action_dim here should
be a function of the smart device number n°.

The training processes of our proposed DDPG method
and another DRL method-DQN with the number of training
episodes over 20 runs are shown in Fig. 4. In a whole, the
curves show that DDPG algorithm has a good convergence
and gain more reward than DQN. At the beginning of every
episode, we reset the environment with a new initial state s(1).
For the DDPG algorithm,we compute the cumulative reward
and update the model parameters for 10000 steps. In the first
5 episodes, the decision is randomly selected by the Actor
network for collecting the memory buffer, resulting in a low
reward. After this phase, the Critic and Actor networks begin

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

930 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

TABLE II
NETWORK STRUCTURE PARAMETER

Parameters Values
input layer: state_dim+ action_dim
Critic hidden layer: 400,300,100
output layer: 1

input layer: state_dim
Actor hidden layer: 400,300,100
output layer: action_dim

batch_size k =64
learning rate r€ =0.001,7# = 0.005
discount factor vy =0.99

== DDPG

100 —

-100 —

Cumulative Reward

=200 —

I 1 I I I
0 10 20 30 40

Training episodes

Fig. 4. Training performance of DDPG and DQN algorithm.

to update using the stored transitions in the memory buffer.
It can be observed from Fig. 4 that the training reward starts
to increase gradually after episode 5. Then at around episode
20, the cumulative reward converges around 100 with small
oscillations. Compared to the DQN algorithm, our proposed
algorithm converges faster to a higher average reward with
smaller variance. The main reason is that DQN can only select
actions in discrete values.

C. Testing Performance

After the training process, the proposed approach can be
deployed for energy scheduling. We test the performance of
the model from the following aspects:

1) Performance of Cumulative Rewards: We first fix the
environmental parameters (i.e., Pg(¢) and Pg(t)) and com-
pare the cumulative rewards obtained by different algorithms
after 10 test episodes. Fig. 5 shows the cumulative rewards of
the aforementioned methods. From the parameter setting, we
can see that the required computation amount, expired time
of each task, and the DSM signal are all concentrated to a
narrow interval. Therefore, even though we randomly sample
the task and the DSM signal, the cumulative reward we obtain
in each episode is close. It leads to some approximate linear
results in the Fig. 5.

The A3C (black dash curve) and DDPG (red dash curve)
methods, both of which are as Actor-Critic based algorithms,
have achieved similar results and are higher than the DQN
(green dash curve) methods. This indicates that the policy gra-
dient methods perform better in our problem. The Full Edge
policy obtains the lowest reward. This is because if all the tasks
are executed locally, the rapid increasing w® C' €79 leads to a
significant decrease in /(f), which may become negative before
d(t) = 0, resulting in the penalty up(I(t), d(t)) easily. If the

= e A

-@- DDPG with Battery 277
800 — ?

—@- DDPG without Battery ,¢¢‘

& Dox & e

—-@~— Fulllocal o > 4

600 — —@- Full SHOP - X

400 —

Cumulative Reward

200 —

Test episodes

Fig. 5. Testing cumulative rewards of different algorithms.
100 = —A— Full local
-A- Full SHOP /_/"
A DON P
8 = A ppPG Pt

Test cumulative rewards

6 8 10 12 14 16 18 20

Number of smart devices

Fig. 6. Testing cumulative rewards of different number of smart devices.

user offloads all tasks to the SHOP server, the cost of running
the server w® C'S€™e" could be higher. Moreover, offloading
all tasks introduce a huge transmission delay, which increase
the term w’ Ctime,

Fig. 5 also demonstrates that the existence of the battery
achieve more benefits. Using the same DDPG algorithm, the
scenario with a battery can achieve higher cumulative reward
than that without a battery (i.e., ag(¢) = 0,Vt) . The main two
reasons for the difference are: 1) the battery can sell electricity
to the grid when the electricity price is high to obtain more
gain and 2) the energy stored in the battery can avoid the
possible loss of DSM by increasing the value of /(7).

2) Effect of the Number of Smart Devices: In this section,
we use four approaches: 1) DDPG; 2) DQN; 3) full-local; and
4) Full-SHOP to demonstrate the scalability of our proposed
methods. We test the case where the number of devices is 5,
10, 15, 20 by setting the task workload generated by some
devices as 0. The averaged cumulative rewards in Fig. 6.

Intuitively, more devices generates more tasks, leading to
more benefits from completing tasks. The DRL methods grad-
ually outperform the full local and full SHOP schemes, while
DDPG achieves higher rewards than DQN. We can also
see that the rewards obtained by the DRL methods increase
almost linearly with the number of devices, while the rewards
obtained by the other two methods tend to saturate as the num-
ber of devices grows. The reasons are as follows. For the Full
local scheme, the losses caused by violating the DSM offset
the part of the gains from completing the tasks. For the Full-
SHOP method, limited by the cache size of the server, there is
an upper limitation on the amount of tasks that the server can
handle during each time slot. Therefore, although the number
of generated tasks increases, not all of them can be offload
and completed at the server. Besides, too many tasks will also
cause an increase in w T C'tme,

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM

120

-@- Fulllocal
-@ FullServer e °
100 — L
@ DON /_. .
: e e
-E ‘/
E * oy
E
2
I e .
F I
s 1 e
3
z 40 -
= .
20 =
0

1 I 1 I 1 I 1 I 1
400 600 800 1000 1200 1400 1600 1800 2000

Server cache size (Mbits)

Fig. 7. Testing cumulative rewards of different sever cache size.
3.0
- v - we e w
£ 25
<
El
F 2.0 1
g
=
g 15 -
E
2 1.0
E
3
£ 0.5 1
g
-4
0.0
0.2 0.4 0.6 0.8 1.0
Value of weights
Fig. 8. Task allocation results of different values of weights wE, wT, WS,

3) Effect of the Server Cache Size: We then investigate
how the server cache size effect the learning performance.
We set the server cache size equals to 400Mbits, 800Mbits,
1000Mbits, 2000Mbits. Generally, when the server cache size
increases, more tasks can be offloaded and can be executed
before expiration, resulting in more rewards. In Fig. 7, we
can see that the Full-local method is almost not affected by
the server cache size, while other three methods both achieve
more rewards with the increase server cache size.

4) Effect of the Cost Weights: We use Fig. 8 to show the
effects of trade-off weights w®,wT and wS. We first explore
the ratio of the tasks allocated to the edge and to the SHOP
with different weights settings. Specifically, we vary w® and
set wl' = wS = # We can see that when w? = 0.2 is
small, the energy cost w? C'®"¢"9¥ is lower than the cost of
time C*™¢ and server C'**""®". Our proposed method tends
to allocate more task to the edge. With the increase of w R
the ratio decreases. The ratio changes with the same trend as
w9, since when the server cost is large, the algorithm tends
to allocate more tasks locally. However, we found that the
change of w” has little impact on decision-making results. It
can be seen that only when w” is very small, the algorithm
tends to offload more tasks to server. One possible reason
is that the designed reward function has already contains the
time-tolerance limitation. That is, completing the task as soon
as possible leads to more rewards.

The above experimental results cannot directly reflect the
impact of the weights on overall performance, so we next carry
out experiments to show the cumulative rewards with respect
of different weights settings. We consider 3 particular settings:
1) in env 1, we set W as 0; 2) in env 2, wet set wE,wT,wS

931

Cumulative rewards

DDPG A3C
I -
g » =
. T N
2w »
= ®
g n
= 50
S« T
=
© “ . s
- v o - v v
DQN Full SHOP

Cumulative rewards

< o

)
Full local

Fig. 9. Testing cumulative rewards of different weights settings.

are basically equal; and 3) w? is set as 0 in env 3. The DMS
constraints exist in both settings.

In env 1, the cost of local electricity consumption
wP Cenergy tends to be 0. Therefore, local execution is the
better action . Fig. 9 shows that three DRL methods achieve a
little more reward than Full local execution, while the DDPG
algorithm has the smallest variance and largest mean reward.
This indicates that even though local computing can avoid
energy cost, the DRL methods chooses to upload some of
the tasks to the SHOP server to avoid the DSM penalty.
Similarly, in env 3, since WS gserver — 0, the terms w ' C'time
and w¥ C€"e"9Y dominate. Thus, the optimal action tends to
offload all tasks to the SHOP server. We can see that our
method performs better than the Full SHOP execution method,
while the Full local execution performs the worst. The Full
SHOP execution can minimize the w® C'¢™€™9Y but maximize
the wT C'*™¢. DRL algorithms can choose to execute some
tasks locally to find the “balance point” minimizing the sum
of wP e and wT C¥™ eny 1 and env 3 show that our
strategy can achieve nearly optimal performance at the extreme
situation when energy cost (or SHOP cost) is 0. env 2 is more
practical and our proposed DDPG strategy achieves similar
mean reward with A3C but with smaller variance. Besides, it
outperforms DQN and other three heuristic methods.

5) User Side Performance: The above test experiments are
analyzed from the perspective of cumulative reward, we further
define two components to present user side performance in this
subsection:

1) Disappoint coefficient (DC): The value indicates that the
loss due to task expired. Let n; 4441, be the total number of
tasks generated by smart devices i over the testing process.
Let n; expireq be the total number of time slots that satisfies
ei(t) = 0,¢(t) # 0, ie., UT,i(Q’(t)» e;i(t)) = 0. Then DC
can be computed as:

nS

DC = Z N expired/ Mi, task (36)
%

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

932

TABLE III
USER SIDE PERFORMANCE OF DIFFERENT ALGORITHMS

Full Full
DDPG | A3C | DQN Local | SHOP
DC 0.16 0.12 | 0.23 0.82 0.62
PC 0.08 0.09 | 0.13 0.85 0
TABLE IV

IDLE AND WORK POWER OF COMMON ORIGINAL DEVICES

Original Devices | Idel Power | Work Power
Vacuum Cleaner | 2.5W 1200W
Water Heater 4.7W 2000W
Microwave Oven | 1.6W 1300W

Air Conditioning | 2.3W 800W

2) Penalty coefficient (PC): This value indicates the loss due
to the violation of DSM signals. We denote npgjs be the total
number of times that the DSM signals are generated during
test process. And ny, is the total number of time slots that
satisfies d(r) = 0, I(t) < 0, i.e., u(l(t), d(t)) # 0. Then PC can
be computed as:

PC =ny/npsu (37)

As shown in Table III, the DC for both Full local and Full
SHOP are relatively high since it is difficult to complete all
tasks with only one computing resource. Three DRL methods
obtained smaller DC while the A3C perform best. For the
Full SHOP scheme, the PC is always be 0 since no tasks
are performed locally while it is close to 1 for the Full local
scheme. Three DRL methods also achieve smaller PC while
the DDPG and A3C have achieved similar results and are
better than DQN.

D. Performance With Real World Data

The real-world hourly electricity price dataset [35] is used
to represent dynamic price state. The hourly data file contains
load, day-ahead and real-time prices for the ISO New England
Control Area in 2016. Specifically, we choose the real time
price from 2016/1/1 to 2016/3/31 for testing. The rental price
charged by the server on time also comes from the real-world
data. We refer to [36], in which a general server with 8 core
and 16GB memory is charged by 0.5 USD/hour. We consider
a household battery with parameter 200AH and 24V, which
can store 4.8kW electricity. We set the charge current as 20A
and it can charge 0.48kW (ignoring the conversion loss) for
each hour. For the energy consumption of original devices, we
refer the following table.

1) Setting: The blue curve in Fig. 10 represents the average
value of the hourly electricity price using above dataset. We
can roughly see that 18:00-22:00 is the peak period while the
minimal electricity price happens from 00:00-6:00. In order
to better simulate the real environment, we divide 24 hours
into three stages with distinct modes and use red, green, blue
regions to illustrate the stages:

Stage 1: In 0:00 - 6:00, we assume that there is no DSM sig-
nals. Since most appliances stay idle at night, both the amount

IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

o
- .//—v—\/\\
o
s
o

@

El

Energy consumption of
Original devices (kw)

(b)

= Local domain
SHOP

RN P
ARRRRRNA AR T APl IAS

©

¥ 8 8 8 8

Task allocation ratio (%)

State of Charge (kw)

@

Fig. 10. From top to bottom: (a) electricity price. (b) Energy consumption
of original devices. (3) Task allocation percentage of local domain and SHOP.
(d) SOC of the battery.

of computational intensive tasks and energy generated by the
original devices are small.

Stage 2: In 6:00 - 16:00, we assume that the DSM signal
exists. Both the amount of computational intensive tasks and
the energy consumption of original devices increase.

Stage 3: In 16:00 - 24:00, we assume that the DSM signal
keeps existing . The amount of intensive tasks and the energy
of original devices are more than Stage 2 since appliances are
more likely to be used during night.

2) Performance Illustration: We use the task allocation per-
centage and the state of charge to show the efficiency of our
methods. In Fig. 10, we can see that the charging and dis-
charging decisions learned by our algorithm are reasonable
and intuitive: we charge and discharge to take advantage of
the lows and ups of electricity prices while respecting the SOC
constraints. We can also see that, in Stage 1, almost all tasks
are chosen to be computed locally. Starting from Stage 2, the
number of computing tasks increases, so does the task allo-
cated the SHOP server. In Stage 3, we can see that the task
allocated of the SHOP server has exceeded local devices. On
the one hand, local computing resources are not enough to
cope with the large number of computing tasks. Also, the price
of electricity has increased significantly at this stage.

VI. CONCLUSION

In this paper, we have studied an integrated smart grid
system model for DSM with SHOP. We firstly formulate
the task scheduling problem as an MDP problem aiming to
maximize the residential user’s reward consisting of energy
cost, execution time, SHOP server fee and the penalty of DSM.
Then we have developed the deep reinforcement learning-
based algorithm to solve this problem where we use neu-
ral networks to approximate the action-value function and
the parameterized optimal action. Experimental results show
that our proposed scheme works well and could achieve
significant performance gains over other baselines under
various environmental parameters.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

LI et al.: INTEGRATING FUTURE SMART HOME OPERATION PLATFORM

[1]

[2]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

T. Li, Y. Xiao, and L. Song, “Deep reinforcement learning based
residential demand side management with edge computing,” in Proc.
IEEE Int. Conf. Commun. Control. Comput. Technol. Smart Grids
(SmartGridComm), 2019, pp. 1-6.

X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid—The new and
improved power grid: A survey,” IEEE Commun. Surveys Tuts., vol. 14,
no. 4, pp. 944-980, 4th Quart., 2012.

Z. Fan et al., “Smart grid communications: Overview of research chal-
lenges, solutions, and standardization activities,” IEEE Commun. Surveys
Tuts., vol. 15, no. 1, pp. 21-38, 1st Quart., 2013.

B. P. Esther and K. S. Kumar, “A survey on residential demand side man-
agement architecture, approaches, optimization models and methods,”
Renew. Sustain. Energy Rev., vol. 59, pp. 342-351, Jun. 2016.

Q. Qdr, “Benefits of demand response in electricity markets and recom-
mendations for achieving them,” U.S. Dept. Energy, Lawrence Berkeley
Nat. Lab., Berkeley, CA, USA, Rep. 1252, 2006.

R. K. Barik et al., “FogGrid: Leveraging fog computing for enhanced
smart grid network,” in Proc. 14th IEEE India Council Int. Conf.
(INDICON), Dec. 2017, pp. 1-6.

S. Zahoor, N. Javaid, A. Khan, B. Rugia, F. J. Muhammad, and
M. Zahid, “A cloud-fog-based smart grid model for efficient resource
utilization,” in Proc. 14th Int. Wireless Commun. Mobile Comput. Conf.
(IWCMC), Jun. 2018, pp. 1154-1160.

M. Mukherjee et al., “Security and privacy in fog computing:
Challenges,” IEEE Access, vol. 5, pp. 19293-19304, 2017.

N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450—465,
Feb. 2018.

J. Wang, M. Biviji, and W. M. Wang, “Case studies of smart grid
demand response programs in North America,” in Proc. ISGT, Jan. 2011,
pp. 1-5.

P. Siano, “Demand response and smart grids—A survey,” Renew.
Sustain. Energy Rev., vol. 30, pp. 461-478, Feb. 2014.

E. Mocanu et al., “On-line building energy optimization using deep
reinforcement learning,” IEEE Trans. Smart Grid, vol. 10, no. 4,
pp. 3698-3708, Jul. 2019.

Z. Wan, H. Li, H. He, and D. Prokhorov, ‘“Model-free real-time EV
charging scheduling based on deep reinforcement learning,” /EEE Trans.
Smart Grid, vol. 10, no. 5, pp. 5246-5257, Sep. 2019.

T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571-3584, Aug. 2017.

J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for MEC,” in Proc. [EEE
Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1-6.

A. Khalili, S. Zarandi, and M. Rasti, “Joint resource allocation and
offloading decision in mobile edge computing,” IEEE Commun. Lett.,
vol. 23, no. 4, pp. 684-687, Apr. 2019.

M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587-597, Mar. 2018.

H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency IoT services
in multi-access edge computing,” IEEE J. Sel. Areas Commun., vol. 37,
no. 3, pp. 668-682, Mar. 2019.

C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-end
task offloading in mobile-edge computing networks with limited com-
munication capability,” IEEE Trans. Cogn. Commun. Netw., early access,
Aug. 20, 2020, doi: 10.1109/TCCN.2020.3018159.

Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading schedul-
ing and power allocation for mobile edge computing systems,” I[EEE
Internet Things J., vol. 6, no. 4, pp. 6774-6785, Aug. 2019.

E. Ahvar, A.-C. Orgerie, and A. Lebre, “Estimating energy
consumption of cloud, fog and edge computing infrastructures,”
IEEE Trans. Sustain. Comput., early access, Mar. 18, 2019,
doi: 10.1109/TSUSC.2019.2905900.

C. You, Y. Zeng, R. Zhang, and K. Huang, “Asynchronous mobile-edge
computation offloading: Energy-efficient resource management,” /[EEE
Trans. Wireless Commun., vol. 17, no. 11, pp. 7590-7605, Nov. 2018.
Z. Chang, Z. Zhou, T. Ristaniemi, and Z. Niu, “Energy efficient
optimization for computation offloading in fog computing system,” in
Proc. IEEE Glob. Commun. Conf. (GLOBECOM), 2017, pp. 1-6.

C. Jiang et al., “Energy aware edge computing: A survey,” Comput.
Commun., vol. 151, pp. 556-580, Feb. 2020.

[25]

[26]

[27]

(28]

[29]

[30]

[31]
(32]
[33]

[34]

[35]

[36]

933

Q. Yang and P. Li, “Deep reinforcement learning based energy schedul-
ing for edge computing,” in Proc. IEEE Int. Conf. Smart Cloud
(SmartCloud), 2020, pp. 175-180.

Y. Chen, Y. Zhang, Y. Wu, L. Qi, X. Chen, and X. Shen, “Joint task
scheduling and energy management for heterogeneous mobile edge com-
puting with hybrid energy supply,” IEEE Internet Things J., vol. 7, no. 9,
pp. 8419-8429, Sep. 2020.

Y. Liu, S. Xie, Q. Yang, and Y. Zhang, “Joint computation offload-
ing and demand response management in mobile edge network with
renewable energy sources,” IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 15720-15730, Dec. 2020.

M. Gao et al., “Computation offloading with instantaneous load billing
for mobile edge computing,” [EEE Trans. Services Comput., early
access, May 25, 2020, doi: 10.1109/TSC.2020.2996764.

Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
Proc. IEEE INFOCOM, 2012, pp. 2716-2720.

A. R. Khan, A. Mahmood, A. Safdar, Z. A. Khan, and N. A. Khan,
“Load forecasting, dynamic pricing and DSM in smart grid: A review,”
Renew. Sustain. Energy Rev., vol. 54, pp. 1311-1322, Feb. 2016.

C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, nos. 3-4,
pp. 279-292, 1992.

V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015. [Online]. Available: arXiv:1509.02971.

V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” in Proc. 33rd Int. Conf. Mach. Learn., Jun. 2016, pp. 1928-1937.
[Online]. Available: http://proceedings.mlr.press/v48/mnihal6.html
Hourly Electricity Price Dataset. Accessed: 2016. [Online]. Available:
https://github.com/Electromaxim/electricity_load_forecast

Huawei Cloud Price. Accessed: 2021. [Online]. Available: https://www.
huaweicloud.com/intl/zh-cn/pricing/index.html#/ecs

Tan Li (Student Member, IEEE) received the
B.S. degree from the Central South University,
Changsha, China, in 2016, and the M.S. degree
from the University of Science and Technology

w - of China, Hefei, China, in 2019. She is currently
—-— pursuing the Ph.D. degree with the Department of

s Computer Science, City University of Hong Kong.

Jis Her research interests lie in the edge computing,

Y) distributed computing, and machine learning for

wireless communication.

Yuanzhang Xiao (Member, IEEE) received the B.E.
and ML.E. degrees in electronic engineering from
Tsinghua University in 2006 and 2009, respectively,
and the Ph.D. degree in electrical engineering from
UCLA in 2014. He is an Assistant Professor with
the University of Hawaii at Manoa. He was a
Postdoctoral Fellow with Northwestern University
from 2015 to 2017. His research interests include
game theory, mechanism design, and optimization,
with applications in socio-technological networks,
smart grids, and wireless communication.

Lingi Song (Member, IEEE) received the B.S.
and M.S. degrees in electronic engineering from
Tsinghua University, China, and the Ph.D. degree in
electrical engineering from University of California
at Los Angeles (UCLA), Los Angeles, where he
was a Postdoctoral Scholar with the Electrical
and Computer Engineering Department. He is
an Assistant Professor with the Department of
Computer Science, City University of Hong Kong.
He received a UCLA Fellowship for his graduate
studies. His research interests are in algorithms, big

data, and machine learning.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:55:44 UTC from IEEE Xplore. Restrictions apply.

