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Incentives to Manipulate Demand Response
Baselines With Uncertain Event Schedules

Douglas Ellman

Abstract—We study baseline-based demand response (DR) pro-
grams. In such programs, customers get rebates based on how
much they reduce electricity consumption during DR events
relative to a ‘“baseline,” where this baseline is determined by
their consumption during previous non-event days. Customers,
or automated controls working on their behalf, can achieve
higher DR payments by decreasing consumption during DR
events (desired behavior), and by increasing consumption dur-
ing non-event times (baseline manipulation). Importantly, the
customers have imperfect knowledge of when future demand
response events will occur. To understand customers’ incentives
for baseline manipulation, we present a novel multi-stage stochas-
tic dynamic programming model that optimizes customer actions
for maximum expected rewards under uncertain event schedules.
Analytical results for special cases show fundamental drivers
of customer incentives. Simulation results reveal incentives to
manipulate baselines and impacts to program performance for
a realistic baseline-based demand response program, and how
program and customer parameters affect incentives.

Index Terms—Dynamic programming, stochastic optimal con-
trol, demand response, demand response baselines, baseline-
based demand response, incentive-based demand response, smart
grid.

I. INTRODUCTION

EMAND response (DR) aims to modify customers’ elec-
D tricity consumption in order to improve operation of the
electric grid (e.g., reduce costs, improve reliability, reduce
emissions). A wide variety of DR mechanisms have been
proposed or implemented [1], [2]. Most of these mechanisms
fall into three categories: price-based DR, auction-based DR,
and incentive-based DR. In price-based DR (e.g., real-time
pricing [3], [4]), the price of electricity varies over time, which
encourages customers to reduce consumption when prices
are high and increase consumption when prices are low. In
auction-based DR, customers submit bids (e.g., supply func-
tions [5], utility functions [6], [7]) to compete for payment
for DR services. In incentive-based DR (e.g., peak time rebate
[8], [9]), customers are paid incentives based on participation
or performance in the DR program.
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Fig. 1. Example of an event schedule for baseline-based DR with a 5-day
baseline. E indicates an event day and NE indicates a non-event day. For event
day 9 (in orange) the 5 prior non-event days (in blue) are used to determine
the baseline load.

An important class of incentive-based DR is baseline-based
DR [7]-[13], where incentive payments are based on the
difference between baseline consumption (e.g., average con-
sumption during previous days) and event consumption for
each DR event. A DR event is a specific window of time
in which the DR program asks participating customers to
reduce energy consumption. Baseline consumption, or baseline
in short, is an estimate of what the customer’s energy con-
sumption would have been during that same window of time
if it was not a DR event, and is calculated based on the cus-
tomer’s energy consumption on prior days without DR events.
Baseline-based DR is used in many utility DR programs, such
as [14]. Baselines are also central to DR participation in U.S.
wholesale energy markets, as regulated by the Federal Energy
Regulatory Commission [15]. Given its prevalence in practice,
baseline-based DR will be the focus of our paper.

With the growing use of baseline-based DR, it is impor-
tant to understand incentives and behavior of participating
customers, since actions of customers and control systems act-
ing on their behalf are the primary determinant of overall DR
program performance and cost. Baseline-based DR can create
complicated customer incentives, including incentives to take
action both during DR events (desired behavior) and to manip-
ulate baselines during non-event times. In general, customer
incentives can be difficult to predict, because optimal deci-
sions for each time period are interrelated and can depend on
the customer’s current baseline consumption, customer costs,
the demand response program structure, and uncertain future
values (such as when DR events will occur).

It is not new that baseline-based DR is susceptible to
baseline manipulation. Randomized control trials [16] and
legal settlements [17] provide real-world evidence that cus-
tomers may manipulate baselines. Interested readers can also
see [18] for a high-level discussion of the potential for inflating
baselines in baseline-based DR. In cases with incentives for
baseline inflation, ignoring these behaviors can lead to sig-
nificant errors in projections of required DR quantities, DR
costs, and demand forecasts. As the use of DR for critical
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grid services grows and as customer responses to DR pro-
grams become increasingly sophisticated through automated
control systems, these errors could cause significant impacts
to the cost and reliability of the grid.

We build on the prior work in the area of baseline-based
DR and develop a novel model to identify optimal customer
decisions under a baseline-based DR program with an uncer-
tain event schedule (see Section II for a discussion of related
work). Our model solves the customer’s multi-stage stochas-
tic decision problem with a dynamic programming algorithm,
thus providing an optimal policy for how much to reduce or
increase electricity consumption based on time, current cus-
tomer baseline, and whether a DR event is active. The key
contribution of our approach is representation of the cus-
tomer’s imperfect knowledge of when DR events will occur
over the course of a DR season, which can have significant
impacts on the optimal policy and is a primary uncertainty
for DR participants. As a demonstration of the value of our
approach, we will show non-obvious results based on a real-
world DR program (in Section V), including examples of how
imposing penalties (i.e., negative payments) for increasing load
during DR events affects DR program performance. Our major
contributions are as follows:

« To the best of our knowledge, we present the first solu-
tions for optimal customer policies under a variety of
baseline-based DR structures with multi-day baselines
and multiple uncertain events over a DR season.

« For a special class of baseline-based DR models, we pro-
vide structural results on the customer’s optimal policy,
which sheds light on the design of the DR program.

« For a general baseline-based DR model, we develop an
efficient dynamic programming algorithm by exploiting
the structure of the problem, which is capable of provid-
ing solutions quickly for extended DR seasons of several
months or longer.

« We provide a detailed rigorous analysis of the computa-
tional complexity of our algorithm, and conduct empirical
analysis of the robustness of our model in the presence
of imperfect knowledge about the DR event probabilities.

« We provide sensitivity analysis on baseline determination
rules to illustrate how to use our model to inform the
design of a baseline-based DR program.

The remainder of this article is organized as follows.
Section II discusses related works. Section III describes the
model. Section IV provides analytical results for special cases.
Section V presents numerical results from a computer imple-
mentation of the general model. Section VI summarizes our
conclusions.

II. RELATED WORK

There is a vast literature studying DR programs. Here we
only discuss works on baseline-based DR programs [7]-[12].

Some works [9], [10], [19] study issues other than baseline
manipulation. For example, the work in [9] focuses on learning
the optimal payment rule in baseline-based DR programs, the
work in [10] compares different baseline structures in terms
of metrics such as the accuracy of the baseline, and the work
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in [19] studies competition between generators in an electricity
market with baseline-based demand response. However, the
focus of our paper is the study of incentives to manipulate
baselines.

Most of the works that address baseline manipulation focus
on mechanism design of the DR program [7], [11]-[13]. More
specifically, [7], [11], [13] allow customers to self-report base-
lines, and encourage truthful reporting by excluding a subset
of customers from each event, and imposing penalties for devi-
ations from reported baselines for those non-participating cus-
tomers. In [12] there is a profit-sharing mechanism designed
to discourage manipulating baselines for a DR program in
which the baseline is the load at the start of the DR event.
In contrast, we study a class of existing DR programs where
the baseline is defined as a customer’s consumption during
previous non-event days. The structure of the DR program we
study results in a unique feature of the customers’ decision
making process: they need to determine their consumption in
both event and non-event days, facing uncertainty of when
the events will occur. On the contrary, DR payments do not
depend on non-event day consumption for the mechanisms
in [7], [11]-[13].

The most related work is [8], which studies DR programs
with baselines determined by the consumption during non-
event days. However, they focus on a two-stage model, where
the second stage is the event day with certainty. Note that this
work includes a formulation of the general multi-stage model,
but it only presents results for the two-stage model without
event day uncertainty.

Compared to our conference paper [20], we have added
a detailed rigorous analysis of the computational complex-
ity of our algorithm in Section V-A, have added Section V-D
to demonstrate the robustness of our results when the esti-
mates of DR event probabilities are imperfect, and have added
Section V-E to demonstrate how to use our model to inform
the design of a baseline-based DR program.

IT1I. MODEL
A. System Setup

We study a demand response program that occurs over a
demand response season of 7' € N days. At the start of each
day t € {1,..., T}, the utility notifies the customer whether
the current day is a demand response event day. On event days,
the utility desires participating customers to reduce electricity
consumption during a pre-specified window of hours (e.g., 2
p-m — 6 p.m. on all event days). We denote the probability that
day ¢ is an event day by pg; € [0, 1]. An event day occurs
independently from other days.

In each day ¢, the customer has a default load level /; and
may deviate from the default load level by a;, resulting in an
actual load level of a; + ;. The default load level /; is a model
parameter, and the deviation a; is the customer’s decision
variable. We model the deviation, instead of the actual load,
as the decision variable in order to better represent the cus-
tomer’s decision of whether to increase or decrease the load.
We denote the set of available load deviations by A; C R, a
compact set including positive and negative values. Therefore,
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the action set can be either discrete, or continuous and closed
and bounded.

On an event day ¢, the utility gives the customer a rebate
for load reduction. We define the rebate function as

rr:RxA - R
(EB,Is at) = rl(EB,h al)’ (1)

which depends on the baseline sp; and the actual load I; 4
a;. The baseline is determined by the utility according to the
actual load over the previous Np non-event days. We denote
the load over the Np non-event days prior to day ¢ by a vector
SB.r € RM8, and write the rule of determining the baseline as
a function

f s> Spy. )

We focus on a commonly used class of baseline functions
that calculate the average load of the preceding Np non-event
days or the average load over Ny < Np days selected based
on some rule [10]. We consider two common forms of DR
rebates calculated by

Vt(EB,t, llt) = TDR;: " (EB,),‘ -+ at)) or €)]
rt(EB,t’ az) =TDR:" (EB,I =+ at))+’ “4)

where rpr; € R, is the rebate per unit of load reduction
and ()T = max{-, 0}. When event load is less than baseline
load, these rebates are proportional to the difference between
baseline load and event load. In (3), the rebate becomes
negative when event load is greater than baseline load, rep-
resenting a penalty to the customer for failing to reduce load.
Alternatively, in (4), the rebate is capped above zero, so there
is no penalty when event load is greater than baseline load.
These forms of rebates are used, for example, in [14], which
caps DR performance payments above zero for each aggre-
gation of participants, but allows individual customers within
an aggregation to make negative contributions. These rebates
are non-increasing in event load and non-decreasing in base-
line load, so customers can increase rebates by reducing event
load or increasing baseline load.

The customer incurs a cost when deviating from the default
load. We define the cost of changing the load on day ¢ as

Ct © A[ — R. (5)

We assume that the cost function is bounded when the action
set is discrete, and that the cost function is convex when the
action set is continuous. This cost function represents the net
financial and discomfort costs to the customer due to deviating
from the default load. For example, raising the temperature set-
ting of an air conditioner in the summer would lower energy
use and impose a discomfort cost, while lowering the tem-
perature setting would increase energy use and impose the
financial cost of buying more energy. A home battery system
could be used to charge or discharge to raise or lower energy
consumption, imposing a financial cost for extra energy pur-
chases due to efficiency losses in the battery. In general, the
cost function will depend on factors including the available
customer resources for modifying load, customer preferences,
and electricity costs.
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The goal of the customer is to maximize its expected total
profit (i.e., rebate minus cost) during the demand response sea-
son. Therefore, the customer has incentives to reduce the load
during the event days if the rebate is large enough to offset
the cost of reducing load. Moreover, the customer may also
increase the load during non-event days in order to inflate the
baseline and thus increase the future rebate, although increas-
ing the load would only result in a higher cost in that non-event
day. We are interested in whether and to what extent such
baseline manipulation occurs.

B. Dynamic Programming Formulation

We formulate the customer’s decision making problem as a
stochastic dynamic program over a finite horizon of 7 days.
Next, we describe the key components of the dynamic program
in detail.

The state at each day ¢ consists of the baseline state sp; €
RM8 and the event state se.r € {0, 1}. As discussed before, the
baseline state sp ; is a vector of the load levels on the previous
Np non-event days prior to day ¢. The event state sg ; indicates
whether day ¢ is an event day, with sz, = 1 indicating that
day ¢ is an event day. We write the complete state for day ¢
as s; = (S, SE;;). The action at each day ¢ is a; € A;, the
deviation from the default load.

The state s; and the action a; determine the next baseline
state sp s+1.

If day ¢ is an event day, the action a, will not be counted
in determining the future baselines. In this case, the baseline
state Sp+1 = SB,; stays the same, and the event state sg ;41
follows Bernoulli distribution with parameter pg ;1.

If day ¢ is a non-event day, the action a; will be counted
towards determining future baselines. In this case, the baseline
state Sp+1 is a concatenation of the last Np — 1 elements of
the previous baseline state sp; and the actual load I; + a;.
Mathematically, we have

SB,t+1 = <[SB»’]2:NB’ I + at>, (6)

where [sg ]2.n; is the vector of last Np — 1 elements of sp ;.
Similar as in the event day, the event state sg;+1 is drawn
from the Bernoulli distribution with parameter pg ;4.

In summary, the state transition probability P(s;+1]s;, ar) can
be calculated as

P(svel(sm 1) @) = Py - (1= prasa) 5
X g iir=sni} (7)
and
P(5t+1|(SB,t, 0), a,) = plqEEtTl . (1 _PE,t+1)1_SE’tH

X ]l{ ®)

SB,1+1 =([SBJ]2:NB N +cu) } ’

where 1y, is the indicator function.
The reward function u, : R¥8 x {0, 1} xA; — R is the rebate
minus the cost, namely

ur(St, ar) = Sgr rt(f(SB,t), at) — cr(ay). ©

Without loss of optimality, we focus on stationary Markov
policies, which depend on the current state and time only. We
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write a stationary Markov policy as

7 =(m,...,77) with r, : RV x {0, 1} = A;,  (10)

and the set of all Markov policies as ITyy.

Our goal is to find the optimal stationary Markov policy
that maximizes the expected total reward, namely solving the
following dynamic program

T
7% = arg max E” |:Z 1 (Sy, az):|,
=1

1D
mwelly
where the expectation [E* depends on the policy 7.
The dynamic program (11) can be solved through backward
induction.

IV. ANALYSIS

In this section, we focus on a special case of the dynamic
program (11), for which we can provide structural results on
the customer’s optimal policy. Our structural results will pro-
vide insights on the customer’s decision making process and
on the design of the demand response program.

We consider the demand response programs where the base-
line is determined as the average load of the previous Np
non-event days, namely

SB.t =f(SBt) = w,

. . Na

where [sp (]; is the i-th element of the vector sp ;. Note that this
is a common way to determine the baseline in many demand
response programs [10]. We also consider a linear rebate func-
tion as in (3), so the customer pays penalties for load increases
during events. The linear rebate could apply, for example, to
an individual customer in [14] that is part of an aggregation.

Before stating our analytical results, we need to define a
few useful quantities. The first one is the myopically optimal
action in an event day, namely, the action that maximizes the
event day’s current reward (9):

12)

ag,; = argmax r;(Sg, ar) — ci(ay). (13)
a;€A;

For each non-event day ¢, an important quantity, denoted
by M,, is the expected number of future event days whose
baselines depend on the action a; in day ¢. The baseline for
an event day v depends on the action g, in day ¢ if the day ¢
load [; + a; is one of the entries in the baseline state vector
sp,z. This occurs when day ¢ is a non-event day prior to event
day t and there are less than Np non-event days during the
period of days from 7+ 1 to 7 — 1. Based on this, we define
a binary indicator of whether day ¢ affects the baseline of an
event day T:

m

' { 1 if sgr = 1 and s depends on a, . (14)

T =10 otherwise

Note that m’. is random because it depends on the realization of
random event states Sg ;+1, - . ., SE,¢. Finally, we can formally
define M; as

T

M, =E Z m;

g=t+1

15)
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Given M;, we define

M; - I'DR,t

ay,; = arg max N
B

aseA;

car — car). (16)
Proposition 1: In an event day, the optimal policy =*
chooses the myopically optimal action in that day, namely

mi(sge 1) =agy, Vi=1,...,T. (17)

In a non-event day, assuming that the rebate is linear as in (3),
and that the baseline is determined according to (12), the
optimal policy 7* satisfies that

7[,(53’,,0) = an.1, Vt = l,...,T. (18)

Proof: Please see Appendix A. |

Proposition 1 characterizes the customer’s optimal policy.

In event days, the customer will choose an action that
myopically optimizes the current reward. This is reasonable
because the load in the event day will not be counted towards
establishing future baselines. Therefore, the customer will
focus on the current reward without worrying about the impact
of its action on the future rewards. From the utility’s perspec-
tive, our result also guarantees the simplicity of designing the
rebate scheme: to ensure a certain level of demand response,
the utility needs to consider the customer’s cost of changing
load only, but not other factors such as the probabilities of
events, the number of non-event days used to calculate the
baseline, and so on.

In non-event days, the customer will choose the action
ay,; defined in (16). Note that this is not a myopic action,
because the current reward in the non-event day is —cs(a;).
The objective function in (16) includes a term M’I'V;g’“ - az,
which represents the expected future benefit of increasing the
current load by a,. The benefit comes from the inflated future
baselines, which would result in higher future rebates. By
exploiting the structure of the problem, we are able to charac-
terize this benefit analytically as M’]'V;ZR" - az, leading to sharp
structural results.

Proposition 1 also suggests that we can solve the dynamic
program without using backward induction. In particular, we
can avoid the “curse of dimensionality” if the problems in (13)
and (16) are easy to solve, which is often the case. For exam-
ple, when the rebate scheme is linear as in (3), the problem
in (13) reduces to a convex optimization problem

ap,: = argmax —rpr; - dr — ci(ar),
a;€A;

19)

which can be solved efficiently (even analytically if the cost
function is linear or quadratic). Similarly, we can solve the
convex optimization problem in (16) efficiently.

The remaining difficulty lies in how to compute M;. Note
that M, depends only on the Bernoulli distributions of the event
states only, but not on the baseline states, the actions taken, etc.
In other words, we can compute M, based on the probabilities
PE.1, - .., PET. For some special cases, we are able to obtain
analytical expressions for M;.

Lemma 1: For a non-event day ¢, the expected number of
event days whose baselines depend on the action a; in day ¢
can be computed analytically in the following cases.
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Fig. 2. Daily 2018 peak load for the New York City load zone, which

includes the majority of Consolidated Edison’s system load.

e When Ng = 1, we have

T
Mi= 3 (s=0- (M ypEc) - (1= pEst1). (20)
s=t+1

« When the probabilities of events are the same (i.e., pg; =
PE, Y1), we have

r—1 e
] ).pg‘rl_(l_pE)ré 1.

21

r=1 s=(r—Np)*

Proof: Please see Appendix B. |

V. MODEL IMPLEMENTATION AND CASE STUDY

In this section, we describe a computer implementation of
the model and present numerical results from a case study.
We model several scenarios based on hypothetical customers
in a DR program like Consolidated Edison’s “Commercial
System Relief Program - Voluntary Option,” or “CSRP-V” (see
Rider T in [14], [21]-[23]). Consolidated Edison operates a
large electric utility serving the New York City area including
3.4 million electric customers. Consolidated Edison’s system
peak load in 2018 was 13 GW. Daily 2018 peak loads for
the New York City load zone (which includes the majority
of Consolidated Edison’s system load) are shown in Fig. 2.
CSRP-V is a baseline-based DR program with day-ahead event
notice, thus matching the structure of our model. Results for
the selected scenarios demonstrate how our model can reveal
non-obvious relationships between program design, customer
characteristics, and customer actions.

A. Model Implementation and Computational Complexity

We implemented a backward induction algorithm to solve
the finite horizon dynamic program (11) for cases with discrete
states and actions. The implementation can solve the optimal
policy for a wide variety of DR program designs, including
linear rebates with penalties as in (3) or payments capped
above zero as in (4). Customer default loads, customer costs
for each action, and DR rebate rates can also vary from day
to day. The implementation also supports arbitrary values of
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probabilities of event for each day, thus providing solutions for
cases beyond the special cases considered in (20) and (21).

The standard backward induction algorithm works as fol-
lows. For the last day 7 in the horizon, we solve for the
optimal policy in day 7 by maximizing the reward in that
day, namely

7y (ST) = argmax ur(sr, a), (22)
acA;
and obtained the value function defined as
(23)

VT(ST) = max MT(ST, a).
aeAT

Then foreachday t =T—-1,T-2, ..., 1, we work backwards
and solve for each day #’s optimal policy by

7 (Sy) = arg mix uy (s, a) + E P(sr118:, @) Vig1(Se+1),
acA;
St4+1

(24)

where the second term in the objective is the expected future
reward, and V, is the value function at day ¢+ 1 defined as

Vit1(Se+1) = max w41 (Se+1, )
€Aty

+ Y P(syalsitt, @)Via(sira). (25)

St+2

Now we discuss the computational complexity of the stan-
dard backward induction algorithm. Denote the number of
states by Ny and the number of actions by N,. As we can
see from (24), the main computational complexity comes from
evaluation of the expected future reward, which involves Nj
multiplications. Since we need to evaluate this term for all
pairs of states and actions, the total complexity is O(NSZNL,).

However, we can use the special structure in the state
transition probabilities (7) and (8) to reduce the complexity.
Since the transition of baseline states is deterministic, we can
simplify (24) to

mi(span 1) = arg max {ur(s. @) + pEsv1Vigi (s 1)
t

+ (1 = pEs+1)Vir1 (58,1, 0)}  (26)

for event days, and
(8B, 0) = arggglxx{uz(st, a) + pei+1 Vir1 (([s8.)2ng . I + @), 1)

+ (1= pec1) Vis1 ((Is.1J2ng It + @), 0) }
(27)

for non-event days. As we can see from (26) and (27), the com-
putation of the future reward is simplified to a multiplication
of two terms. Therefore, the computational complexity of our
algorithm is O(N;N,). By reducing the complexity by a factor
of Ny, which scales exponentially as Np, our implementation
offers significant speedup.

Our implementation achieves this speedup by clever index-
ing of states to take advantage of the structure of the problem.

Specifically, the steps are as follows. We assign each pos-
sible value of the actual load an actual load index, ij4q4,
which ranges from 0 to Ny, — 1. We represent each base-
line state by a series of Np actual load indices, starting from
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the most recent day’s load to the oldest load in the baseline.
We consider this representation of the baseline state to be a
base-Ni, number, which we convert to a base-10 number
to give the baseline state index, ig. We can then discard the
full representation of the baseline states, and work with just
the indices. If the current day is a non-event day, the current
day’s baseline state index is ip; and the current day’s actual
load index is i;14;, then the next day’s baseline state index
is ig+1 = LiBt/Niva) + it4a,r - Niza) V87D, where |-] is the
floor operator. Alternatively, if the current day is an event day,
then the baseline state does not change and ip ;+1 = ip ;. These
calculations allow us to quickly determine the indices of the
elements of V;; that we use in (26) and (27).

B. Description of Scenarios

We define eight representative scenarios for different types
of customers, load, event probability profiles, rebate mecha-
nisms, and customer costs. We investigate various performance
metrics under these scenarios, in order to verify insights from
our analytical results and reveal new findings that are difficult
to obtain analytically. We discuss the results obtained under
the assumption that we know the true event probabilities in
Section V-C, and results obtained under imperfect estimates
of event probabilities in Section V-D.

To facilitate understanding the discussion of scenarios and
results, we define the terms in the first column of Table I.
Baseline Manipulation Allowed indicates whether the set of
available customer actions includes the possibility of increas-
ing load, which allows for baseline inflation. Probability of
Event indicates which type of daily event probability profile
was used: flar for constant probability each day, matching
the probability assumption in (21), or spike for constant
(lower) probability most days, except for two consecutive
days with higher event probabilities. Note that probabilities
based on Consolidated Edison system load are considered in
Sections V-D and V-E. Negative Payments indicates whether
DR payments include penalties for negative DR quantities
as in (3) or no penalties as in (4). Default Load indicates
whether the customer default load has a constant value each
day, or whether it varies from day to day. Baseline Type indi-
cates whether baseline load is calculated as the average load
in the top 5 out of the prior 10 non-event days (5 in 10),
or as the average load in the prior 5 non-event days (5 in
5). Customer Costs indicates whether the customer costs of
modifying load take on standard values or higher cost values,
which are described later in this section. Expected True DR
(kWh) is the expectation of the amount of load reduction in
the event days, summed over all DR events in the DR season.
Expected Apparent DR (kWh) is the expectation of the differ-
ence between baseline load and event load, summed over all
DR events. Expected DR Payments ($) is the expected value
of the DR rebates (3) or (4), summed over all DR events.
Expected Customer Costs ($) is the expectation of costs of
modifying load (5) summed over all days in the DR season.
Expected Customer Net Benefits ($) is the difference between
Expected DR Payments ($) and Expected Customer Costs ($).
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Expected Payment per Unit True DR ($/kWh) is Expected DR
Payments ($) divided by Expected True DR (kWh).

We model customers participating in CSRP-V for the sum-
mer DR season (roughly 150 days). CSRP-V pays $3 per kWh
of demand reduction during a pre-assigned 4-hour window
on event days. For direct participants, payments are capped
above zero, but for participants represented by an aggregator,
negative event performance is counted and netted against con-
tributions from other customers. The utility advises to expect
3 events per year, on peak load days. CSRP-V offers a “5 in
10” baseline methodology, where baseline load is average load
over the 5 highest load days out of the preceding 10 similar
days. We also consider an alternative baseline of the average
load over the prior 5 similar days, or “5 in 5.” For the “5
in 10” and “5 in 5” baseline scenarios, we include 10 or 5
days, respectively, before the start of the DR season in order
to establish an initial baseline.

Scenario 1 models a customer who cannot manipulate base-
lines. The customer has three choices for actions and costs
each day: (1) no load change at no cost; (2) reduce load by
1 kWh at the cost of $0.02; or (3) reduce load by 2 kWh at
the cost of $2.02. This represents a customer who can use a
battery to shift 1 kWh of energy (paying for 10% efficiency
losses at the $0.20/kWh electricity rate), and can reduce appli-
ance use to lower consumption 1 kWh more (costing $2/kWh
for lost utility). The customer has no additional insight about
when events will occur, so the probability of event each day
is the total number of expected events per season divided by
the number of days in the season (i.e., 3/150 = 0.02). The
customer is not represented by an aggregator, so negative pay-
ments are not allowed. We set the default load to be the same
each day.

Scenario 2 adds two additional action and cost options:
(4) increase load by 1 kWh at the cost of $0.02; or (5)
increase load by 2 kWh at the cost of $0.22. This repre-
sents a customer who can use a battery to shift 1 kWh of
load (again paying for 10% losses), and can use appliances to
increase load by an additional 1 kWh at the electricity rate of
$0.20/kWh.

Scenario 3 is a modification of Scenario 2, representing a
customer with more information about when events are likely
to occur. This represents a customer that predicts event based
on weather forecasts. This scenario includes two consecu-
tive days with a high probability (i.e., 0.5) of events, and
the remaining days with a lower event probability. The lower
event probability is properly set so that the expected number
of events is still 3.

Scenarios 4 through 8 include the alternative “5 in 5” base-
line. Scenario 4 is identical to scenario 2 except for the
alternative baseline type. Scenarios 5 through 8 include large
day-to-day variations in default load, where the deviations are
greater than the available customer load modifying actions.
Scenarios 5 and 6 compare the impact of variable default load
with negative payments not allowed and negative payments
allowed, respectively. Scenarios 7 and 8 are identical to sce-
narios 5 and 6, except that the customer has a less efficient
battery with 25% round trip losses, so the initial 1 kWh of
reduction or increase costs $0.05 instead of $0.02.
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TABLE I
SIMULATION SCENARIOS AND RESULTS

Scenario Number 1 2 3 4 5 6 7 8
Baseline Manipulation Allowed no yes yes yes yes yes yes yes
Probability of Event flat flat spike flat flat flat flat flat
Negative Payments no no no no no yes no yes
Default Load flat flat flat flat variable variable | variable | variable
Baseline Type 5in 10 5in 10 5in 10 5in5 5in5 5in5 5in5 5in5
Customer Costs standard | standard | standard | standard | standard | standard higher higher
Expected True DR (kWh) 6.0 6.0 6.0 6.0 3.7 6.0 29 6.0
Expected Apparent DR (kWh) 6.0 9.0 10.1 9.0 6.3 8.9 2.9 8.8
Expected DR Payments ($) 18.0 27.0 30.3 27.0 18.9 26.6 8.8 26.4
Expected Customer Costs ($) 6.1 7.6 8.6 9.0 6.4 9.0 33 13.3
Expected Customer Net Benefits ($) 11.9 194 21.8 17.9 12.5 17.6 5.4 13.1
Expected Payment per Unit True DR ($/kWh) 3.0 4.5 5.1 4.5 52 44 3.0 44

C. Results Under True Event Probabilities

We first assume that we know the true event probabilities.
‘We summarize numerical results in Table I, and illustrate them
in Figure 3, which shows the mean optimal policy for event
and non-event days. The optimal policies shown in Fig. 3
are characterized by the optimal level of load reduction if a
given day is an event day (dashed blue lines) and the optimal
level of load inflation if a given day is a non-event day (solid
red lines). In general, the optimal policy may depend on the
baseline state. We plot the average optimal policies over all
baseline states, which enables visualizing the policy when the
number of states is large. The results reveal several findings,
some of which corroborate our analytical results, and some of
which address more complicated cases that would be difficult
to analyze manually.

Scenario 1 shows that when manipulating baselines is not
possible, the true DR quantity (load reductions due to actions
during events) matches the apparent DR quantity (the dif-
ference between the potentially inflated baseline load and
the event load), so that the utility payment per unit of true
DR matches the CSRP-V program incentive rate ($3/kWh).
Alternatively, in Scenario 2, the customer has the ability and
incentive to inflate baseline load. This case has the same true
DR quantity, but a larger apparent DR quantity due to the
inflated baseline, thus resulting in 63% greater customer net
benefits and a 50% higher utility cost per unit true DR. The
differing optimal policies for Scenarios 1 and 2 is illustrated
by plots (a) and (b) in Fig. 3, which shows load increases
in non-event days for Scenario 2, but no changes to load in
non-event days for Scenario 1.

Scenario 2 also shows that even with poor information about
when events will occur, customers can have incentive to take
inexpensive actions to inflate baselines (such as load shifting
with a battery). With better information about event probabil-
ities, as in Scenario 3, customers can have incentive to take
more expensive actions to inflate baseline load (such as turn-
ing on more appliances) during the days prior to the days
with high probability of events (as illustrated by plot (c) in
Fig. 3). This is consistent with intuition gained from our ana-
Iytical results for simpler programs: the expected number of
event days affected by the current action, namely M,, is higher
during these days, and therefore the optimal load levels are
higher according to (16). Scenario 3 has even greater appar-
ent DR, higher customer profits, and 70% higher utility cost

per unit true DR compared to Scenario 1 with no baseline
inflation.

Scenario 4, with a “5 in 5” baseline, has nearly identical
values of true DR, apparent DR, and utility cost, to Scenario
2, with a “5 in 10” baseline. Despite these similarities, the “5
in 10” baseline has the advantage of less demand inflation on
non-event days. Note that the “5 in 10” baseline is beyond the
scope of the analytical results we provided because it does not
follow (12), so this illustrates how the computer implementa-
tion can generate non-obvious results for cases that have not
been solved analytically.

Scenario 5 shows that varying default load can reduce
incentives for both event response and baseline inflation, as
illustrated by plot (e) in Fig. 3. This is because when payments
are capped above zero and default load is much higher than
the baseline, customer actions may not be able to increase the
payment above zero. However, variable load does not have a
major impact on true or apparent DR quantities when negative
payments are allowed (note the similar results for Scenarios 4
and 6 in Table I). This is consistent with our analytical results,
because neither (13) nor (16) depends on the load level /; when
the DR rebate is linear and allowed to be negative.

Scenarios 5-6 and Scenarios 7-8 indicate that capping pay-
ments at zero reduces incentives for both event response and
baseline inflation. However, it has opposing effects on the
utility cost per unit true DR when the customer’s costs of
increasing load changes. Specifically, under lower customer
costs (Scenarios 5-6), the cost per unit true DR decreases
when we allow negative payments (i.e., from $5.2/kWh in
Scenario 5 to $4.4/kWh in Scenario 6); under higher customer
costs (Scenarios 7-8), the cost per unit true DR increases
when we allow negative payments (i.e., from $3.0/kWh in
Scenario 7 to $4.4/kWh in Scenario 8). Therefore, the impact
of penalty on the program performance is non-obvious and
hard to predict analytically. This emphasizes the importance
of our computational solution to the general model.

D. Imperfect Knowledge of Event Probabilities

The results shown thus far in this article are based on the
assumption that the customer knows the probabilities of events
for each day in the DR season. In practice, the customer does
not have perfect information about these event probabilities.
This section demonstrates one approach that companies or
systems working on behalf of customers could use to estimate
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Fig. 3. Average optimal policy by day for scenarios 1-8. Dashed blue lines

show the optimal level of load reduction on event days, as an average over
all baseline states. Solid red lines show the optimal level of load inflation on
non-event days, as an average over all baseline states.

event probabilities. Then we analyze the customer benefits of
manipulating baselines based on imperfect event probability
forecasts, compared to a simpler DR response strategy with
no baseline manipulation.

Many DR programs are designed to respond to system
load conditions. Since system load is typically correlated with
weather, the probability of having DR events is also correlated
with weather. When we have historical data of weather and
system load or DR events, we can perform a regression to
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Fig. 5. Daily event probabilities for New York City Typical Meteorological
Year 3 weather data, based on logistic regression model from Fig. 4.

learn the mapping from weather conditions to event probabil-
ities. Then, this mapping can be used to create forecasts of
future DR event probabilities based on weather forecasts.
Fig. 4 shows the result of a simple logistic regression model
of probability of event versus daily peak temperature based on
Con Edison 2018 system load data and 2018 New York City
daily peak temperatures. In this analysis, we assign DR events
to the 3 peak load days of 2018 (based on the expectation of 3
events per year). For the purposes of this study, we assume that
the mapping from temperature to event probability shown in
Fig. 4 is the “true” mapping. We leave to future work the task
of improving mapping of weather to event probability based
on additional weather parameters (such as humidity), more
years of data, and more data about DR event occurrence.
Next, we assess the performance of our DR optimization
model based on a typical year’s weather in New York City and
various qualities of event probability forecasts. In this case,
the actual realized weather corresponds to a typical year of
weather for JFK Airport in New York City (based on Typical
Meteorological Year 3 data), and the “true” event probabilities
are calculated based on that weather data and the regression
model in Fig. 4. Fig. 5 shows the true event probabilities.
Now we can demonstrate the robustness of our results
under imperfect knowledge of event probabilities. We run
our algorithm to obtain the customer’s optimal policy given
erroneous estimates of event probabilities. We investigate
two types of erroneous estimates. The first type of erro-
neous estimates come from the logistic regression method with
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Fig. 6. Customer benefits under different types of event forecasts. Blue
dots show benefits under event forecasts based on temperature forecasts with
Gaussian random errors of varying standard deviations. The solid red line
shows benefits using a constant probability forecast. The dashed line shows
benefits if the customer does not manipulate baselines. Both the red line and
the dashed line are horizontal, because the standard deviation of temperature
forecast errors is not applicable to the constant probability event forecast and
does not affect the policy without baseline manipulation.

erroneous weather forecasting as input. We included results
under erroneous estimates with different levels of estimation
errors (resulting from inaccurate weather forecasting with 1-
degree to 10-degree errors). The second type of erroneous
estimates is a “constant event probability estimation”, where
everyday has the same event probability, calculated as the
expected number of events per year divided by the number
of days in a year. This constant probability forecast represents
a scenario where the customer does not use any sophisticated
method to estimate event probabilities at all. Then we eval-
uate the policies computed based on erroneous estimates of
event probabilities under the true event probabilities. In Fig. 6,
we can see that the performance of the policies is robust to
the estimation errors. For example, under 5-degree errors in
weather forecasting, the policy can still achieve 90% of the
performance of the optimal policy computed given true event
probabilities (the optimal policy corresponds to the left-most
blue dot with zero forecast error). Therefore, the policy is
close to optimal even when the event probability estimates
have moderate errors.

The dashed horizontal line show optimal customer benefits
when customer resources are not used to manipulate base-
lines. Comparing this to the other cases, we see that a baseline
manipulation strategy based on a constant probability forecast
has significant customer benefits relative to the no baseline
manipulation case. If reasonably accurate weather forecasts
are available, customers can achieve even greater benefits by
manipulating baselines. Therefore, the qualitative conclusion
of this article, namely that the customer has incentives to
increase the baseline load, is robust to imperfect knowledge
on the event probabilities. This observation emphasizes the
importance of understanding customer behavior and designing
programs that discourage undesired incentives.

In summary, we have demonstrated one feasible approach to
estimate event probabilities using logistic regression, and that
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empirically, our results are robust to imperfect event probabil-
ity forecasts. A rigorous approach with theoretical guarantees
on robustness (e.g., robust optimization) is an important future
direction of research.

E. Sensitivity Analysis of Baseline Determination Rules

We conduct a sensitivity analysis on baseline determination
rules (2), where we vary the number Np of non-event days used
for computing the baseline, and change how to compute the
baseline, namely as an average over all Np days or the Np/2
days with maximum load. We demonstrate how our model
can inform the design of a baseline-based DR program. In all
simulations, we use the event probabilities in Fig. 5.

Fig. 7 shows the level of baseline inflation for various base-
line types. We see that using all Np days to calculate the
baseline load leads to less baseline inflation than using the
top Np/2 days. This makes sense, because using the top Np/2
out of the Np days to calculate baseline load allows customers
to achieve a given level of baseline inflation with less total
load increase over the Np days, thus making baseline inflation
cheaper and more attractive.

We also see that the level of baseline inflation is generally
higher when Np is smaller. However, the trend is not mono-
tone. In general we would expect two competing effects as
we increase Np. First, as Np increases, to achieve the same
level of baseline inflation, the total amount of load increase
during the Np non-event days increases, which increases the
cost and makes baseline inflation less attractive. Second, under
higher Np, increasing load in a single baseline day is expected
to inflate baseline load in more event days, making baseline
inflation more attractive. The overall result of the two com-
peting effects depends on many factors, such as the profile
of event probabilities, the rebate rate, and the cost function.
Thus, it is important to have our computational solution to help
determine the optimal Np based on the various parameters.

VI. CONCLUSION

Our baseline-based DR model can identify optimal cus-
tomer behaviors under a variety of baseline-based DR program
parameters and a wide variety of customer parameters, thus
revealing customer incentives to artificially inflate baselines
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when the schedule of DR events is uncertain. Analytical results
provide some fundamental insights into the drivers of optimal
customer decisions. Numerical results show that incentives for
baseline manipulation may exist in real-world DR programs,
and that the level and impact of baseline manipulation can
depend on a number of factors, in ways that would be difficult
to predict without our model. Since the impacts of manipu-
lating baselines can have significant and non-obvious impacts
on the cost and effectiveness of baseline-based DR programs,
customer incentives should be considered during DR program
design and in utility planning and operations. An important
future work is to optimize the DR program (e.g., the rebate
function) given the customer’s decisions.

APPENDIX A
PROOF OF PROPOSITION 1

We first prove that on the event day, the user chooses the
myopically optimal action ag ;. This can be proved by looking
at the Bellman equation:

nt(sB,tv 1) = arg Zneix Mt[(SB,ts 1), Cl] + E{Vit1(se+1)} (28)

where V;; is the value function at # 4+ 1. Because the load
a; on the event day ¢ will not be counted in future baselines,
the baseline state remains the same, namely Sp;r1 = Sp;.
Therefore, the future expected value can be rewritten as

E{Vig1 (41} = Egp o { Vi1 (5805 SE.041) }-

Since the action a; does not affect either the probability
distribution of the event state sg ;41 or the baseline state sp ;,
it does not affect the future expected value E{V;;(s;+1)}. As
a result, the optimal action m;(sp;, 1) should maximize the
current payoff u;[(sg s, 1), a;], which is exactly defined as ag ;
in (13).

Now we prove that on the non-event day, the user chooses
her action according to (16). We prove this by directly com-
puting the expected total future reward, instead of by looking
at the Bellman equation. At a non-event day ¢, under state
(sB.r, 0), the expected total reward is

(29)

T

wl(spo 1), @) +EY D ur(se.ar) g,

T=t+1

(30)

where the expectation is taken over the random future states
Si+1,--.,S7. Note that the expected total future reward
E{Zfzt 11 U (S¢, ar)} implicitly depends on the current action
a;, because the future baseline states depend on the current
load a;.

Since the baseline is determined as the average load during
the previous Np non-event days as in (12), given a sequence of
realized event states Sg /11, - .. , Sg,7 and a sequence of actions
as+1, ..., ar, the baseline states evolve deterministically. In
other words, the randomness comes from the event states only.
Therefore, the expected total future payoff from day ¢+ 1 to
day T can be calculated as

T

ESE,lenSE,T Z ur[(sB,n SE,r), ar]

T=t+1
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T
= EsEﬁH_] ,,,,,, SE.T Z SEx "It [f(SB,r)» ar] —cr(ar)

T=t+1

T
SE.(+15-sSE.T Z SEt Tt (EB,‘L'v ar) —cc(ag) ¢, 31
T=t+1

where the baseline sp ; is determined by

_ Z?El [SBJ][.

= 32
SB,t Nz (32)

To determine the optimal action in day ¢, we only need to
consider the components in (31) that depend on a,. First, we
do not need to consider the cost ¢, (a;) for T > t. Second, we
only need to consider the reward r;(Sp ¢, ar) if day 7 is an
event day (i.e., sg.r = 1) and if the action a; plays a role in
determining the baseline sp .. Therefore, it is useful to define
binary random variables m’. that indicate whether day t has
an event whose baseline sp; depends on load ;. Formally,
we have

m,r _ { 1 if sg ¢ = 1 and 5p ; depends on a; . (33)
0 otherwise
Furthermore, since the reward is linear, namely
re (S, az) = rprc - (S8,c — az), (34)
the contribution of the action a, in the above reward is
YDRT ]3—; (35)

if m, = 1. Combining this observation with the definition of
m’., we can write the components in (31) that depend on the
action a; as

r a
t t
ESE.t+1 ,,,,,, SE,T Z my - DRt ° ]7
T=1+1 B
T
t t
= TIDR,t N ]EVEt+11~~sSE,T Z m (36)
T=t+1

Note that the expectation E, | ,W,SEYT{ZZZIJrl m'} is actually
the expected number of event days whose baselines depend on
the load a; in day ¢, denoted by M;. Therefore, the part of the
expected future payoff that depends on the action a; is

az

DRt * 77~

- M;. 37
Ny M (37

In addition, in a non-event day ¢, the action affects the cost
ct(az) only.

In summary, the action a; affects

az
—ci(ar) + rprc - — - M;. (38)

Np
The optimal action m;(sp;, 0) that maximizes the expected
total payoff should be ay ; as defined in (16).
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APPENDIX B
PROOF OF LEMMA 2

In (33), we defined binary random variables m’. to indicate
whether day t has an event whose baseline 5p ; depends on
load a;. Note that m’r is always O for T < ¢, because actions
can only impact baselines for future days.

The expectation of the number of event days whose base-
lines depend on the action a; in day ¢, denoted by M;, is
then

T T

M, =E Z m; =

g=t+1

(39)
q=t+1

Now we calculate M, for the special cases in Lemma 2.

1) The Special Case of Np = 1: If the baseline depends only
on the load in the previous non-event day, we have m% = 1 if
and only if mf] =1 for all t < g < 7. In other words, if day
is an event day whose baseline depends on action a;, all the

days between day ¢ and day T must be event days. Therefore,

the possible sequences of the indicators IR mly. are
1 g<rt
m;= 0g=t+1, t=t+1,...,T, (40)
* g>1+1

where * means that mf] can be either 0 or 1. For a given
T € [t+ 1, T], the above sequence happens with probability

(H;:H-IPEJI) ) (1 _PE,T—H)-

In addition, there are T — ¢ event days whose baselines depend
on a; in this sequence. Thus, the expected number of event
days whose baselines depend on a; is

(41)

T
> @0 (Mispra) - (1 =pres). (42)

T=t+1

2) The Special Case Where the Probabilities of Events are
the Same (i.e., pg; = pg, Vt): Now, we calculate E[m;] for
this case. To assist in the calculation, we define a sample space
Q = {0, 1}977, the Cartesian product of g — ¢ copies of the set
{0,1}. Each element of the sample space represents a sequence
of 1’s for events and 0’s for non-events for each day from
t + 1 through ¢, and the sample space includes every possi-
ble sequence of event and non-event days. The digits of each
element of 2 are independent Bernoulli(pg) random variables,
because the probability of event each day is pg and is indepen-
dent of the other days. This sequence determines whether day
q is an event day whose baseline depends on a;. Specifically,
day g will be an event day whose baseline depends on a; if
and only if there are less than Np 0’s in the first ¢ — ¢ — 1
digits of the sequence (i.e., less than Np non-event days in
days 7+ 1 through g — 1), and the final digit of the sequence
is a 1 (i.e., day g is an event day).

We can partition the sample space based upon the number
of events that occur from day ¢ + 1 through day ¢ — 1. We
define Dy to be the logical event corresponding to s DR events
occurring during those days. The minimum possible value of
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s is 0, and the maximum value is ¢ —7— 1. By the law of total
expectation, we have

g—t—1

]E[m;] > E[m; | DS] . P[D,].
s=0

We know that if there are Np or more non-event days from
day t + 1 through day g — 1, then a, will not be included in
the baseline for day ¢, and m’q will be 0. In order to have less
than Np non-event days, there must be at least ¢ — t — Np
event days, or if ¢ — t — Np is negative (i.e., there are less
than Np days from ¢+ 1 through g — 1) the minimum number
of event days is 0. We can concisely express the minimum
number of event days over days ¢+ 1 through g — 1 to ensure
there are less than Np non-event days as (¢ —t— Np)™*, where
()" = max{-, 0}. Using this, we discard the terms that equal
zero in (43) to get

(43)

g—t—1

2

s:(q—t—NB)+

E[m; | Ds] . P[D,]. (44)

|| =

We also know that if there are less than Np non-event days

from day r 4+ 1 through day g — 1, then @, will be included

in the baseline for day ¢. In this case, m; will be 1 if day ¢

is an event day (with probability pg), or will be 0 otherwise.

Based on this, we see that E[m; | Ds] = pg over all values of
s in the summation in (44). Using this, we have

E[m;] -

Now, we calculate P[D;]. P[D;] is the probability of having
s DR events out of days 7+ 1 through g — 1, which includes
q — t — 1 days. This is equivalent to the probability that a
Binomial(g — ¢ — 1, pg) random variable takes on the value s.
Thus

g—t—1

2

s=(q—t1—Np)*"

pE - P[Dy]. (45)

—t—1 . ‘
P[Ds] = <q ; ) py - (1—pp)? ! (40)

Substituting (46) into (45), substituting the result into (39),
and using the substitution r = g — ¢ gives the final result (21).
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