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Incentives to Manipulate Demand Response
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Abstract—We study baseline-based demand response (DR) pro-
grams. In such programs, customers get rebates based on how
much they reduce electricity consumption during DR events
relative to a “baseline,” where this baseline is determined by
their consumption during previous non-event days. Customers,
or automated controls working on their behalf, can achieve
higher DR payments by decreasing consumption during DR
events (desired behavior), and by increasing consumption dur-
ing non-event times (baseline manipulation). Importantly, the
customers have imperfect knowledge of when future demand
response events will occur. To understand customers’ incentives
for baseline manipulation, we present a novel multi-stage stochas-
tic dynamic programming model that optimizes customer actions
for maximum expected rewards under uncertain event schedules.
Analytical results for special cases show fundamental drivers
of customer incentives. Simulation results reveal incentives to
manipulate baselines and impacts to program performance for
a realistic baseline-based demand response program, and how
program and customer parameters affect incentives.

Index Terms—Dynamic programming, stochastic optimal con-
trol, demand response, demand response baselines, baseline-
based demand response, incentive-based demand response, smart
grid.

I. INTRODUCTION

D
EMAND response (DR) aims to modify customers’ elec-

tricity consumption in order to improve operation of the

electric grid (e.g., reduce costs, improve reliability, reduce

emissions). A wide variety of DR mechanisms have been

proposed or implemented [1], [2]. Most of these mechanisms

fall into three categories: price-based DR, auction-based DR,

and incentive-based DR. In price-based DR (e.g., real-time

pricing [3], [4]), the price of electricity varies over time, which

encourages customers to reduce consumption when prices

are high and increase consumption when prices are low. In

auction-based DR, customers submit bids (e.g., supply func-

tions [5], utility functions [6], [7]) to compete for payment

for DR services. In incentive-based DR (e.g., peak time rebate

[8], [9]), customers are paid incentives based on participation

or performance in the DR program.
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Fig. 1. Example of an event schedule for baseline-based DR with a 5-day
baseline. E indicates an event day and NE indicates a non-event day. For event
day 9 (in orange) the 5 prior non-event days (in blue) are used to determine
the baseline load.

An important class of incentive-based DR is baseline-based

DR [7]–[13], where incentive payments are based on the

difference between baseline consumption (e.g., average con-

sumption during previous days) and event consumption for

each DR event. A DR event is a specific window of time

in which the DR program asks participating customers to

reduce energy consumption. Baseline consumption, or baseline

in short, is an estimate of what the customer’s energy con-

sumption would have been during that same window of time

if it was not a DR event, and is calculated based on the cus-

tomer’s energy consumption on prior days without DR events.

Baseline-based DR is used in many utility DR programs, such

as [14]. Baselines are also central to DR participation in U.S.

wholesale energy markets, as regulated by the Federal Energy

Regulatory Commission [15]. Given its prevalence in practice,

baseline-based DR will be the focus of our paper.

With the growing use of baseline-based DR, it is impor-

tant to understand incentives and behavior of participating

customers, since actions of customers and control systems act-

ing on their behalf are the primary determinant of overall DR

program performance and cost. Baseline-based DR can create

complicated customer incentives, including incentives to take

action both during DR events (desired behavior) and to manip-

ulate baselines during non-event times. In general, customer

incentives can be difficult to predict, because optimal deci-

sions for each time period are interrelated and can depend on

the customer’s current baseline consumption, customer costs,

the demand response program structure, and uncertain future

values (such as when DR events will occur).

It is not new that baseline-based DR is susceptible to

baseline manipulation. Randomized control trials [16] and

legal settlements [17] provide real-world evidence that cus-

tomers may manipulate baselines. Interested readers can also

see [18] for a high-level discussion of the potential for inflating

baselines in baseline-based DR. In cases with incentives for

baseline inflation, ignoring these behaviors can lead to sig-

nificant errors in projections of required DR quantities, DR

costs, and demand forecasts. As the use of DR for critical
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grid services grows and as customer responses to DR pro-

grams become increasingly sophisticated through automated

control systems, these errors could cause significant impacts

to the cost and reliability of the grid.

We build on the prior work in the area of baseline-based

DR and develop a novel model to identify optimal customer

decisions under a baseline-based DR program with an uncer-

tain event schedule (see Section II for a discussion of related

work). Our model solves the customer’s multi-stage stochas-

tic decision problem with a dynamic programming algorithm,

thus providing an optimal policy for how much to reduce or

increase electricity consumption based on time, current cus-

tomer baseline, and whether a DR event is active. The key

contribution of our approach is representation of the cus-

tomer’s imperfect knowledge of when DR events will occur

over the course of a DR season, which can have significant

impacts on the optimal policy and is a primary uncertainty

for DR participants. As a demonstration of the value of our

approach, we will show non-obvious results based on a real-

world DR program (in Section V), including examples of how

imposing penalties (i.e., negative payments) for increasing load

during DR events affects DR program performance. Our major

contributions are as follows:

• To the best of our knowledge, we present the first solu-

tions for optimal customer policies under a variety of

baseline-based DR structures with multi-day baselines

and multiple uncertain events over a DR season.

• For a special class of baseline-based DR models, we pro-

vide structural results on the customer’s optimal policy,

which sheds light on the design of the DR program.

• For a general baseline-based DR model, we develop an

efficient dynamic programming algorithm by exploiting

the structure of the problem, which is capable of provid-

ing solutions quickly for extended DR seasons of several

months or longer.

• We provide a detailed rigorous analysis of the computa-

tional complexity of our algorithm, and conduct empirical

analysis of the robustness of our model in the presence

of imperfect knowledge about the DR event probabilities.

• We provide sensitivity analysis on baseline determination

rules to illustrate how to use our model to inform the

design of a baseline-based DR program.

The remainder of this article is organized as follows.

Section II discusses related works. Section III describes the

model. Section IV provides analytical results for special cases.

Section V presents numerical results from a computer imple-

mentation of the general model. Section VI summarizes our

conclusions.

II. RELATED WORK

There is a vast literature studying DR programs. Here we

only discuss works on baseline-based DR programs [7]–[12].

Some works [9], [10], [19] study issues other than baseline

manipulation. For example, the work in [9] focuses on learning

the optimal payment rule in baseline-based DR programs, the

work in [10] compares different baseline structures in terms

of metrics such as the accuracy of the baseline, and the work

in [19] studies competition between generators in an electricity

market with baseline-based demand response. However, the

focus of our paper is the study of incentives to manipulate

baselines.

Most of the works that address baseline manipulation focus

on mechanism design of the DR program [7], [11]–[13]. More

specifically, [7], [11], [13] allow customers to self-report base-

lines, and encourage truthful reporting by excluding a subset

of customers from each event, and imposing penalties for devi-

ations from reported baselines for those non-participating cus-

tomers. In [12] there is a profit-sharing mechanism designed

to discourage manipulating baselines for a DR program in

which the baseline is the load at the start of the DR event.

In contrast, we study a class of existing DR programs where

the baseline is defined as a customer’s consumption during

previous non-event days. The structure of the DR program we

study results in a unique feature of the customers’ decision

making process: they need to determine their consumption in

both event and non-event days, facing uncertainty of when

the events will occur. On the contrary, DR payments do not

depend on non-event day consumption for the mechanisms

in [7], [11]–[13].

The most related work is [8], which studies DR programs

with baselines determined by the consumption during non-

event days. However, they focus on a two-stage model, where

the second stage is the event day with certainty. Note that this

work includes a formulation of the general multi-stage model,

but it only presents results for the two-stage model without

event day uncertainty.

Compared to our conference paper [20], we have added

a detailed rigorous analysis of the computational complex-

ity of our algorithm in Section V-A, have added Section V-D

to demonstrate the robustness of our results when the esti-

mates of DR event probabilities are imperfect, and have added

Section V-E to demonstrate how to use our model to inform

the design of a baseline-based DR program.

III. MODEL

A. System Setup

We study a demand response program that occurs over a

demand response season of T ∈ N days. At the start of each

day t ∈ {1, . . . , T}, the utility notifies the customer whether

the current day is a demand response event day. On event days,

the utility desires participating customers to reduce electricity

consumption during a pre-specified window of hours (e.g., 2

p.m – 6 p.m. on all event days). We denote the probability that

day t is an event day by pE,t ∈ [0, 1]. An event day occurs

independently from other days.

In each day t, the customer has a default load level lt and

may deviate from the default load level by at, resulting in an

actual load level of at + lt. The default load level lt is a model

parameter, and the deviation at is the customer’s decision

variable. We model the deviation, instead of the actual load,

as the decision variable in order to better represent the cus-

tomer’s decision of whether to increase or decrease the load.

We denote the set of available load deviations by At ⊂ R, a

compact set including positive and negative values. Therefore,
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the action set can be either discrete, or continuous and closed

and bounded.

On an event day t, the utility gives the customer a rebate

for load reduction. We define the rebate function as

rt : R × At → R
(

sB,t, at

)

�→ rt

(

sB,t, at

)

, (1)

which depends on the baseline sB,t and the actual load lt +

at. The baseline is determined by the utility according to the

actual load over the previous NB non-event days. We denote

the load over the NB non-event days prior to day t by a vector

sB,t ∈ R
NB , and write the rule of determining the baseline as

a function

f : sB,t �→ sB,t. (2)

We focus on a commonly used class of baseline functions

that calculate the average load of the preceding NB non-event

days or the average load over N′
B < NB days selected based

on some rule [10]. We consider two common forms of DR

rebates calculated by

rt

(

sB,t, at

)

= rDR,t ·
(

sB,t − (lt + at)
)

or (3)

rt

(

sB,t, at

)

= rDR,t ·
(

sB,t − (lt + at)
)+

, (4)

where rDR,t ∈ R+ is the rebate per unit of load reduction

and (·)+ = max{·, 0}. When event load is less than baseline

load, these rebates are proportional to the difference between

baseline load and event load. In (3), the rebate becomes

negative when event load is greater than baseline load, rep-

resenting a penalty to the customer for failing to reduce load.

Alternatively, in (4), the rebate is capped above zero, so there

is no penalty when event load is greater than baseline load.

These forms of rebates are used, for example, in [14], which

caps DR performance payments above zero for each aggre-

gation of participants, but allows individual customers within

an aggregation to make negative contributions. These rebates

are non-increasing in event load and non-decreasing in base-

line load, so customers can increase rebates by reducing event

load or increasing baseline load.

The customer incurs a cost when deviating from the default

load. We define the cost of changing the load on day t as

ct : At → R. (5)

We assume that the cost function is bounded when the action

set is discrete, and that the cost function is convex when the

action set is continuous. This cost function represents the net

financial and discomfort costs to the customer due to deviating

from the default load. For example, raising the temperature set-

ting of an air conditioner in the summer would lower energy

use and impose a discomfort cost, while lowering the tem-

perature setting would increase energy use and impose the

financial cost of buying more energy. A home battery system

could be used to charge or discharge to raise or lower energy

consumption, imposing a financial cost for extra energy pur-

chases due to efficiency losses in the battery. In general, the

cost function will depend on factors including the available

customer resources for modifying load, customer preferences,

and electricity costs.

The goal of the customer is to maximize its expected total

profit (i.e., rebate minus cost) during the demand response sea-

son. Therefore, the customer has incentives to reduce the load

during the event days if the rebate is large enough to offset

the cost of reducing load. Moreover, the customer may also

increase the load during non-event days in order to inflate the

baseline and thus increase the future rebate, although increas-

ing the load would only result in a higher cost in that non-event

day. We are interested in whether and to what extent such

baseline manipulation occurs.

B. Dynamic Programming Formulation

We formulate the customer’s decision making problem as a

stochastic dynamic program over a finite horizon of T days.

Next, we describe the key components of the dynamic program

in detail.

The state at each day t consists of the baseline state sB,t ∈

R
NB and the event state sE,t ∈ {0, 1}. As discussed before, the

baseline state sB,t is a vector of the load levels on the previous

NB non-event days prior to day t. The event state sE,t indicates

whether day t is an event day, with sE,t = 1 indicating that

day t is an event day. We write the complete state for day t

as st = (sB,t, sE,t). The action at each day t is at ∈ At, the

deviation from the default load.

The state st and the action at determine the next baseline

state sB,t+1.

If day t is an event day, the action at will not be counted

in determining the future baselines. In this case, the baseline

state sB,t+1 = sB,t stays the same, and the event state sE,t+1

follows Bernoulli distribution with parameter pE,t+1.

If day t is a non-event day, the action at will be counted

towards determining future baselines. In this case, the baseline

state sB,t+1 is a concatenation of the last NB − 1 elements of

the previous baseline state sB,t and the actual load lt + at.

Mathematically, we have

sB,t+1 =
(

[

sB,t

]

2:NB
, lt + at

)

, (6)

where [sB,t]2:NB is the vector of last NB − 1 elements of sB,t.

Similar as in the event day, the event state sE,t+1 is drawn

from the Bernoulli distribution with parameter pE,t+1.

In summary, the state transition probability P(st+1|st, at) can

be calculated as

P
(

st+1|
(

sB,t, 1
)

, at

)

= p
sE,t+1

E,t+1 ·
(

1 − pE,t+1

)1−sE,t+1

× 1{sB,t+1=sB,t}, (7)

and

P
(

st+1|
(

sB,t, 0
)

, at

)

= p
sE,t+1

E,t+1 ·
(

1 − pE,t+1

)1−sE,t+1

× 1{

sB,t+1=
(

[sB,t]2:NB
,lt+at

)}, (8)

where 1{·} is the indicator function.

The reward function ut : R
NB ×{0, 1}×At → R is the rebate

minus the cost, namely

ut(st, at) = sE,t · rt

(

f
(

sB,t

)

, at

)

− ct(at). (9)

Without loss of optimality, we focus on stationary Markov

policies, which depend on the current state and time only. We
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write a stationary Markov policy as

π = (π1, . . . , πT) with πt : R
NB × {0, 1} → At, (10)

and the set of all Markov policies as �M .

Our goal is to find the optimal stationary Markov policy

that maximizes the expected total reward, namely solving the

following dynamic program

π∗ = arg max
π∈�M

E
π

[

T
∑

t=1

ut(st, at)

]

, (11)

where the expectation E
π depends on the policy π .

The dynamic program (11) can be solved through backward

induction.

IV. ANALYSIS

In this section, we focus on a special case of the dynamic

program (11), for which we can provide structural results on

the customer’s optimal policy. Our structural results will pro-

vide insights on the customer’s decision making process and

on the design of the demand response program.

We consider the demand response programs where the base-

line is determined as the average load of the previous NB

non-event days, namely

sB,t = f
(

sB,t

)

=

∑NB
i=1

[

sB,t

]

i

NB
, (12)

where [sB,t]i is the i-th element of the vector sB,t. Note that this

is a common way to determine the baseline in many demand

response programs [10]. We also consider a linear rebate func-

tion as in (3), so the customer pays penalties for load increases

during events. The linear rebate could apply, for example, to

an individual customer in [14] that is part of an aggregation.

Before stating our analytical results, we need to define a

few useful quantities. The first one is the myopically optimal

action in an event day, namely, the action that maximizes the

event day’s current reward (9):

aE,t = arg max
at∈At

rt

(

sB,t, at

)

− ct(at). (13)

For each non-event day t, an important quantity, denoted

by Mt, is the expected number of future event days whose

baselines depend on the action at in day t. The baseline for

an event day τ depends on the action at in day t if the day t

load lt + at is one of the entries in the baseline state vector

sB,τ . This occurs when day t is a non-event day prior to event

day τ and there are less than NB non-event days during the

period of days from t + 1 to τ − 1. Based on this, we define

a binary indicator of whether day t affects the baseline of an

event day τ :

mt
τ =

{

1 if sE,τ = 1 and sB,τ depends on at

0 otherwise
. (14)

Note that mt
τ is random because it depends on the realization of

random event states sE,t+1, . . . , sE,τ . Finally, we can formally

define Mt as

Mt = E

⎛

⎝

T
∑

q=t+1

mt
q

⎞

⎠. (15)

Given Mt, we define

aN,t = arg max
at∈At

Mt · rDR,t

NB
· at − ct(at). (16)

Proposition 1: In an event day, the optimal policy π∗

chooses the myopically optimal action in that day, namely

πt

(

sB,t, 1
)

= aE,t, ∀t = 1, . . . , T. (17)

In a non-event day, assuming that the rebate is linear as in (3),

and that the baseline is determined according to (12), the

optimal policy π∗ satisfies that

πt

(

sB,t, 0
)

= aN,t, ∀t = 1, . . . , T. (18)

Proof: Please see Appendix A.

Proposition 1 characterizes the customer’s optimal policy.

In event days, the customer will choose an action that

myopically optimizes the current reward. This is reasonable

because the load in the event day will not be counted towards

establishing future baselines. Therefore, the customer will

focus on the current reward without worrying about the impact

of its action on the future rewards. From the utility’s perspec-

tive, our result also guarantees the simplicity of designing the

rebate scheme: to ensure a certain level of demand response,

the utility needs to consider the customer’s cost of changing

load only, but not other factors such as the probabilities of

events, the number of non-event days used to calculate the

baseline, and so on.

In non-event days, the customer will choose the action

aN,t defined in (16). Note that this is not a myopic action,

because the current reward in the non-event day is −ct(at).

The objective function in (16) includes a term
Mt·rDR,t

NB
· at,

which represents the expected future benefit of increasing the

current load by at. The benefit comes from the inflated future

baselines, which would result in higher future rebates. By

exploiting the structure of the problem, we are able to charac-

terize this benefit analytically as
Mt·rDR,t

NB
· at, leading to sharp

structural results.

Proposition 1 also suggests that we can solve the dynamic

program without using backward induction. In particular, we

can avoid the “curse of dimensionality” if the problems in (13)

and (16) are easy to solve, which is often the case. For exam-

ple, when the rebate scheme is linear as in (3), the problem

in (13) reduces to a convex optimization problem

aE,t = arg max
at∈At

−rDR,t · at − ct(at), (19)

which can be solved efficiently (even analytically if the cost

function is linear or quadratic). Similarly, we can solve the

convex optimization problem in (16) efficiently.

The remaining difficulty lies in how to compute Mt. Note

that Mt depends only on the Bernoulli distributions of the event

states only, but not on the baseline states, the actions taken, etc.

In other words, we can compute Mt based on the probabilities

pE,1, . . . , pE,T . For some special cases, we are able to obtain

analytical expressions for Mt.

Lemma 1: For a non-event day t, the expected number of

event days whose baselines depend on the action at in day t

can be computed analytically in the following cases.
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Fig. 2. Daily 2018 peak load for the New York City load zone, which
includes the majority of Consolidated Edison’s system load.

• When NB = 1, we have

Mt =

T
∑

s=t+1

(s − t) ·
(

�s
τ=t+1pE,τ

)

·
(

1 − pE,s+1

)

. (20)

• When the probabilities of events are the same (i.e., pE,t =

pE, ∀t), we have

Mt =

T−t
∑

r=1

r−1
∑

s=(r−NB)+

(

r − 1

s

)

· ps+1
E · (1 − pE)r−s−1.

(21)

Proof: Please see Appendix B.

V. MODEL IMPLEMENTATION AND CASE STUDY

In this section, we describe a computer implementation of

the model and present numerical results from a case study.

We model several scenarios based on hypothetical customers

in a DR program like Consolidated Edison’s “Commercial

System Relief Program - Voluntary Option,” or “CSRP-V” (see

Rider T in [14], [21]–[23]). Consolidated Edison operates a

large electric utility serving the New York City area including

3.4 million electric customers. Consolidated Edison’s system

peak load in 2018 was 13 GW. Daily 2018 peak loads for

the New York City load zone (which includes the majority

of Consolidated Edison’s system load) are shown in Fig. 2.

CSRP-V is a baseline-based DR program with day-ahead event

notice, thus matching the structure of our model. Results for

the selected scenarios demonstrate how our model can reveal

non-obvious relationships between program design, customer

characteristics, and customer actions.

A. Model Implementation and Computational Complexity

We implemented a backward induction algorithm to solve

the finite horizon dynamic program (11) for cases with discrete

states and actions. The implementation can solve the optimal

policy for a wide variety of DR program designs, including

linear rebates with penalties as in (3) or payments capped

above zero as in (4). Customer default loads, customer costs

for each action, and DR rebate rates can also vary from day

to day. The implementation also supports arbitrary values of

probabilities of event for each day, thus providing solutions for

cases beyond the special cases considered in (20) and (21).

The standard backward induction algorithm works as fol-

lows. For the last day T in the horizon, we solve for the

optimal policy in day T by maximizing the reward in that

day, namely

πT(sT) = arg max
a∈At

uT(sT , a), (22)

and obtained the value function defined as

VT(sT) = max
a∈AT

uT(sT , a). (23)

Then for each day t = T −1, T −2, . . . , 1, we work backwards

and solve for each day t’s optimal policy by

πt(st) = arg max
a∈At

ut(st, a) +
∑

st+1

P(st+1|st, a)Vt+1(st+1),

(24)

where the second term in the objective is the expected future

reward, and Vt+1 is the value function at day t + 1 defined as

Vt+1(st+1) = max
a∈At+1

ut+1(st+1, a)

+
∑

st+2

P(st+2|st+1, a)Vt+2(st+2). (25)

Now we discuss the computational complexity of the stan-

dard backward induction algorithm. Denote the number of

states by Ns and the number of actions by Na. As we can

see from (24), the main computational complexity comes from

evaluation of the expected future reward, which involves Ns

multiplications. Since we need to evaluate this term for all

pairs of states and actions, the total complexity is O(N2
s Na).

However, we can use the special structure in the state

transition probabilities (7) and (8) to reduce the complexity.

Since the transition of baseline states is deterministic, we can

simplify (24) to

πt

(

sB,t, 1
)

= arg max
a∈At

{

ut(st, a) + pE,t+1Vt+1

(

sB,t, 1
)

+
(

1 − pE,t+1

)

Vt+1

(

sB,t, 0
)}

(26)

for event days, and

πt

(

sB,t, 0
)

= arg max
a∈At

{

ut(st, a) + pE,t+1Vt+1

((

[sB,t]2:NB , lt + a
)

, 1
)

+
(

1 − pE,t+1

)

Vt+1

((

[sB,t]2:NB , lt + a
)

, 0
)}

(27)

for non-event days. As we can see from (26) and (27), the com-

putation of the future reward is simplified to a multiplication

of two terms. Therefore, the computational complexity of our

algorithm is O(NsNa). By reducing the complexity by a factor

of Ns, which scales exponentially as NB, our implementation

offers significant speedup.

Our implementation achieves this speedup by clever index-

ing of states to take advantage of the structure of the problem.

Specifically, the steps are as follows. We assign each pos-

sible value of the actual load an actual load index, il+a,

which ranges from 0 to Nl+a − 1. We represent each base-

line state by a series of NB actual load indices, starting from
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the most recent day’s load to the oldest load in the baseline.

We consider this representation of the baseline state to be a

base-Nl+a number, which we convert to a base-10 number

to give the baseline state index, iB. We can then discard the

full representation of the baseline states, and work with just

the indices. If the current day is a non-event day, the current

day’s baseline state index is iB,t and the current day’s actual

load index is il+a,t, then the next day’s baseline state index

is iB,t+1 = ⌊iB,t/Nl+a⌋ + il+a,t · (Nl+a)
(NB−1), where ⌊·⌋ is the

floor operator. Alternatively, if the current day is an event day,

then the baseline state does not change and iB,t+1 = iB,t. These

calculations allow us to quickly determine the indices of the

elements of Vt+1 that we use in (26) and (27).

B. Description of Scenarios

We define eight representative scenarios for different types

of customers, load, event probability profiles, rebate mecha-

nisms, and customer costs. We investigate various performance

metrics under these scenarios, in order to verify insights from

our analytical results and reveal new findings that are difficult

to obtain analytically. We discuss the results obtained under

the assumption that we know the true event probabilities in

Section V-C, and results obtained under imperfect estimates

of event probabilities in Section V-D.

To facilitate understanding the discussion of scenarios and

results, we define the terms in the first column of Table I.

Baseline Manipulation Allowed indicates whether the set of

available customer actions includes the possibility of increas-

ing load, which allows for baseline inflation. Probability of

Event indicates which type of daily event probability profile

was used: flat for constant probability each day, matching

the probability assumption in (21), or spike for constant

(lower) probability most days, except for two consecutive

days with higher event probabilities. Note that probabilities

based on Consolidated Edison system load are considered in

Sections V-D and V-E. Negative Payments indicates whether

DR payments include penalties for negative DR quantities

as in (3) or no penalties as in (4). Default Load indicates

whether the customer default load has a constant value each

day, or whether it varies from day to day. Baseline Type indi-

cates whether baseline load is calculated as the average load

in the top 5 out of the prior 10 non-event days (5 in 10),

or as the average load in the prior 5 non-event days (5 in

5). Customer Costs indicates whether the customer costs of

modifying load take on standard values or higher cost values,

which are described later in this section. Expected True DR

(kWh) is the expectation of the amount of load reduction in

the event days, summed over all DR events in the DR season.

Expected Apparent DR (kWh) is the expectation of the differ-

ence between baseline load and event load, summed over all

DR events. Expected DR Payments ($) is the expected value

of the DR rebates (3) or (4), summed over all DR events.

Expected Customer Costs ($) is the expectation of costs of

modifying load (5) summed over all days in the DR season.

Expected Customer Net Benefits ($) is the difference between

Expected DR Payments ($) and Expected Customer Costs ($).

Expected Payment per Unit True DR ($/kWh) is Expected DR

Payments ($) divided by Expected True DR (kWh).

We model customers participating in CSRP-V for the sum-

mer DR season (roughly 150 days). CSRP-V pays $3 per kWh

of demand reduction during a pre-assigned 4-hour window

on event days. For direct participants, payments are capped

above zero, but for participants represented by an aggregator,

negative event performance is counted and netted against con-

tributions from other customers. The utility advises to expect

3 events per year, on peak load days. CSRP-V offers a “5 in

10” baseline methodology, where baseline load is average load

over the 5 highest load days out of the preceding 10 similar

days. We also consider an alternative baseline of the average

load over the prior 5 similar days, or “5 in 5.” For the “5

in 10” and “5 in 5” baseline scenarios, we include 10 or 5

days, respectively, before the start of the DR season in order

to establish an initial baseline.

Scenario 1 models a customer who cannot manipulate base-

lines. The customer has three choices for actions and costs

each day: (1) no load change at no cost; (2) reduce load by

1 kWh at the cost of $0.02; or (3) reduce load by 2 kWh at

the cost of $2.02. This represents a customer who can use a

battery to shift 1 kWh of energy (paying for 10% efficiency

losses at the $0.20/kWh electricity rate), and can reduce appli-

ance use to lower consumption 1 kWh more (costing $2/kWh

for lost utility). The customer has no additional insight about

when events will occur, so the probability of event each day

is the total number of expected events per season divided by

the number of days in the season (i.e., 3/150 = 0.02). The

customer is not represented by an aggregator, so negative pay-

ments are not allowed. We set the default load to be the same

each day.

Scenario 2 adds two additional action and cost options:

(4) increase load by 1 kWh at the cost of $0.02; or (5)

increase load by 2 kWh at the cost of $0.22. This repre-

sents a customer who can use a battery to shift 1 kWh of

load (again paying for 10% losses), and can use appliances to

increase load by an additional 1 kWh at the electricity rate of

$0.20/kWh.

Scenario 3 is a modification of Scenario 2, representing a

customer with more information about when events are likely

to occur. This represents a customer that predicts event based

on weather forecasts. This scenario includes two consecu-

tive days with a high probability (i.e., 0.5) of events, and

the remaining days with a lower event probability. The lower

event probability is properly set so that the expected number

of events is still 3.

Scenarios 4 through 8 include the alternative “5 in 5” base-

line. Scenario 4 is identical to scenario 2 except for the

alternative baseline type. Scenarios 5 through 8 include large

day-to-day variations in default load, where the deviations are

greater than the available customer load modifying actions.

Scenarios 5 and 6 compare the impact of variable default load

with negative payments not allowed and negative payments

allowed, respectively. Scenarios 7 and 8 are identical to sce-

narios 5 and 6, except that the customer has a less efficient

battery with 25% round trip losses, so the initial 1 kWh of

reduction or increase costs $0.05 instead of $0.02.
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TABLE I
SIMULATION SCENARIOS AND RESULTS

C. Results Under True Event Probabilities

We first assume that we know the true event probabilities.

We summarize numerical results in Table I, and illustrate them

in Figure 3, which shows the mean optimal policy for event

and non-event days. The optimal policies shown in Fig. 3

are characterized by the optimal level of load reduction if a

given day is an event day (dashed blue lines) and the optimal

level of load inflation if a given day is a non-event day (solid

red lines). In general, the optimal policy may depend on the

baseline state. We plot the average optimal policies over all

baseline states, which enables visualizing the policy when the

number of states is large. The results reveal several findings,

some of which corroborate our analytical results, and some of

which address more complicated cases that would be difficult

to analyze manually.

Scenario 1 shows that when manipulating baselines is not

possible, the true DR quantity (load reductions due to actions

during events) matches the apparent DR quantity (the dif-

ference between the potentially inflated baseline load and

the event load), so that the utility payment per unit of true

DR matches the CSRP-V program incentive rate ($3/kWh).

Alternatively, in Scenario 2, the customer has the ability and

incentive to inflate baseline load. This case has the same true

DR quantity, but a larger apparent DR quantity due to the

inflated baseline, thus resulting in 63% greater customer net

benefits and a 50% higher utility cost per unit true DR. The

differing optimal policies for Scenarios 1 and 2 is illustrated

by plots (a) and (b) in Fig. 3, which shows load increases

in non-event days for Scenario 2, but no changes to load in

non-event days for Scenario 1.

Scenario 2 also shows that even with poor information about

when events will occur, customers can have incentive to take

inexpensive actions to inflate baselines (such as load shifting

with a battery). With better information about event probabil-

ities, as in Scenario 3, customers can have incentive to take

more expensive actions to inflate baseline load (such as turn-

ing on more appliances) during the days prior to the days

with high probability of events (as illustrated by plot (c) in

Fig. 3). This is consistent with intuition gained from our ana-

lytical results for simpler programs: the expected number of

event days affected by the current action, namely Mt, is higher

during these days, and therefore the optimal load levels are

higher according to (16). Scenario 3 has even greater appar-

ent DR, higher customer profits, and 70% higher utility cost

per unit true DR compared to Scenario 1 with no baseline

inflation.

Scenario 4, with a “5 in 5” baseline, has nearly identical

values of true DR, apparent DR, and utility cost, to Scenario

2, with a “5 in 10” baseline. Despite these similarities, the “5

in 10” baseline has the advantage of less demand inflation on

non-event days. Note that the “5 in 10” baseline is beyond the

scope of the analytical results we provided because it does not

follow (12), so this illustrates how the computer implementa-

tion can generate non-obvious results for cases that have not

been solved analytically.

Scenario 5 shows that varying default load can reduce

incentives for both event response and baseline inflation, as

illustrated by plot (e) in Fig. 3. This is because when payments

are capped above zero and default load is much higher than

the baseline, customer actions may not be able to increase the

payment above zero. However, variable load does not have a

major impact on true or apparent DR quantities when negative

payments are allowed (note the similar results for Scenarios 4

and 6 in Table I). This is consistent with our analytical results,

because neither (13) nor (16) depends on the load level lt when

the DR rebate is linear and allowed to be negative.

Scenarios 5–6 and Scenarios 7–8 indicate that capping pay-

ments at zero reduces incentives for both event response and

baseline inflation. However, it has opposing effects on the

utility cost per unit true DR when the customer’s costs of

increasing load changes. Specifically, under lower customer

costs (Scenarios 5–6), the cost per unit true DR decreases

when we allow negative payments (i.e., from $5.2/kWh in

Scenario 5 to $4.4/kWh in Scenario 6); under higher customer

costs (Scenarios 7–8), the cost per unit true DR increases

when we allow negative payments (i.e., from $3.0/kWh in

Scenario 7 to $4.4/kWh in Scenario 8). Therefore, the impact

of penalty on the program performance is non-obvious and

hard to predict analytically. This emphasizes the importance

of our computational solution to the general model.

D. Imperfect Knowledge of Event Probabilities

The results shown thus far in this article are based on the

assumption that the customer knows the probabilities of events

for each day in the DR season. In practice, the customer does

not have perfect information about these event probabilities.

This section demonstrates one approach that companies or

systems working on behalf of customers could use to estimate
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Fig. 3. Average optimal policy by day for scenarios 1-8. Dashed blue lines
show the optimal level of load reduction on event days, as an average over
all baseline states. Solid red lines show the optimal level of load inflation on
non-event days, as an average over all baseline states.

event probabilities. Then we analyze the customer benefits of

manipulating baselines based on imperfect event probability

forecasts, compared to a simpler DR response strategy with

no baseline manipulation.

Many DR programs are designed to respond to system

load conditions. Since system load is typically correlated with

weather, the probability of having DR events is also correlated

with weather. When we have historical data of weather and

system load or DR events, we can perform a regression to

Fig. 4. Event probability versus daily high temperature, determined from
logistic regression of historical temperature and Consolidated Edison system
load.

Fig. 5. Daily event probabilities for New York City Typical Meteorological
Year 3 weather data, based on logistic regression model from Fig. 4.

learn the mapping from weather conditions to event probabil-

ities. Then, this mapping can be used to create forecasts of

future DR event probabilities based on weather forecasts.

Fig. 4 shows the result of a simple logistic regression model

of probability of event versus daily peak temperature based on

Con Edison 2018 system load data and 2018 New York City

daily peak temperatures. In this analysis, we assign DR events

to the 3 peak load days of 2018 (based on the expectation of 3

events per year). For the purposes of this study, we assume that

the mapping from temperature to event probability shown in

Fig. 4 is the “true” mapping. We leave to future work the task

of improving mapping of weather to event probability based

on additional weather parameters (such as humidity), more

years of data, and more data about DR event occurrence.

Next, we assess the performance of our DR optimization

model based on a typical year’s weather in New York City and

various qualities of event probability forecasts. In this case,

the actual realized weather corresponds to a typical year of

weather for JFK Airport in New York City (based on Typical

Meteorological Year 3 data), and the “true” event probabilities

are calculated based on that weather data and the regression

model in Fig. 4. Fig. 5 shows the true event probabilities.

Now we can demonstrate the robustness of our results

under imperfect knowledge of event probabilities. We run

our algorithm to obtain the customer’s optimal policy given

erroneous estimates of event probabilities. We investigate

two types of erroneous estimates. The first type of erro-

neous estimates come from the logistic regression method with
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Fig. 6. Customer benefits under different types of event forecasts. Blue
dots show benefits under event forecasts based on temperature forecasts with
Gaussian random errors of varying standard deviations. The solid red line
shows benefits using a constant probability forecast. The dashed line shows
benefits if the customer does not manipulate baselines. Both the red line and
the dashed line are horizontal, because the standard deviation of temperature
forecast errors is not applicable to the constant probability event forecast and
does not affect the policy without baseline manipulation.

erroneous weather forecasting as input. We included results

under erroneous estimates with different levels of estimation

errors (resulting from inaccurate weather forecasting with 1-

degree to 10-degree errors). The second type of erroneous

estimates is a “constant event probability estimation”, where

everyday has the same event probability, calculated as the

expected number of events per year divided by the number

of days in a year. This constant probability forecast represents

a scenario where the customer does not use any sophisticated

method to estimate event probabilities at all. Then we eval-

uate the policies computed based on erroneous estimates of

event probabilities under the true event probabilities. In Fig. 6,

we can see that the performance of the policies is robust to

the estimation errors. For example, under 5-degree errors in

weather forecasting, the policy can still achieve 90% of the

performance of the optimal policy computed given true event

probabilities (the optimal policy corresponds to the left-most

blue dot with zero forecast error). Therefore, the policy is

close to optimal even when the event probability estimates

have moderate errors.

The dashed horizontal line show optimal customer benefits

when customer resources are not used to manipulate base-

lines. Comparing this to the other cases, we see that a baseline

manipulation strategy based on a constant probability forecast

has significant customer benefits relative to the no baseline

manipulation case. If reasonably accurate weather forecasts

are available, customers can achieve even greater benefits by

manipulating baselines. Therefore, the qualitative conclusion

of this article, namely that the customer has incentives to

increase the baseline load, is robust to imperfect knowledge

on the event probabilities. This observation emphasizes the

importance of understanding customer behavior and designing

programs that discourage undesired incentives.

In summary, we have demonstrated one feasible approach to

estimate event probabilities using logistic regression, and that

Fig. 7. Baseline load inflation for various baseline determination rules.

empirically, our results are robust to imperfect event probabil-

ity forecasts. A rigorous approach with theoretical guarantees

on robustness (e.g., robust optimization) is an important future

direction of research.

E. Sensitivity Analysis of Baseline Determination Rules

We conduct a sensitivity analysis on baseline determination

rules (2), where we vary the number NB of non-event days used

for computing the baseline, and change how to compute the

baseline, namely as an average over all NB days or the NB/2

days with maximum load. We demonstrate how our model

can inform the design of a baseline-based DR program. In all

simulations, we use the event probabilities in Fig. 5.

Fig. 7 shows the level of baseline inflation for various base-

line types. We see that using all NB days to calculate the

baseline load leads to less baseline inflation than using the

top NB/2 days. This makes sense, because using the top NB/2

out of the NB days to calculate baseline load allows customers

to achieve a given level of baseline inflation with less total

load increase over the NB days, thus making baseline inflation

cheaper and more attractive.

We also see that the level of baseline inflation is generally

higher when NB is smaller. However, the trend is not mono-

tone. In general we would expect two competing effects as

we increase NB. First, as NB increases, to achieve the same

level of baseline inflation, the total amount of load increase

during the NB non-event days increases, which increases the

cost and makes baseline inflation less attractive. Second, under

higher NB, increasing load in a single baseline day is expected

to inflate baseline load in more event days, making baseline

inflation more attractive. The overall result of the two com-

peting effects depends on many factors, such as the profile

of event probabilities, the rebate rate, and the cost function.

Thus, it is important to have our computational solution to help

determine the optimal NB based on the various parameters.

VI. CONCLUSION

Our baseline-based DR model can identify optimal cus-

tomer behaviors under a variety of baseline-based DR program

parameters and a wide variety of customer parameters, thus

revealing customer incentives to artificially inflate baselines
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when the schedule of DR events is uncertain. Analytical results

provide some fundamental insights into the drivers of optimal

customer decisions. Numerical results show that incentives for

baseline manipulation may exist in real-world DR programs,

and that the level and impact of baseline manipulation can

depend on a number of factors, in ways that would be difficult

to predict without our model. Since the impacts of manipu-

lating baselines can have significant and non-obvious impacts

on the cost and effectiveness of baseline-based DR programs,

customer incentives should be considered during DR program

design and in utility planning and operations. An important

future work is to optimize the DR program (e.g., the rebate

function) given the customer’s decisions.

APPENDIX A

PROOF OF PROPOSITION 1

We first prove that on the event day, the user chooses the

myopically optimal action aE,t. This can be proved by looking

at the Bellman equation:

πt

(

sB,t, 1
)

= arg max
a∈At

ut

[

(sB,t, 1), a
]

+ E{Vt+1(st+1)} (28)

where Vt+1 is the value function at t + 1. Because the load

at on the event day t will not be counted in future baselines,

the baseline state remains the same, namely sB,t+1 = sB,t.

Therefore, the future expected value can be rewritten as

E{Vt+1(st+1)} = EsE,t+1

{

Vt+1

(

sB,t, sE,t+1

)}

. (29)

Since the action at does not affect either the probability

distribution of the event state sE,t+1 or the baseline state sB,t,

it does not affect the future expected value E{Vt+1(st+1)}. As

a result, the optimal action πt(sB,t, 1) should maximize the

current payoff ut[(sB,t, 1), at], which is exactly defined as aE,t

in (13).

Now we prove that on the non-event day, the user chooses

her action according to (16). We prove this by directly com-

puting the expected total future reward, instead of by looking

at the Bellman equation. At a non-event day t, under state

(sB,t, 0), the expected total reward is

ut

[(

sB,t, 1
)

, at

]

+ E

⎧

⎨

⎩

T
∑

τ=t+1

uτ (sτ , aτ )

⎫

⎬

⎭

, (30)

where the expectation is taken over the random future states

st+1, . . . , sT . Note that the expected total future reward

E{
∑T

τ=t+1 uτ (sτ , aτ )} implicitly depends on the current action

at, because the future baseline states depend on the current

load at.

Since the baseline is determined as the average load during

the previous NB non-event days as in (12), given a sequence of

realized event states sE,t+1, . . . , sE,T and a sequence of actions

at+1, . . . , aT , the baseline states evolve deterministically. In

other words, the randomness comes from the event states only.

Therefore, the expected total future payoff from day t + 1 to

day T can be calculated as

EsE,t+1,...,sE,T

⎧

⎨

⎩

T
∑

τ=t+1

uτ

[(

sB,τ , sE,τ

)

, aτ

]

⎫

⎬

⎭

= EsE,t+1,...,sE,T

⎧

⎨

⎩

T
∑

τ=t+1

sE,τ · rτ

[

f
(

sB,τ

)

, aτ

]

− cτ (aτ )

⎫

⎬

⎭

= EsE,t+1,...,sE,T

⎧

⎨

⎩

T
∑

τ=t+1

sE,τ · rτ

(

sB,τ , aτ

)

− cτ (aτ )

⎫

⎬

⎭

, (31)

where the baseline sB,τ is determined by

sB,τ =

∑NB
i=1

[

sB,τ

]

i

NB
. (32)

To determine the optimal action in day t, we only need to

consider the components in (31) that depend on at. First, we

do not need to consider the cost cτ (aτ ) for τ > t. Second, we

only need to consider the reward rτ (sB,τ , aτ ) if day τ is an

event day (i.e., sE,τ = 1) and if the action at plays a role in

determining the baseline sB,τ . Therefore, it is useful to define

binary random variables mt
τ that indicate whether day τ has

an event whose baseline sB,τ depends on load at. Formally,

we have

mt
τ =

{

1 if sE,τ = 1 and sB,τ depends on at

0 otherwise
. (33)

Furthermore, since the reward is linear, namely

rτ

(

sB,τ , aτ

)

= rDR,τ ·
(

sB,τ − aτ

)

, (34)

the contribution of the action at in the above reward is

rDR,τ ·
at

NB
(35)

if mt
τ = 1. Combining this observation with the definition of

mt
τ , we can write the components in (31) that depend on the

action at as

EsE,t+1,...,sE,T

⎧

⎨

⎩

T
∑

τ=t+1

mt
τ · rDR,τ ·

at

NB

⎫

⎬

⎭

= rDR,τ ·
at

NB
· EsE,t+1,...,sE,T

⎧

⎨

⎩

T
∑

τ=t+1

mt
τ

⎫

⎬

⎭

. (36)

Note that the expectation EsE,t+1,...,sE,T {
∑T

τ=t+1 mt
τ } is actually

the expected number of event days whose baselines depend on

the load at in day t, denoted by Mt. Therefore, the part of the

expected future payoff that depends on the action at is

rDR,τ ·
at

NB
· Mt. (37)

In addition, in a non-event day t, the action affects the cost

ct(at) only.

In summary, the action at affects

− ct(at) + rDR,τ ·
at

NB
· Mt. (38)

The optimal action πt(sB,t, 0) that maximizes the expected

total payoff should be aN,t as defined in (16).
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APPENDIX B

PROOF OF LEMMA 2

In (33), we defined binary random variables mt
τ to indicate

whether day τ has an event whose baseline sB,τ depends on

load at. Note that mt
τ is always 0 for τ ≤ t, because actions

can only impact baselines for future days.

The expectation of the number of event days whose base-

lines depend on the action at in day t, denoted by Mt, is

then

Mt = E

⎡

⎣

T
∑

q=t+1

mt
q

⎤

⎦ =

T
∑

q=t+1

E

[

mt
q

]

. (39)

Now we calculate Mt for the special cases in Lemma 2.

1) The Special Case of NB = 1: If the baseline depends only

on the load in the previous non-event day, we have mt
τ = 1 if

and only if mt
q = 1 for all t < q < τ . In other words, if day τ

is an event day whose baseline depends on action at, all the

days between day t and day τ must be event days. Therefore,

the possible sequences of the indicators mt
t+1, . . . , mt

T are

mt
q =

⎧

⎨

⎩

1 q ≤ τ

0 q = τ + 1

∗ q > τ + 1

, τ = t + 1, . . . , T, (40)

where ∗ means that mt
q can be either 0 or 1. For a given

τ ∈ [t + 1, T], the above sequence happens with probability

(

�τ
q=t+1pE,q

)

·
(

1 − pE,τ+1

)

. (41)

In addition, there are τ − t event days whose baselines depend

on at in this sequence. Thus, the expected number of event

days whose baselines depend on at is

T
∑

τ=t+1

(τ − t) ·
(

�τ
q=t+1pE,q

)

·
(

1 − pE,τ+1

)

. (42)

2) The Special Case Where the Probabilities of Events are

the Same (i.e., pE,t = pE, ∀t): Now, we calculate E[mt
q] for

this case. To assist in the calculation, we define a sample space

� = {0, 1}q−t, the Cartesian product of q − t copies of the set

{0,1}. Each element of the sample space represents a sequence

of 1’s for events and 0’s for non-events for each day from

t + 1 through q, and the sample space includes every possi-

ble sequence of event and non-event days. The digits of each

element of � are independent Bernoulli(pE) random variables,

because the probability of event each day is pE and is indepen-

dent of the other days. This sequence determines whether day

q is an event day whose baseline depends on at. Specifically,

day q will be an event day whose baseline depends on at if

and only if there are less than NB 0’s in the first q − t − 1

digits of the sequence (i.e., less than NB non-event days in

days t + 1 through q − 1), and the final digit of the sequence

is a 1 (i.e., day q is an event day).

We can partition the sample space based upon the number

of events that occur from day t + 1 through day q − 1. We

define Ds to be the logical event corresponding to s DR events

occurring during those days. The minimum possible value of

s is 0, and the maximum value is q− t−1. By the law of total

expectation, we have

E

[

mt
q

]

=

q−t−1
∑

s=0

E

[

mt
q | Ds

]

· P[Ds]. (43)

We know that if there are NB or more non-event days from

day t + 1 through day q − 1, then at will not be included in

the baseline for day q, and mt
q will be 0. In order to have less

than NB non-event days, there must be at least q − t − NB

event days, or if q − t − NB is negative (i.e., there are less

than NB days from t + 1 through q − 1) the minimum number

of event days is 0. We can concisely express the minimum

number of event days over days t + 1 through q − 1 to ensure

there are less than NB non-event days as (q− t −NB)+, where

(·)+ = max{·, 0}. Using this, we discard the terms that equal

zero in (43) to get

E

[

mt
q

]

=

q−t−1
∑

s=(q−t−NB)+

E

[

mt
q | Ds

]

· P[Ds]. (44)

We also know that if there are less than NB non-event days

from day t + 1 through day q − 1, then at will be included

in the baseline for day q. In this case, mt
q will be 1 if day q

is an event day (with probability pE), or will be 0 otherwise.

Based on this, we see that E[mt
q | Ds] = pE over all values of

s in the summation in (44). Using this, we have

E

[

mt
q

]

=

q−t−1
∑

s=(q−t−NB)+

pE · P[Ds]. (45)

Now, we calculate P[Ds]. P[Ds] is the probability of having

s DR events out of days t + 1 through q − 1, which includes

q − t − 1 days. This is equivalent to the probability that a

Binomial(q − t − 1, pE) random variable takes on the value s.

Thus

P[Ds] =

(

q − t − 1

s

)

· ps
E · (1 − pE)q−t−s−1 (46)

Substituting (46) into (45), substituting the result into (39),

and using the substitution r = q − t gives the final result (21).

REFERENCES

[1] J. S. Vardakas, N. Zorba, and C. V. Verikoukis, “A survey on demand
response programs in smart grids: Pricing methods and optimization
algorithms,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 152–178,
1st Quart., 2015.

[2] B. Chew, B. Feldman, D. Ghosh, and M. Surampudy, “2018
utility demand response market snapshot,” Smart Electric Power
Alliance, Washington, DC, USA, Rep., 2018. [Online]. Available:
https://sepapower.org/resource/2018-demand-response-market-snapshot/

[3] A. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart
grid,” IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 320–331, Dec. 2010.

[4] N. Li, L. Chen, and S. H. Low, “Optimal demand response based on
utility maximization in power networks,” in Proc. IEEE Power Energy
Soc. Gen. Meeting, Detroit, MI, USA, Jul. 2011, pp. 1–8.

[5] Y. Xu, N. Li, and S. H. Low, “Demand response with capacity con-
strained supply function bidding,” IEEE Trans. Power Syst., vol. 31,
no. 2, pp. 1377–1394, Mar. 2016.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on August 23,2022 at 01:53:32 UTC from IEEE Xplore.  Restrictions apply. 



ELLMAN AND XIAO: INCENTIVES TO MANIPULATE DEMAND RESPONSE BASELINES WITH UNCERTAIN EVENT SCHEDULES 1369

[6] P. Samadi, H. Mohsenian-Rad, R. Schober, and V. W. S. Wong,
“Advanced demand side management for the future smart grid
using mechanism design,” IEEE Trans. Smart Grid, vol. 3, no. 3,
pp. 1170–1180, Sep. 2012.

[7] D. Muthirayan, D. Kalathil, K. Poolla, and P. Varaiya, “Mechanism
design for demand response programs,” IEEE Trans. Smart Grid, vol. 11,
no. 1, pp. 61–73, Jan. 2020.

[8] J. Vuelvas and F. Ruiz, “Rational consumer decisions in a peak
time rebate program,” Elect. Power Syst. Res., vol. 143, pp. 533–543,
Feb. 2017.

[9] K. Khezeli and E. Bitar, “Risk-sensitive learning and pricing for demand
response,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6000–6007,
Nov. 2018.

[10] P. Antunes, P. Faria, and Z. Vale, “Consumers performance evaluation of
the participation in demand response programs using baseline methods,”
in Proc. IEEE Grenoble Conf., Jun. 2013, pp. 1–6.

[11] J. Vuelvas, F. Ruiz, and G. Gruosso, “Limiting gaming opportunities
on incentive-based demand response programs,” Appl. Energy, vol. 225,
pp. 668–681, Sep. 2018.

[12] D. G. Dobakhshari and V. Gupta, “A contract design approach for phan-
tom demand response,” IEEE Trans. Autom. Control, vol. 64, no. 5,
pp. 1974–1988, May 2019.

[13] D. Muthirayan, E. Baeyens, P. Chakraborty, K. Poolla, and
P. P. Khargonekar, “A minimal incentive-based demand response pro-
gram with self reported baseline mechanism,” IEEE Trans. Smart Grid,
vol. 11, no. 3, pp. 2195–2207, May 2020.

[14] Con Edison. (2019). Commercial Demand Response Program
Guidelines. [Online]. Available: https://www.coned.com/-/media/files/
coned/documents/save-energy-money/rebates-incentives-tax-credits/
smart-usage-rewards/smart-usage-program-guidelines.pdf?la=en

[15] Federal Energy Regulatory Commission. (2011). Order No. 745,
Demand Response Compensation in Organized Wholesale Energy
Markets. [Online]. Available: https://www.ferc.gov/sites/default/files/
2020-04/OrderNo.745.pdf

[16] F. Wolak. (2006). Residential Customer Response to Real-Time Pricing:
The Anaheim Critical-Peak Pricing Experiment. [Online]. Available:
https://escholarship.org/uc/item/3td3n1x1

[17] J. Pierobon. (2013). Two FERC Settlements Illustrate Attempts to
“Game” Demand Response Programs. [Online]. Available: https://
www.energycentral.com/c/ec/ferc-settlements-illustrate-attempts-game-
demand-response-programs

[18] S. Borenstein. (2014). Money for Nothing? [Online]. Available:
https://energyathaas.wordpress.com/2014/05/12/money-for-nothing/

[19] J. Vuelvas and F. Ruiz, “A novel incentive-based demand response model
for cournot competition in electricity markets,” Energy Syst., vol. 10,
no. 1, pp. 95–112, 2019.

[20] D. Ellman and Y. Xiao, “Customer incentives for gaming demand
response baselines,” in Proc. IEEE 58th Conf. Decis. Control (CDC),
2019, pp. 5174–5179.

[21] Consolidated Edison Company of New York Inc. (2019). Schedule
For Electricity Service. [Online]. Available: https://www.coned.com/_
external/cerates/documents/elecPSC10/electric-tariff.pdf

[22] Con Edison. (2018). Demand Response Forum Presentation. [Online].
Available: https://www.coned.com/-/media/files/coned/documents/save-
energy-money/rebates-incentives-tax-credits/smart-usage-
rewards/demand-response-forum.pdf

[23] Consolidated Edison Company of New York Inc. (2018). Energy
Efficiency and Demand Management Procedure–General: Calculating
Customer Baseline Load. [Online]. Available: https://www.coned.com/
-/media/files/coned/documents/save-energy-money/rebates-incentives-
tax-credits/smart-usage-rewards/customer-baseline-load-procedure.pdf?
la=en

Douglas Ellman (Graduate Student Member, IEEE)
received the A.B. degree in physics from Princeton
University, Princeton, NJ, USA, in 2009, and the
M.S. degree in technology and policy from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2015. He is currently pursuing
the Ph.D. degree in electrical engineering from
the University of Hawai’i at Mānoa, Honolulu,
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