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Abstract—Measuring lung water change is invaluable for 

monitoring patients with heart failure and pulmonary diseases 

and assessing their responses to the treatment. Sensors for such 

measurement have been developed in Hawaii Advanced Wireless 

Technologies Institute (HAWTI) and clinical trials have been 

carried out. In this paper, we use numerical simulations to obtain 

the signals received by the sensors as a function of lung water 

content and sensor locations on the human torso. The data are 

interpolated to obtain a finer distribution of signals on the chest. 

The higher resolution data are used to train the support vector 

regression (SVR) machine to establish a prediction model for 

lung water content as a function of received signal and location of 

the sensors. The interpolation and SVR methods can save 

significant simulation time and will be used for building a 

database for lung water prediction for various human torsos.  
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I. INTRODUCTION (HEADING 1) 

Chronic heart failure and pulmonary hypertension are 
among the leading causes of hospitalization, health care 
costs and deaths in the United States [1]. To manage these 
groups of diseases, we need a reliable way of ea r l y  
d e te c t io n  a nd  assessment of the changes in lung water 
(CLW) content. Our team has developed and patented the 
Cardio-Pulmonary Stethoscope (CPS) [2-4] technology which 
is a novel, “Chest Patch” sensor system for non-invasive and 
continuous monitoring of vital signs and CLW. The device 
uses low cost 915 MHz RF transceivers and is FCC safety 
standard compliant. Excellent results were obtained in recent 
clinical trials at Queen’ s Medical Center in Honolulu, Hawaii. 
Results with fluid removed during hemodialysis treatment 
showed correlation factor of r = 0.82 to 1, while PCWP 
measurements of heart failure patients had correlation factor of 
r = 0.52 to 0.97 [4].. 

To better understand the CPS signals as a function of lung 
water content as well as the locations of the CPS sensors on the 
chest, we have employed full wave electromagnetic field 
simulations (using HFSS) in addition to the clinical testing. We 
try to use these simulated results to establish a database where 
different sizes and details of human torsos/organs and other 
aspects that affect the CPS signals will be included. With this 
database, it is possible to relate the measured CPS signal to the 
lung water content in real time.  

One of the difficulties in building such a database is the 
long computational time for simulating the CPS signals. For 
example, using HFSS, it takes about 3 to 6 hours to obtain the 

signal for one sensor location with one lung water content on a 
one human torso model. To have a database of practical value, 
many sensor locations, many water content levels, and many 
human torso models (sizes, details of organs, etc.) are needed. 
The overall simulation time for building the database is 
therefore enormous and not feasible for most developers.   

To relieve the simulation burden, we resort to data 
interpolation and machine learning techniques. Based on 
limited number of simulations, we can generate many more 
CPS signals through interpolation which are then employed to 
train a support vector regression (SVR) machine to predict the 
lung water content. Our results show that it is possible to 
significantly reduce the computational burden without 
sacrificing reliability. Furthermore, we’ve found that not all 
sensor locations are equal, which can be useful in practice.  

II. SIMULATION ARRANGEMENT AND THE OTAINED DATA 

A 4 cm x 4 cm grid is created on the human chest on which 
sensors will be placed and received signals will be recorded. In 
Fig. 1, two rows of such sensor locations are illustrated. At 
each location the transmitting and receiving sensors are 
mounted on the chest side by side as shown in the figure.  

 

Fig. 1. (Top) Two rows of sensor locations represented by green dots on the 
human chest and superimposed on the chest model in HFSS; (Bottom) The 
transmitting and receiving sensors. 

The 𝑆12  values are recorded for each sensor location and 
the phases of 𝑆12 will be used for prediction of the lung water 
content. Three lung water content values are considered: 20 %, 
30 %, and 40 %. The phases along the bottom row of sensor 
locations for these three levels of water content are shown in 
Fig. 2. 

Due to the geometry of the human chest, we need to place 
the sensor on a grid illustrated in Fig. 3. Note that the less 
number of sensors in the upper body is because in the torso 
model the arms are overlapping with the sides of the upper 
chest.  
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Fig. 2. Phases of the 𝑆12 on the bottom row of 11 sensors for three levels of 
lung water content. 

 

Fig. 3. The grid for 45 sensor locations.  

III. INTERPOLATION AND SVR TRAINING 

To obtain more data for water contents and sensor 
locations, we interpolate the phases on the coarse grid in Fig. 3 
using bi-linear interpolation for sensor locations and linear 
interpolation for water content. 

Since the phase values on the center part of the sensor 
locations are not distinguishable for the three water contents 
(see Fig. 2), interpolation in that area does not work properly 
and they are ignored in this paper. Thus, we only use the left 
and right sensor in the shaded areas in Fig. 3. 

Using interpolation, we can have as many data points as 
possible and they can be used for training the machine (10,000 
data points are generated in all examples in the paper). The 
vector support regression (SRV) is employed for building the 
prediction model. The open source library, scikit-learn [5], is 
used where SRV is a built-in function. After some parameter 
tuning in the SRV function, we are able to obtain very good 
prediction results. 

IV. PREDICTION ACCURACY 

In this section we present the prediction results of the left 
side area in Fig. 3. It is noted that different sub-regions in this 
area also provide different prediction accuracy. Based on our 
trials, we divide the area into 5 regions, as shown in Fig. 4.  

 

In Fig. 5, the predicted water contents and the ground truths 
are presented for Regions 2 and 5. A line is drawn between 
each pair of the truth and the predicted water content. The 

standard deviations of the prediction errors and the scores 
(function to estimate the quality of the prediction model) for all 
the regions are shown in Table 1. It can be seen that for regions 
1 and 2, the prediction accuracy is very good while it is not 
good at all in regions 4 and 5. The region 3 has a borderline 
accuracy. 

   
                      (a) Region 2                                                  (b) Region 5 

Fig. 5. The predicted and ground truth for water contents in Region 2. 

TABLE I.  LUNG WATER CONTENT PREDICTION ACCURACY 

Region 1 2 3 4 5 

Standard 
Dev. (%) 

0.068 0.430 2.980 5.000 4.949 

Score 0.99986 0.99445 0.73388 0.24015 0.23467 

 

V. CONCLUSION FUTURE WORK 

A procedure to interpolate the limited simulation phases of 𝑆12  on a grid on the chest surface is developed to save 
computational time. The interpolated data are then used to train 
a learning machine for the prediction of lung water content as a 
function of sensor locations and received signals (phases of 𝑆12). It is shown that different regions of the chest can have 
different properties of the signals and have different water 
content prediction accuracy. This is of practical value because 
it indicates that data collected by the sensors at different chest 
locations are not equally useful.  

Our future work includes more simulations for human 
torsos with different sizes and different levels of details of the 
organs. A database and a prediction model will be established 
for the prediction of lung water content. These models will be 
ultimately applied in practice after clinical verification and 
improvement using clinical data. 
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Fig. 4.  

 

Left: Regions 1-4; 
Right: Region 5. 
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