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Abstract—Measuring lung water change is invaluable for
monitoring patients with heart failure and pulmonary diseases
and assessing their responses to the treatment. Sensors for such
measurement have been developed in Hawaii Advanced Wireless
Technologies Institute (HAWTI) and clinical trials have been
carried out. In this paper, we use numerical simulations to obtain
the signals received by the sensors as a function of lung water
content and sensor locations on the human torso. The data are
interpolated to obtain a finer distribution of signals on the chest.
The higher resolution data are used to train the support vector
regression (SVR) machine to establish a prediction model for
lung water content as a function of received signal and location of
the sensors. The interpolation and SVR methods can save
significant simulation time and will be used for building a
database for lung water prediction for various human torsos.
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Chronic heart failure and pulmonary hypertension are
among the leading causes of hospitalization, health care
costs and deaths in the United States [1]. To manage these
groups of diseases, we need a reliable way of early
detection and assessment of the changes in lung water
(CLW) content. Our team has developed and patented the
Cardio-Pulmonary Stethoscope (CPS) [2-4] technology which
is a novel, “Chest Patch” sensor system for non-invasive and
continuous monitoring of vital signs and CLW. The device
uses low cost 915 MHz RF transceivers and is FCC safety
standard compliant. Excellent results were obtained in recent
clinical trials at Queen’ s Medical Center in Honolulu, Hawaii.
Results with fluid removed during hemodialysis treatment
showed correlation factor of r = 0.82 to 1, while PCWP
measurements of heart failure patients had correlation factor of
r=0.5210 0.97 [4]..

To better understand the CPS signals as a function of lung
water content as well as the locations of the CPS sensors on the
chest, we have employed full wave electromagnetic field
simulations (using HFSS) in addition to the clinical testing. We
try to use these simulated results to establish a database where
different sizes and details of human torsos/organs and other
aspects that affect the CPS signals will be included. With this
database, it is possible to relate the measured CPS signal to the
lung water content in real time.

INTRODUCTION (HEADING 1)

One of the difficulties in building such a database is the
long computational time for simulating the CPS signals. For
example, using HFSS, it takes about 3 to 6 hours to obtain the
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signal for one sensor location with one lung water content on a
one human torso model. To have a database of practical value,
many sensor locations, many water content levels, and many
human torso models (sizes, details of organs, etc.) are needed.
The overall simulation time for building the database is
therefore enormous and not feasible for most developers.

To relieve the simulation burden, we resort to data
interpolation and machine learning techniques. Based on
limited number of simulations, we can generate many more
CPS signals through interpolation which are then employed to
train a support vector regression (SVR) machine to predict the
lung water content. Our results show that it is possible to
significantly reduce the computational burden without
sacrificing reliability. Furthermore, we’ve found that not all
sensor locations are equal, which can be useful in practice.

II. SIMULATION ARRANGEMENT AND THE OTAINED DATA

A 4 cmx 4 cm grid is created on the human chest on which
sensors will be placed and received signals will be recorded. In
Fig. 1, two rows of such sensor locations are illustrated. At
each location the transmitting and receiving sensors are
mounted on the chest side by side as shown in the figure.

[

Fig. 1. (Top) Two rows of sensor locations represented by green dots on the
human chest and superimposed on the chest model in HFSS; (Bottom) The
transmitting and receiving sensors.

The S;, values are recorded for each sensor location and
the phases of S;, will be used for prediction of the lung water
content. Three lung water content values are considered: 20 %,
30 %, and 40 %. The phases along the bottom row of sensor
locations for these three levels of water content are shown in
Fig. 2.

Due to the geometry of the human chest, we need to place
the sensor on a grid illustrated in Fig. 3. Note that the less
number of sensors in the upper body is because in the torso
model the arms are overlapping with the sides of the upper
chest.
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Fig. 2. Phases of the S;, on the bottom row of 11 sensors for three levels of

lung water content.
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Fig. 3. The grid for 45 sensor locations.

III. INTERPOLATION AND SVR TRAINING

To obtain more data for water contents and sensor
locations, we interpolate the phases on the coarse grid in Fig. 3
using bi-linear interpolation for sensor locations and linear
interpolation for water content.

Since the phase values on the center part of the sensor
locations are not distinguishable for the three water contents
(see Fig. 2), interpolation in that area does not work properly
and they are ignored in this paper. Thus, we only use the left
and right sensor in the shaded areas in Fig. 3.

Using interpolation, we can have as many data points as
possible and they can be used for training the machine (10,000
data points are generated in all examples in the paper). The
vector support regression (SRV) is employed for building the
prediction model. The open source library, scikit-learn [5], is
used where SRV is a built-in function. After some parameter
tuning in the SRV function, we are able to obtain very good
prediction results.

IV. PREDICTION ACCURACY

In this section we present the prediction results of the left
side area in Fig. 3. It is noted that different sub-regions in this
area also provide different prediction accuracy. Based on our
trials, we divide the area into 5 regions, as shown in Fig. 4.
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In Fig. 5, the predicted water contents and the ground truths
are presented for Regions 2 and 5. A line is drawn between
each pair of the truth and the predicted water content. The

standard deviations of the prediction errors and the scores
(function to estimate the quality of the prediction model) for all
the regions are shown in Table 1. It can be seen that for regions
1 and 2, the prediction accuracy is very good while it is not
good at all in regions 4 and 5. The region 3 has a borderline
accuracy.
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Fig. 5. The predicted and ground truth for water contents in Region 2.

TABLE I. LUNG WATER CONTENT PREDICTION ACCURACY

Region 1 2 3 4 5
Standard
Dev. (%) 0.068 0.430 2.980 5.000 4.949
Score 0.99986 0.99445 0.73388 0.24015 0.23467
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V. CONCLUSION FUTURE WORK

A procedure to interpolate the limited simulation phases of
Si2 on a grid on the chest surface is developed to save
computational time. The interpolated data are then used to train
a learning machine for the prediction of lung water content as a
function of sensor locations and received signals (phases of
S12). It is shown that different regions of the chest can have
different properties of the signals and have different water
content prediction accuracy. This is of practical value because
it indicates that data collected by the sensors at different chest
locations are not equally useful.

Our future work includes more simulations for human
torsos with different sizes and different levels of details of the
organs. A database and a prediction model will be established
for the prediction of lung water content. These models will be
ultimately applied in practice after clinical verification and
improvement using clinical data.
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