
Deep Reinforcement Learning Based Residential

Demand Side Management With Edge Computing

Tan Li

City University of Hong Kong

Hong Kong SAR

litan1003@gmail.com

Yuanzhang Xiao

University of Hawaii at Manoa

Honolulu, HI, USA

yxiao8@hawaii.edu

Linqi Song

City University of Hong Kong

Hong Kong SAR

linqi.song@cityu.edu.hk

Abstract—Residential demand side management (DSM) is a
promising technique to improve the stability and reduce the cost
of power systems. However, residential DSM is facing challenges
under the ongoing paradigm shift of computation, such as edge
computing. With the proliferation of smart appliances (e.g.,
appliances with computing and data analysis capabilities) and
high-performance computing devices (e.g., graphics processing
units) in the households, we expect surging residential energy
consumption caused by computation. Therefore, it is important to
schedule edge computing as well as traditional energy consump-
tion in a smart way, especially when the demand for computation
and thus for electricity occurs during the peak hours of electricity
consumption.

In this paper, we investigate an integrated home energy
management system (HEMS) who participates in a DSM program
and is equipped with an edge computing server. The HEMS aims
to maximize the home owner’s expected total reward, defined as
the reward from completing edge computing tasks minus the cost
of electricity consumption, the cost of computation offloading to
the cloud, and the penalty of violating the DSM requirements.
The particular DSM program considered in this paper, which is
a widely-adopted one, requires the household to reduce certain
amount of energy consumption within a specified time window. In
contrast to well-studied real-time pricing, such a DSM program
results in a long-term temporal interdependency (i.e., of a few
hours) and thus high-dimensional state space in our formulated
Markov decision processes. To address this challenge, we use
deep reinforcement learning, more specifically Deep Deterministic
Policy Gradient, to solve the problem. Experiments show that
our proposed scheme achieves significant performance gains over
reasonable baselines.

I. INTRODUCTION

A smart grid is an electrical grid that incorporates a com-

munication network enabling assorted smart devices, such as

smart meters, sensors, and smart appliances to connect and

exchange information with each other and with the central

platform as well. The bidirectional flow of information and

power improves the operational efficiency of power grids and

reduces the consumption of fossil fuels and emissions of green

house gases, aiming at building an environmentally-friendly

and reliable power system.

In smart grids, demand side management (DSM) is an

important mechanism that aims to reduce the electricity load

in the power system during peak hours, because a high peak

This work was partially supported by the Hong Kong RGC grant ECS
9048149 and the City University of Hong Kong grant (Project No. 7200594).
Xiao was partially supported by NSF IIP Grant No. 1822213.

to average ratio of electricity load will result in a dramatic

cost increase in power grids [1]. However, the efficiency

of DSM might be compromised under a paradigm shift of

household energy consumption patterns [2]. Specifically, the

households are deploying an rapidly increasing number of

edge devices, such as smart appliances (e.g., voice assistant

speakers, smart refrigerators), healthcare monitoring devices,

and surveillance networks [3], [4]. These devices often require

high-performance computation (e.g., voice recognition and

synthesis, computer vision), which is preferred to be done

locally through edge computing due to latency requirement

and privacy concerns [5]. As a result, the surge in edge

computing will increase the household energy consumption

and make it more challenging for DSM. Therefore, it is

important to jointly consider DSM and edge computing in an

integrated framework. The importance of such an integrated

framework has been recognized by some researchers [3], [4].

However, existing works [3], [4] remain to be high-level

discussion without rigorous problem formulation and concrete

solutions.

In this paper, we study for the first time how to per-

form DSM in an integrated network of smart grids with

edge computing by making decisions about how to offload

computational tasks. We consider a widely-adopted DSM

program in this paper, which requires the household to reduce

certain amount of energy consumption within a specified time

window. One challenge we often face in practice is that

the DSM program is not widely accepted by consumers [6]

because of the unwillingness to shift the power load. In order

to tackle this, we consider the integrated system such that

users do not need to (or slightly) perform power load shifting

during the effective time period and instead they could perform

computational task offloading in order to realize DSM. This

is motivated by the fact that computation will consist of a

major power consumption in our future smart home and smart

appliances. Users can choose to allocate the computational task

load among the edge devices and the cloud platform where

the computation in edge devices will result in more power

consumption and the computation in the cloud platform will

result in some monetary cost.

Our main contributions are as follows.

1) We consider the DSM with edge computing and have

formulated a Markov Decision Process (MDP) problem of

2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

978-1-5386-8099-5/19/$31.00 ©2019 IEEEAuthorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Residential demand side management with edge computing.

making decisions about how to offload computational tasks

among the edge and the cloud.

2) We propose a deep reinforcement learning approach to

solve the MDP problem. The proposed method is able to

overcome the challenges of dealing with high-dimensional

state and action spaces and a large continuous action space

in our model. The key is to use deep neural networks in the

actor-critic approach of solving MDPs.

3) Our experimental results show that our proposed scheme

has a good convergence for residential DSM, and could

achieve significant performance gains over other task offload-

ing strategies in a wide range of environmental scenarios.

II. SYSTEM MODEL

A. System Setup

We consider a residential user who runs computationally

intensive tasks and participates in a demand response program.

We illustrate the system in Fig. 1. The user employs an intelli-

gent home energy management system (HEMS) to determine

how to perform the tasks, locally (i.e., edge computing) or

in the remote cloud (i.e., cloud computing) and to allocate

the local computing resources among the tasks scheduled

on the edge. The HEMS contains edge computing resources

to perform some of the tasks locally (i.e., edge computing)

and could also pay to perform some of the tasks in a cloud

server (i.e., cloud computing). The HEMS also schedules the

energy consumption of the entire household. Moreover, the

HEMS acts as the interface between the household and the

utility company: it receives demand response signals from the

utility company, and monitors and reports the total energy

consumption to the utility company.

Next, we build a discrete-time system model with infinite

time horizon t = 1, 2, . . ., and describe the tasks and the

demand response program in details.

1) Computationally Intensive Tasks: There are a growing

number of computationally intensive tasks within a house-

hold. Examples of such tasks include smart appliances such

as smart refrigerators, which can automatically set the in-

side temperature by analyzing images of stored items; voice

assistant speakers, e.g., Amazon Echo, Google Home, and

entertainment devices like smart TVs and game consoles with

virtual reality (VR) capability; healthcare monitoring devices

such as wrist bands, blood pressure and heart rate monitors,

smart watches, and fall detectors; and surveillance networks

that need to process a large volume of computer vision data.

Common features of these tasks include

• requirement of high-performance computing for voice,

image, and video recognition and synthesis;

• desire for edge computing due to low latency requirement

and privacy issues;

• high energy consumption from high-performance edge

computing.

Bearing these common features in mind, we model these

tasks mathematically as follows. At each time t, there are

n(t) ∈ Z+ tasks to be completed. Each task, indexed by

i = 1, 2, . . . , n(t), is characterized by a tuple (Ci, Ei), where

Ci ∈ R+ is the total amount of computing resources required

for completing task i (i.e., task load) and Ei ∈ Z+ is the

number of time slots before the task expires. The status of

each task i includes the remaining task load ci(t) ∈ [0, Ci]
and the elapsed time of the task ei(t) ∈ [0, Ei]. For example,

to train a neural network based machine learning model, it

usually takes hours to process the newly generated data each

day. The HEMS determines the amount aE,i(t) ∈ R+ of task

offloaded to the edge and the amount aC,i(t) ∈ R+ of task

offloaded to the cloud for task i in time slot t. Given the task

offloading, the status of task i will be updated in time slot

t+ 1 according to

ci(t+ 1) = ci(t)− aE,i(t)− aC,i(t), (1)

ei(t+ 1) = ei(t) + 1. (2)

For compact presentation, we define the vectors c(t) =
[

c1(t), . . . , cn(t)(t)
]

and e(t) =
[

e1(t), . . . , en(t)(t)
]

as

the status of all the tasks. We also define the vec-

tors aE(t) =
[

aE,1(t), . . . , aE,n(t)(t)
]

and aC(t) =
[

aC,1(t), . . . , aC,n(t)(t)
]

as the task offloading decisions.

Since there is no need to allocate more resources than those

required for completing the tasks, the set of feasible actions

at each time slot t is

A(t) = {(aaaE(t), aaaC(t)) | aE,i(t) ≥ 0, aC,i(t) ≥ 0,

aE,i(t) + aC,i(t) ≤ ci(t), i = 1, . . . , n(t)− 1}
(3)

The energy consumption of each task i at time slot t is

β ·

n(t)
∑

i=1

aE,i(t), (4)

where β ∈ R+ is the amount of electricity consumed per unit

usage of edge computing resources.

Remark 1: Our model for computationally intensive tasks

is general enough to model other loads in the household. For

shiftable load such as electric vehicle charging, we can use the

tuple (Ci, Ei) to denote the total energy requirement and the

time before the deadline of finishing the charging, use aE,i(t)
to denote the energy scheduled at time t, and set β = 1 and

aC,i(t) = 0. For non-shiftable load, we can simply set Ei = 1.

2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

2) Demand Response Program: The user participates a

demand response program that may require the user to con-

sume a reduced amount of electricity within a specified time

frame (e.g., a few hours). Such a demand reduction is usually

mandated by a contract signed by the user and the utility

company. The user is rewarded when signing up for the

program and may need to pay a penalty if failing to fulfill

the load reduction requirement. At a certain time slot t, the

utility company may send a signal (l(t), d(t)) to the user,

which requires the user to restrict its electricity load to a total

amount of l(t) kilowatt hour (kWh) in the next d(t) time slots.

The demand response events will not overlap, namely a new

event will always happen after the previous event has ended.

As a result, the status of the demand response event transits

according to

l(t+ 1) = l(t)− β ·

n(t)
∑

i=1

aE,i(t), (5)

d(t+ 1) = d(t)− 1. (6)

In other words, we can view l(t) as the “quota” for electricity

consumption in the next d(t) time slots, starting from time

t. This quota decreases over time as the user consumes more

electricity. Note that the computing resources in the cloud will

not be counted when calculating the electricity consumption.

B. Formulation of Markov Decision Process

As we can see from Eq. (1)(2)(5)(6), the current HEMS

states are completely determined by the previous states and

task assignment decisions. Therefore, we can formulate the

user’s decision making problem as a Markov decision process

(MDP) with infinite time horizon.

1) States: The state at each time slot t consists of the

price of electricity pE(t) ∈ R+, the price of cloud computing

pC(t) ∈ R+, the status of demand response (l(t), d(t)) ∈
R+ × Z+, the status of the tasks (n(t), c(t), e(t)) ∈ N ×

R
n(t)
+ ×R

n(t)
+ . We define the collection of all the above status

as the state of the MDP

s(t) = (pE(t), pC(t), l(t), d(t), n(t), c(t), e(t)) . (7)

2) Actions: The action at each time slot t specifies how

much computing resources, both on the edge and in the cloud,

allocated to each task, namely

a(t) = (aE(t),aC(t)) ∈ R
n(t)
+ × R

n(t)
+ . (8)

3) Rewards: The reward at each time slot t has four

components. The first component is the positive reward of

completing the task on time. For task i, the reward function

is written as

uT,i : R+ × Z+ → R+ (9)

(ci(t), ei(t)) 7→ uT,i (ci(t), ei(t)) . (10)

In general, the reward is realized only when the task is

completed before the deadline. An example reward function

could be

uT,i (ci(t), ei(t)) =

{

γi if ci(t) = 0 and ei(t) ≤ Ei

0 otherwise
, (11)

where γi > 0 is the reward of completing task i.

The second component of the reward is the cost of electric-

ity consumption, which is simply

−pE(t) ·



β ·

n(t)
∑

i=1

aE,i(t)



 . (12)

The third component of the reward is the cost of running

the computation in the cloud, which can be calculated as

−pC(t) ·

n(t)
∑

i=1

aC,i(t). (13)

The final component of the reward is the potential penalty of

violating the demand response requirement, which is defined

as

uD (l(t), d(t)) =

{

−ρ if d(t) = 0 and l(t) < 0
0 otherwise

, (14)

where ρ > 0 is the (usually large) penalty of violating the

demand response contract. Since we assume that the user has

also signed up for the program, the one-time sign-on rebate is

not included in the reward.

The net reward function is then

u (s(t),a(t)) =

n(t)
∑

i=1

uT,i (ci(t), ei(t))− pC(t) ·

n(t)
∑

i=1

aC,i(t)

− pE(t) ·



β

n(t)
∑

i=1

aE,i(t)



− pD (l(t), d(t)) .

4) State Transitions: The transition of the task state follows

(1), and the transition of the demand response state follows

(5). The pricing states pE(t) and pC(t) are drawn randomly

independently of each other and other state components. The

number of tasks n(t) evolves randomly because the number

of new tasks is random, namely

n(t+ 1) = n(t)−

n(t)
∑

i=1

1{ci(t)=0 and ei(t)≤Ei} +m(t+ 1), (15)

where 1{·} is the indicator function;
∑n(t)

i=1 1{ci(t)=0 and ei(t)≤Ei} is the number of completed

tasks in time t; and m(t + 1) is the random number of new

tasks at time t + 1. Note that there is some certain stable

state transition probability P(s|s′,a) for the system from

state s
′ to state s when taking action a. This state transition

is unknown and needs to be learned.

Without loss of generality, we focus on Markov policies,

which depend on the current state and time only. We write a

Markov policy as

π : s(t) 7→ a(t), (16)

2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

and the set of all Markov policies as ΠM .

Our goal is to find the optimal Markov policy that maxi-

mizes the expected total reward starting from any initial state

s(1), namely

π∗ = arg max
π∈ΠM

E
π

{

∞
∑

t=1

γtu (s(t),a(t))

}

, (17)

where γ ∈ (0, 1) is the discount factor, and the expectation

E
π depends on the policy π.

Note that, here in our reinforcement learning problem, we

need to learn the state transition of the MDP and the optimal

policy, where at least one of the optimal policies is Markov.

III. SOLUTION

In this section, we first describe the challenges in solving

the problem (17), and then our proposed solution based on

recent advances in deep reinforcement learning, namely the

Deep Deterministic Policy Gradient (DDPG) method.

A. Challenges

Many reinforcement learning algorithms, such as Q-learning

[7], solve (17) using the action-value function Qπ(s(t),a(t)),
defined as the total reward obtained under policy π when

the current state and action are s(t) and a(t). The action-

value function obeys the recursive relationship known as the

Bellman equation:

Qπ(s(t),a(t)) = u (s(t),a(t)) + (18)

γE
s(t+1),a(t+1)∼π {Q

π (s(t+ 1),a(t+ 1))} .

Given the optimal action-value function Q∗(s(t),a(t)), the

optimal Markov policy π∗ can be defined as

π∗ (s(t)) = arg max
a(t)∈A(t)

Q∗ (s(t),a(t)) . (19)

There are two challenges in solving the problem (17) using

(18) and (19). The first challenge comes with using (18) to

find the optimal action-value function Q∗(s(t),a(t)) when

the numbers of states and actions are large. In our setting, the

action a(t) = {aC,1, aC,2, ..., aC,n(t), aE,1, aE,2, ..., aE,n(t)}
is a 2n(t)-dimensional vector, and the state s(t) =
(pE(t), pC(t), l(t), d(t), n(t), c(t), e(t)) is a (2n(t) + 5)-
dimensional vector. Therefore, the numbers of states and

actions grow exponentially with the number of tasks, leading

to “curse of dimensionality”. The second challenge comes with

using (19) to find the optimal action under each state when

the number of actions is large. In our setting, the offloading

actions aC,i and aE,i are continuous (or discrete with high

granularity). This means that we need to search through the

large action space to find the action with the highest action-

value.

Traditional reinforcement learning algorithms such as Q-

learning [7] maintain a “Q table” to compute and store the

action-value function, which is not scalable. More advanced

algorithms such as deep Q network (DQN) [8] uses a deep

neural network as a function approximator of the action-value

function, in order to address the first challenge. However,

it does not overcome the second challenge because it is

hard to solve (19) when the optimal action-value function is

represented by a deep neural network.

Therefore, we propose to use the DDPG algorithm [9],

which addresses both challenges by integrating deep neural

network and the actor-critic approach. As shown in Fig. 2,

the DDPG network consists of two parts: Actor and Critic

Network. Both parts are composed of deep neural networks

and guide each other’s optimization process. First, we solve the

problem (18) under a high-dimensional state space by using

the Critic Network as the action-value function estimator,

which is similar to DQN. Moreover, we address the challenge

in searching the optimal action (19) under large and continuous

action space by using the Actor Network to estimate the

optimal action based on deterministic policy gradients.

B. Details of the DDPG Algorithm

The algorithm is shown in Algorithm 1 and Fig. 2. In Fig. 2,

we define a parameterized Actor and Critic function as µ(s|θµ)
and Q(s,a|θQ) with parameters θµ and θQ respectively. At

every time slot, we can observe a state s(t) collected by

the HEMS system. The Actor selects an action based on the

current optimal policy. Then, the system would get a reward

u(t) and the transit to next state s(t+1). The Critic network

can be optimized after getting the reward u(t) by minimizing

the Mean Square Error (MSE) loss:

L(θQ) = Ea(t)∼π,s(t),u(t)[(Q(s(t),a(t)|θQ)− y(t))2] (20)

where y(t) = u(s(t),a(t)+γQ(s(t+1),a(t+1)|θQ). Finally,

the Actor network updates the policy with respect to the

direction of the Q-value gradient in following way:

Es(t)[∇θµQ(s,a|θQ)|
s=s(i),a=µ(s(i)|θµ)]

= E
s(t)[∇aQ(s(i),a(i)|θQ)∇θµµ(s(i)|θµ))]

(21)

Specifically, for the expectation parts in (20) and (21), we can

form Monte Carlo estimates to obtain the estimation values as

follows.

Ez∼q(z|xi)[f(z)] ≈
1

M

M
∑

m=1

f(z), z ∼ q(z|xi) (22)

The training process of the whole model is shown in Fig. 2.

In order to train the whole network in a stable and robust

way, we do not update the model every time we collect a

state transition sample, instead, we set a replay buffer with

size R. When every training episode starts, state transitions

follow the current policy and the tuple (s(t),a(t), u(t), s(t+
1)) is stored in the replay buffer. When the replay buffer is

up to its capacity limitation, the Actor and Critic Network

are updated by sampling the transition tuples from the buffer.

Moreover, since even small update of θQ, θµ will lead to a

great change in action-value and strategy, we set two target

networks with parameters Q′(s,a|θQ
′

) and µ′(s|θµ
′

) to give

consistent targets during training process. The weights of these

target networks are updated slowly by following the learned

networks in the way: θ′ ← τθ + (1 − τ)θ′. As τ ≪ 1, the

2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Deep deterministic policy gradient framework

target values are constrained to change slowly, which is called

the “soft update”.

Algorithm 1 Deep Deterministic Policy Gradient Algorithm

1: Randomly initialize critic network Q(s,a|θQ) and actor

network µ(s|θµ) with weight θQ and θµ.

2: Initialize target network Q′ and µ′ with weights

θQ
′

← θQ, θµ
′

← θµ.

3: Initialize replay buffer R

4: for episode = 1 to m do

5: Initialize a random process for action exploration;

6: Receive initial state:

s(1) = (pE(1), pC(1), l(1), d(1), n(1), ccc(1), eee(1))
7: for t = 1 to T do

8: Select task resource allocation action: a(t) =
µ(s(t)|θµ) + N(t) according to the current policy

and exploration noise.

9: Execute action a(t) and observe reward u(t) and

observe next state s(t+ 1).
10: Store transition (s,a(t), u(t), s(t + 1)) in replay

buffer R

11: Sample a random batch of k transitions from R

12: Update Critic Network by minimizing the sampled

MSE loss by (20)

13: Update Actor policy using the sampled policy gradi-

ent by (21)

14: Update the target networks Q′ and µ′:

15: θQ
′

← τθQ + (1− τ)θQ
′

16: θµ
′

← τθµ + (1− τ)θµ
′

17: end for

18: end for

IV. EXPERIMENTAL RESULTS

We present simulation results to show the performance of

our proposed method. The environmental parameters are set

in Table I according to the best practice [10], [11].

We compare our proposed DDPG method with three other

approaches. 1) Random Action stands for a random policy,

where the agent selects two values between (0, 50) randomly

Fig. 3. Training rewards

and assign them as the action aE,i, aC,i. 2) Full Edge means

that all the computation tasks are executed locally; in other

words, aC,i = 0. 3) Full Cloud scheme offloads all tasks to

the cloud server, i.e., aE,i = 0.

First, we present the training process of our DDPG method

with a number of training episodes in Fig. 3. At the beginning

of every episode, we reset the environment and then compute

the total reward and update the model parameters for 500 steps.

That means the task and DSM states are constantly changing

during each training process, so our model needs to learn

the optimal strategy under different environment. The curve

shows that DDPG algorithm has a good convergence for our

residential demand side management problem. As the number

of training episodes increases, there are still fluctuations in

the training rewards due to the randomness in the sampled

environments.

Second, we fix the environmental parameters (i.e., the

electric price) to compare rewards obtained by different algo-

rithms. Fig. 4(a) shows the cumulative rewards of the afore-

mentioned four methods as the number of testing episodes

increases. During the training process, in order to make the

agent fully trained, the environment settings in each episode

are random. However, the testing episodes have periodicity,

so the reward grows linearly. Taken as a whole, our DDPG

achieves the highest reward, and the Full Edge policy obtains

the lowest one. Specifically, after 10 testing episodes, our

DDPG method yields 28%, 76%, and 96% more than the

other three methods, respectively. This is because if all the

tasks are computed locally, l(t) will go down fast and become

negative before d(t) = 0. Thus, the user will violate the

demand response requirement and gain a penalty easily. On

the contrary, if the user offloads all tasks to the cloud server,

the cost of running the computation in the cloud will be higher

than the edge computing electrical cost.

We also carry out experiments on the impact of environmen-

tal parameters on the rewards. Fig. 4(b) shows the rewards of

the four algorithms in three different cases. In case 0, we set

the price of electricity PE as 0, then the cost of electricity

consumption will be 0. Under this situation, Full Edge should

be the optimal strategy while Full Cloud is the worst one.

Experimental results show that the strategy chosen by DDPG

2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXPERIMENTAL PARAMETERS

Category Parameters Value

Price parameters
Price of electricity PE

Price of cloud computing PC

$0.5 ∼ $0.8/kWh [10]
$0.002− $0.004 per cpu unit per hour [11]

Task state

Task number n(t)
Required computation resources ci(t)

Maximum elapsed time Ei(t)

New arriving task obeys the Poisson distribution
Uniform distribution between (50, 800) cpu units

Uniform distribution between (1, 600) seconds

Demand-side management state
Constraint electricity load l(t)

Constraint demand response time d(t)
Uniform distribution between (1000, 3000) kWh

Uniform distribution between (1, 6) hours

Action aE,i, aC,i Continuous values between 0 and 50 cpu units

Reward
Completing the tasks

Violating the demand response requirement
20 per task

-100

(a) Cumulative reward (b) Rewards under different environmental cases

Fig. 4. Simulation results

achieves almost the same reward as Full Edge. Similarly, we

set PC as 0 in case 2, so the optimal action tends to offload

all tasks. In Fig. 4(b), we can see that our method obtains

the same reward as the theoretically optimal strategy Full

Cloud. Note that as we set a relatively large value for DSM

penalty, the rewards in case 2 are relative higher than others.

Case 0 and case 2 show that our strategy can achieve nearly

optimal performance at the extreme situation when electricity

fee (or zero cloud server rental) is 0. In addition, we describe

a more practical scenario in case 1 that the electricity and

cloud computing costs are basically equal. In this case, our

proposed strategy gets twice as much reward as the Full Edge

and outperforms Full Cloud and Random Action algorithms

by 33% and 67%, respectively. These experiments have shown

that our method can output different actions according to the

change of environmental parameters and remain optimal in all

kinds of situations.

V. CONCLUSION

In this paper, we studied an integrated smart grid system

model for demand side management with edge computing.

We derived the deep reinforcement learning-based algorithm

(Deep Deterministic Policy Gradient) to solve this problem

where we use neural networks to approximate the action-value

function and the optimal action. Experimental results show

that our proposed scheme works well and could achieve sig-

nificant performance gains over other baselines under various

environmental parameters.

REFERENCES

[1] P. Palensky and D. Dietrich, “Demand side management: Demand re-
sponse, intelligent energy systems, and smart loads,” IEEE Transactions

on Industrial Informatics, vol. 7, no. 3, pp. 381–388, Aug 2011.
[2] E. Ahvar, A.-C. Orgerie, and A. Lebre, “Estimating energy consumption

of cloud, fog and edge computing infrastructures,” IEEE Transactions

on Sustainable Computing, 2019.
[3] R. K. Barik, S. K. Gudey, G. G. Reddy, M. Pant, H. Dubey,

K. Mankodiya, and V. Kumar, “Foggrid: Leveraging fog computing
for enhanced smart grid network,” in 2017 14th IEEE India Council

International Conference (INDICON), Dec 2017, pp. 1–6.
[4] S. Zahoor, N. Javaid, A. Khan, B. Ruqia, F. J. Muhammad, and M. Zahid,

“A cloud-fog-based smart grid model for efficient resource utilization,”
in 2018 14th International Wireless Communications Mobile Computing

Conference (IWCMC), June 2018, pp. 1154–1160.
[5] K. Shahryari and A. Anvari-Moghaddam, “Demand side management

using the internet of energy based on fog and cloud computing,” in
2017 IEEE International Conference on Internet of Things (iThings) and

IEEE Green Computing and Communications (GreenCom) and IEEE

Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData), June 2017, pp. 931–936.
[6] J. Wang, M. Biviji, and W. M. Wang, “Case studies of smart grid demand

response programs in North America,” in ISGT 2011, Jan 2011, pp. 1–5.
[7] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.

3-4, pp. 279–292, 1992.
[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[10] J. He, “The development and utilization of microgrid technologies in
China,” Energy Sources, Part A: Recovery, Utilization, and Environ-

mental Effects, pp. 1–22, 2018.
[11] https://www.huaweicloud.com/en-us/product/ecs.html.

2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

