2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Deep Reinforcement Learning Based Residential
Demand Side Management With Edge Computing

Tan Li
City University of Hong Kong
Hong Kong SAR
litan1003 @ gmail.com

Abstract—Residential demand side management (DSM) is a
promising technique to improve the stability and reduce the cost
of power systems. However, residential DSM is facing challenges
under the ongoing paradigm shift of computation, such as edge
computing. With the proliferation of smart appliances (e.g.,
appliances with computing and data analysis capabilities) and
high-performance computing devices (e.g., graphics processing
units) in the households, we expect surging residential energy
consumption caused by computation. Therefore, it is important to
schedule edge computing as well as traditional energy consump-
tion in a smart way, especially when the demand for computation
and thus for electricity occurs during the peak hours of electricity
consumption.

In this paper, we investigate an integrated home energy
management system (HEMS) who participates in a DSM program
and is equipped with an edge computing server. The HEMS aims
to maximize the home owner’s expected total reward, defined as
the reward from completing edge computing tasks minus the cost
of electricity consumption, the cost of computation offloading to
the cloud, and the penalty of violating the DSM requirements.
The particular DSM program considered in this paper, which is
a widely-adopted one, requires the household to reduce certain
amount of energy consumption within a specified time window. In
contrast to well-studied real-time pricing, such a DSM program
results in a long-term temporal interdependency (i.e., of a few
hours) and thus high-dimensional state space in our formulated
Markov decision processes. To address this challenge, we use
deep reinforcement learning, more specifically Deep Deterministic
Policy Gradient, to solve the problem. Experiments show that
our proposed scheme achieves significant performance gains over
reasonable baselines.

I. INTRODUCTION

A smart grid is an electrical grid that incorporates a com-
munication network enabling assorted smart devices, such as
smart meters, sensors, and smart appliances to connect and
exchange information with each other and with the central
platform as well. The bidirectional flow of information and
power improves the operational efficiency of power grids and
reduces the consumption of fossil fuels and emissions of green
house gases, aiming at building an environmentally-friendly
and reliable power system.

In smart grids, demand side management (DSM) is an
important mechanism that aims to reduce the electricity load
in the power system during peak hours, because a high peak

This work was partially supported by the Hong Kong RGC grant ECS
9048149 and the City University of Hong Kong grant (Project No. 7200594).
Xiao was partially supported by NSF IIP Grant No. 1822213.

Yuanzhang Xiao
University of Hawaii at Manoa
Honolulu, HI, USA
yxiao8 @hawaii.edu

Lingi Song
City University of Hong Kong
Hong Kong SAR
lingi.song @cityu.edu.hk

to average ratio of electricity load will result in a dramatic
cost increase in power grids [1]. However, the efficiency
of DSM might be compromised under a paradigm shift of
household energy consumption patterns [2]. Specifically, the
households are deploying an rapidly increasing number of
edge devices, such as smart appliances (e.g., voice assistant
speakers, smart refrigerators), healthcare monitoring devices,
and surveillance networks [3], [4]. These devices often require
high-performance computation (e.g., voice recognition and
synthesis, computer vision), which is preferred to be done
locally through edge computing due to latency requirement
and privacy concerns [5]. As a result, the surge in edge
computing will increase the household energy consumption
and make it more challenging for DSM. Therefore, it is
important to jointly consider DSM and edge computing in an
integrated framework. The importance of such an integrated
framework has been recognized by some researchers [3], [4].
However, existing works [3], [4] remain to be high-level
discussion without rigorous problem formulation and concrete
solutions.

In this paper, we study for the first time how to per-
form DSM in an integrated network of smart grids with
edge computing by making decisions about how to offload
computational tasks. We consider a widely-adopted DSM
program in this paper, which requires the household to reduce
certain amount of energy consumption within a specified time
window. One challenge we often face in practice is that
the DSM program is not widely accepted by consumers [6]
because of the unwillingness to shift the power load. In order
to tackle this, we consider the integrated system such that
users do not need to (or slightly) perform power load shifting
during the effective time period and instead they could perform
computational task offloading in order to realize DSM. This
is motivated by the fact that computation will consist of a
major power consumption in our future smart home and smart
appliances. Users can choose to allocate the computational task
load among the edge devices and the cloud platform where
the computation in edge devices will result in more power
consumption and the computation in the cloud platform will
result in some monetary cost.

Our main contributions are as follows.

1) We consider the DSM with edge computing and have
formulated a Markov Decision Process (MDP) problem of

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:563530 P8 9%sfd Hb AR Gpf O IEEE

2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Task Offloading

—_—

Information Flow Cloud Server

-------- Power Flow
¢ »
-~ DS%(;)Z)‘];(I;;WW Utility Company
| Home Energy e
Management System
n(t).c@).e)f t t ot
! ! .
| Healthcare | Smart Surveillance
System ‘ Appliances Networks

Fig. 1. Residential demand side management with edge computing.

making decisions about how to offload computational tasks
among the edge and the cloud.

2) We propose a deep reinforcement learning approach to
solve the MDP problem. The proposed method is able to
overcome the challenges of dealing with high-dimensional
state and action spaces and a large continuous action space
in our model. The key is to use deep neural networks in the
actor-critic approach of solving MDPs.

3) Our experimental results show that our proposed scheme
has a good convergence for residential DSM, and could
achieve significant performance gains over other task offload-
ing strategies in a wide range of environmental scenarios.

II. SYSTEM MODEL
A. System Setup

We consider a residential user who runs computationally
intensive tasks and participates in a demand response program.
We illustrate the system in Fig. 1. The user employs an intelli-
gent home energy management system (HEMS) to determine
how to perform the tasks, locally (i.e., edge computing) or
in the remote cloud (i.e., cloud computing) and to allocate
the local computing resources among the tasks scheduled
on the edge. The HEMS contains edge computing resources
to perform some of the tasks locally (i.e., edge computing)
and could also pay to perform some of the tasks in a cloud
server (i.e., cloud computing). The HEMS also schedules the
energy consumption of the entire household. Moreover, the
HEMS acts as the interface between the household and the
utility company: it receives demand response signals from the
utility company, and monitors and reports the total energy
consumption to the utility company.

Next, we build a discrete-time system model with infinite
time horizon ¢ = 1,2,..., and describe the tasks and the
demand response program in details.

1) Computationally Intensive Tasks: There are a growing
number of computationally intensive tasks within a house-
hold. Examples of such tasks include smart appliances such
as smart refrigerators, which can automatically set the in-
side temperature by analyzing images of stored items; voice
assistant speakers, e.g., Amazon Echo, Google Home, and

entertainment devices like smart TVs and game consoles with
virtual reality (VR) capability; healthcare monitoring devices
such as wrist bands, blood pressure and heart rate monitors,
smart watches, and fall detectors; and surveillance networks
that need to process a large volume of computer vision data.
Common features of these tasks include

o requirement of high-performance computing for voice,

image, and video recognition and synthesis;

o desire for edge computing due to low latency requirement

and privacy issues;

e high energy consumption from high-performance edge

computing.

Bearing these common features in mind, we model these
tasks mathematically as follows. At each time ¢, there are
n(t) € Z4 tasks to be completed. Each task, indexed by
i=1,2,...,n(t), is characterized by a tuple (C;, E;), where
C; € Ry is the total amount of computing resources required
for completing task ¢ (i.e., task load) and E; € Z, is the
number of time slots before the task expires. The status of
each task ¢ includes the remaining task load ¢;(t) € [0, C]
and the elapsed time of the task e;(t) € [0, E;]. For example,
to train a neural network based machine learning model, it
usually takes hours to process the newly generated data each
day. The HEMS determines the amount ag ;(t) € R4 of task
offloaded to the edge and the amount ac ;(t) € Ry of task
offloaded to the cloud for task ¢ in time slot ¢. Given the task
offloading, the status of task ¢ will be updated in time slot
t + 1 according to

Ci(t + 1)

ci(t) —ap,i(t) —ac,i(t), (D
ei(t) + 1.)

For compact presentation, we define the vectors c(t) =

[c1(t), ... cnry(t)] and e(t) = [ei(t),...,en)(t)] as
the status of all the tasks. We also define the vec-

tors ap(t) = [agi(t),...,ap.m(t)] and ac(t) =
[aql(t), e aC,n(t)(t)] as the task offloading decisions.
Since there is no need to allocate more resources than those
required for completing the tasks, the set of feasible actions
at each time slot ¢ is
At) = {(ax(t),ac(t)) | api(t) = 0,ac,:(t) = 0, (
ap;(t) +ac(t) <c(t), i=1,...,n(t) — 1}
The energy consumption of each task ¢ at time slot ¢ is
n(t)
8- amilt),)
i=1

3)

where $ € R, is the amount of electricity consumed per unit
usage of edge computing resources.

Remark 1: Our model for computationally intensive tasks
is general enough to model other loads in the household. For
shiftable load such as electric vehicle charging, we can use the
tuple (C;, E;) to denote the total energy requirement and the
time before the deadline of finishing the charging, use a g ; (%)
to denote the energy scheduled at time ¢, and set 8 = 1 and
ac,;(t) = 0. For non-shiftable load, we can simply set E; = 1.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

2019 IEEE International Conference on Communications, Control,

2) Demand Response Program: The user participates a
demand response program that may require the user to con-
sume a reduced amount of electricity within a specified time
frame (e.g., a few hours). Such a demand reduction is usually
mandated by a contract signed by the user and the utility
company. The user is rewarded when signing up for the
program and may need to pay a penalty if failing to fulfill
the load reduction requirement. At a certain time slot ¢, the
utility company may send a signal (I(t),d(t)) to the user,
which requires the user to restrict its electricity load to a total
amount of I(¢) kilowatt hour (kWh) in the next d(¢) time slots.
The demand response events will not overlap, namely a new
event will always happen after the previous event has ended.
As a result, the status of the demand response event transits
according to

(t)
I(t+1) 0t) =B api(t), (5)
=1

dit+1) = d(t)—1. (6)

In other words, we can view [(t) as the “quota” for electricity
consumption in the next d(¢) time slots, starting from time
t. This quota decreases over time as the user consumes more
electricity. Note that the computing resources in the cloud will
not be counted when calculating the electricity consumption.

B. Formulation of Markov Decision Process

As we can see from Eq. (1)(2)(5)(6), the current HEMS
states are completely determined by the previous states and
task assignment decisions. Therefore, we can formulate the
user’s decision making problem as a Markov decision process
(MDP) with infinite time horizon.

1) States: The state at each time slot ¢ consists of the
price of electricity pg(t) € R4, the price of cloud computing
pc(t) € Ry, the status of demand response (I(t),d(t)) €
Ry X Z.y, the status of the tasks (n(t),c(t),e(t)) € N x
Ri(t) X Ri(t). We define the collection of all the above status
as the state of the MDP

s(t) = (pe(t),po(t),1(t), d(t), n(t), c(t),e(t)) . (D

2) Actions: The action at each time slot ¢ specifies how
much computing resources, both on the edge and in the cloud,
allocated to each task, namely

®)

3) Rewards: The reward at each time slot ¢ has four
components. The first component is the positive reward of
completing the task on time. For task ¢, the reward function
is written as

a(t) = (ap(t),ac(t)) € RTY x R".

R, x Zy — Ry
(ci(t),ei(t)) = ur; (ci(t), ei(t)) .

In general, the reward is realized only when the task is
completed before the deadline. An example reward function

€))
(10)

UT,;

and Computing Technologies for Smart Grids (SmartGridComm)

could be
urs eiestt) = {

where v; > 0 is the reward of completing task .

if ¢;(t) =0 and ¢;(t) < E;
otherwise

, (1D

The second component of the reward is the cost of electric-
ity consumption, which is simply

n(t)

—pe(t)- |8+ api(t) (12)
=1

The third component of the reward is the cost of running
the computation in the cloud, which can be calculated as

n(t)

—po(t) Y ac(t). (13)
i=1

The final component of the reward is the potential penalty of
violating the demand response requirement, which is defined
as

up (0. a) = { 57

where p > 0 is the (usually large) penalty of violating the
demand response contract. Since we assume that the user has
also signed up for the program, the one-time sign-on rebate is
not included in the reward.

if d(t) =0 and I(t) < 0

otherwise (4

The net reward function is then

n(t) n(t)

u(s(t),a(t)) Z ur,i (ci(t), ei(t)) — po(t) - Z ac,i(t)
n(t)

— pe(t)- ﬂZam(t) —pp (I(t),d(t)) .

4) State Transitions: The transition of the task state follows
(1), and the transition of the demand response state follows
(5). The pricing states pg(t) and pc(t) are drawn randomly
independently of each other and other state components. The
number of tasks n(t) evolves randomly because the number
of new tasks is random, namely

n(t)

n(t+1) =n(t) - Z Lici(t)=0 and e;(t)<E,} T m(t + 1), (15)
i=1

function;

the indicator

Zfz(tl) 1ic,()=0 and e;(t)<E;} 18 the number of completed
tasks in time ¢; and m(¢ + 1) is the random number of new
tasks at time ¢ + 1. Note that there is some certain stable
state transition probability P(s|s’,a) for the system from
state s’ to state s when taking action a. This state transition

is unknown and needs to be learned.

where 1, is

Without loss of generality, we focus on Markov policies,
which depend on the current state and time only. We write a
Markov policy as

7 8(t) — a(t), (16)

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

and the set of all Markov policies as II,;.

Our goal is to find the optimal Markov policy that maxi-
mizes the expected total reward starting from any initial state
s(1), namely

7* = arg max E” {thu (s(t),a(t))} , 17

wellns
where v € (0,1) is the discount factor, and the expectation
E™ depends on the policy .
Note that, here in our reinforcement learning problem, we
need to learn the state transition of the MDP and the optimal
policy, where at least one of the optimal policies is Markov.

III. SOLUTION

In this section, we first describe the challenges in solving
the problem (17), and then our proposed solution based on
recent advances in deep reinforcement learning, namely the
Deep Deterministic Policy Gradient (DDPG) method.

A. Challenges

Many reinforcement learning algorithms, such as Q-learning
[7], solve (17) using the action-value function Q™ (s(t), a(t)),
defined as the total reward obtained under policy m when
the current state and action are s(t) and a(t). The action-
value function obeys the recursive relationship known as the
Bellman equation:

Q" (s(1),a(t)) = u(s(t), a(t)) + (18)
VEs(t+1)’a(t+l)NTr {Qﬂ (S(t + 1), a(t + 1))} .

Given the optimal action-value function Q*(s(t),a(t)), the
optimal Markov policy 7* can be defined as

Q" (s(t), a(t)) .

There are two challenges in solving the problem (17) using
(18) and (19). The first challenge comes with using (18) to
find the optimal action-value function Q*(s(t),a(t)) when
the numbers of states and actions are large. In our setting, the
action a(t) = {ac,l, AC,25 -3 A0 () OB, 1, OE,2; -+ aE,n(t)}’
is a 2n(t)-dimensional vector, and the state s(t) =
(pe(t), po (1), 1(1), d(t), n(t), c(t),e(t) is a (2n(t) +5)-
dimensional vector. Therefore, the numbers of states and
actions grow exponentially with the number of tasks, leading
to “curse of dimensionality”. The second challenge comes with
using (19) to find the optimal action under each state when
the number of actions is large. In our setting, the offloading
actions ac; and ag; are continuous (or discrete with high
granularity). This means that we need to search through the
large action space to find the action with the highest action-
value.

Traditional reinforcement learning algorithms such as Q-
learning [7] maintain a “Q table” to compute and store the
action-value function, which is not scalable. More advanced
algorithms such as deep Q network (DQN) [8] uses a deep
neural network as a function approximator of the action-value
function, in order to address the first challenge. However,

7 (s(t)) = arg max

19
a(t)eA(t) (19)

it does not overcome the second challenge because it is
hard to solve (19) when the optimal action-value function is
represented by a deep neural network.

Therefore, we propose to use the DDPG algorithm [9],
which addresses both challenges by integrating deep neural
network and the actor-critic approach. As shown in Fig. 2,
the DDPG network consists of two parts: Actor and Critic
Network. Both parts are composed of deep neural networks
and guide each other’s optimization process. First, we solve the
problem (18) under a high-dimensional state space by using
the Critic Network as the action-value function estimator,
which is similar to DQN. Moreover, we address the challenge
in searching the optimal action (19) under large and continuous
action space by using the Actor Network to estimate the
optimal action based on deterministic policy gradients.

B. Details of the DDPG Algorithm

The algorithm is shown in Algorithm 1 and Fig. 2. In Fig. 2,
we define a parameterized Actor and Critic function as y(s|0")
and Q(s,alf?) with parameters " and 0% respectively. At
every time slot, we can observe a state s(¢) collected by
the HEMS system. The Actor selects an action based on the
current optimal policy. Then, the system would get a reward
u(t) and the transit to next state s(¢ + 1). The Critic network
can be optimized after getting the reward u(¢) by minimizing
the Mean Square Error (MSE) loss:

L(09) = Bo(yom,s,u[(Q(s(t), a()|09) — y(1))*] (20)

where y(t) = u(s(t),a(t) +vQ(s(t+1),a(t+1)|0%). Finally,
the Actor network updates the policy with respect to the
direction of the Q-value gradient in following way:

Ey)[Vor Q(8, al0%)] s—s(i),a=p(s(i))]
= Es)[VaQ(5(i), a(d)[09) Vo pu(s(1)6"))]

Specifically, for the expectation parts in (20) and (21), we can
form Monte Carlo estimates to obtain the estimation values as
follows.

2n

M
Bl ()] % 12 3 F(2)s7 ~ (el 22)
m=1

The training process of the whole model is shown in Fig. 2.
In order to train the whole network in a stable and robust
way, we do not update the model every time we collect a
state transition sample, instead, we set a replay buffer with
size R. When every training episode starts, state transitions
follow the current policy and the tuple (s(t), a(t),u(t), s(t+
1)) is stored in the replay buffer. When the replay buffer is
up to its capacity limitation, the Actor and Critic Network
are updated by sampling the transition tuples from the buffer.
Moreover, since even small update of #<,0* will lead to a
great change in action-value and strategy, we set two target
networks with parameters Q' (s, a|#?’) and ;/(s|0") to give
consistent targets during training process. The weights of these
target networks are updated slowly by following the learned
networks in the way: 6/ < 76 4+ (1 — 7)¢’. As 7 < 1, the

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Critic

Loss Function V ,J ! Loss Function L(6%)

Updatel | Policy ; Updatel

I Q value

‘ Doise Rrocess N ‘ 0" gradient Gradientv,o . 6°
Current Y Current
Environment Actor Network W Critic Network
(S;na:t(};ld I Soft update 4 | y(l)' l Soﬁrupdate
ystem) o | ‘
Target HE+D) Target ‘
(s(@®),u(t),s(t+1)) | Actor Network | Critic Network |

t—| l

restore | Replay Buffer |Sample[=~ "~
(50, a@),u(t)5(+ 1) R Bl ik

Fig. 2. Deep deterministic policy gradient framework

target values are constrained to change slowly, which is called
the “soft update”.

Algorithm 1 Deep Deterministic Policy Gradient Algorithm

1: Randomly initialize critic network Q(s,a|f0%) and actor
network /(s|6*) with weight 69 and 6~

2: Initialize target network Q' and p’ with weights
09" + 9@ o1 + g~

3: Initialize replay buffer R

4: for episode =1 to m do

5. Initialize a random process for action exploration;

6: Receive initial state:

s(1) = (p(1), pe(1),1(1),d(1), n(1),e(1), (1)

7. fort=1toT do

8 Select task resource allocation action: a(t) =
w(s(t)|0") + N(t) according to the current policy
and exploration noise.

9: Execute action a(t) and observe reward u(t) and
observe next state s(t + 1).

10: Store transition (s, a(t),u(t),s(t + 1)) in replay
buffer R

11: Sample a random batch of k£ transitions from R

12: Update Critic Network by minimizing the sampled
MSE loss by (20)

13: Update Actor policy using the sampled policy gradi-
ent by (21)

14: Update the target networks Q' and p':

15: 09 109 + (1 — 7)Y

16: 04— 7O 4 (1 — 7)0

17 end for

18: end for

IV. EXPERIMENTAL RESULTS

We present simulation results to show the performance of
our proposed method. The environmental parameters are set
in Table I according to the best practice [10], [11].

We compare our proposed DDPG method with three other
approaches. 1) Random Action stands for a random policy,
where the agent selects two values between (0, 50) randomly

100

75

50

25

Training Reward

0 50 100 150 200 250
Training Episode

Fig. 3. Training rewards

and assign them as the action ag;,ac ;. 2) Full Edge means
that all the computation tasks are executed locally; in other
words, ac,; = 0. 3) Full Cloud scheme offloads all tasks to
the cloud server, i.e., ag,; = 0.

First, we present the training process of our DDPG method
with a number of training episodes in Fig. 3. At the beginning
of every episode, we reset the environment and then compute
the total reward and update the model parameters for 500 steps.
That means the task and DSM states are constantly changing
during each training process, so our model needs to learn
the optimal strategy under different environment. The curve
shows that DDPG algorithm has a good convergence for our
residential demand side management problem. As the number
of training episodes increases, there are still fluctuations in
the training rewards due to the randomness in the sampled
environments.

Second, we fix the environmental parameters (i.e., the
electric price) to compare rewards obtained by different algo-
rithms. Fig. 4(a) shows the cumulative rewards of the afore-
mentioned four methods as the number of testing episodes
increases. During the training process, in order to make the
agent fully trained, the environment settings in each episode
are random. However, the testing episodes have periodicity,
so the reward grows linearly. Taken as a whole, our DDPG
achieves the highest reward, and the Full Edge policy obtains
the lowest one. Specifically, after 10 testing episodes, our
DDPG method yields 28%, 76%, and 96% more than the
other three methods, respectively. This is because if all the
tasks are computed locally, I(¢) will go down fast and become
negative before d(t) = 0. Thus, the user will violate the
demand response requirement and gain a penalty easily. On
the contrary, if the user offloads all tasks to the cloud server,
the cost of running the computation in the cloud will be higher
than the edge computing electrical cost.

We also carry out experiments on the impact of environmen-
tal parameters on the rewards. Fig. 4(b) shows the rewards of
the four algorithms in three different cases. In case 0, we set
the price of electricity Pg as 0, then the cost of electricity
consumption will be 0. Under this situation, Full Edge should
be the optimal strategy while Full Cloud is the worst one.
Experimental results show that the strategy chosen by DDPG

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

TABLE I
EXPERIMENTAL PARAMETERS

Category Parameters

Value

Price parameters

Price of electricity Pg
Price of cloud computing Pc

$0.5 ~ $0.8/kWh [10]
$0.002 — $0.004 per cpu unit per hour [11]

Task number n(t)
Task state

Required computation resources c¢; (t)
Maximum elapsed time F;(t)

New arriving task obeys the Poisson distribution
Uniform distribution between (50, 800) cpu units
Uniform distribution between (1, 600) seconds

Demand-side management state

Constraint electricity load [(t)
Constraint demand response time d(t)

Uniform distribution between (1000, 3000) kW h
Uniform distribution between (1, 6) hours

Action aE,i,0c, Continuous values between 0 and 50 cpu units
Completing the tasks 20 per task
Reward L .
Violating the demand response requirement -100
=&- DDPG
1780 S Fices 250
== Randomacton
- 1500
® 200
2 1250
Q
4 ®
@ 1000 g 150
E 750 &>
g 100
=1
O 500

N}
@
=}

o

2 4 6 8
Testing Episode

(a) Cumulative reward

casel case2

Environment Cases

case0

(b) Rewards under different environmental cases

Fig. 4. Simulation results

achieves almost the same reward as Full Edge. Similarly, we
set Po as 0 in case 2, so the optimal action tends to offload
all tasks. In Fig. 4(b), we can see that our method obtains
the same reward as the theoretically optimal strategy Full
Cloud. Note that as we set a relatively large value for DSM
penalty, the rewards in case 2 are relative higher than others.
Case 0 and case 2 show that our strategy can achieve nearly
optimal performance at the extreme situation when electricity
fee (or zero cloud server rental) is 0. In addition, we describe
a more practical scenario in case 1 that the electricity and
cloud computing costs are basically equal. In this case, our
proposed strategy gets twice as much reward as the Full Edge
and outperforms Full Cloud and Random Action algorithms
by 33% and 67%, respectively. These experiments have shown
that our method can output different actions according to the
change of environmental parameters and remain optimal in all
kinds of situations.

V. CONCLUSION

In this paper, we studied an integrated smart grid system
model for demand side management with edge computing.
We derived the deep reinforcement learning-based algorithm
(Deep Deterministic Policy Gradient) to solve this problem
where we use neural networks to approximate the action-value
function and the optimal action. Experimental results show
that our proposed scheme works well and could achieve sig-
nificant performance gains over other baselines under various
environmental parameters.

(1]

[2]

[3]

[4]

[5]

[6]

(71

(8]

[91

[10]

[11]

REFERENCES

P. Palensky and D. Dietrich, “Demand side management: Demand re-
sponse, intelligent energy systems, and smart loads,” IEEE Transactions
on Industrial Informatics, vol. 7, no. 3, pp. 381-388, Aug 2011.

E. Ahvar, A.-C. Orgerie, and A. Lebre, “Estimating energy consumption
of cloud, fog and edge computing infrastructures,” IEEE Transactions
on Sustainable Computing, 2019.

R. K. Barik, S. K. Gudey, G. G. Reddy, M. Pant, H. Dubey,
K. Mankodiya, and V. Kumar, “Foggrid: Leveraging fog computing
for enhanced smart grid network,” in 2017 14th IEEE India Council
International Conference (INDICON), Dec 2017, pp. 1-6.

S. Zahoor, N. Javaid, A. Khan, B. Rugqia, F. J. Muhammad, and M. Zahid,
“A cloud-fog-based smart grid model for efficient resource utilization,”
in 2018 14th International Wireless Communications Mobile Computing
Conference (IWCMC), June 2018, pp. 1154-1160.

K. Shahryari and A. Anvari-Moghaddam, “Demand side management
using the internet of energy based on fog and cloud computing,” in
2017 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), June 2017, pp. 931-936.

J. Wang, M. Biviji, and W. M. Wang, “Case studies of smart grid demand
response programs in North America,” in ISGT 2011, Jan 2011, pp. 1-5.
C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279-292, 1992.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

J. He, “The development and utilization of microgrid technologies in
China,” Energy Sources, Part A: Recovery, Utilization, and Environ-
mental Effects, pp. 1-22, 2018.
https://www.huaweicloud.com/en-us/product/ecs.html.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:56:33 UTC from IEEE Xplore. Restrictions apply.

