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Abstract— We present a novel multi-stage stochastic dynamic
programming model that optimizes customer actions under a
baseline-based demand response program, in order to discover
incentives for gaming behaviors. Customers can decide how
much to increase or decrease electricity consumption at each
time period in order to maximize expected rewards, with
imperfect knowledge of when future demand response events
will occur. Customers may decide to take action during events
(desired behavior) and during corresponding hours of non-
event days in order to manipulate baselines (gaming behavior).
Analytical results for special cases show fundamental drivers of
gaming incentives. Simulation results reveal gaming incentives
and impacts to program performance for a real-world baseline-
based demand response program, and how incentives vary with
changing program and customer parameters.

I. INTRODUCTION

Demand response (DR) aims to modify customers’ elec-
tricity consumption in order to improve operation of the
electric grid (e.g., reduce costs, improve reliability, reduce
emissions). A wide variety of DR mechanisms have been
proposed or implemented [1]. Most of these mechanisms
fall into three categories: price-based DR, auction-based DR,
and incentive-based DR. In price-based DR (e.g., real-time
pricing [2][3]), the price of electricity varies over time, which
encourages customers to reduce consumption when prices
are high. In auction-based DR, the customers submit bids
(e.g., supply functions [4], utility of consumption [5][6]) to
compete for payment for demand reduction.

Incentive-based DR, where customers are paid incentives
based on participation or performance in the DR program, is
widely implemented [7]. An important class of incentive-
based DR is baseline-based DR [8][9][10][11][12][13],
where incentive payments are based on the difference be-
tween baseline consumption (e.g., average consumption dur-
ing previous days) and consumption during the DR event.
Baseline-based DR can be implemented as an opt-in program
that does not require changing customer electricity rates,
which can make public acceptance and regulatory approval
easier to obtain. Baselines are also central to DR participation
in U.S. wholesale energy markets, as regulated by the Federal
Energy Regulatory Commission [14]. Given its prevalence in
practice, baseline-based DR will be the focus of our paper.

With the growing use of baseline-based DR, it is important
to understand incentives and behavior of participating cus-
tomers, since customer actions are the primary determinant
of overall DR program performance and cost. Baseline-based
DR can create complicated customer incentives, including
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incentives to take action both during DR events (i.e., desired
behavior) and during non-event times in order to manipulate
baselines (i.e., gaming behavior). In general, gaming behav-
ior can be difficult to predict, because optimal decisions
for each time period are interrelated and can depend on
the customer’s current baseline consumption, customer costs,
the demand response program structure, and uncertain future
values (such as when DR events will occur).

It is not new that baseline-based DR is susceptible to
gaming behavior. Randomized control trials [15] and legal
settlements [16] provide real-world evidence that customers
may game baselines. Interested readers can also see [17] for
a high-level discussion of the potential for inflating baselines
in baseline-based DR. In cases with incentives for gaming
behaviors, ignoring these behaviors can lead to significant
errors in projections of required DR quantities, DR costs,
and demand forecasts. As the use of DR for critical grid
services grows and as customer responses to DR programs
become increasingly sophisticated, these errors could cause
significant impacts to the cost and reliability of the grid.

Although we are aware of the potential for gaming be-
havior in baseline-based DR, we may not yet have satis-
factory understandings of this behavior. Some works, such
as [8], compare alternative DR baseline structures based on
metrics such as accuracy of the baseline, but do not con-
sider gaming incentives. Some works [9][11][12] recognize
the potential for gaming behaviors in baseline-based DR
and propose mechanisms to mitigate gaming such as self-
reported baselines and profit sharing, but do not analyze
customer incentives under commonly implemented baseline-
based DR frameworks. The work closest to ours is [10],
which models baseline-based DR as a multistage stochastic
decision problem. However, it only provides results when
there is one single baseline stage and one DR event, and
the customer knows with certainty when the DR event will
occur. Therefore, to better understand gaming behavior, we
need a more comprehensive model that includes critical
factors in the customer’s decision making process, such as
the uncertainty of the demand response event schedule and
multiple baseline and event stages. As a demonstration of the
importance of more comprehensive models, we will show
non-obvious results (in Section IV) on how penalty (i.e.,
negative payment for increasing the load in the DR event)
affects the system performance.

We build on the prior work and develop a novel model to
identify optimal customer decisions under a baseline-based
DR program. Our model solves the customer’s multistage
stochastic decision problem with a dynamic programming
algorithm, thus providing an optimal policy for how much
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to reduce or increase electricity consumption based on time,
current customer baseline, and whether a DR event is active.
The key contribution of our approach is representation of
the customer’s imperfect knowledge of when DR events will
occur over the course of a DR season, which can have
significant impacts on the optimal policy and is a primary
uncertainty for real-world DR participants. Our major con-
tributions are as follows.

e To the best of our knowledge, we propose the first
baseline-based DR model that includes a variety of
commonly implemented baseline-based DR structures
with multi-day baselines and multiple uncertain events
over a DR season.

« For a special, yet widely adopted, class of baseline-
based DR, we provide structural results on the cus-
tomer’s optimal policy, which sheds light on how to
efficiently design the DR program.

« For a general baseline-based DR model, we develop an
efficient dynamic programming algorithm by exploiting
the structure of the problem, which is capable of pro-
viding solutions quickly for extended DR seasons of
several months or longer.

The remainder of this paper is organized as follows:
Section II describes the model, Section III provides analytical
results for special cases, Section IV provides numerical
results from a computer implementation of the model, and
Section V summarizes our conclusions.

II. MODEL
A. System Setup

We study a demand response program that occurs over a
demand response season of 7 € N days. At the start of each
day r € {1,...,T}, the utility notifies the customer whether
the current day is a demand response event day. On event
days, the utility desires participating customers to reduce
electricity consumption during a pre-specified window of
hours (e.g., 2 p.m — 6 p.m. on all event days). We denote
the probability that day ¢ is an event day by pg, € [0,1].

In each day ¢, the customer has a default load level /;, and
may deviate from the default load level by a;, resulting in an
actual load level of a; + ;. The default load level /; is a model
parameter, and the deviation a; is the customer’s decision
variable. We model the deviation, instead of the actual load,
as the decision variable in order to better represent the
customer’s decision of whether to increase or decrease the
load. We denote the set of available load deviation by A, C R,
a compact set that includes both positive and negative values.

On an event day t, the customer receives a rebate from
the utility for load reduction. We define the rebate function
as

It : RXA[ %R (1)
(SBsrar) = 1 (Spy,ar),s

which depends on the baseline sp; and the actual load [; +a;.
The baseline is usually determined by the utility according
to the actual load over the previous Np non-event days. We

denote the load over the Np non-event days prior to day ¢
by a vector sg; € RM8, and write the rule of determining the
baseline as a function

fisp:—Spy. ()

Often, the baseline sp, is defined as the average load of
the preceding Np non-event days or the average load over
Ng < Np days selected based on some rule [8]. A rebate can
be calculated by

It (EB,hat) =TDRt" [EB,r - (lz +at)] , 3)

where rpr; € Ry is the rebate per unit of load reduction.
In this rebate scheme, the rebate could be negative, which
means that the customer could pay penalty for increasing
load relative to the baseline. In some demand response
programs, the rebate is capped above zero, so the rebate is
calculated by

It (EB,hat) =TDRt" [EB,I - (lt +at)]+- 4)

For example, [18] caps performance payments above zero
for each aggregation of participants, but allows individual
customers within an aggregation to make negative contribu-
tions. A reasonable rebate should be non-decreasing in the
baseline and non-increasing in the actual load, in order to
incentivize the customer to reduce the load.

The customer incurs a cost when deviating from the
default load. We define the cost of changing the load on
day t as

¢ A — R (5)
A typical cost function could be a piece-wise linear function

ct(ar) :CR,t'(—at)++Cl,z'(at)+; 6)

where cg; is the marginal cost of reducing the load on day
t, ci; is the marginal cost of increasing the load on day ¢,
and (-)* = max{-,0}. The cost of reducing the load may
be the discomfort cost of foregone electricity use (e.g., the
discomfort of turning off the air conditioning) [1], and the
cost of increasing the load may be the additional payment for
electricity. Lower-cost options to increase and reduce load
during DR windows include load shifting [1], which can
be done via rescheduling the use of appliances or through
energy storage.

The goal of the customer is to maximize its expected total
profit (i.e., rebate minus cost) during the demand response
season. Therefore, the customer has incentives to reduce the
load during the event days if the rebate is large enough
to offset the cost of reducing load. Moreover, the customer
may also increase the load during non-event days in order
to inflate the baseline and thus increase the future rebate,
although increasing the load would only result in a higher
cost in that non-event day. In other words, the customer may
“game the system” during non-event days. We are interested
in whether and to what extent such gaming behavior occurs.
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B. Dynamic Programming Formulation

We formulate the customer’s decision making problem as
a stochastic dynamic program over a finite horizon of T
days. Next, we describe the key components of the dynamic
program in detail.

The state at each day ¢ consists of the baseline state sp; €
RM2 and the event state sg, € {0,1}. As discussed before,
the baseline state sp, is a vector of the load levels on the
previous Np non-event days prior to day ¢. The event state
sk, indicates whether day ¢ is an event day, with sg; = 1
indicating that day ¢ is an event day. We write the complete
state for day  as s, = (sp,,Se,). The action at each day 7 is
a; € A;, the deviation from the default load.

The state s; and the action g, determine the next baseline
state sp,+1. If day ¢ is an event day, the action a, will not be
counted in determining the future baselines. In this case, the
baseline state Sp ;11 = Sp; stays the same, and the event state
se+1 follows Bernoulli distribution with parameter pg ;1.

If day ¢ is a non-event day, the action a, will be counted
towards determining future baselines. In this case, the base-
line state sp,1 is a concatenation of the last Np — 1 elements
of the previous baseline state sp; and the actual load [; +a;.
Mathematically, we have

SBt+1 = ([SB,t]21N37lt +at) s )

where [sg]2.n, is the vector of last Ng — 1 elements of sp;.
Similar as in the event day, the event state sg,y1 is drawn
from the Bernoulli distribution with parameter pg ;1.

The reward function u, : RV x {0,1} x A, — R is the
rebate minus the cost, namely

)— Cr(at)~ (8)

Without loss of optimality, we focus on Markov policies,
which depend on the current state and time only. We write
a Markov policy as

Uy (Shat) =SE:" 1t (f(SB.t)yat

= (m,...,mr) with m : RV x {0,1} — A, )

and the set of all Markov policies as ITy.

Our goal is to find the optimal Markov policy that
maximizes the expected total reward, namely solving the
following dynamic program

T _arg maxE Zu, St,at) 7
where the expectation E® depends on the policy 7.

The dynamic program (10) can be solved through back-
ward induction.

(10)

ITII. ANALYSIS

In this section, we focus on a special case of the dynamic
program (10), which we can solve analytically. As a result,
we can provide structural results on the customer’s optimal
policy. Our structural results will provide insights on the
customer’s decision making process and on the design of
the demand response program.

We consider the demand response programs where the
baseline is determined as the average load of the previous
Np non-event days, namely

T8 [s5i

Ng (1)

SBt = f(sB,z) =
where [sp,]; is the i-th element of the vector sp,. Note that
this is a common way to determine the baseline in many
demand response programs [8]. We also assume that the
rebate function is linear as in (3). The linear rebate could
apply, for example, to an individual customer in [18] that is
part of an aggregation.

Before stating our analytical results, we need to define a
few useful quantities. The first one is the myopically optimal
action in an event day:

—cilay). (12)

ap; = argmaxr; (Spy,a;)
ar€A;
For each non-event day ¢, an important quantity, denoted by
M,, is the expected number of event days whose baselines
depend on the load a; in day ¢. Given M;, we define

M; -rpr;

an; = arg max ca; —ci(ay). (13)

a; €A NB

Proposition 1: Assume that the rebate is linear as in (3),

and that the baseline is determined according to (11). The
optimal policy ©* satisfies that for all r=1,...,T,

T (SB_’,, 1) =ag; and T (537”0) =dang- (14)
Proof: Please see the online appendix [19]. |

Proposition 1 characterizes the customer’s optimal policy.

In event days, the customer will choose an action that
myopically optimizes the current reward. This is reasonable
because the load in the event day will not be counted to-
wards establishing future baselines. Therefore, the customer
will focus on the current reward without worrying about
the impact of its action on the future rewards. From the
utility’s perspective, our result also guarantees the simplicity
of designing the rebate scheme: to ensure certain level of
demand response, the utility needs to consider the customer’s
cost of changing load only, but not other factors such as the
probabilities of events, the number of non-event days used
to calculate the baseline, and so on.

In non-event days, the customer will choose the action
ay,; defined in (13). Note that this is not a myopic action,
because the current reward in the non-event day is —c;(a;).
The objective function in (13) includes a term % - ay,
which represents the expected future benefit of increasing
the current load by a,. The benefit comes from the inflated
future baselines, which would result in higher future rebates.
By exploiting the structure of the problem, we are able to
characterize this benefit analytically as 2= NDR ! . q,, leading to
sharp structural results.

Proposition 1 also suggests that we can solve the dynamic
program without using backward induction. In particular, we
can avoid the “curse of dimensionality” if the problems in
(12) and (13) are easy to solve, which is often the case.
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For example, when the rebate scheme is linear as in (3), the
problem in (12) reduces to

ap; = argmax —rpgy - a; — ¢y (a), (15)

a; €A,
which admits analytical solutions if the cost function is linear
or quadratic. Similarly, we can solve the problem in (13)
analytically if the cost function is linear or quadratic.

The remaining difficulty lies in how to compute M,. Note
that M; depends only on the Bernoulli distributions of the
event states only, but not on the baseline states, the actions
taken, etc. In other words, we can compute M, based on the
probabilities pg 1,...,pe 7. For some special cases, we are
able to obtain analytical expressions for M;.

Lemma 2: For a non-event day ¢, the expected number of
event days whose baselines depend on the load a; in day ¢
can be computed analytically in the following cases.

e When Ng = 1, we have

T

M; = Z (s—1)- (Hi':wlpE,r) (1 _pE,erl)'
s=t+1

(16)

o When the probabilities of events are the same (i.e.,
PE;: = PE, V1), we have

T—t r—1 r— 1 ! ]
M=) ) ( ) py (1= pe) (17
r=ls=(r—Ng)* \ %
Proof: Please see the online appendix [19]. [ ]

IV. SIMULATION RESULTS

In this section, we present numerical results from a
computer implementation of the model. We model several
scenarios based on hypothetical customers in a DR program
like Consolidated Edison’s “Commercial System Relief Pro-
gram - Voluntary Option,” or “CSRP-V” (see Rider T in [20],
[18][21][22]). CSRP-V is a baseline-based DR program with
day-ahead event notice, thus matching the structure of our
model. Results for the selected scenarios demonstrate how
our model can reveal non-obvious relationships between pro-
gram design, customer characteristics, and customer actions.

A. Scenario Descriptions

The model parameters for the scenarios are summarized
in the upper section of Table I, and are described below.

We model customers participating in CSRP-V for the
summer DR season (roughly 150 days). CSRP-V pays $3
per kWh of demand reduction during a pre-assigned 4-hour
window on event days. For direct participants, payments
are capped above zero, but for participants represented by
an aggregator, negative event performance is counted and
netted against contributions from other customers. The utility
advises to expect 3 events per year, on peak load days. CSRP-
V offers a “5 in 10” baseline methodology, where baseline
load is average load over the 5 highest load days out of the
preceding 10 similar days. We also consider an alternative
baseline of the average load over the prior 5 similar days, or
“5 in 5. For the “5 in 10” and 5 in 5” baseline scenarios,
we include 10 or 5 days, respectively, before the start of the
DR season in order to establish an initial baseline.

Scenario 1 models a customer who cannot take gaming
actions. The customer has three choices for actions and costs
each day: (1) no load change, $0; (2) reduce load by 1 kWh,
$0.02; or (3) reduce load by 2 kWh, $2.02. This represents
a customer who can use a battery to shift 1 kWh of energy
(paying 10% of a $0.20/kWh electricity rate for efficiency
losses), and can reduce appliance use to lower consumption
1 kWh more (costing $2/kWh for lost utility). The customer
has no additional insight about when events will occur, so the
probability of event each day is the total number of expected
events per season divided by the number of days in the season
(3/150). The customer is not represented by an aggregator,
so negative payments are not allowed, and we set the default
load to be the same each day.

Scenario 2 adds two additional action and cost options:
(4) increase load by 1 kWh, $0.02; or (5) increase load by
2 kWh, $0.22. This represents a customer who can use a
battery to shift 1 kWh of load (again paying for 10% losses),
and can use appliances to increase load an additional 1 kWh
(costing the electricity rate of $0.20/kWh).

Scenario 3 is a modification of scenario 2, representing a
customer with more information about when events are likely
to occur. This represents a customer that predicts event based
on weather forecasts. This scenario includes two consecutive
days with 0.5 probability of event (high probability days),
and lower event probability for remaining days, so the total
number of expected events is still 3.

Scenarios 4 through 8 include the alternative “5S in 57
baseline. Scenario 4 is identical to scenario 2 besides the
alternative baseline type. Scenarios 5 through 8 include large
day-to-day variations in default load, where the deviations
are greater than the available customer load modifying
actions. Scenarios 5 and 6 compare the impact of variable
default load with negative payments not allowed and nega-
tive payments allowed, respectively. Scenarios 7 and 8 are
identical to scenarios 5 and 6, except the customer has a less
efficient battery with 25% round trip losses, so the initial 1
kWh of reduction or increase costs $0.05.

B. Model Outputs and Findings

Selected numerical results are presented in Table I. Figures
1 and 2 show daily probability of event (left axis) and mean
optimal policy for event and non-event days (right axis)
for each scenario. The mean optimal policy is an average
over the baseline states, which enables visualizing the policy
when the number of states is large. The results reveal several
findings, some of which corroborate our analytical results,
and some of which address more complicated cases that
would be difficult to analyze manually.

Scenario 1 shows that when gaming is not possible, the
true DR quantity (load reductions due to actions during
events) matches the apparent DR quantity (the difference
between the potentially inflated baseline load and the event
load), so that the utility payment per unit of true DR matches
the CSRP-V program incentive rate ($3/kWh). Alternatively,
in scenario 2, the customer has the ability and incentive to
take gaming actions. This case has the same true DR quantity,
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TABLE 1
SIMULATION SCENARIOS AND RESULTS
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5178
Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 11,2023 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.



but a larger apparent DR quantity due to the inflated baseline,
thus resulting in 63% greater customer net benefits and a
50% higher utility cost per unit true DR.

Scenario 2 also shows that even with poor information
about when events will occur, customers can have incentive
to take inexpensive gaming actions (such as load shifting
with a battery) to inflate baselines. With better information
about event probabilities, as in scenario 3, customers can
have incentive to take more expensive gaming actions (such
as turning on more appliances) during the days preceding
high probability of event days. This results in even greater
apparent DR, higher customer profits, and 70% higher utility
cost per unit true DR compared to scenario 1 with no gaming.

Scenario 4, with a “5 in 5” baseline, has nearly identical
values of true DR, apparent DR, and utility cost, to scenario
2, with a “5 in 10” baseline. Despite these similarities,
utilities may still prefer the “5 in 10” baseline, because it
can yield less demand inflation on non-event days.

Scenario 5 shows that varying default load can reduce
incentives for both event response and gaming action. This is
because when payments are capped above zero and default
load is much higher than the baseline, customer actions may
not be able to increase the payment above zero. Alternatively,
variable load does not have a major impact on true or
apparent DR quantities when negative payments are allowed
(not the similar results for scenarios 4 and 6 in Table I).

Scenarios 7 and 8 show a similar effect as scenarios 5
and 6: not allowing negative payments reduces incentives
for both event response and gaming. However, we observe
a change in cost of customer actions changes the relative
impacts to event response versus gaming. With lower load
shifting costs (scenarios 5 and 6) capping payments at zero
reduces event response more than gaming, resulting in 18%
higher utility costs per unit true DR. Alternatively, scenarios
7 and 8 show an 32% lower utility cost per unit true DR
because gaming is reduced much more than event response.

V. CONCLUSION

Our baseline-based DR model can identify optimal cus-
tomer behaviors under a variety of baseline-based DR pro-
gram parameters and a wide variety of customer parameters,
thus revealing customer incentives to artificially inflate base-
lines. Analytical results provide some fundamental insights
into the drivers of optimal customer decisions. Numerical
results show that incentives for gaming may exist in real-
world DR programs, and that the level and impact of gaming
can depend on a number of factors, in ways that would be
difficult to predict without our model. Since the impacts
of gaming baselines can have significant and non-obvious
impacts on the cost and effectiveness of baseline-based DR
programs, gaming incentives should be considered during
DR program design and in utility planning and operations.
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