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Abstract— We present a novel multi-stage stochastic dynamic
programming model that optimizes customer actions under a
baseline-based demand response program, in order to discover
incentives for gaming behaviors. Customers can decide how
much to increase or decrease electricity consumption at each
time period in order to maximize expected rewards, with
imperfect knowledge of when future demand response events
will occur. Customers may decide to take action during events
(desired behavior) and during corresponding hours of non-
event days in order to manipulate baselines (gaming behavior).
Analytical results for special cases show fundamental drivers of
gaming incentives. Simulation results reveal gaming incentives
and impacts to program performance for a real-world baseline-
based demand response program, and how incentives vary with
changing program and customer parameters.

I. INTRODUCTION

Demand response (DR) aims to modify customers’ elec-

tricity consumption in order to improve operation of the

electric grid (e.g., reduce costs, improve reliability, reduce

emissions). A wide variety of DR mechanisms have been

proposed or implemented [1]. Most of these mechanisms

fall into three categories: price-based DR, auction-based DR,

and incentive-based DR. In price-based DR (e.g., real-time

pricing [2][3]), the price of electricity varies over time, which

encourages customers to reduce consumption when prices

are high. In auction-based DR, the customers submit bids

(e.g., supply functions [4], utility of consumption [5][6]) to

compete for payment for demand reduction.

Incentive-based DR, where customers are paid incentives

based on participation or performance in the DR program, is

widely implemented [7]. An important class of incentive-

based DR is baseline-based DR [8][9][10][11][12][13],

where incentive payments are based on the difference be-

tween baseline consumption (e.g., average consumption dur-

ing previous days) and consumption during the DR event.

Baseline-based DR can be implemented as an opt-in program

that does not require changing customer electricity rates,

which can make public acceptance and regulatory approval

easier to obtain. Baselines are also central to DR participation

in U.S. wholesale energy markets, as regulated by the Federal

Energy Regulatory Commission [14]. Given its prevalence in

practice, baseline-based DR will be the focus of our paper.

With the growing use of baseline-based DR, it is important

to understand incentives and behavior of participating cus-

tomers, since customer actions are the primary determinant

of overall DR program performance and cost. Baseline-based

DR can create complicated customer incentives, including
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incentives to take action both during DR events (i.e., desired

behavior) and during non-event times in order to manipulate

baselines (i.e., gaming behavior). In general, gaming behav-

ior can be difficult to predict, because optimal decisions

for each time period are interrelated and can depend on

the customer’s current baseline consumption, customer costs,

the demand response program structure, and uncertain future

values (such as when DR events will occur).

It is not new that baseline-based DR is susceptible to

gaming behavior. Randomized control trials [15] and legal

settlements [16] provide real-world evidence that customers

may game baselines. Interested readers can also see [17] for

a high-level discussion of the potential for inflating baselines

in baseline-based DR. In cases with incentives for gaming

behaviors, ignoring these behaviors can lead to significant

errors in projections of required DR quantities, DR costs,

and demand forecasts. As the use of DR for critical grid

services grows and as customer responses to DR programs

become increasingly sophisticated, these errors could cause

significant impacts to the cost and reliability of the grid.

Although we are aware of the potential for gaming be-

havior in baseline-based DR, we may not yet have satis-

factory understandings of this behavior. Some works, such

as [8], compare alternative DR baseline structures based on

metrics such as accuracy of the baseline, but do not con-

sider gaming incentives. Some works [9][11][12] recognize

the potential for gaming behaviors in baseline-based DR

and propose mechanisms to mitigate gaming such as self-

reported baselines and profit sharing, but do not analyze

customer incentives under commonly implemented baseline-

based DR frameworks. The work closest to ours is [10],

which models baseline-based DR as a multistage stochastic

decision problem. However, it only provides results when

there is one single baseline stage and one DR event, and

the customer knows with certainty when the DR event will

occur. Therefore, to better understand gaming behavior, we

need a more comprehensive model that includes critical

factors in the customer’s decision making process, such as

the uncertainty of the demand response event schedule and

multiple baseline and event stages. As a demonstration of the

importance of more comprehensive models, we will show

non-obvious results (in Section IV) on how penalty (i.e.,

negative payment for increasing the load in the DR event)

affects the system performance.

We build on the prior work and develop a novel model to

identify optimal customer decisions under a baseline-based

DR program. Our model solves the customer’s multistage

stochastic decision problem with a dynamic programming

algorithm, thus providing an optimal policy for how much
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to reduce or increase electricity consumption based on time,

current customer baseline, and whether a DR event is active.

The key contribution of our approach is representation of

the customer’s imperfect knowledge of when DR events will

occur over the course of a DR season, which can have

significant impacts on the optimal policy and is a primary

uncertainty for real-world DR participants. Our major con-

tributions are as follows.

• To the best of our knowledge, we propose the first

baseline-based DR model that includes a variety of

commonly implemented baseline-based DR structures

with multi-day baselines and multiple uncertain events

over a DR season.

• For a special, yet widely adopted, class of baseline-

based DR, we provide structural results on the cus-

tomer’s optimal policy, which sheds light on how to

efficiently design the DR program.

• For a general baseline-based DR model, we develop an

efficient dynamic programming algorithm by exploiting

the structure of the problem, which is capable of pro-

viding solutions quickly for extended DR seasons of

several months or longer.

The remainder of this paper is organized as follows:

Section II describes the model, Section III provides analytical

results for special cases, Section IV provides numerical

results from a computer implementation of the model, and

Section V summarizes our conclusions.

II. MODEL

A. System Setup

We study a demand response program that occurs over a

demand response season of T ∈N days. At the start of each

day t ∈ {1, . . . ,T}, the utility notifies the customer whether

the current day is a demand response event day. On event

days, the utility desires participating customers to reduce

electricity consumption during a pre-specified window of

hours (e.g., 2 p.m – 6 p.m. on all event days). We denote

the probability that day t is an event day by pE,t ∈ [0,1].
In each day t, the customer has a default load level lt , and

may deviate from the default load level by at , resulting in an

actual load level of at + lt . The default load level lt is a model

parameter, and the deviation at is the customer’s decision

variable. We model the deviation, instead of the actual load,

as the decision variable in order to better represent the

customer’s decision of whether to increase or decrease the

load. We denote the set of available load deviation by At ⊂R,

a compact set that includes both positive and negative values.

On an event day t, the customer receives a rebate from

the utility for load reduction. We define the rebate function

as

rt : R×At → R (1)

(sB,t ,at) 7→ rt (sB,t ,at) ,

which depends on the baseline sB,t and the actual load lt +at .

The baseline is usually determined by the utility according

to the actual load over the previous NB non-event days. We

denote the load over the NB non-event days prior to day t

by a vector sB,t ∈R
NB , and write the rule of determining the

baseline as a function

f : sB,t 7→ sB,t . (2)

Often, the baseline sB,t is defined as the average load of

the preceding NB non-event days or the average load over

N′
B < NB days selected based on some rule [8]. A rebate can

be calculated by

rt (sB,t ,at) = rDR,t · [sB,t − (lt +at)] , (3)

where rDR,t ∈ R+ is the rebate per unit of load reduction.

In this rebate scheme, the rebate could be negative, which

means that the customer could pay penalty for increasing

load relative to the baseline. In some demand response

programs, the rebate is capped above zero, so the rebate is

calculated by

rt (sB,t ,at) = rDR,t · [sB,t − (lt +at)]
+
. (4)

For example, [18] caps performance payments above zero

for each aggregation of participants, but allows individual

customers within an aggregation to make negative contribu-

tions. A reasonable rebate should be non-decreasing in the

baseline and non-increasing in the actual load, in order to

incentivize the customer to reduce the load.

The customer incurs a cost when deviating from the

default load. We define the cost of changing the load on

day t as

ct : At → R. (5)

A typical cost function could be a piece-wise linear function

ct(at) = cR,t · (−at)
++ cI,t · (at)

+
, (6)

where cR,t is the marginal cost of reducing the load on day

t, cI,t is the marginal cost of increasing the load on day t,

and (·)+ = max{·,0}. The cost of reducing the load may

be the discomfort cost of foregone electricity use (e.g., the

discomfort of turning off the air conditioning) [1], and the

cost of increasing the load may be the additional payment for

electricity. Lower-cost options to increase and reduce load

during DR windows include load shifting [1], which can

be done via rescheduling the use of appliances or through

energy storage.

The goal of the customer is to maximize its expected total

profit (i.e., rebate minus cost) during the demand response

season. Therefore, the customer has incentives to reduce the

load during the event days if the rebate is large enough

to offset the cost of reducing load. Moreover, the customer

may also increase the load during non-event days in order

to inflate the baseline and thus increase the future rebate,

although increasing the load would only result in a higher

cost in that non-event day. In other words, the customer may

“game the system” during non-event days. We are interested

in whether and to what extent such gaming behavior occurs.
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B. Dynamic Programming Formulation

We formulate the customer’s decision making problem as

a stochastic dynamic program over a finite horizon of T

days. Next, we describe the key components of the dynamic

program in detail.

The state at each day t consists of the baseline state sB,t ∈
R

NB and the event state sE,t ∈ {0,1}. As discussed before,

the baseline state sB,t is a vector of the load levels on the

previous NB non-event days prior to day t. The event state

sE,t indicates whether day t is an event day, with sE,t = 1

indicating that day t is an event day. We write the complete

state for day t as st = (sB,t ,sE,t). The action at each day t is

at ∈ At , the deviation from the default load.

The state st and the action at determine the next baseline

state sB,t+1. If day t is an event day, the action at will not be

counted in determining the future baselines. In this case, the

baseline state sB,t+1 = sB,t stays the same, and the event state

sE,t+1 follows Bernoulli distribution with parameter pE,t+1.

If day t is a non-event day, the action at will be counted

towards determining future baselines. In this case, the base-

line state sB,t+1 is a concatenation of the last NB−1 elements

of the previous baseline state sB,t and the actual load lt +at .

Mathematically, we have

sB,t+1 = ([sB,t ]2:NB
, lt +at) , (7)

where [sB,t ]2:NB
is the vector of last NB −1 elements of sB,t .

Similar as in the event day, the event state sE,t+1 is drawn

from the Bernoulli distribution with parameter pE,t+1.

The reward function ut : RNB × {0,1} × At → R is the

rebate minus the cost, namely

ut (st ,at) = sE,t · rt ( f (sB,t),at)− ct(at). (8)

Without loss of optimality, we focus on Markov policies,

which depend on the current state and time only. We write

a Markov policy as

π = (π1, . . . ,πT ) with πt : RNB ×{0,1}→ At , (9)

and the set of all Markov policies as ΠM .

Our goal is to find the optimal Markov policy that

maximizes the expected total reward, namely solving the

following dynamic program

π
∗ = arg max

π∈ΠM

E
π

{

T

∑
t=1

ut (st ,at)

}

, (10)

where the expectation E
π depends on the policy π .

The dynamic program (10) can be solved through back-

ward induction.

III. ANALYSIS

In this section, we focus on a special case of the dynamic

program (10), which we can solve analytically. As a result,

we can provide structural results on the customer’s optimal

policy. Our structural results will provide insights on the

customer’s decision making process and on the design of

the demand response program.

We consider the demand response programs where the

baseline is determined as the average load of the previous

NB non-event days, namely

sB,t = f (sB,t) =
∑

NB
i=1[sB,t ]i

NB

, (11)

where [sB,t ]i is the i-th element of the vector sB,t . Note that

this is a common way to determine the baseline in many

demand response programs [8]. We also assume that the

rebate function is linear as in (3). The linear rebate could

apply, for example, to an individual customer in [18] that is

part of an aggregation.

Before stating our analytical results, we need to define a

few useful quantities. The first one is the myopically optimal

action in an event day:

aE,t = arg max
at∈At

rt (sB,t ,at)− ct(at). (12)

For each non-event day t, an important quantity, denoted by

Mt , is the expected number of event days whose baselines

depend on the load at in day t. Given Mt , we define

aN,t = arg max
at∈At

Mt · rDR,t

NB

·at − ct(at). (13)

Proposition 1: Assume that the rebate is linear as in (3),

and that the baseline is determined according to (11). The

optimal policy π
∗ satisfies that for all t = 1, . . . ,T ,

πt (sB,t ,1) = aE,t and πt (sB,t ,0) = aN,t . (14)

Proof: Please see the online appendix [19].

Proposition 1 characterizes the customer’s optimal policy.

In event days, the customer will choose an action that

myopically optimizes the current reward. This is reasonable

because the load in the event day will not be counted to-

wards establishing future baselines. Therefore, the customer

will focus on the current reward without worrying about

the impact of its action on the future rewards. From the

utility’s perspective, our result also guarantees the simplicity

of designing the rebate scheme: to ensure certain level of

demand response, the utility needs to consider the customer’s

cost of changing load only, but not other factors such as the

probabilities of events, the number of non-event days used

to calculate the baseline, and so on.

In non-event days, the customer will choose the action

aN,t defined in (13). Note that this is not a myopic action,

because the current reward in the non-event day is −ct(at).

The objective function in (13) includes a term
Mt ·rDR,t

NB
· at ,

which represents the expected future benefit of increasing

the current load by at . The benefit comes from the inflated

future baselines, which would result in higher future rebates.

By exploiting the structure of the problem, we are able to

characterize this benefit analytically as
Mt ·rDR,t

NB
·at , leading to

sharp structural results.

Proposition 1 also suggests that we can solve the dynamic

program without using backward induction. In particular, we

can avoid the “curse of dimensionality” if the problems in

(12) and (13) are easy to solve, which is often the case.
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For example, when the rebate scheme is linear as in (3), the

problem in (12) reduces to

aE,t = arg max
at∈At

−rDR,t ·at − ct(at), (15)

which admits analytical solutions if the cost function is linear

or quadratic. Similarly, we can solve the problem in (13)

analytically if the cost function is linear or quadratic.

The remaining difficulty lies in how to compute Mt . Note

that Mt depends only on the Bernoulli distributions of the

event states only, but not on the baseline states, the actions

taken, etc. In other words, we can compute Mt based on the

probabilities pE,1, . . . , pE,T . For some special cases, we are

able to obtain analytical expressions for Mt .

Lemma 2: For a non-event day t, the expected number of

event days whose baselines depend on the load at in day t

can be computed analytically in the following cases.

• When NB = 1, we have

Mt =
T

∑
s=t+1

(s− t) ·
(

Πs
τ=t+1 pE,τ

)

· (1− pE,s+1). (16)

• When the probabilities of events are the same (i.e.,

pE,t = pE , ∀t), we have

Mt =
T−t

∑
r=1

r−1

∑
s=(r−NB)+

(

r−1

s

)

· ps+1
E · (1− pE)

r−s−1
. (17)

Proof: Please see the online appendix [19].

IV. SIMULATION RESULTS

In this section, we present numerical results from a

computer implementation of the model. We model several

scenarios based on hypothetical customers in a DR program

like Consolidated Edison’s “Commercial System Relief Pro-

gram - Voluntary Option,” or “CSRP-V” (see Rider T in [20],

[18][21][22]). CSRP-V is a baseline-based DR program with

day-ahead event notice, thus matching the structure of our

model. Results for the selected scenarios demonstrate how

our model can reveal non-obvious relationships between pro-

gram design, customer characteristics, and customer actions.

A. Scenario Descriptions

The model parameters for the scenarios are summarized

in the upper section of Table I, and are described below.

We model customers participating in CSRP-V for the

summer DR season (roughly 150 days). CSRP-V pays $3

per kWh of demand reduction during a pre-assigned 4-hour

window on event days. For direct participants, payments

are capped above zero, but for participants represented by

an aggregator, negative event performance is counted and

netted against contributions from other customers. The utility

advises to expect 3 events per year, on peak load days. CSRP-

V offers a “5 in 10” baseline methodology, where baseline

load is average load over the 5 highest load days out of the

preceding 10 similar days. We also consider an alternative

baseline of the average load over the prior 5 similar days, or

“5 in 5.” For the “5 in 10” and “5 in 5” baseline scenarios,

we include 10 or 5 days, respectively, before the start of the

DR season in order to establish an initial baseline.

Scenario 1 models a customer who cannot take gaming

actions. The customer has three choices for actions and costs

each day: (1) no load change, $0; (2) reduce load by 1 kWh,

$0.02; or (3) reduce load by 2 kWh, $2.02. This represents

a customer who can use a battery to shift 1 kWh of energy

(paying 10% of a $0.20/kWh electricity rate for efficiency

losses), and can reduce appliance use to lower consumption

1 kWh more (costing $2/kWh for lost utility). The customer

has no additional insight about when events will occur, so the

probability of event each day is the total number of expected

events per season divided by the number of days in the season

(3/150). The customer is not represented by an aggregator,

so negative payments are not allowed, and we set the default

load to be the same each day.

Scenario 2 adds two additional action and cost options:

(4) increase load by 1 kWh, $0.02; or (5) increase load by

2 kWh, $0.22. This represents a customer who can use a

battery to shift 1 kWh of load (again paying for 10% losses),

and can use appliances to increase load an additional 1 kWh

(costing the electricity rate of $0.20/kWh).

Scenario 3 is a modification of scenario 2, representing a

customer with more information about when events are likely

to occur. This represents a customer that predicts event based

on weather forecasts. This scenario includes two consecutive

days with 0.5 probability of event (high probability days),

and lower event probability for remaining days, so the total

number of expected events is still 3.

Scenarios 4 through 8 include the alternative “5 in 5”

baseline. Scenario 4 is identical to scenario 2 besides the

alternative baseline type. Scenarios 5 through 8 include large

day-to-day variations in default load, where the deviations

are greater than the available customer load modifying

actions. Scenarios 5 and 6 compare the impact of variable

default load with negative payments not allowed and nega-

tive payments allowed, respectively. Scenarios 7 and 8 are

identical to scenarios 5 and 6, except the customer has a less

efficient battery with 25% round trip losses, so the initial 1

kWh of reduction or increase costs $0.05.

B. Model Outputs and Findings

Selected numerical results are presented in Table I. Figures

1 and 2 show daily probability of event (left axis) and mean

optimal policy for event and non-event days (right axis)

for each scenario. The mean optimal policy is an average

over the baseline states, which enables visualizing the policy

when the number of states is large. The results reveal several

findings, some of which corroborate our analytical results,

and some of which address more complicated cases that

would be difficult to analyze manually.

Scenario 1 shows that when gaming is not possible, the

true DR quantity (load reductions due to actions during

events) matches the apparent DR quantity (the difference

between the potentially inflated baseline load and the event

load), so that the utility payment per unit of true DR matches

the CSRP-V program incentive rate ($3/kWh). Alternatively,

in scenario 2, the customer has the ability and incentive to

take gaming actions. This case has the same true DR quantity,
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TABLE I

SIMULATION SCENARIOS AND RESULTS

Scenario Number 1 2 3 4 5 6 7 8
Gaming Allowed no yes yes yes yes yes yes yes

Probability of Event flat flat spike flat flat flat flat flat
Negative Payments no no no no no yes no yes

Default Load flat flat flat flat variable variable variable variable
Baseline Type 5 in 10 5 in 10 5 in 10 5 in 5 5 in 5 5 in 5 5 in 5 5 in 5

Customer Costs standard standard standard standard standard standard higher higher
Expected True DR (kWh) 6.0 6.0 6.0 6.0 3.7 6.0 2.9 6.0

Expected Apparent DR (kWh) 6.0 9.0 10.1 9.0 6.3 8.9 2.9 8.8
Expected DR Payments ($) 18.0 27.0 30.3 27.0 18.9 26.6 8.8 26.4

Expected Customer Costs ($) 6.1 7.6 8.6 9.0 6.4 9.0 3.3 13.3
Expected Customer Net Benefits ($) 11.9 19.4 21.8 17.9 12.5 17.6 5.4 13.1

Expected Payment per Unit True DR ($/kWh) 3.0 4.5 5.1 4.5 5.2 4.4 3.0 4.4

Fig. 1. Optimal policy and probability of event by day for scenario 1 (top),
2 (second), 3 (third), and 4 (bottom).

Fig. 2. Optimal policy and probability of event by day for scenario 5 (top),
6 (second), 7 (third), and 8 (bottom).
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but a larger apparent DR quantity due to the inflated baseline,

thus resulting in 63% greater customer net benefits and a

50% higher utility cost per unit true DR.

Scenario 2 also shows that even with poor information

about when events will occur, customers can have incentive

to take inexpensive gaming actions (such as load shifting

with a battery) to inflate baselines. With better information

about event probabilities, as in scenario 3, customers can

have incentive to take more expensive gaming actions (such

as turning on more appliances) during the days preceding

high probability of event days. This results in even greater

apparent DR, higher customer profits, and 70% higher utility

cost per unit true DR compared to scenario 1 with no gaming.

Scenario 4, with a “5 in 5” baseline, has nearly identical

values of true DR, apparent DR, and utility cost, to scenario

2, with a “5 in 10” baseline. Despite these similarities,

utilities may still prefer the “5 in 10” baseline, because it

can yield less demand inflation on non-event days.

Scenario 5 shows that varying default load can reduce

incentives for both event response and gaming action. This is

because when payments are capped above zero and default

load is much higher than the baseline, customer actions may

not be able to increase the payment above zero. Alternatively,

variable load does not have a major impact on true or

apparent DR quantities when negative payments are allowed

(not the similar results for scenarios 4 and 6 in Table I).

Scenarios 7 and 8 show a similar effect as scenarios 5

and 6: not allowing negative payments reduces incentives

for both event response and gaming. However, we observe

a change in cost of customer actions changes the relative

impacts to event response versus gaming. With lower load

shifting costs (scenarios 5 and 6) capping payments at zero

reduces event response more than gaming, resulting in 18%

higher utility costs per unit true DR. Alternatively, scenarios

7 and 8 show an 32% lower utility cost per unit true DR

because gaming is reduced much more than event response.

V. CONCLUSION

Our baseline-based DR model can identify optimal cus-

tomer behaviors under a variety of baseline-based DR pro-

gram parameters and a wide variety of customer parameters,

thus revealing customer incentives to artificially inflate base-

lines. Analytical results provide some fundamental insights

into the drivers of optimal customer decisions. Numerical

results show that incentives for gaming may exist in real-

world DR programs, and that the level and impact of gaming

can depend on a number of factors, in ways that would be

difficult to predict without our model. Since the impacts

of gaming baselines can have significant and non-obvious

impacts on the cost and effectiveness of baseline-based DR

programs, gaming incentives should be considered during

DR program design and in utility planning and operations.
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