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Abstract

Exploiting spatial patterns in large-scale multiple testing promises to improve both
power and interpretability of false discovery rate (FDR) analyses. This article develops a
new class of locally{adaptive weighting and screening (LAWS) rules that directly
incorporates useful local patterns into inference. The idea involves constructing robust
and structure-adaptive weights according to the estimated local sparsity levels. LAWS
provides a unied framework for a broad range of spatial problems and is fully data-
driven. It is shown that LAWS controls the FDR asymptotically under mild conditions
on dependence. The nite sample performance is investigated using simulated data,
which demonstrates that LAWS controls the FDR and outperforms existing methods
in power. The eciency gain is substantial in many settings. We further illustrate the

merits of LAWS through applications to the analysis of 2D and 3D images.
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1 Introduction

1.1 Structural information in spatial multiple testing

Spatial multiple testing arises frequently from a wide variety of applications including func-
tional neuroimaging, environmental studies, disease mapping and astronomical surveys.
Intuitively, exploiting spatial structures can help identify signals more accurately and im-
prove the interpretability of scientic ndings. There are various ways of incorporating
spatial information into the inferential process: the spatial structures and covariates may
be utilized to form new hypotheses, dene novel error rates, prioritize key tasks and con-
struct new test statistics. For example, in Pacico et al. (2004) and Heller et al. (2006),
pre-determined spatial clusters are used to form new hypotheses with clusters as basic infer-
ence units. Benjamini and Heller (2007) suggested that aggregating the data from nearby
locations can increase the signal-to-noise ratio and reduce the multiplicity. To reect the
relative importance of decision errors, Benjamini and Heller (2007), Sun et al. (2015), and
Basu et al. (2018) proposed to take into account spatial covariates such as the size of a
cluster when dening the error rates. Moreover, the prior knowledge on the relationship
between individual locations and spatial clusters is highly informative and can be utilized
to develop new hierarchical testing and selective inference procedures, which promise to
improve both the power and interpretability (Yekutieli, 2008; Benjamini and Bogomolov,

2014).

1.2 Challenges of dependence in multiple testing

The localization of sparse signals from massive spatial data often involves conducting thou-
sands and even millions of hypotheses tests. The false discovery rate (FDR; Benjamini and
Hochberg, 1995) provides a powerful and practical criterion for multiplicity adjustment in
large-scale testing problems. An important line of research is concerned with the impact
of dependence on FDR procedures. The Benjamini-Hochberg (BH) method is shown to be
valid for FDR control under a range of dependence settings (Benjamini and Yekutieli, 2001;
Sarkar, 2002). In particular, Wu (2008) developed conditions under which the BH method
controls the FDR for spatially correlated tests in a hidden Markov random eld. Mean-

while, Efron (2007) argued that correlation may degrade statistical accuracy and should be



accounted for when conducting simultaneous inference. Optimality under dependence has
been investigated in Sun and Cai (2009), which showed, in a hidden Markov model, that
incorporating dependence structure into a multiple-testing procedure can greatly improve
the eciency of conventional approaches that ignore dependence. This idea has been fur-
ther explored in a range of spatial settings, including the Gaussian random eld models
(Sun et al., 2015), Ising models (Shu et al., 2015), spatial change-point models (Cao and
Wau, 2015), and graphical models (Liu et al., 2016a).

Most spatial multiple testing methods have assumed that clusters are known a priori, or
the dependence structure can be well estimated from data. However, there are several prac-
tical issues. First, the spatial clusters, which are typically formed by aggregating nearby
locations according to prior knowledge (e.g. Heller et al., 2006), can be mis-specied. In
other works (e.g. Pacico et al., 2004; Sun et al., 2015), the clusters are obtained by in-
specting the testing results from a preliminary point-wise analysis, which can be subjective
and highly sensitive to the choice of threshold in the tests at individual locations. Second,
contiguous spatial clusters may not serve as an appropriate proxy of reality when signals
appearing more frequently in a local area but do not form adjoining regions. Hence it is
desirable to develop robust and fully data-driven procedures to capture local patterns in
spatial data more accurately. Third, although existing spatial FDR methods have good
performances when spatial models are estimated well, the commonly used computational
algorithms may not produce desired estimates if assumptions on the underlying spatial pro-
cess are violated, or the model/prior is misspecied. The poor estimates may lead to less
powerful and even invalid FDR procedures. Finally, estimating/modeling spatial depen-
dence structures is very challenging in high-dimensional settings, wherein strong regularity
conditions and heavy computations greatly limit the scope and applicability of related

works.

1.3 The main idea in our approach

The goal of the present paper is to develop simple and robust FDR methods for spatial
analysis that are capable of adaptively learning the sparse structure of the underlying spa-
tial process without prior knowledge on clusters, parametric assumptions of the underlying

model or intensive computation of posterior distributions. The main idea is to recast spatial



multiple testing in the framework of simultaneous inference with auxiliary information. Un-
der this framework, the p-values play primary roles for assessing the signicance, while the
spatial locations are viewed as auxiliary variables for providing important structural infor-
mation to assist inference. We propose a locally adaptive weighting and screening (LAWS)
approach that consists of three steps. LAWS rst estimates the local sparsity structure us-
ing a screening approach, then constructs spatially adaptive weights to reorder the p-values,
and nally chooses a threshold to adjust for multiplicity. The proposed method bypasses
complicated spatial modeling and directly incorporates useful structures into inference.
LAWS is nonparametric and assumption-lean { it only requires that the underlying spatial
process is smooth at most locations. By capturing unknown spatial patterns adaptively,
LAWS tends to up{weight/down{weight the p-values in neighborhoods where signals are
abundant/sporadic. Our numerical results show that LAWS oers dramatic improvements

in power over conventional methods in many settings.

1.4 Connection to existing works and our contributions

Large-scale inference with auxiliary/side information is an important topic that has received
much recent attention. There are two lines of research, where the additional information
is respectively (i) extracted from the same data set using carefully constructed auxiliary
sequences (Liu, 2014; Cai et al., 2019), or (ii) gleaned from secondary data sources such
as prior studies and external covariates (Scott et al., 2015; Fortney et al., 2015; Ignatiadis
et al., 2016; Basu et al., 2018). Our work departs from these two lines of research in that
the side information corresponds to the intrinsic ordering of spatial data. The spatial order-
ing, which encodes useful patterns such as local clusters and smoothness of the underlying
process, is dierent from conventional auxiliary variables that are either quantitative or

qualitative. For example, in the context of inference with side information, the qualitative
and quantitative auxiliary variables are often used to create groups to reect the inhomo-

geneity among the hypotheses (Efron, 2008; Ferkingstad et al., 2008; Cai and Sun, 2009).
The works on multiple testing with groups show that weighted p-values methods can be
developed to improve the power of BH (Hu et al., 2010; Liu et al., 2016b; Barber and
Ramdas, 2017; Xia et al., 2019). However, the grouping strategy is not suitable for spatial

analysis because dividing a region into informative groups requires either good prior knowl-



edge or intensive computation, which becomes infeasible in many scenarios, in particular
when hypotheses are located on a two or three dimensional lattice. Moreover, as pointed
out by Cai et al. (2019), grouping corresponds to discretizing a continuous variable, which
often leads to substantial information loss. By contrast, LAWS directly incorporates the
spatial structure into the weights and eliminates the need to dene groups.

FDR control via LAWS oers a unied, principled and objective way for exploiting
important spatial structures. It has several advantages over recent works on multiple testing
with side information such as AdaPT (Lei and Fithian, 2018), SABHA (Li and Barber,
2019) and STAR (Lei et al., 2017). First, LAWS provides a general framework that is
capable of handling a broad range of spatial settings. Concretely, SABHA only develops
weights for grouped structure and ordered structure along a one-dimensional direction,
whereas STAR only works when signals form contiguous clusters with convexity or other
shape constraints. By contrast, LAWS is applicable to two or three-dimensional settings,
and makes no assumption on the contiguity or convexity of the signal process as required
by STAR. Second, LAWS is motivated by the optimality theory in Cai et al. (2019) and
built upon solid theoretical foundations. We prove that the oracle LAWS method uniformly
dominates BH in ranking and propose data-driven methods that asymptotically emulate the
oracle. We present both intuitions and numerical results to demonstrate that the weights in
LAWS are in general superior to the weights in SABHA. Finally, in contrast with AdaPT,
SABHA and STAR whose performances heavily depend on the quality of prior information
or human interactions, LAWS is fully data-driven and provides an objective and principled
approach to incorporate side information. This feature is attractive in many scenarios
where investigators do not have much exibility to control the study design or decision-
making process. Finally, we develop new theories to prove that LAWS controls the FDR
asymptotically under dependence. The theory only requires mild conditions that seem to

be substantially weaker than existing results on spatial FDR analysis in the literature.

1.5 Organization

The article is organized as follows. Section 2 introduces the model and problem formulation.
Section 3 develops structure{adaptive weights and illustrates its superiority in ranking.

In Section 4, we propose the LAWS procedure for spatial multiple testing and study its



theoretical properties. Simulation is conducted in Section 5 to investigate the nite sample
performance of LAWS and compare it with existing methods. The merits of LAWS are
further illustrated in Section 6 through applications to analyzing 2D and 3D images. The

proofs are provided in the Appendix.

2 Model and Problem Formulation

Let S RY denote a d-dimensional spatial domain and s a location. We focus on a setting
where hypotheses are located on a nite, regular lattice S S and data are observed
at every location s 2 S. We consider the inll{asymptotics framework (Stein, 2012) and
assume S ! S in our theoretical analysis. The setup is suitable for analyzing, say, high-
frequency linear network data and ne resolution images from satellite monitoring and
neuroimaging?.

Let (s) be a binary variable, with (s) = 1 and (s) = 0 respectively indicating the
presence and absence of a signal of interest at location s. The identication of spatial

signals can be formulated as a multiple testing problem:

Ho(s) : (s)= 0 versus Hi(s) :(s) = 1; s2S: (2.1)

Let fT(s) : s 2 Sg be the summary statistic at location s. The common practice in multiple
testing is to rst convert T(s) to a p-value p(s) and then choose a threshold that corrects
for multiplicity. The conditional cumulative distribution functions (CDF) of the p-values
are given by

Pfp(s) tj(s)g= f1 (s)gt+ (s)Gu(tjs); (2.2)

where t 2 [0;1] and G;(tjs) is the non-null p-value CDF at s. The corresponding non-null

density is denoted by gi(tjs). Dene the sparsity level at location s

(s) = Pf(s) = 1g: (2.3)

YIn other applications such as climate change analysis, one observes incomplete data points at irregular
locations (e.g. weather monitoring stations) but needs to make inference at every point in the whole spatial
domain. This setting goes beyond the scope of our work; see Sun et al. (2015) for related discussions.



Due to the existence of spatial correlations and external covariates, signals may appear
more frequently in certain regions, and the magnitude of non-null eects may also uctuate
across locations. Consequently we allow (s) and G1(tjs) to vary across the spatial domain to
capture important local patterns. A mild condition in our methodological development,
characterized precisely in Section 4, is that (s) varies smoothly as a continuous function of s.
The smoothness in the sparsity levels provides the key structural information, which can be
exploited to integrate information from nearby locations and construct more ecient spatial
multiple testing procedures.

We focus on point-wise analysis where testing units are individual locations. The deci-
sion at location s is represented by a binary variable (s), where (s) = 1if Ho(s) is rejected and
(s) = 0 otherwise. The widely used false discovery rate (Benjamini and Hochberg,

1995) is dened as p
s2sfd  (s)g(s)

FDR = E
maxf ¢ (s);1g

(2.4)

The power of an FDR procedure = f(s) : s 2 Sg can be evaluated using the expected

number of true positives:

( X )

E (s)(s) : (2.5)
s2S

ETP() ()

It is important to note that although we only consider point-wise tests, the proposed
LAWS procedure provides a particularly eective tool for revealing underlying spatial clus-
ters. Hence it may be employed in the preliminary stage of a cluster-wise inference where
spatial clusters need to be specied by investigators based on point-wise testing. Moreover,
in contrast with existing methods which assume known spatial clusters, LAWS provides a
fully data-driven approach to incorporate local structures and does not suer from possible

mis-specications of the underlying model.

3 Structure{Adaptive Weighting and Its Properties

This section describes a weighted p-value approach to spatial FDR analysis. The key idea is
to construct weights by exploiting the local sparsity structure in a spatial domain. A mul-

tiple testing procedure involves two steps: ranking and thresholding. It can be represented



by a thresholding rule of the form (s;t) = IfT(s) tg, where T (s) is the test statistic to
order/rank the hypotheses and t is a threshold for adjusting multiplicity. In Section 3.1,
we study how to improve the ranking by exploiting the spatial pattern and constructing
structure{adaptive weights to adjust the p-values. Further intuition and connections to
existing work are discussed in Section 3.2. In Section 3.3, we address the threshold issue
and illustrate the superiority of the proposed weighting strategy. Throughout this section
we assume that the local sparsity level (s) is known. The setting with unknown sparsity

structure is considered in Section 4.

3.1 Incorporating sparsity structure by adjusting the p-values

To motivate our weighting strategy, consider the following covariate{adjusted mixture

model under the independence assumption
X (s) "f(xjs) = f(1 (s)gfo(xjs) + (s)f1(xjs); (3.1)

where the covariate s encodes useful side information, fo(xjs) and f1(xjs) are the null and
non-null densities, (s) is the sparsity level and f(xjs) is the mixture density. Ignoring the
inhomogeneity captured by the covariate s, Model (3.1) reduces to the widely used random

mixture model (Efron et al., 2001; Newton et al., 2004; Sun and Cai, 2007)
X(s) "F(x) = (1 )fo(x)+ fi(x): (3.2)

Dene the conditional (or covariate{adjusted) local false discovery rate

f(1 (S)gfo(XJS):

CLfdr(xjs) = Pf(s) = 0jx;sg = fixjs)
Xjs

(3.3)

It follows from the optimality theory in Cai et al. (2019) [Section 4.1] that under Model
(3.1), the CLfdr thresholding rule is optimal in the sense that it maximizes the ETP subject
to the constraint on FDR.

However, CLfdr cannot handle dependent tests. Under the spatial setting, we aim to



develop weighted p-values to approximate the optimal ranking by CLfdr. Let

1 (s) folxjs).

Xjs) = —-: 3.4
(gs) (5)  filxs) 3.4

Then CLfdr = =(+ 1) is monotone in . The inspection of (3.4) reveals that whether
(s) = 1 should be decided based on two factors: (a) the information of the sparsity

structure that reects how frequently signals appear in the neighborhood, i.e. (15)(5); (b)

the information exhibited by the data itself that indicates the strength of evidence against

. fo(xj is) . .
the null, i.e. f‘l’—(&% The term ;f((:f:)) is extremely dicult to model and calculate, we

propose to replace it by the p-value, which also captures the evidence against the null in

the data. Combining the above concerns, we dene the weighted p-values:

s) = min1 s)p(s); 1= min ; Lp$sd S; (3.5)

(s P, w(s)’

where w(s) = 1(5()5). Similar to (3.4), the weighted p-values (3.5) combines the structural

information in the neighborhood and evidence of the signal at a specic location s.

3.2 Intuitions and connections to existing weighting methods

Weighting is a widely used strategy for incorporating side information into FDR analyses
(Benjamini and Hochberg, 1997; Genovese et al., 2006; Roquain and Van De Wiel, 2009;
Basu et al., 2018). Unlike other methods where the side information is acquired externally
through domain knowledge or prior data, our inference aims to utilize the spatial informa-
tion, which encodes the intrinsic structure of the collected data. The spatial structure is

eectively incorporated into inference via w(s) = (15)(5). The key structural assumption,

which is suitable for a wide range of applications, is that the local sparsity level (s) varies
smoothly in s. Our proposed LAWS procedure employs a kernel screening method to esti-
mate (s) by pooling information from points close to s. It eectively takes into account
important local patterns such as spatial clusters in a data-adaptive fashion. For example,
suppose there are many signals in the neighborhood of s, then LAWS tends to produce a
large estimate of (s), thereby up{weighting the p-values in the neighborhood.
The SABHA algorithm by Li and Barber (2019) adopts a dierent set of weights



S

wO(s) =T1(‘)~ Under Model (3.2), SABHA reduces to the methods in Benjamini and
Hochberg (2000); Genovese and Wasserman (2002); Storey (2002), who suggested applying
BH procedure to adjusted p-values (1 )p(s). These works showed that exploiting the
global sparsity structure can improve the power of BH by raising the FDR from (1 )
to the nominal level . The ideas in SABHA and LAWS further illustrate that exploiting
the local patterns can improve the eciency even more dramatically; the idea is formalized in
our theoretical analysis in Section 3.3. Compared to the SABHA weight w®(s) = 1 @Tleur
weight w(s) = (#ean separate clustered non-null p-values more eectively; this is
intuitively justied by the connection to the optimality theory (3.3) and conrmed by
our simulation studies. Moreover, the motivation, interpretation and estimation of our
weighted p-values are all fundamentally dierent from the weights in Hu et al. (2010); Xia
et al. (2019), which are developed under the group setting.

Finally, we stress that w(s) only captures the sparsity structure, and the amplitude

and variance structures of the underlying spatial process, which is subsumed in the ratio

fo(xijs)
f1(xjs)’

has been intentionally discarded when constructing our weights. This leads to a
much simpler and theoretically sound methodology. It remains an open question regarding
the information loss when suppressing other structural information in the proposed weights.
The heterogeneity issue and the derivation of optimal weighting functions are highly non-
trivial (Pema et al., 2011; Ignatiadis et al., 2016; Habiger, 2017; Habiger et al., 2017). Note
that existing methods are already very complicated for the independent tests and it would

require substantial eorts to extend these methods to the spatial setting.

3.3 A theoretical analysis of ranking

This section demonstrates the benet of weighting. Let V(t) = fV(s;t) : s 2 Sg denotea class
of testing rules where V(s;t) = Ifp¥(s) tg, and pY(s) = min 5(3’, 1 with v(s)
being the pre-specied weight. Consider the covariate{adjusted p-value mixture model
(2.2). It is shown in Proposition 2 of Appendix C that, under mild conditions, the FDR of
V(t) can be written as

>
s2sfl  (s)gv (s)t

s2sf1  (s)gv(s)t+ i 24s)G fv{s)thg

FDRfY(t)g = QY(t)+ o(1) = o(1): (3.6)

10



The power of V(t) is evaluated using the ETP

X
fY(t)g = (s)Gifv(s)tjsg:
s2S
To focus on the main idea, we derive the oracle FDR procedure under an asymptotic
setting, which uses the leading term QV(t) in (3.6) to approximate the actual FDR. Dene the

oracle threshold ty; 2 supft : Q¥(t) g. Then the oracle procedure is

OVR v(tOR)V: [prV(s) tORg %2 S]

Next we demonstrate that the weighted p-values p%¥(s) dened in (3.5) produces better
ranking than the unweighted p-values. Our basic strategy is to show that at the same FDR
level, thresholding (oracle) weighted p-value always yields larger ETP than unweighted p-
values. Consider two sets of weights fv(s) = 1:s 2 Sg and fv(s) = w(s) : s 2 Sg. The
asymptotic FDR and ETP of 1(t) and W(t) are denoted by Q1(t), Q%(t), 1(t) and W(t).
The corresponding oracle procedures are dened as grl 1(tgyg) and g Witogr). The Wext

theorem shows that ,; uniformty dominates . 1

P
2s (8)
Theorem 1 Assume that Eiszsfl g

concave and the function x | Gi(t=xjs) is convex for ming;sw 1(s) x maxssw (s),

1. For each s 2 S, if the function t! Gj(tjs) is

then we have

(a)QW(tloR) Ql(to%) ; (b) ™(tBRr) W(tloR) 1(t10R):

s2s (5)

_ p
Condition E e

1 in Theorem 1 is mild. It only requires that the expected

number of alternative hypotheses is smaller than or equal to the expected number of null
hypotheses. The condition corresponds to the notion of sparsity that holds trivially in most
practical situations. By Theorem 1, we conclude that the superiority of 5 z"over 4 is due
to the improved ranking via weighted p-values since with the same threshold t}, we

simultaneously have Q% (t};) Q(tya) and  W(thR) L(thR).

11



4 Spatial Multiple Testing by LAWS

This section discusses a locally adaptive weighting and screening (LAWS) approach to
spatial multiple testing. To emulate the oracle procedure 3%, we need to estimate two
unknown quantities: the sparsity level (s) and threshold t¥;. We rst develop a nonpara-
metric screening approach for estimating (s) in Section 4.1, then propose a data-driven
procedure to approximate t§; in Section 4.2, and nally establish the theoretical properties

of LAWS in Section 4.3.

4.1 Sparsity Estimation via Screening

The direct estimation of (s) is very dicult. We instead introduce an intermediate quan-

tity to approximate (s):

(s)=1 — 2 0< < 1: (4.1)

We rst present some intuitions to explain why (s) provides a good approximation to (s), then
describe a screening approach to estimate (s) and nally establish the theoretical properties
of the proposed estimator.

The relative bias of the approximation can be calculated as

(s) (s) 1 Gi(js) (s)
1

This result has two implications. First, the bias is always negative, which desirably leads
to conservative FDR control as we show in Theorem 2. Second, as becomes larger, we
expect that the null p-values will become increasingly dominant in the right tail area [; 1)

compared to the non-null p-values, making the rati 11 Ga(js)

very small. Hence (s)
provides a good approximation to (s) with a suitably chosen .

We now describe two key steps in estimating (s): smoothing and screening. In the
smoothing step, we exploit the structural assumption that (s) [thus (s)] varies as a
smooth function of spatial location s. In reality we only have one observation at location s.

To pool information from nearby locations, we use a kernel function to assign weights to

observations according to their distances to s. Specically, for any given grid S on S RY,

12



let K : R4 ! R be a positive, bounded and symmetric kernel function satisfying

z Z z

K(t)dt = 1; tK(t)dt = O;
d

t'tK(t)dt < 1:
Rd R d

R

Denote by Kn(t) = h 1K(t=h), where h is the bandwidth. At location s, dene

Kn(s s9).

< n(0) (4.2)

v, (s;80) =

forall s, 2 S. Under the spatial setting, K, (s s0) is computed as a function of the Euclidean

distance ks sk and h > 0 is a scalar. Now consider the quantity ms = Psozs Vh(s; s®). We
can conceptualize mg as the \total mass" (or \total number of observations") at location s.
This is a key quantity in our methodological development. Thus, the smoothing step
utilizes the spatial structure to calculate ms by borrowing strength from points close to s
while placing little weight on points far apart from s.

Next we explain the screening step. Motivated by (4.1), we rst apply a screening
procedure with threshold to obtain a subset T () = fs 2 S : p(s) > g. Suppose we are
interested in counting how many p-values from the null are greater than among the m;

\observations" at s. The empirical count, which assumes that the majority cases in T ()

come from the null, is given by

P 0
027 Vh(s;s7): (4.3)

By contrast, the expected count can be calculated theoretically as
P 0
f 0,5 Vh(s;s%)gfl  (s)g(1 ): (4.4)

Setting Equations (4.3) and (4.4) equal, we obtain the following estimate

arVh(s;s®)
(1 ) s Qs Vh(§,o)

As)=1 (4.5)

Next we justify the estimator (4.5) by showing that ~(s) converges to (s) for every
s2SasS! S byappealing to the inll{asymptotics framework (Stein, 2012), where the grid
S becomes denser and denser in a xed and nite domain S 2 RY. For each s 2 S, let min(s)

and max(s) respectively be the smallest and largest eigenvalues of the Hessian

13



matrix P(2)(p(s) > ) 2 R99. We introduce the following technical assumptions.

(A1) Assume that () has continuous rst and second partial derivatives and there exists

aconstant C > O that C min(S) max(s) C uniformly for all s 2 S.

P P
(A2) Assume that Var( ,s!fp(s) > g) co s> Var(Ifp(s) > g) for some constant co
> 1.

Proposition 1 Under (A1) and (A2), if h jSj 1, we have, uniformly for all s 2 S,
Efa(s) (s)g®?! 0; asS! S:

Remark 1 Assumption (A1) is a mild regularity condition on the alternative CDF Gi(js).
(A2) assumes that most of the p-values are weakly correlated and it can be further re-
laxed with a larger choice of the bandwidth. For example, with the common choice of

h jSj 17, by the proof of Proposition 1, we can relax (A2) to \Var(P525 Ifp(s) > g)
cojsjc P s2s Var(Ifp(s) > g) for some constant c < 4=5", which allows the p-values to be

highly correlated.

4.2 Data-driven procedure

This section describes the proposed LAWS procedure for FDR control. Dene the locally

adaptive weights
A(s

wW(s) = 1 s2S; (4.6)

A s);
where 7 (s) is estimated by the screening approach (4.5) [the tuning parameter has been

suppressed in the expression]. To increase the stability of the algorithm, we take ~(s) = (1
) if A(s) > 1 and take A(s) = if A(s) < with = 10 >. Next we order the weighted p-
values from the smallest to largest. If (s) is known and the threshold is given by t,,, then the

expected number of false positives (EFP) can be calculated as

X X
EFP = PfpY(s) twj(s)= 0gPf(s)=0g= (s)tw: (4.7)
s2S s2S

P
It follows that if j hypotheses are rejected along the ranking, then we expect that ¢ "(s)p(‘ﬁ

P
rejections are likely to be false positives. It follows thatj 1 _,¢ "(s)p‘("J?) provides a good

14



estimate of the false discovery proportion (FDP). The following step-wise algorithm selects

a threshold to maximize the number of rejections subject to the FDP constraint.

Algorithm 1 The LAWS Procedure

1: Order the weighted p-values from the smallest to largest p(‘f); ;p(m)‘gnd denote cor-
responding null hypotheses H(1); ; Him)-
n 0
2 Let kW= max j:j 1 (5 "(s)p‘fj) :3:

Reject H(l)/ ,H(kW)

Consider the special case where A(s) = ” for all s2 S. Then LAWS coincides with the
SABHA (Li and Barber, 2019), and both recover the methods in Benjamini and Hochberg
(2000); Storey (2002); Genovese and Wasserman (2002), which are essentially equivalent to
applying the BH algorithm to the adjusted p-values (1  7)p(s). However, the ranking by
LAWS is substantially dierent from SABHA when (s) are heterogeneous. Our simulations
show that LAWS is more powerful than SABHA and the power gain can be substantial in
many settings. Moreover, SABHA does not provide a systematic way to estimate (s). It
also requires preordering or grouping of the hypotheses, which is not suitable for handling

higher-dimensional spatial settings.

4.3 Theoretical properties

This section studies the theoretical properties of the LAWS procedure. Dene the z-values by

z(s)= 1 p(s)=2), for s 2 S, and let m = jSj. Arrange fs 2 Sg in any pre-specied

below several regularity conditions for the asymptotic error rates control. In spatial data
analysis with a latent process f(s) : s 2 Sg, the dependence among p-values may come from
two possible sources: the correlations among p-values when (s) are given and the
correlations among (s). Our conditions on these two types of correlations are respectively

specied in (A3) and (A4).

(A3) Dene (ri;j)mm = R = Corr(Z). Assume maxii<jm jri;jj r < 1 for some

2The actual order would not aect the methodology or theory as the weights are fully determined by the
spatial structure. We only need an ordering for characterizing the dependence structure between all pairs of
p-values.
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constant r > 0. Moreover, there exists > 0 such that max;.(s;)-0g J i()j = o(m) for

some constant 0 < < Wwhere () =fj :1j m;jrij (logm) 2 g.

1+r7

(A4) Under Model (2.3), there exists a suciently small constant > 0, such that (s) 2 [;1
], and that Var Pszs If(s) = 0g = O(m*) for some constant 0 < 1.

(A5) DeneS = i:1 i m;jij (logm)**)=2 ; where; = E(z;). For some > 0and some >

0, jSj [1=(*2) + ](log m)1=2, where 3:14 is a math constant.

Remark 2 Condition (A3) assumes that most of the null p-values [i.e. given that (s) =
0] are weakly correlated. The condition can be fullled by a wide class of correlation
structures because (i) it still allows each p-value to be highly correlated with polynomially
growing number of other p-values under the null and (ii) we do not impose any conditions
on the correlation structures of the p-values under the alternative. Condition (A4) only
assumes that the latent variables f(s) : s 2 Sg are not perfectly correlated. It allows
highly correlated (s) so is a rather weak condition. In the case where (s) are mutually
independent, (A4) is satised trivially with = 0. Condition (A5) is mild, as it only
requires that there exist a few spatial locations with mean eects of z-values exceeding

(log m)(1+)=2 for some > 0.

Our theoretical analysis is divided into two steps. We rst consider the setup where (s)
is known (Theorem 2) and then turn to the case where (s) must be estimated (Theorem

3). Dene the FDP of a decision rule V(t) by

P
FDPF {t)g = ~ssfl (s)g¥(sit)
g maxf’ ,5V(s;t); 18
We rst take vis) as wis) = (mihkh known (s). Then similar to Algorithm 1, we order

the weighter? p-values from the smallesg to largest p(l); ; pf
P
<25 (s)p(j)W . The corresponding decision rule, denoted W W P(kw)

m)’ aMd calculdte kW = max j :j

1
n o
, is to*feject Ho(s) with p%¥(s) P (kw) - w
Let Hg be the set of null hypotheses and H; be the set of alternatives. Without loss of
generality, we assume that mg = jHgj c¢m for some ¢ > 0. (Otherwise we could simply reject
all the hypotheses, and the FDR would tend to zero.) The next theorem shows that W

controls both the FDP and FDR at the nominal level asymptotically under dependency.
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Theorem 2 Under Conditions (A3) - (A5), we have for any > 0
lim FDR(Y) ; and lim PfFDP(W) + g= 1:
m!1 m!1

Remark 3 The decision rule W is dened based on the weight w(s) = lﬂf)ﬁwhere (s) is a

conservative approximation of (s) as explained in Section 4.1. Theorem 2 shows that the use

of (s) instead of (s) leads to conservative error rates control.

The next theorem establishes the theoretical properties of the data-driven LAWS pro-
n o
cedure (Algorithm 1, with decision rule denoted by W ¥ p""w) “), which utilizes the

estimated weights via (4.5).

Theorem 3 Under the conditions in Proposition 1 and Theorem 2, we have for any > 0

lim FDR(Y) ; and lim P(FDP(¥) + )= 1:
SIS SIS

5 Simulation

This section conducts simulation studies to compare the proposed LAWS procedure with
several competing methods. The implementation details are rst described in Section 5.1.

Sections 5.2 and 5.3 respectively consider linear block and triangle block patterns. The
applications to higher dimensional settings (2D and 3D) for identifying more complicated

spatial patterns are illustrated in Section 6.

5.1 Estimating the conditional proportions

The proposed estimator (4.5) captures the sparsity structure and plays a key role in con-
structing the weights. This section rst discusses its implementation and illustrates its
eectiveness. To create the screening subset T, we choose as the p-value threshold of
the BH procedure at = 0:9. This ensures that the null cases are dominant in T. See
Appendix B for a more detailed discussion on the bias-variance tradeo when calibrating
. The bandwidth h is set using the \h.cvv" option in the R package kedd.

Next we investigate the performance of A using simulated data. We generate m = 5;000
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hypotheses from the following normal mixture model:
Xiji Of ON(0; 1)+ iN(; 1); . Bernoulli(;): (5.1)

We consider two setups under which the signals appear with elevated frequencies in the
following blocks [1001; 1200]; [2001; 2200]; [3001; 3200]; [4001; 4200]. The patterns of (s),
which are piecewise constants and triangle blocks, are shown in the top and bottom rows
in Figure 1 (solid red lines), respectively. We can see that the varying sparsity structure of
the spatial data can be reasonably captured by the estimated *(s) (dashed blue lines). As
predicted by theory, our estimated ~(s) tend to be smaller than true (s) within the blocks
where signals are observed with elevated frequencies. The underestimation of (s) leads to

conservative FDR levels. This is conrmed by the simulation in the next section.

Linear Block

T
|

OES

Tts
0.4

0.0

I I I I I
0 1000 2000 3000 4000 5000

s

Triangle Block

NN A A

1
1 000 2000 3000 4000 5000

S

0.‘8

Tls
0.4

0.0

Figure 1: True ¢ (solid lines) vs estimated ”¢ (dashed lines). Top row: piecewise constants;
bottom row: triangle blocks.

5.2 The block{wise 1D setting with piece-wise constants

This section compares LAWS with competitive methods. Similar to the previous section,
we generate data from (5.1) under the setup where (s) is a piecewise constant function

(top row of Figure 1). The following methods are applied to the simulated data:

e Benjamini-Hochberg procedure (BH);
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e SABHA with known (s) (SABHA.OR);

e data-driven SABHA with estimated *(s) (SABHA.DD);
e LAWS with known (s) (LAWS.OR); and

e data-driven LAWS with estimated ~(s) (LAWS.DD).

We stress that our proposed estimator (4.5) has been used to implement SABHA. The
SABHA paper does not provide an estimator of (s) with proven theoretical properties. The
inclusion of SABHA is to illustrate the superiority of the LAWS weight w(s) = (s)=f1
(s)g over the SABHA weight 1=f1 (s)g. The FDR and average power [dened as
E fPSZS (s) ( s) = 5 (s)g] of dierent methods are computed by averaging over 200
replications, and the nominal level is chosen at = 0:05. The simulation results are

summarized in Figure 2.

In the top row, the signals appear with elevated frequencies in the following blocks:
(s) = 0:9 for s 2 [1001;1200] [ [2001;2200]; (s) = 0:6 for s 2 [3001;3200] [ [4001;4200]:

For rest of the locations, we have (s) = 0:01. We vary from 2 to 4 to investigate the
impact of the signal strength. In the bottom row, we x = 2:5. We let (s) = ¢ in the above
specied blocks and (s) = 0:01 elsewhere. Then ¢ is varied from 0.3 to 0.9 to investigate the
impact of sparsity structure.

We can see from Figure 2 that all methods control the FDR at the nominal level, with
LAWS.DD being conservative due to the underestimation of (s) in the linear blocks (see also
Figure 1). LAWS.OR substantially outperforms SABHA.OR, showing the superiority of the
LAWS weight. Similarly, LAWS.DD outperforms SABHA.DD. Both LAWS and SABHA,
which exploit the varying sparsity structure, outperform BH. This illustrates the benets of
incorporating side information into inference. Finally, we can see that the
eciency gain of LAWS over competing methods is more pronounced when the signals are
relatively weak (top row of Figure 2). This shows the advantage of LAWS, which
integrates information from nearby locations via the weighted kernel. Moreover, the power
improvement by LAWS is greater when the signals are more concentrated in the designated

blocks (bottom row of Figure 2). This is consistent with our intuition since larger o
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Figure 2: FDR and Power comparisons: the linear block pattern.

indicates greater disparity among spatial locations (and hence more informative spatial

structure).

5.3 The block{wise 1D setting with triangular patterns

We generate data from (5.1) under the setup where (s) follows a triangular block pattern;

see the bottom row of Figure 1 for an illustration. We apply BH, SABHA.OR, SABHA.DD,
LAWS.OR and LAWS.DD to the simulated data and summarize the results in Figure 3.
Similar as before, in the top and bottom rows we respectively vary the signal strength and
sparsity levels. We can see that the power of BH is improved by SABHA, which is further
improved by LAWS. The proposed method is in particular useful when the signals are weak

and the structural information is strong in the spatial data.

5.4 Simulation in 2D setting

This section presents simulation results in the 2D setting. We did not compare with SABHA
and STAR because (i) the original SABHA algorithm cannot be implemented since it is

unclear how to order the hypotheses as a xed sequence or divide them into groups; (ii) the
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Figure 3: FDR and Power comparisons: the triangular block pattern.

STAR algorithm does not work in one of our settings where the underlying shape is not a
convex region. Instead, we compare with the FDR smoothing method proposed in Tansey
et al. (2018) (\Tansey" in short) for exploiting spatial structure in large multiple-testing
problems.

We generate the data by Model (5.1) on a 200 200 lattice, where the signals are more
likely to be located on a double-triangle or a rectangle shape as shown in Figure 4. We let
(s) = 0:9 for the left triangle and left half of the rectangle respectively, (s) = 0:6 for the
right triangle and right half of the rectangle and let (s) = 0:01 for the rest of the locations.
Similarly as in the 1D setting, we rst vary from 2:5 to 4 to investigate the impact of the
signal strength. We then x = 3, let (s) = o in the triangle and rectangle patterns, (s) =
0:01 for the rest, and vary o from 0:6 to 0:9 to illustrate the impact of sparsity structure.
The empirical FDR and power are computed over 200 replications with nominal level = 0:05.

We can see from Figures 5 and 6 that, all methods except Tansey controls the empirical
FDR well and LAWS.DD is slightly more conservative than LAWS.OR due to the negative

bias of as explained in Section 4.1. By successfully incorporating the spatial information,
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Figure 4: 2D triangle and rectangle pattern.

the empirical power of BH has been signicantly improved by LAWS.OR and LAWS.DD
for varying signal strengths and sparsity levels. The improvement is more signicant when
the signals are weaker or the sparse structure is more informative. Note that, due to the
seriously inated empirical FDRs, Tansey has higher empirical power than the competing

methods.

5.5 Simulation in 3D setting

We compare in this section the numerical performance of LAWS.DD and LAWS.OR with
Tansey and the BH method in 3D spatial settings. The data are generated by Model (5.1)
on a 3D 20 25 30 lattice, where the signals are located on a cubic with dimension
10 10 15. We let (s) = 0:8 within the cubic and let (s) = 0:01 for the rest of the
locations. To show the impact of the signal strength and the impact of sparsity structure,
we vary and (s) (x = 3:5 for the latter) in the same way as the 2D settings. The
empirical FDR and power are computed over 200 replications with nominal level = 0:05.
We see from Figure 7 that, similarly as 1D and 2D settings, all methods except Tansey
control the FDR and LAWS.DD is slightly more conservative than LAWS.OR; the empirical
power of BH is signicantly improved by LAWS.OR and LAWS.DD for dierent signal

strengths and sparsity levels.
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6 Applications

This section applies LAWS to identify 2D spatial clusters (Section 6.1) and signal patternsin
3D image data (Section 6.2). LAWS has several advantages over existing structure{adaptive
testing methods. For example, SABHA requires that the hypotheses can be divided into
groups or should be ordered as a xed sequence, which are not always feasible in 2D and
3D spatial applications. By contrast, LAWS constructs weights based on the distance
between spatial locations (4.2) and can easily handle higher dimensional spatial settings.
Unlike the STAR procedure (Lei et al., 2017) which requires that the spatial region must
be contiguous and convex, LAWS is applicable to a wider types of settings where the local
sparsity patterns are heterogeneous. We present two examples to show that LAWS is more
accurate and eective in identifying and recovering specic patterns of interest in analysis

of 2D and 3D image data.

6.1 The 2D setting with spatial clusters

We simulate data on a 200 200 lattice. The signals of interest form two spatial clusters

respectively with donut and square shapes. The observations follow the random mixture
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model (5.1), where (s) = 1 if s is within the donut or square and (s) = 0 otherwise. We rst
obtain A(s) using (4.5), where ks s%k is calculated as the usual Euclidean distance. We then
obtain two-sided p-values and nally apply both BH and LAWS to the simulated data set.
From the rst to last row, we vary the signal strength from 2.0 to 3.0. The true states, and
the rejected locations by BH and LAWS are respectively displayed from Column 1 to Column
3.

We can see that LAW is more powerful than BH in uncovering the underlying truth.
Both spatial patterns, namely the donut and square, can be more easily identied based on the
results of LAWS. The key idea is that *(s) tend to be very large in the neighborhood of
clustered signals (yellow areas) due to the strong spatial correlations. Therefore the p-
values in these neighborhood are upweighted via data-driven weights. We conclude that by
exploiting the local sparsity structures, LAWS is more eective in rejecting the hypotheses in
regions where signals appear in clusters. This property is in particular attractive in

spatial data analysis.

6.2 The 3D setting: application to fMRI data

We further illustrate the LAWS procedure through a magnetic resonance imaging (MRI)
data for a study of attention decit hyperactivity disorder (ADHD). The dataset is available
athttp://neurobureau.projects.nitrc.org/ADHD200/Data.html. The images were pro-
duced by the ADHD-200 Sample Initiative, then preprocessed by the Neuro Bereau.

We rst reduce the resolution of MRI images from 256 198 256 to 30 36 30
(Li and Zhang, 2017) by aggregating the corresponding pixels into blocks. This helps the
analysis in several ways. First, the aggregation of pixels not only increases the signal to
noise ratio but also eectively avoids misalignments of brain regions. Second, the p-values,
which are calculated based on normal approximations, should satisfy the required accuracy
needed in the large p small n paradigm (Fan et al., 2007; Liu and Shao, 2010; Chernozhukov
et al., 2017). The downsizing helps to increase the precision of the approximations. Finally,
the aggregation can eectively eliminate noises and make it easier to visualize interesting
spatial patterns.

The dataset consists of 931 subjects, among whom 356 are combined ADHD subjects

and 575 are normal controls. We conduct two-sample t-tests to compare the two groups
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Figure 8: Spatial FDR Analysis in 2D setting. LAWS is more eective in revealing the
donut and square shapes by up-weighting the p-values in the regions where signal appearin
clusters.
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and use normal approximation to obtain the p-values. Finally, we apply LAWS and BH
procedures to identify brain regions that exhibit signicant dierences between subjects

with and without ADHD.

(a) LAWS (b) BH

(c) LAWS (d) BH

Figure 9: Signicant brain regions (yellow) after applying LAWS (left) and BH (right), view
with azimuth and elevation angles ( 35; 65) on top row and (35; 80) on bottom row.
FDR level = 0:05.

Figure 9 displays the testing results from two dierent angles of the 3D image, with
FDR level equal to 0:05. The signicant brain regions identied by BH are a subset of those
identied by LAWS. To be more specic, the LAWS procedure identies 538 regions, while

BH recovers 349. The graph further shows that LAWS has superior power performance
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over BH in identifying spatial signals.

7 Discussions

This paper develops a new locally-adaptive weighting approach that incorporates the spatial
structure into statistical inference. It provides a unied framework for a broad range of
spatial multiple testing problems and is fully data-driven. We show that LAWS controls
the FDR asymptotically under dependence and outperforms existing methods in power.
LAWS is powerful yet simple. It is capable of adaptively learning the sparse structure
of the underlying spatial process without prior knowledge. The spatial locations are viewed
as auxiliary variables for providing important structural information to assist inference.
However, as explained in Section 3.1 of the paper, there are two pieces of information that
could potentially be useful in spatial setting: the varying sparsity structure that we have
considered, and the varying distributional information that we have replaced by individual
p-values. Such replacement may lead to certain information loss which requires further
investigation. The estimation of the distributional information is challenging and compu-
tationally intensive. Substantial work is needed to extend existing methods to the spatial
setting; such analysis is beyond the scope of the current paper. The development of more
powerful weighting strategies to incorporate other types of side information is an interesting

and important direction for future research.
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Supplementary Material for “LAWS: A Locally Adaptive
Weighting and Screening Approach To Spatial Multiple
Testing”

We first prove the main results in Section A. Additional explanations for the variance-

bias tradeo< in choosing B and Equation (3.6) are provided in Sections B and C, respectively.

A Proofs of Main Results

A.1 Proof of Theorem 1

Proof: Note that

P ~
DsZS(l F(s))t
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as(1 Mshte 22 BT [0 s)Ga{w(s)t]s)]
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Because t | Gq(t|s) is concave and x ! Gy(t/x|s) is convex for minssw 1(s) B x
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1 i iti P 525 '(5))
maxsys W 1(s), together with the condition that _stn_ﬂs_rl 1, we have
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Thus, take t = tl;, we have
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Hence, we have t¥,  tdr, which yields that

w(tér)  wltor)  a(tog)-
This concludes the proof of Theorem 1. |

A.2 Proof of Proposition 1

Proof: Note that, by the definition of vi(s, s°),

0 P 0
5021, Vh(S,S°) so21, Kn(s s%)

1T ) L0,5Vh(5,5°) (I B) .,5Kn(s s

1 1%s) = (

Thus, uniformly for all s 2 S, we have

iox &x
E Kn(s s = E [Kn(s s)I{p(s®) > B}
5027y x 502
= [Kn(s  s°)P{p(s®) > @}
s02S

Under the conditions of the proposition, the eigenvalues of the Hessian matrix P(2)(p(s) > @)
2 R9~d are bounded from above and below, namely, we have C B min(s) B max(s) E@C, for
all s2 S. Furthermore, 72(s) is bounded, and thus the entries of the first derivative vector are

also bounded. Hence, by multivariate Taylor expansion, we have

Z

Kn(s sO)P(p(so) > @)ds°

s z z
= P(p(s)> @) Kn(s s9)ds®+ v’ >

7 s S
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where v = (vy,...,vy)" satisfies vj = O(1) forj = 1,...,d. It follows that, as S! S in the

P
summation o5,

R
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Thus, we have, uniformly for all s 2 S, there exists some constant ¢ > 0,
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We next show the variance term. Note that, for some constant ¢, > 1,

X ix
Var Kn(s s = wvar [Kn(s sO){p(s°) > @}
s02Tp X s02S
¢ [Ki(s  sOP{p(s®) > B}1 P{p(s°) > B})].
s02S

>
Thus, as S! S in the summation (0,5, We have,
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for some constants coo,c‘m > 0, where the last inequality comes from the fact that K(-) is

positive and bounded. Combining (A.2) and (A.3) and letting |S| ! 1 and thus h !
R R

0, by the conditions that the domain S is finite, o K(t)dt = 1, _4tK(t)dt = 0 and

R
R, tTtK(t)dt < 1, Proposition 1 is proved. 1

A.3 Proof of Theorem 2

Proof: We first introduce the following procedure in order to prove the theorem.

Procedure 1 Calculate the weights as

( ),
X a%s]) o mtRs)

Te *0(g)’
szs1 tls 1 79(s)

s2S (A.4)

W(s) =

For hypothesis Hg(s) : v (s) = 0, define adjusted p-values as p%¥(s) = min{p(s)/W(s), 1}.

Apply the BH procedure at level ¢ to all adjusted p-values.

The following lemma develops the theoretical property of Procedure 1 for each realiza-



tion of {V(s),s 2 S}.

Lemma 1 Under Conditions (A3) and (A5), and assume that, there exists a su ciently

small constant «- > 0, such that ?¥(s) 2 [¢-,1 ¢-], then we have
mrml FDRprocedurer @ ¢, and m“rnl P(FDPprocedurer @ ¢ + =) = 1.

for any = > 0.

We remark here that, from the proof of Lemma 1, by replacing t?(s) by *(s) in Procedure
1, Lemma 1 still holds under the conditions of Proposition 1.
Now we prove Theorem 2. We first note that, by the proof of Lemma 3 in Xia et al.

(2019), Algorithm 1 is equivalent to the following algorithm.

Algorithm 2 An equivalent LAWS Procedure
1: Estimate the FDP by

P
D 52(5 A(s)t

EDPy(t) = max{ .,s| p¥(s)Bt),1}

(A.5)

n o
2: Obtain the data-driven threshold t, = sup, t:HADPy(t) B¢

3: Reject Ho(s) if p¥(s) B ty.

Thus, in the oracle case when {#(s),s 2 S} are known, the corresponding oracle FDP

and its conservative estimator can be equivalently written by

>
s2H, | (PY(s) Bt)
max{Rw(t), 1}

5251 (st
max{R ,(t), 1}’

FDP(t) = , EDPy(t) = (A.6)

P
where Ry (t) =  (,¢ I(pY¥(s) @ t) denotes the oracle total number of rejections with the
n

o
threshold t, and w(s) = ; EEP(@S}. Define the oracle threshold ty, = sup, t: FDPy (t) B¢ .The

oracle decision rule Y(t) is then equivalent to reject Ho(s) if p¥(s) @ ty, and we have

that FDPy (tw) = FDP[ “{p{}].
Based on the definition of ty, to prove Theorem 2, it is enough of show that, uniformly

forallt ty, p
s2s[l(PY(s)Bt,V(s)= 0) ci(s)
- B1(s)t
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in probability, for some constant 0 < c @@ 1.
Note that the weights in the oracle procedure and the weights in Procedure 1 are pro-

portional. Thus the adjusted p-values {p%¥(s),i= 1,...,m}and {gW(s),i = 1,..., m} have

'.‘(S

P
exactly the same order, with p%¥(s) = p%¥(s)m 1 $2S Tl_*_%iy Also note that Procedure 1

£

is equivalent to find

mt
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t

~ - P "
and reject the hypothesis Ho(s) if p“(s) < tw. By lettingt= m( ,¢ ) 1t, we have
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and thus the threshold for p¥(s) in Procedure 1 is
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tl = sup{t:
t

Comparing the definition of t,, and tj}, it is easily to see that t,' B t,,. By the proofs of
Lemma 1, we have that, the threshold for the z-values corresponding to threshold of p-

values: tw,lis no larger than t.,, as defined in the proof of Lemma 1. We further learn from

the proofs of Lemma 1 that, for every realization of {V/(s),s 2 S}, uniformly for allt t,,

1
asm! 1,

P
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in probability. Note that, by Condition (A4),
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in probability, where {V(s),s 2 S} in the above equation represent random variables as

modeled in (2.3). Thus we have

P
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in probability. Note that
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Thus we have that, uniformly for all t t}, there exists a constant 0< cB1,asm! 1,

p
szs['(PW(S)P t,V(s)= 0) c?(s)t]
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in probability. This concludes the proof of Theorem 2.

A.4 Proof of Theorem 3

Proof: As shown in the proof of Theorem 2, the data-driven decision rule ¥(t) is equivalent
to reject Ho(s) if p*{s) @ ty, and we have that FDP(ty) = FDP| W{pwm}].
Similarly as the proof of Theorem 2, based on the proofs of Lemma 1 and Condition

(A4), we have that

P i ~
_as(I(p¥(s) B, V(s) = 0) P(p¥(s) Bt, V(s) = 0))
25 P(PY(s) B L, V(s) = 0)

in probability, uniformly for all t  t},, where t}, is defined as in the proof of Theorem 2, by
replacing T2(s) by %(s) in Procedure 1. Recall that 1?(s) = 1 . and that the bias
of 1 7%(s) is always non-negative. By Proposition 1 and the fact that t?(s) 2 [¢,1 -]

for some su ciently small constant «<- > 0,

X X
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where o(1) in the above equations are in the limit of S| S. Thus, based on Proposition

1, we have that, uniformly for all t t\,lv, there exists a constant 0 < c @1 such that

P .
s25(1(P¥(s) B, V(s) = 0) cH(s)t)
25 CT(s)t
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in probability. Namely, the data-driven procedure provides a more conservative FDR and

FDP control asymptotically. This concludes the proof of Theorem 3.

A.5 Proof of Lemma 1

We now prove Lemma 1 below. We let p%(s) = p%¥(s) in the proof of this lemma for notation
P
simplicity. We arrange {s 2 S} in any order {s1, ..., Sm} and note that /(s1)=0 P(zyw t)
. . P P
is equivalent to  /(5,)-¢'P(z; t|[V(s)= 0)and ; mP(z t,v(si) = 0) for a

given realization of the hypotheses, where z% = (1 pw(si)/2), fori=1,..., m. We first

show
that by applying BH to the weighted p-values controls FD R exactly under the independence
of z}V. We then prove that, in the dependent case, it performance asymptotically the same
as case when z}¥ are independent.

Let tm = (2logm  2loglogm)! 2. By Condition (A5), we have

{lzi]  (clogm)*2*/%}  {1/(1Y2¢)+ }log m)*/?,
Vi(si)=1

with probability going to one, for some constant ¢ > 0. Recall that we have w(s) =
P o 01
s2% 1 1nd t@(s) 2 [¢-,1 «-]. Thus, for those indicesi 2 Hq (equivalently

V(si) = 1) such that |z| (clogm)/2*~/4 e have

p¥(si) = p(si)/w(si)B(1  ((clogm)Y?*/%))/w(si) = o(m M),



for any constant M > 0. Thus we have

X
H{z¥  (2logm)Y2}  {1/(?Y2¢)+ }logm)Y 2,

i
1RIRmM

with probability going to one. Hence, with probability tending to one, we have

B 2172 1 1/ 2
| Ziw (2|Ogm)1 z}zm{l/(- <J)"’ } (Iogm) .

P

18iBm

Because 1 (tm) € 1/{(27)2tm}exp( t2/2), it su ces to show that, uniformly in

0Bt @ ty, there exists a constant 0 < c @ 1, such that

\/(si)=0|(z\iN t) cmoG(t)

I
cmoG(0) 10, (A.7)
in probability, where G(t) = 2(1 (t)).
We first consider the case when z¥ are independent with each other. Fori=1,...,m,
the ideal choice of the threshold t° for z}¥ in order to control the FDR is that
P I(z¥ 1)
. zY
0= inf{t 0, Y0 0L @ a}
wmem (29 1)
It is easy to show that, under independence of z;“,
P I(zW t) P P(z% t)
_o l(z, -
V(si)=0 i /(s1)=0 T l 0,asm! 1.
J(s)=0P(zV )
Thus a good estimate of t° can be written by
. =0 P(Z/ 1)
o= inf{t o, pLLs)=0 "1 B ). (A.8)

wem (2 1)

Since the spatial locations {s 2 S} does not change the null distribution of p-values, ac-
cording to Theorem 1 in Genovese et al. (2006), and by the fact that the original p-values

of the null hypotheses are uniformly distributed, the procedure by applying BH procedure



on the weighted p-values controls the FDR at level ¢mg/m. That is, if
k= max{i: p‘(“{) id/m},

where p‘(";) p(”":’) are the ordered weighted p-values, and we reject all k hypotheses

associated with p"{), . p"lz), then we have

P
D\/(s):o H(p¥(s) pni))
max{ igem [ (PW(s) B p), 1}

Bdm dm. (A.9)

By the definition of z\, it is equivalent to reject all k hypotheses with

2m(L (2))
i e

That is to find

R 2 1 t
t= infit o, p2M! t) 5oy (A.10)
[(z¥) t)

1EIEmM i

and reject all hypotheses with z . This yields that
P L]

oo H(ZYt
f pltsn=o!lZ ) B ¢mo/m.

wmem (2 1)

Hence, this procedure is more conservative than rejecting all hypotheses with z% t° as

defined in (A.8). Thus, there exists a constant 0 < c @ 1, such that, uniformly in 0 2 t & ty,,

>
\/(Si):() P(ZVIV t) CmoG(t)
cmoG(t)

I 0. (A.11)

Under Assumption (A1), that is, when the weighted z-values are weakly dependent with

each other, by the proof of Theorem 1 in Xia et al. (2019) and the fact that

1 {(cilogm+ ¢ Ioglogm)l/z}]/w(si)} = cplogm+ cyloglogm + c3,



for some constant cq, ¢z, c3, we have,

P
do-gll(z® 0 PEY )
l \/(Si)=OP(ZiW t)

0, (A.12)

in probability, uniformly in 0 @ t @ t,. By (A.11) and (A.12), (A.7) is proved and thus
Procedure 1 controls FDR and FDP asymptotically under dependency. This concludes the

proof of Lemma 1. 1

B Explanation of the bias-variance tradeo< in choosing

There is a bias-variance tradeo< in the choice of B in the proposed estimator 12(s). It is
easy to see that a large @ will simultaneously reduce the bias (desirable) and decrease the
sample size (undesirable).

To reduce the bias in the proposed estimator 12 (s), one needs to choose a relatively
large @ to ensure the “purity” of T(B) = {s 2 S : p(s) > @}, i.e. we wish to have a
screening set where majority of the cases come from the null. Although the common choice of
= 0.5 su ces in many situations, we propose a new scheme to carefully calibrate & that is
adaptive to the observed data. Let & be the threshold determined by the BH algorithm with
d = 0.9. Then roughly speaking, in the subset T (@) = {s 2 S: p(s) @@}, 90% of the cases
come from the null (e.g. the expected proportion of false positives made by BH). It is
anticipated that in the remaining set T (@) = {s 2 S: p(s) > @}, which is used to construct
our estimator, an overwhelming proportion(more than 90%) of the cases should come from
the null. In the simulation (say the 2D rectangle case), @ roughly ranges from 0.38 to 0.47
when we run BH algorithm at ¢ = 0.9. This data-driven scheme ensures the purity of the
screening set while maintaining a larger sample size compared to the standard choice of &

= 0.5.

C Explanation of Equation (3.6) in Section 3.3

In this section we justify the approximation in Equation (3.6). Denote V(t) = { V(s,t):

s 2 S} aclass of testing rules, where V(s,t) = I{pY(s) B t}, v(s) is the pre-specified weight
n o

p p
and pY(s) = min ’\’ﬂ(g},l . Denote by V (t) =, V(s,t)and R(t) = (,5 V(s,t). We

10



show that QV(t) provides a good approximation to the actual FDR level under the following
condition:

Var [R(t)/E{R(t)}] = o(1). (C.13)

We remark here that for a fixed threshold t > 0 and v(s) 2 [¢-,1 -] for a su ciently
small constant «- > 0, Condition (C.13) is satisfied if Var Pszs Hp(s) @t}/m = o(l).
This is a weaker condition compared to (A2) in Section 4.1. Hence the condition can be
fulfilled by both BH and LAWS under the general class of dependence structures being

considered in this article.

Proposition 2 Assume that Condition (C.13) holds, then we have

P

E Y(s, tjH

FOR( V(1)) = QU0 oft) = P 2t I o)
s2Hp ’ ’

1

Proof of Proposition 2: Note that R(t) = 0 implies V (t) = 0, hence we have

v e V(1) v V(O (1)> 0]
FDR{ Y(t)}=E R(t)I{R(t) > 0} , and Q"(t) - ER()]

It follows that
V(t) V(1)
R(t) E{R(t)}
R
=E %(%l E{R(t)} I{ (t) > 0}

|FDR{ Y(t)} Q'(t)|BE

I{R(t) > 0}

Note that V (t) is always no larger than R(t), we have

|FDR{ V(t)} QV(t)] BVar?[R(t)/E{R(t)}] = o(1),

which proves the proposition.
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