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Abstract. Adaptive multiple testing with covariates is an important research
direction that has gained major attention in recent years. It has been widely
recognized that leveraging side information provided by auxiliary covariates
can improve the power of false discovery rate (FDR) procedures. Currently,
most such procedures are devised with p-values as their main statistics. How-
ever, for two-sided hypotheses, the usual data processing step that transforms
the primary statistics, known as z-values, into p-values not only leads to a loss of
information carried by the main statistics, but can also undermine the ability of
the covariates to assist with the FDR inference. We develop a z-value based
covariate-adaptive (ZAP) methodology that operates on the intact structural
information encoded jointly by the z-values and covariates. It seeks to emulate
the oracle z-value procedure via a working model, and its rejection regions sig-
nicantly depart from those of the p-value adaptive testing approaches. The key
strength of ZAP is that the FDR control is guaranteed with minimal as-
sumptions, even when the working model is misspecied. We demonstrate the
state-of-the-art performance of ZAP using both simulated and real data, which
shows that the eciency gain can be substantial in comparison with p-value
based methods. Our methodology is implemented in the R package zap.

1. Introduction

In modern scientic studies, a ubiquitous task is to test a multitude of two-sided
hypotheses regarding the presence of nonzero eects. The problem of multiple test-ing
with covariates has received much recent attention, as leveraging contextual
information beyond what is oered by the main statistics can enhance both the
power and interpretability of existing false discovery rate (FDR; Benjamini and
Hochberg, 1995) methods. This has marked a gradual paradigm shift from the
Benjamini-Hochberg (BH) procedure and its immediate variants (e.g. Benjamini
and Hochberg, 2000, Storey, 2002) that are based solely on the p-values. For in-
stance, in the dierential analysis of RNA-sequencing data, the average read depths
across samples can provide useful side information alongside individual p-values,
and incorporating such information promises to improve the eciency of existing
methods. The importance of this direction has been reected by its intense research
activities; see Boca and Leek (2018), Chen et al. (2017), Ignatiadis et al. (2016),
Lei and Fithian (2018), Li and Barber (2019), Yurko et al. (2020), Zhang and Chen
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(2020) for an incomplete list of related works. In contrast with BH and its variants
that apply a universal threshold to all p-values, these methods boil down to setting
varied p-value thresholds that are adaptive to the covariate information.

This seemingly natural modus operandi, which involves using p-values as the
basic building blocks, however, is suboptimal. For the most commonly tested two-
sided hypotheses, the p-values are typically formed via a data reduction step, which
applies a non-bijective transformation to \primary" test statistics such as the z-
values, t-statistics (Ritchie et al., 2015) or Wald statistics (Love et al., 2014). Sun
and Cai (2007) and Storey et al. (2007) argued that reducing z-values to p-values
may lead to substantial loss of information. A main thrust of this article is to reveal a
new source of information loss in the context of covariate-adaptive multiple test-ing,
and to develop a z-value covariate-adaptive (ZAP) methodology that bypasses the
data reduction step. As illustrated in Section 2.2, the interactive relationship
between the z-values and the covariates can capture structural information that
can be exploited for more testing power. However, this interactive information may
be undercut, and in some scenarios, completely forgone when converting z-values
to p-values. Hence, the data reduction step not only leads to a loss of information
carried by the main statistics, but also undermines the ability of the covariates in
assisting with the FDR inference.

Few works on covariate-adaptive testing have pursued the z-value direction since
combining the z-values and covariates poses an additional layer of challenges. Ex-
isting z-value based procedures either make strong assumptions on the underlying
model (Scott et al., 2015), or are not robust for handling multi-dimensional co-
variate data (Cai et al., 2019). By contrast, ZAP retains the merits of z-value
based methods and avoids information loss, neither relying on strong assumptions
nor forgoing robustness. It faithfully preserves the interactive structure and eec-
tively incorporates both the primary statistics and covariates into inference. ZAP is
deployed with a working model, whose potential misspecication will not inval-idate
the FDR control. The proposed methodology fundamentally departs from p-values
based methods by sidestepping the information loss occurred in forming the p-
values.

Our contribution is twofold. First, ZAP represents a z-value based, covariate-
adaptive testing framework that attains state-of-the-art power performance under
minimal assumptions, Iling an important gap in the literature. Particularly, we
propose the rst z-value based procedure with nite-sample guarantee on FDR
control. Second, in light of a plethora of p-value based covariate-adaptive methods
that have emerged in recent years, our study explicates new sources of information
loss in data processing, which provides new insights and gives caveats for conducting
covariate-adaptive inference in practical settings.

The rest of the paper is structured as follows. Section 2 states the problem
formulation and describes the high-level ideas of ZAP. Section 3 formally introduces
our two data-driven methods of ZAP and their implementation details. Numerical
results based on both simulated and real data are presented in Section 4. Section 5
concludes the article with a discussion of extensions and open issues.



2. Problem Formulation and Basic Framework

2.1. The problem statement. Suppose we are interested in making inference of
m real-valued parameters ;, i 1;:::;m, and for each i, we observe a primary
statistic Z; P R (\z-value") and an auxiliary covariate X; P RP that can be mul-
tivariate. We consider a multiple testing problem where the goal is to identify
nonzero eects or determine the values of the indicators

1 if ;0

2.1 Hi Ipi O :
(2.1) ki 0 otherwise

Assume that the triples tH;; Z;i; Xiju/7 are independent and identically distributed,
and the data are described by the following mixture model:

(2.2) Zi| Xi x fxpzq fpz|xqg pl wxafopzq wxf1.xpzq;

where wx PpH; 1]|X; xq is the conditional probability of having a non-zero eect
given X; x and fixpzq fpz|Hi 1;Xi xq is the conditional density under the
alternative. fo denotes the null density, which is invariant to the covariate value. In
this article we assume fopzq pzg, the density of a N p0; 1q variable®. In contrast with
the model in Scott et al. (2015) that assumes a xed alternative density, i.e. f1.x f1,
Model (2.2) provides a more general framework for multiple testing with covariates
by allowing both wy and fi1,xpzq to vary in x.

procedure. In large-scale testing problems, the widely used FDR is dened as

FDR E —_—
R_1

o

where V oilﬁ‘l Hiqlpi P Rq and R i1 Ipi P"Rqg are respectively the number

of false positives and the number of rejections. Throughout, Ers denotes
an expectation operator with respect to the joint distribution of tH;; Z;; X;, .
The ratio V{pR_1q is known as the false discovery proportion (FDP). The power of a
testing procedure can be evaluated using the expected number of true discoveries
ETD ErR Vs or the true positive rate

TPR E o mR V_ :

Our goal is to devise a powerful procedure that can control the FDR under a pre-
specied level P p0;1q.

2.2. Information loss in covariate-adaptive testing. A two-sided p-value is
formed by the non-bijective transformation P; 2p|Z|q, where is the cu-mulative
distribution function of a NpO;1q variable. We call a testing procedure z-value
based if it makes rejection decisions based on the full dataset tZ;; Xju;;, and p-value
based if it does so only based on the reduced dataset tPi; Xju;;. This sectiompresents
examples to illustrate that the interactive structure between Z; and

1This can be easily achieved via the composite transformation 1 Ggpq if the primary test statistic
has a known null distribution function Gopg, e.g. a t-distribution, where pq is the standard
normal distribution function.
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Xi may not be preserved by transforming into p-values. The associated information
loss leads to decreased power in the FDR inference.

Consider Model (2.2), and suppose X; Unifpl; 1g. Our study examines three
situations:
Example 2.1 Asymmetric alternatives: fpz|xq §1Ox-fopzq 1g}%pz 1:5q.
Example 2.2 Unbalanced covariate eects on the non-null proportions:

1x 1 x
fpz|xg 0:8fopzq T(;)} 1:5q Jplzo—lz5q:

Example 2.3 Unbalanced covariate eects on the alternative means:

fpz|xq 0:9fppzq 0:1pz 1:5 sgnpxqq; where sgnpxq Ipx ¥ 0qg |px 0q:

We investigate two approaches to FDR analysis for these examples that re-

spectively reject hypotheses with suitably small posterior probabilities tP pH;
0|Pi; Xiqufj and tP pH;i 0|Z;; Xiqu;;. The latter probabilities are assumed to be
known by an oracle?. In the literature the z-value based quantity P pH; 0]Z;; Xiq is
also called the conditional local false discovery rate (CLfdr, Cai and Sun, 2009,
Efron, 2008). It is known that the optimal p-value and z-value based procedures,

which maximize true discoveries subject to false discovery constraints, have the
respective forms

( (
P IrPpHi O|Pi;Xiq/ tes and 2 IrPpH; 0|Zi;Xiq/ tzs

i1’
where the rejection decisions are expressed by indicators, and the thresholds tp and
tz are calibrated such that the nominal FDR level is exactly ; see Appendix A.1 for
a review. In our comparisons we choose suitable thresholds such that the FDR of
both methods is exactly 0:1, and their powers are reported as TPR empirically
computed by 150 repeated experiments for m 1000:

Example 2.1: TPR» 4:4%; TPR: 11:7%.

Example 2.2: TPR» 3:4%; TPR: 5:5%.

Example 2.3: TPR» 0:6%; TPR: 2:6%.
Apparently, Z is more powerful than .

To understand the dierences in power, we rst remark that either oracle pro-

cedure essentially amounts to one by which i is rejected if and only if

(2.3) Z, PSpXiq €R

for some rejection region Spg on the z-value scale that is a function of the covari-ate
value; the theoretical derivation is sketched in Appendix A.2. Let S”pxq and S?pxq
denote the respective rejection regions of ? and ? on the z-value scale for a given
covariate value x, which are plotted for the three examples in Figure 2.1. On the left
panel, both SPpxq and SZpxq enlarge as the covariate value increases, suggesting
that the covariates are informative for both methods. The information loss leading
to the lesser power of P in Example 2.1 is intrinsically within the main

Q—n—prac—tiee%hese posterior probabilities are unknown.
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Figure 2.1. Comparisons of rejection regions. For each covari-
ate value x P pl;1q, the rejection regions SPpxq and SZpxq are
respectively marked in green and red on the z-value scale. The
overlapped region is depicted in yellow.

statistics when converting z-values to p-values (Storey et al., 2007, Sun and Cai,
2007). By contrast, the middle and right panels show that S?pxq changes with x,
while SPpxq is completely insensitive to the changes in x; see Appendix A.2 for
the relevant calculations. Hence, the covariates are only informative for 2. This
fundamental phenomenon reveals that upon reduction to p-values, the information
loss not only can occur internally within the main statistics, but also externally due
to the failure of * in fully capturing the original interactive information between Z;
and X;. When the latter interactive structure represents the bulk of the informa-tion
provided by the covariates for testing, reduction to p-values can substantially
undermine the covariates’ ability to assist with inference.

23. The ZAP framework and a preview of contributions. The previous ex-
amples motivate us to focus on z-value adaptive procedures to avoid information
loss. This naturally boils down to pursuing the oracle procedure ? in some shape or
form, which presents unique challenges. Existing z-value based works such as Scott et
al. (2015) and Cai et al. (2019) are built directly upon tPpH; 0]Z;; Xiqu;;,"the
CLfdr statistics, which unfortunately involves unknown quantities that can be dicult
to estimate in the presence of covariates. Commonly used algorithms may not
produce desired estimates, and even lead to invalid FD R procedures if the mod-elling
assumptions are violated. That the theory on FDR control critically depends on the
quality of these estimates has greatly limited the scope and applicability of these
works.

We aim to develop a new class of z-value adaptive (ZAP) procedures that are
assumption-lean, robust and capable of eectively exploiting the interactive infor-
mation between Z; and Xi. The key idea is to emulate the oracle procedure ?
while circumventing the direct estimation of PpH; 0|Z;; Xiq. Next we rst out-line
the key steps (ranking and thresholding) of our framework and then provide a
preview of its contributions.
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In the rst ranking step, we introduce the new concept of assessor function,
which can be estimated from the data based on a working model, to construct a
new sequence of signicance indices tTiu;;Mas proxies for tP pH; 0|Z;; Xiqu;,. While
many potential working models can be used, in this work we focus on a class of beta-
mixture models that are carefully dened on a bijective transformation of the z-
values and particularly suitable for two-sided testing (Section 3.2). In the second
thresholding step, ZAP calibrates a threshold along the ranking produced by tT;u;,.
The esséntial idea is to count the number of false rejections by any candidate
threshold value with a \mirroring" sequence of the rejected signicance indices,
which can be created via either simulation (Algorithm 1) or partial data masking
(Algorithm 2). The key strength of ZAP over the methods in Scott et al. (2015) and
Cai et al. (2019) is that it seeks to emulate the oracle z-value procedure while
avoiding a direct substitution of PpH;|Zi; Xiq with its estimate. ZAP is
assumption-lean and robust in the sense that it is provably valid for FDR control
under model misspecications, and the choice of the working model only aects the
power. We stress that the resulting rejection regions of ZAP signicantly depart
from those of p-value adaptive methods, including the closely related CAMT (Zhang
and Chen, 2020) and AdaPT (Lei and Fithian, 2018). Our simulation and real data
studies show that the eciency gain can be substantial.

3. Data-Driven ZAP Procedures

This section develops the framework of ZAP and its data-driven algorithms for
covariate-adaptive FDR inference. Section 3.1 introduces the concept of assessor
function and a prototype procedure inspired by the oracle z-value procedure. The
assessor function can be constructed based on a working beta-mixture model, which is
proposed in Section 3.2. Sections 3.3 and 3.4 lay out two variants of data-drivenZAP
procedures and establish their theoretical properties. Further implementation details
are discussed in Section 3.5.

3.1. Preliminaries: oracle z-value procedure, assessor function and a pro-
totype ZAP algorithm. To facilitate the development of a working model, we
consider the following lossless transformation: U; pZig. The transformed statis-tic U;
is referred to as a u-value3, which, according to (2.2), obeys the induced mixture
model

(3.1) Ui|Xi x hxpug hpulxq pl wxghopug wxhixpug;

with hopug and hixpuq hpu|H; 1; X;i xq respectively being the null Unifp0; 1q and
conditional alternative densities. An optimal FDR procedure (Cai and Sun, 2009,
Heller and Rosset, 2021, Sun and Cai, 2007) is a thresholding rule based on the
conditional local false discovery rates (CLfdr)

(3.2)

1 h Uy
CLfdr; PpHi 0]Z;Xiq PpH; 0[UXig X 92195 0.,

P ap hy, U

3Despite the similarity in their constructions, the u-values should not be treated as p-values for
one-sided tests, which are not the subject matter of this work.



Since each CLfdr; is a function of U; conditional on X;, we let CLfdrxpugq : p0; 1q N
p0; 1q be the corresponding function dened on the u-value scale for a given realized
covariate value x. Related data-driven CLfdr procedures involve rst estimating the
CLfdr statistics, and second determining a threshold for them using, for example,
step-wise algorithms (Sun and Cai, 2007), randomized rules (Basu et al., 2018) or
linear programming (Heller and Rosset, 2021). However, the rst estimation step
poses signicant challenges as it boils down to a hard density regression problem
(Dunson et al., 2007). For example, to estimate fxpq (or equivalently hxpq), aline
of works (Deb et al., 2021, Scott et al., 2015, Tansey et al., 2018) proceeds by
assuming a xed alternative density, i.e.

(3.3) fi,xpza fipzg;

to make way for the application of an EM algorithm. If the assumption fails to
hold, the CLfdr statistics can be poorly estimated and lead to both invalid FDR
control and adversely aected power. The non-parametric CARS procedure devel-
oped in Cai et al. (2019) does not require the assumption in (3.3). However, it
still employs the CLfdr statistics as its basic building blocks, which are estimated
with kernel density methods. Due to the curse of dimensionality, the methodology
becomes unstable in the presence of multivariate covariates, which has limited its
applicability. For example, the real data analyses considered in Section 4.2 requires
handling up to six (expanded) covariates.

By contrast, ZAP strives to sensibly emulate the oracle procedure without heavy
reliance on the quality of the CLfdr estimates, which is its key strength. To motivate
our data-driven procedures in the next sections, we shall rst discuss a prototype
ZAP procedure to illustrate two key steps of our testing framework: (a) how to
combine Z; (or equivalently U;) and X; for assessing the signicance of hypotheses;
and (b) how to threshold the new signicance indices.

Step (a) involves the construction of an assessor function® axpuq : p0; 1q N p0; 1q,
which seeks to approximate the Clfdrcpuq function to integrate the information in
both the u-value and covariate. For the present assume that axpq is pre-determined.
Let Ti ax, pUiq be the new signicance index for i and ciptg PpTi/ t|H; Oqbe its
null distribution. Assume that cpq is continuous and strictly increasing®, and
denote its inverse by clpaq. All hypotheses will then be ordered according to
the Ti’s, with a smaller T; indicating a more signicant hypothesis.

In Step (b), we aim to determine a threshold for the Ti’s to control the FDR.
This involves the construction of a conservative FDP estimator for any candidate
threshold t by the Barber-Candes (BC) method (Arias-Castro et al., 2017, Barber
and Candes, 2015):

1 Hti:S; ¥ 1 gptqu 1 #ti:TM/ tu_

(3.4) PDPptq —#ti-—Fritu—2—  H#ti:Ti/ tu_ 1’

r simply Known as an assessor.

5Both are true as the consequences of the way we will construct axpg; see the discussion after
Lemma C.2 in Appendix C.
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where, given that i is a true null, S;i c¢ipTiq is the probability of realizing a smaller
signicance index and T; olpl Siq is the mirror statistic that \reects" Ti’s position in
the distribution c;. Dene

(3.5) tbg maxtt P pO; tmaxs : FDPbtq / u;

where tmax maxtt : cptqg / 0:5 for all iu. It follows from Barber and Candes
(2019, Lemma 1) that a procedure that rejects i whenever T; /" tpq controls the
FDR at level ; see Appendix B. Importantly, the FDR is controlled under the
desired level whether axpqg is a good approximation of CLfdrxpq or not.

However, the assessor axpg, which is taken as pre-determined thus far, is to be
estimated from the observed data in practice. This leads to additional diculties in
both methodological and theoretical developments; for one thing, the theory in
Barber and Candes (2019) cannot be directly applied to prove the FDR controlling
property. Section 3.2 discusses a working beta-mixture model, whose parameters
can be estimated from the observed data and subsequently used to construct a
data-driven assessor Axpg. From there we can test the hypotheses in a data-driven
manner by either implementing the prototype procedure directly using &pq as if it
is pre-determined (Section 3.3), or mimic the prototype procedure in a more nu-
anced manner by leveraging the partial data masking technique in Lei and Fithian
(2018) (Section 3.4). These two variants of ZAP entail dierent techniques to quan-tify
the uncertainties in &pq, with each having its relative strength and weakness: the
direct approach oers asymptotic FDR control under suitable regularity con-ditions,
and is both computationally and power ecient, while the data masking approach
oers nite-sample FDR control but is computationally intensive and moderately
less powerful in practice.

3.2. A beta-mixture model. We now develop a working model to approximate
Model (3.1), which will be subsequently used to construct the assessor. We propose
to capture the overall shape of hspuq using a three-component mixture:

(3.6) hxpug pl 1;x rxghopug ixhixpug  rxhexpua;

where, given Xi X, 1;x and r.x respectively denote the mixing probabilities that; 0
and i i 0°% and h;x and h;x respectively represent the densities of the negative
and positive eects (on the left and right sides of the null). Our working model
assumes that |.x and (.x are multinomial probabilities with regression parameter
vectors | and r:
exppx’ iq exppx’ q
X T exppxTrq exppxTiq ° " 1 exppX'.q exppx'iq °

where x p1;x"q" is the intercept-augmented covariate vector. Further, h;.x and
hr.x are chosen to be beta densities with regression parameters | and ;:

1
hixpug k1p1 ug'’; hrxpug ulpliug '
Bpkl;x; 19 Bpy; kr;xq
GJihe;dier-ent—ss,Lmbols I;x and r;x are used in the working model. In the true data generating

model (3.1), the mixing probability is denoted wx.
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where ki.x t1  exppX'iqut and kr;x t1 exppX'rqul, for two xed shape parameters
| and . hi.;x and hr,x are respectively left-leaning (right-skewed) and right-
leaning (left-skewed) functions. We require that | | 2 and, | 2 to ensure that
both are strictly monotone and convex, and thus provide a reasonable
approximation to the underlying true density in practice; see Lemma C.1 in Appendix
C for a precise result. The exact choices for ti; u will be further discussed in
Section 3.5. The working model may be generalized to capture non-linearity in x
using, say, spline functions.

Beta mixtures have long been identied as a exible modeling tool for variables
taking values in the unit interval; see Ferrari and Cribari-Neto (2004), Ji et al.
(2005), Markitsis and Lai (2010), Migliorati et al. (2018), Parker and Rothenberg
(1988), Pounds and Morris (2003) for related works. In the context of covariate-
adaptive multiple testing, Lei and Fithian (2018) and Zhang and Chen (2020)
employ a two-component beta-mixture model for the p-values that consists of a
uniform and another left-leaning beta component. Our working model dened on the
u-value scale can be viewed as a natural extension of these works to capture
important patterns in the u-value distribution associated with two-sided covariate-
adaptive testing.

The assessor can be constructed as the CLfdrypqg function with respect to our
working model (3.6). Since hg 1, it follows that

1 I;x r;x
1 I;x r;x I;xhl;xpuq r;xhr;xpuq
The corresponding data-driven assessor is denoted by &puq if the parameters
t1;r;1; ru are estimated from the data for its construction.

(3.7) a, pug ;0 u 1

3.3. Asymptotic ZAP. We now develop a direct data-driven version of the pro-
totype algorithm in Section 3.1. To construct &puqg, we rst obtain the maximum
likelihood estimates (MLE) of the unknown regression parameters ti;r;; ru with
the data tUj; Xju;,; the EM algorithm for their computations are provided in
Appendix F.1. Denote T; “&x,pUig, and let & pg be its null distribution by
treating &x, pqg as if it is pre-determined. With S; ¢ pTg, the estimated mirror
statistics are correspondingly dened as"iTm i(‘1‘1p1$io{,‘ which can be computed
numerically by performing quantile estimation. The FDP for a candidate threshold
t can be estimated as
1 #ti T/ w

(3.8) EDP tq - ——
et T Y w1

Dene taymppq supt0 / t/ 1 : FDPZympptq / u, and reject i whenever T; /
thresholds. This procedure is summarized in Algorithm 1.

The main theory requires the following classical assumption from the literature
on misspecied models (White, 1981, 1982):

Assumption 1 (Existence of a unique maximizer). The expected log-likelihood

Elogrpl i;x; r;x;d 1;x hixpUid  rx; hir;x, pUigs
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Algorithm 1: Asymptotic ZAP

1 Construct &y, pg’s using the MLEs obtained via the EM algorithm in
Appendix F.1 and compute T\ &x, pUiq for each i. 2

Compute the mirror statistics tT mqum >

distribution ¢ pg. Compute Timvia e.g. qguantile() in R.

3 Order tT‘.ullng as Tq/ / Tpmg” Reject i if Ti/) Tokq, 'Where k
max | P;cl;:::;mu: ! #t%:

of the beta-mixture model (3.6) has a unique maximum at t;u over P and P B for
compact spaces and B, where p,;Tq" and pT; TTqT.rThe expectatior is taken with
respect to the true joint distribution of tH;; Z;; Xju.

Together with Assumptions 2 - 3 in Appendix D.1, which are standard regularity
and strong-law conditions, we can prove the following asymptotic FDR controlling
property.

o

Theorem 3.1. Let &pq be constructed with the MLE t; { argmax i1 log Bix, pUig

of the beta-mixture model (3.6). Under Assumptions 1-3, the 'procedure that re-
jects i whenever T; / “asympPq controls the FDR asymptotically in the sense that
limsup,ys FDR/ :

We highlight two aspects of this result. First, it doesn’t require the estimated
assessor function to be a good proxy for CLfdrxpq. Hence, its theory is more
attractive than that of Cai et al. (2019), which requires consistent CLfdr estimates
to ensure asymptotic FDR control. Second, to establish Glivenko-Cantelli results
(Lemma D.5) for the following three empirical processes

|
m*’ m Ti/ t ;i m!’ gl Higl Ti/ to;i m! M oS ¥ 1 Cptq);il
typical of similar asymptotic analyses (Storey et al., 2004, Zhang and Chen,I 2020),
we heavily utilize the concavity properties (Lemma C.2) of the functional form in
(3.7) to uniformly control the deviations of the estimated assessors &x, pg from the
assessors a, pq constructed with the population parameters t;u; the delicate
techniques involved may be of independent interest.

3.4. Finite-sample ZAP. This section introduces an alternative ZAP procedure
that oers nite-sample control of the FDR. The operation again involves approx-
imating the CLfdr statistics via an assessor function. However, the thresholding
step is based on a more nuanced approach to FDP estimation inspired by the p-
value method AdaPT (Lei and Fithian, 2018). In this approach, multiple testing
is conducted in an iterative manner, where data are initially partially masked and
then gradually revealed at steps t 0;1;::: with the thresholds sequentially up-
dated based on the revealed data at each step. In what follows, if gipq and gxpq
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are two functions dened on the same space, g1 ¥ g» means gipxq/ gpxq for all x in
that space. If C is a constant, g1 ¥ C means gipxq/ C for all x. Similarly we can
deneg;' grandgi' C.

Since the concavity’ of the assessor functional form in (3.7) suggests that re-
jecting hypotheses with small values of Ti ax, pUig amounts to rejecting extreme u-
values near 0 or 1, our iterative algorithm emulates this essential operational
characteristic of the prototype procedure. We rst divide the covariate values into a
left and right group based on the observed u-values:

Xi tXi :Uj/ 0:5uand X, tX; :Uji O0:5u:

At each step t 0;1;:::, let si;t : Xy N r0;0:25s and st : X, N r0:75; 1s denote two
corresponding thresholding functions, and dene the candidate rejection setR: Ri;t
Y Rr;t, where

(3.9) Ri;¢ ti: Ui/ sitpXig ™ 0:5u and R+ ti: Ui ¥ sipXiq_ 0:5u: Let
At At Y Art be the corresponding set of \accepted" hypotheses, where
Ap;¢ ti:0:5 s;;tpXig/ Ui/ 0:5uand Ar;¢ ti:0:5 Ui/ 1.5 seepXiqu:

Intuitively, |A.:] estimates the number of false rejections in the left candidate re-
jection set Ry;t: Given H; 0 and U; / 0:5, the events tU; si;tpXiqu and
tUii 0:5 s;;tpXiqu are equally likely. The FDP of possibly rejecting Rt at step tcan
then be estimated as

1] _A¢|

(3.10) FDPf|n|teptq |W

If EDPtiniteptq / , the algorithm terminates and the hypotheses in R are rejected.
Otherwise, the algorithm proceeds to the next step t 1 and updates the two
thresholding functions under two restrictions. First, it must be that st 1 ¥ si:t
and syt 1 Srt; this ensures that Rt shrinks in size as t increases. Second, si.t 1and
st 1 must be updated based on the knowledge of |R:|, |A:] and the partially
masked data tU4;i; Xium only, where

#u. if U RA, YR,
(3.11) Ui

tLqi;UiU if Ui PAtY Rt

is a singleton or a two-element set depending on whether i is in the \masked" set
At Y Ry, and 9; is the \reection" of U; about the \middle" axis at u 0:25 or u
0:75, depending on which group (left or right) U; belongs to:

g; pl:5 UiglpUii 0:59 p0:5 UiqlpU;/ 0:5q:

For example, if the underlying U; is 0:1 and i is masked at step t, the algorithm
can only update for s;t 1and syt 1 with the partial knowledge that U; is either
0:1 or its reection value 0:4. Algorithm 4 in Appendix F.2 describes one such
updating scheme which applies an EM algorithm (Appendix F.3) acting only on
the partially masked data to estimate the beta-mixture model (3.6). Figure 3.1

ZRefertotemma C.2
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illustrates how the data tU;; Xju," are partitioned into A¢, Rt and the unmasked set
tl;:::; muztA: Y Rtu at a given step t, based on Example 2.2 in Section 2.2. In
partlcular, we remark that the algorithm cannot tell the true data point from a given
red-pink (blue-cyan) pair in the plot pbg where the reection points tdiuipa,yr, are
also shown.

(a) without reflections (b) with reflections
1.00- s e, e g.,w-—n-; .o * s . e qhw-s-.-; 50 T2 o o e
"y EX 3 22,8 o
'{"1" 5 ‘%‘T ,s"

0.25
o T .
0.00- ?‘.mﬂ n:h‘-n‘ls bl S L P Rt G B £ voar v sene
-1.0 -05 0.0 05 170 -10 -05 0.0 05 10
X
unmasked ¢ rejected ¢ accepted reflections of rejected reflections of accepted

Figure 3.1. lllustration of Algorithm 2 at a step t based on Ex-
ample 2.2, m 2000. (a): The red, blue and grey are points in
the respective sets Rt, At and tl;:::; ;muztAy Y Riu, where
EDPtiniteptq 193{389 0:5. (b): The reections of the pointsin R
and A are respectively shown in pink and cyan. A pink U; below
(@bove) 0:5 is the reection of a red U; with the same covariate
value about the middle axis at u 0:25 (u 0:75) of the left (right)
group; the cyan are the reections of the blue.

The steps described above are summarized in Algorithm 2, whose nite-sample
FDR controlling property is stated in Theorem 3.2.

Theorem 3.2 (Finite-sample FDR control). Under the conditions that (i) srt 1'
st and st 1 ® spi¢ and (ii) sit 1, and s+ 1 are updated based on |Re|, [At]
and tUy;i; Xjup only, Algorithm 2 controls the FDR under for nite samples.
Specically, we have

E FDPtHi; Xiujm / :

Lastly, we highlight a crucial dierence between Algorithm 2 and AdaPT in the
present context. Operating on the two-sided p-values, AdaPT proceeds iteratively
with a single thresholding function st dened on tX;u/} such that s¢ # 0:5, and
the ratio 11 lltf'PP/ilf;f(xqﬂr' is used as an FD P estimator for the candidate rejection
set ti : Pi / stpXiqu. It is easy to see that

(3.12) Pi/ stpXiq 8 Ui/ sipXigqf{2 or U; ¥ 1 s¢pXiqf{2:
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Algorithm 2: Finite-sample ZAP
Data: tUj; Xju}
Input: FDR level, initial thresholding functions sj;0 ® 0:5 and sy;0 ' 0:5;1
fort=0,1..., do
2 Compute EDPsiniteptq in (3.10);
3 if BDPtiniteptg i then
4 Update s;;+ 1 and sy;¢ 1 while respecting the two conditions in
Theorem 3.2. E.g. Apply Algorithm 4 in Appendix F.2;
5 else

6 Record R¢; break;
7 end
g8 end

Output: Reject all hypotheses in Rt.

Hence, on the u-value scale, AdaPT always adopts symmetric rejection regions
about u 0:5. By contrast, Algorithm 2 employs two dierent thresholding func-tions
si;t and sr;t, which allow for asymmetric rejection regions, and therefore pro-vides
additional exibility to fully capitialize on covariate information for two-sided tests.
As seen in Figure 3.1, the pattern of the candidate rejection points in red agrees
with the middle panel of Figure 2.1; as the covariate increases from 1 to 1, the
algorithm’s rejection priorities change from the u-values near 0 to those near 1.

3.5. Implementation details. An R package zap for our two data-driven methods is
available on https://github.com/dmhleung/zap, and we shall discuss further
details of their implementation.

For both data-driven procedures, the shape parameters tj;-u of the working
model need to be pre-specied before running the EM algorithms. While requiring; »
i 2 ensures a convex shape for the three-component beta-mixture density (Lemma
C.1), we recommend choosing p;rq p44q as a default, which has yielded
consistently good performance in our numerical studies.

To illustrate the eectiveness of our recommendation, we simulate 8000 i.i.d.

(3.13) 0:78fppzq 0:15pz 1:59 0:07pz 2q

without any covariates. The histogram of the corresponding u-values is plotted in
Figure 3.2(a), overlaid with the true underlying density function, as well as es-
timated densities of the beta mixture (3.6) tted with regression intercepts only,
where pj; rq is respectively xed at pl;1q and p4;4qg. When modeling p-values with a
two-component beta mixture, Lei and Fithian (2018) and Zhang and Chen (2020) set
an analogous shape parameter to be 1, so p;;rq pl;1q would be a seemingly natural
choice to extend their model for two-sided tests. Both tted densities vi-sually
coincide with the true density, attesting to the exibility of beta mixtures for
modeling data on the unit interval. However, the estimated component proba-
bilities dier signicantly for p;;rq p1;1q vs pi;rq p4;49. In Figure 3.2(b),
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(a) (b) (c)
2.0 | 2.0
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Figure 3.2. (a): Histogram of U; pZiq generated by (3.13). The
red curve is the true density; while the blue and green curves
respectively correspond to the estimated densities of our beta-
mixture model with pj;rq set at pl;1q and p4;4q. (b): The long
dashed blue curve is the entire non-null component of the solid blue
estimated density in pag. The two dotted blue curves are the left-
leaning and right-leaning non-null components that add up to the
long dashed blue. The green curves are constructed analogously
with respect to the solid green density in pag. The legend shows
the estimated probabilities for the left and right-leaning compo-
nents, where the subscript \x" is omitted from #; and #, as thet
uses intercepts only. (c): Plot of the left-leaning beta density
Bpki;1qtuftpl ug? for ki 0:1 and dierent values of .

we present the estimated quantities pertaining to the non-null components. We
can see that setting pi;;rq pl;1q has drastically overestimated the left and right non-
null probabilities, whereas setting pi;rq p4;4q provides good approxima-tions to the
truths. To gain insight into why larger shape parameters are preferred, in Figure
3.2(c) we plot the density of a left-leaning beta density

1uk\1p1 uq|1

for dierent values of | and a xed k; 0:1, which supposedly captures the negative eects in
two-sided tests. We can see that small values of | tend to yield a density component
that slants in the middle of the unit interval. As a result, when added to another
right-leaning beta density for the positive eects with a similar but mirroring
shape, it gives rise to an overall non-null density component with a large plateau in
the middle of the interval p0;1q akin to the U-shaped blue curve in Figure 3.2pbg.
This inates the non-null probability estimates. In contrast, larger values of | and
eectively mitigate the issue by rendering sharply convex non-null component
densities like the purple in Figure 3.2(c), avoiding overestimation and leading to
better approximation of the tails. More setups are experimented in Appendix G.1;
the choice of p;;rq p4;4q produces reasonable probability estimates throughout.

Bpki; 19
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Other aspects of implementation are as follows. For the asymptotic method
(Algorithm 1), since a large N allows us to compute the mirror statistics up to
arbitrary precision, we evaluate at N 50000 uniform realizations by default. For the
iterative nite-sample method (Algorithm 2), we set the initial thresholding
functions as sjo 0:2 and sro 0:8, but other values close to 0:25 and 0:75 tend to be
equally eective. We also update the thresholding functions every rm{100s steps.
Ideally one would want to update at every step along the way to reveal the masked
u-values sooner. However, it is more practical to carry out intermittent updates
since the EM component involved in Algorithm 4 is computationally costly. Lastly,
one can also perform feature selection at any step if X; is multivariate, as long as it
is done properly based on the masked data, akin to what was suggested by Lei and
Fithian (2018, Section 4.2). We have not performed this step for simplicity.

4. Numerical studies

We conduct numerical studies to gauge the performance of ZAP alongside other
methods on both simulated and real data. For expositional considerations, here
we only limit the comparisons to a selection of representative FDR methods. This
makes the ensuing graphs (Figures 4.1-4.2) less crowded by lines and easier to read.
More methods in the literature are included to expand our studies in Appendix G.2,
but the basic conclusions do not change. The methods being considered here are:

(a) ZAP (asymp): Algorithm 1 with specications described in Section 3.5.

(b) ZAP (nite): Algorithm 2 with specications described in Section 3.5.

(c) CAMT: the covariate-adaptive multiple testing method (Zhang and Chen, 2020).

(d) AdaPT: the adaptive p-value thresholding method (Lei and Fithian, 2018).
Their working model is updated based on the EM algorithm for every rm{100s

steps; other default specications are chosen based on the R package adaptMT.

(e) IHW: independent hypothesis weighting method (Ignatiadis et al., 2016). We
remark here that IHW can only handle univariate covariates.

(f) FDRreg: false discovery rate regression method (Scott et al., 2015). The theo-
retical null NpO; 1q has been used.

Among them, ZAP and FDRreg are z-valued based, while all other methods are
p-value based.

4.1. Simulation studies. We simulate data to test m 5000 hypotheses. Two-
dimensional covariates X; pXui; X2iq", i 1;:::;m,areir’)dependentlygeneratedfrom
the bivariate normal distribution N pog;p%’,, & “Conditional on Xi x pxa;x2q"

, Zi is generated with a normal mixture density
(4.1) pl wi;x Wr;xqfOqu W;xPZ ;x4  WrxPZ r;xq;

where wi.x and w,x & are probabilities that control the sparsity levels of negative
and positive eects, and ;x 0 and r,x i 0 are negative and positive non-null

8These data generating probabilities twly; wr;xu should again be distinguished from tly; r;xu in
the working model (3.6).
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normal means. The covariate-adjusted overall non-null density is then given by

Wi.xPZ | W,yPZ
(4.2) fl;poq 1;xPZ 1;x9 r;ixP r,xq_l;y rx

We shall allow twi.x; Wex; 1;x; r:xU to devp\)lend o\/;/} x in dierent ways to induce the
simulation setups below, which can be considered as more realistic versions of the
stylized examples in Section 2.2. Note that the sum X; Xi; X2; of the covariate
components is N p0; 1g-distributed, and x x1 x2 will denote a realized value of it in
what follows.

Setup 1 (Asymmetric alternatives). The quantities in (4.1) are
1 2"

1 expp xq’ "Y1 exppxq’

with the simulation parameters ranging as

Wr;x

P t0; 0:5; 1u; "Pt1:3;1:5;1:7;1:9;2:1u and 2:

Since wi;x 0, all the non-null statistics come from the right centered alternative
density pz rxq. We briey explain the simulation parameters. " is an eect size
parameter. Generally, controls the informativeness of the covariates in relation
to both the non-null probabilities and alternative means: when | 0, a greater
value of x makes the signals denser and stronger (i.e. wr,x and ;x become larger).
The value of controls the sparsity levels. For example, when the covariates are non-
informative at 0, setting 2 yields a baseline signal proportion of roughly 12%,
i.e. Wr;x Wix Wrx 11:9%. Note that f1;x in (4.2) varies in x given the dependence
of r;x on x, so (3.3) is an invalid assumption.

Setup 2 (Unbalanced covariate eects on the non-null proportions). Let

exppxq exppxq
Wr; x ; I;x

exppq  exppxq  exppxq P WX exppa exppxq  exppxq '
rx and |x ". We x 2:5and vary other parameters in the range P t0;0:7; 1u;

"Pt1:3;1:5;1:7;1:9; 2:1u:

Only wi.x and w¢.x depend on the covariate value: for i 0, w,.x increases and w;x
decreases as x increases, and vice versa as x decreases. In consideration of (4.2),
the conditional non-null density fi.xpzq will change sharply in shape from
concentrating on negative z-values to concentrating on positive z-values as x
increases from being negative to positive. This relationship provides important
structural information which can be leveraged for enhancing the power. However, if
one collapses the z-values into two-sided p-values, then the analogous condi-
tional p-value density is less likely to capture drastic changes in x, since both very
negative and positive x can correspond to very small p-values, making the
interactive relationship between the p-values and the covariates less pronounced.
Intuitively, this would lead to power loss of p-value based methods. The choice of
corresponds to a baseline signal proportion of roughly 14% when 0.
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Setup 3 (Unbalanced covariate eects on the alternative means). Let

102 12 2" 2"
— 7 Wix A K g . T
1 exppg’ 1 exppq’ "~ 1 exppxq’' ~ 1 exppxq The simulation

parameters range as

Wr;x

P t0; 1:5; 3u; "Pt1:3;1:5;1:7;1:9; 2:1u and  2:

Our choice of corresponds to the a baseline signal proportion of roughly 12%
when 0. When the covariates are informative ( i 0), r;x and |;x respec-tively
become more positive and less negative as x increases. Such a directional
relationship can be exploited by ZAP for improving the power. However, if one
collapses the z-values into p-values, then under H; 1 both very positive and neg-
ative values of X; can imply a small P;, and the interactive relationship between the
main statistic P; and auxiliary statistic X; will be much weakened. Hence we
expect ZAP to exhibit higher power than p-value based methods.

We apply the six methods at the nominal FDR level 0.05. Since IHW can only
handle univariate covariates, it is applied with X;, which is an eective summary
covariate in all three setups. The simulation results are reported in Figure 4.1,
where the empirical FDR and TP R levels of dierent methods are computed based on
150 repetitions. The following observations can be made:

(a) Asymptotic ZAP, depicted in blue, is in general more powerful than nite-
sample ZAP, depicted in red. This is likely attributable to the latter’s informa-
tion loss from the \u-value masking" step. The advantage of the nite-sample
ZAP is in its theoretical properties.

(b) Both asymptotic and nite-sample ZAP methods achieve state-of-the-art power
performance in all three setups. The FDR levels are consistently controlled
under the nominal level 0:05. Both ZAP methods demonstrate superior perfor-
mances over the p-value based methods (CAMT, AdaPT and IHW). The gains
in power become more substantial when the covariates become more informa-
tive.

(c) The covariate-adjusted non-null density (4.2) depends on x for all three setups,
so FDRreg, which makes the conicting assumption in (3.3), is possibly invalid
for FDR control. Although FDRreg has comparable power to the ZAP methods
in Setup 1, it overshoots the FDR bound of 0:05, and it can’t match the power
of ZAP in Setup 2 because the assumption fi.xpzq fipzq itself obstructs the
interactive information between the z-values and the covariates to be utilized.

(d) In Setup 3, ZAP only has moderate power advantage over the other methods
when the covariates are informative, but still, it has \salvaged" more power
than others. In fact, it is shown in Appendix G.2 that Setup 3 poses a hard
multiple testing problem, and admittedly the beta mixture may not be the
most suitable working model for this data generating mechanism. In Section 5
we will discuss alternative working models to implement the ZAP methods.

4.2. Real data. This section investigates the performance of ZAP using several
publicly available real datasets summarized in Table 1. Three data sets (bottomly,
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Figure 4.1. FDR and TPR performances of dierent methods
under Setup 1 - 3. All methods are applied at a targeted FDR
level of 0:05. The x-axes show the values of ". non-informative,
more informative and most informative correspond to dierent
values of from the smallest to the largest.

airway, hippo) are generated by RNA sequencing (RNA-Seq) experiments for de-
tecting dierential expressions in transcriptomes, where the primary statistic Z;
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Name # tests Brief description
bottomly | 11484 | DE in striatum for the two mouse strains C57BL/6J(B6) and

DBA/2J(D2); bulk RNA-seq (Bottomly et al., 2011).

airway 20941 | DE in human airway smooth muscle cell lines in response to dex-
amethasone; bulk RNA-seq (Himes et al., 2014).

hippo 15000 | DE in mouse hippocampus in response to enzymatic dissocia-
tion in comparison to standard tissue homogenization; scRNA-seq
(Harris et al., 2019).

scott 7004 | Synchronous ring of pairs of neurons, based on neuron recordings in
the primary visual cortex of an anesthetized monkey in response to
visual stimuli (Scott et al., 2015).

Table 1. Description of four real datasets. \# tests" shows the
number of tests for each dataset after any necessary data pre-
processing. DE = Dierential Expression.

measures the observed dierence in the expression level of a gene under two ex-
perimental conditions. Meanwhile, an auxiliary covariate, the average normalized
read count for each gene, is collected alongside the primary data. The datasets
bottomly and airway have been analyzed by the works of Ignatiadis et al. (2016),
Lei and Fithian (2018), Zhang and Chen (2020) with the methods IHW, AdaPT
and CAMT respectively. The more recent data set hippo (Harris et al., 2019) is
generated by the cutting-edge single-cell RNA (sc-RNA) sequencing technology to
study dierential expressions in mouse hippocampus. For all datasets above, we
have adopted the standard data pre-processing step, which Iters out genes with ex-
cessively low read counts across samples before further downstream analyses (Chen
et al., 2016) such as model tting and multiple testing. This is a common practice
among bioinformaticians for a number of reasons; see Appendix G.3 for more dis-
cussion. The fourth dataset is based on the experiments in Smith and Kohn (2008)
and Kelly et al. (2010), where each Z; is a normalized test statistic that, for a given
pair of neurons in the primary visual cortex, measures how synchronous their spike
trains are, and Scott et al. (2015) has applied FDRreg to it for detecting neural in-
teractions. Correspondingly, each such hypothesis has two covariates: the distance
and the correlation of the \tuning curves" between the two activated neurons. We
have named this dataset scott for short.

For the RNA-seq datasets, all the methods that accommodate multivariate co-
variates (CAMT, AdaPT, FDRreg and the two methods of ZAP) are applied with
the log mean normalized read count expanded by a natural cubic spline basis with
4 interior knots, using the ns function in the R package splines (with its df ar-
gument set to 6), and IHW is applied with the original log mean normalized read
count as it can only handle a univariate covariate. As there are two covariates for
the neural dataset scott, IHW is not applied, and following what was done in Scott
et al. (2015), the multivariate methods are applied with each of the two covariates
expanded by a B-spline basis using the bs function in R with its argument df set
to 3, which results in six expanded covariates in total.
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Figure 4.2. paq pdgq plot the numbers of rejections for dif-
ferent methods across datasets, against targeted FDR level at
0:01; 0:05; 0:1; 0:15; 0:2. peq and pfq are respectively the histograms
of the \u-values" for the hippo and scott datasets.

The number of rejections for the various methods are shown in Figure 4.2pag-
pdg, and ZAP has attained top power performance. For the datasets bottomly
and airway, we do not see substantial dierences between the rejection numbers of
ZAP and other methods such as CAMT, with the exception of FDRreg, which shows
moderately more rejections than others for bottomly. However, as observed in our
simulation studies, FDRreg can be invalid for FDR control and the power gain may
be due to overow in FDR. Simple histogram plots (Figure G.3 in Appendix G.3, for
instance) show that the u-values are almost symmetrically distributed for these two
datasets, which suggests that p-value and z-value based methods tend to have
comparable power, unless reduction to p-values fails to capture the interactive in-
formation between the z-values and covariates. For the datasets hippo and scott,
the histograms, which are shown in Figure 4.2peq and pfqg, show that the u-value
distribution is asymmetric. This explains why ZAP exhibits considerable power
improvement over the p-value methods. Specically, the patterns in Figure 4.2 pcq
and pdg are in agreement with our intuition that ZAP is capable of exploiting the
distributional asymmetry. Similar to what we observed in the simulation studies,
the asymptotic ZAP tends to reject more hypotheses than the nite-sample ZAP,
whose validity is based on fewer assumptions (Theorem 3.2). In summary, the real
data analyses arm that z-value based approaches to covariate-adaptive testing can
better exploit the full data tZ;; Xju;; to™oost testing power.
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5. Discussion

We have introduced ZAP, which is a z-value based covariate-adaptive testing
framework that oers FDR controls under minimal assumptions. In particular, our
method for nite-sample FDR control assumes no more than the knowledge of the z-
value null distribution. The main thrust of our proposal is to avoid the common data
reduction step of forming two-sided p-values used by most other covariate-
adaptive methods in the recent literature, so as to preserve as much information as
possible, based upon which more powerful procedures can be devised.

As presented, ZAP operates through a simple three-component beta mixture
working model which is a careful extension of the two-component beta mixture for
p-value based testing. While there is no \one-size-ts-all" solution to all FDR
analysis problems (see the extensive simulation studies in the recent paper of Ko-
rthauer et al. (2019), for instance), we believe the current form of ZAP is widely
applicable to many covariate-adaptive testing situations. Apparently, one can also
extend our current approach by adopting other working models of choice while
guarding against potential model misspecications. For example, normal mixtures
are another popular class of models used by researchers for FDR testing in dierent
applications (MclLachlan et al., 2006, Nguyen et al., 2018), and naturally, one can
incorporate covariate information via a mixture of regressions (Leisch, 2008). Note
that any such working model does not have to be dened on the u-value scale like our
beta mixture, since it is just a means to arrive at a sensible assessor function via
CLfdr consideration. In fact, one can even pursue machine-learning ideas to
accommodate very exible predictive functional forms for the regressions involved,
such as the gradient boosted tree (Yurko et al., 2020). While the implementation
of these potential extensions deserves much deeper investigation than intended for
the present work, we shall briey discuss the subtleties that may arise.

Conceptually, our asymptotic method can be easily extended, since as long as one
has constructed the assessor function, presumably the CLfdrxpq under an estimable
working model of choice, rejection decisions can be based on computing the mirror
statistics as in Algorithm 1. There are two caveats: One is that if the working
model induces overly complex assessor functions, the determination of the mirror
statistics can be time consuming, which counteracts the relative eciency achieved by
the current simplistic beta mixture. For example, if an assessor involves a kernel
estimate which is typically a sum of m terms in the present context, the evaluation
of each uniform realization in Algorithm 1 will become very expensive. Moreover,
developing an asymptotic justication like Theorem 3.1 may be prohibitive, as nice
properties of the working model may not be readily available to prove the requisite
Glivenko-Cantelli results.

For nite-sample FDR control, we rst note that at each step t in Algorithm 2, a \left"
u-value Uj is masked depending Bn whether it is in the \left masking region"

S Bk S S B8

\left" rejection region \left" acceptance region
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and similarly for a \right" u-value. By requiring that s;;t 1 % si;: and srt 1' Srt,
the masked u-values are gradually revealed. However, this is only one particular
way of shrinking the rejection regions and their companying acceptance regions to
reveal the u-values; so long as the rejection regions are shrunk based only on the
partially masked information available at step t, the proof of Theorem 3.2 can be
adapted to establish nite-sample FDR control. Hence, other working models, which
may lead to dierent ways of shrinking the rejection regions based on their associated
CLfdr calculations, can be deployed too. We leave these possibilities to future
research that may be opportune in other instances.
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Appendix A. Oracle procedures

A.1. Optimality of P and Z. In this section we briey review the optimality
properties of the oracle procedures P and Z in Section 2.2 and how their thresh-olds
tp and tz are determined. To streamline the discussion, we will let tMju,; denbte
the set of main statistics, where it can either be that M; P; or M; Z; for all i,
depending on whether p-value or z-value based methods are considered. Given the
data tM;; Xju,,, it is well-known that optimal procedures, which aim to maximize
true discoveries subject to false discovery constraints, should operate by rejecting i if
its corresponding posterior probability PpH; 0|M;i;Xiq falls below a data-
dependent threshold ty. We will use ™ (in a similar way as P or Z) to denote the
procedure that thresholds the quantities tP pH; 0|M;; Xiqu;; withtm. m

There are subtly dierent ways to dene \optimality", depending on the particu-lar
false discovery (e.g. FDR, mFDR, pFDR) and power (e.g. TPR, ETD, mFNR)
measures used, which may lead to dierent ways of setting tm. A most recent result
of Heller and Rosset (2021, Theorem 3.1) suggests that among all the testing proce-
dures that are functions of tM;; X;u;q, the tu that renders an ETD-maximing M
with FDR / can be found by solving an integer optimization problem (Heller
and Rosset, 2021, Theorem 3.1). For our purpose, by letting Ly1q4 Lpmq be
the order statistics of the posterior probabilities tP pH; 0| M;j; Xiqu;; mwe have
considered the computationally simpler optimal procedure rst proposed in Sun
and Cai (2007) which takes tm Lpjq, where

# ° ili +

(A.1) j max iTPtl:ir;mu: '%
This procedure has F DR / because for any procedure that produces a rejection
set R based on tMj; X;u,T, its FDR can be written as

ipr PPHi O|Mj; Xiq
IRI_ 1

FDR E E "8 0 tMy; Xiuy E

ErFDP [tMi;XiuTs

Conditional on any instance of the data tM;; Xju; [, M

hypotheses that are least likely to be true nulls, all the while controlling the
conditional FDR ErF DP |[tM;; Xiu;Ts below by setting tm Lpjq, as the ratio
ilii.piq{il in (A.1) is precisely the conditional FDR of rejecting the most promis-ing

Ji hypotheses. As a result, its controls the FDR under since the conditional
version ErF DP |tM;; XjuTs is always not larger than .

prioritizes rejections of the

We now give a more precise account of the optimal property of the prior pro-
cedure. Another popular measure of type 1 errors is the marginal FDR (mFDR),
which for any rejection set R is the ratio
ErVs

mFDR —
ErRs
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where V and R are dened as in the main text. For P p0;1q, it is known
that among all the procedures based on tMj; Xju/? with mFDR / , the ETD-

maximizing procedure is the one given by M that sets tm V«Were
n o *

p
(A.2) Mup P 0;1s:

 ErlpPpHi QM3 X 0/ o

see Sun and Cai (2007) and Heller and Rosset (2021). In practice, since ,, could
be tricky to obtain even with oracle knowledge, this optimal procedure for mFDR
control is often approximated by our computationally handy version with tm Ljjq
above when m is large, as is the case with most FDR analyses. Their asymptotic
equivalence can be shown by standard arguments, such as those in Sun and Cai
(2007, Section 4). The aforementioned references provide a more detailed exposi-
tion.

A.2. Rejection regions for Examples 2.1-2.3. Consider the p-value conditional
mixture density

(A.3) PilXi x gxppa gpplxq pl wxqgoppd  Wxg1xPpPY;

induced by (2.2), where go 1 is the uniform null density of Pi, and gixppg gpp|Hi
1; Xi xq is the conditional alternative density of P;. The rejection regions S” pxq
and S%pxq in Figure 2.1 are derived based on the threshold ,, in (A.2), where

;nZ ]flqu *
SZpxq tz :PpH; 0|Z z;Xi xq/ u z: ; P A
R ' Pl w qf pzq x o .

and

, - ;2 zwegy xP plzlg

Pl wagppl lag s o p
gnd are, deneg with M; Pi and M; Z; for all i respectively. Since the examples
are relatively simple, these regions can be found by numerical means, and we will
derive S?pxq in Example 2.2 as an illustration: It is the set

SPpxq tz :PpH; O|P; p;Xi xq/ u

§( 9 1x pz g’ 1 x pzq? ’

0:2 , EXpp™ g expp™ g .
o 2" > /
% 0:8 expp* g z

wy f ;xpz9 . .
plw gfopy =, one %rrlves at the equatlon

2

z 2

where 1:5. By setting

—_— 1
expp2zq 4 — exp exppzq X20:
in z. To solve for a solution z, we can apply the formula for the solutions of a

quadratic equation to get
c

N

7
41éexppzq7 16 expp2g pl xgpl xq
z

exppzq

Ll N
N

X
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which in turn implies the two boundary points

S c ,

\ ) Z og
R4 expp q 16" _expp?q plxapl xq ¢/
% 1 x 1/

for the red regions in the middle panel of Figure 2.1 as a function of x.

We now explain why SPpxq doesn’t change with x in Examples 2.2 and 2.3.
From the conditional p-value density (A.3), one can see that
Pl wx qgopPiq pl wx dgopPiq

gx; PPiq Pl wx; qgopPiq  Wx; g1;x; PPiq
Hence, if wy and gi1.x do not depend on x, it is apparent that S will not vary in
x. Simple calculations can show that wyx 0:2 and wy 0:1 for Examples 2.2 and 2.3
respectively, and
p'pp{2g 1:50  p'pp{2q 1:59 plzl 1:50 plz| 1:5q
2p*pp{2aq 2p|zlq

for both examples; all of these quantities do not depend on x.

PpHi O|P;iX g

1;x

§ PMq

Appendix B. Proof for the prototype method

We will prove the FDR validity of the prototype procedure in Section 3.1. The
false discovery proportion of the prototype testing procedure, which thresholds the
test statistics Ti’s with the threshold £ tpg,"can be written as

#ti null: T/ ful
_#tT / wh

FDP

N /\1
#ti null: T;/ tu 1 #ti nuII Si ¥ 1 ¢ptqu

#ti null: S; ¥ 1 cptqu tm:nuc::: #tT,/ £ u

/ by the dention of our procedure

#ti null: T/ fu

/ -
1 #ti null: S; ¥ 1 ¢ptgl

#ti null: T,/t" u . .
We only have to show that E TR ol S Yic ptad S bounded by 1 using the

stopping time argument from (Barber and Candes, 2019).
Without loss of generality we will assume the true nulls are the rst mg hypothe-
ses. For each i P t1;:::; mou, dene
#

Si when S; / 0:5

% 1S;  whenSii 05

and B c'pSig. Using the order statistics Ty1q/9/ Tpmgq of Ph;:::; TH,, we nfbreover
let Bi IpSpiqi 0:5g fori 1;:::;mo, where the order of Sp’s herels inherited from
the order of the Tyq’s, rather thandthe magnitudes of the Si’s themselves. Let 1
/ 1/ mg be the index such that

-Flplq/ / ijg‘/ t A -F'pJ lq/ / Tpm%q;
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we then have

#ti null: T/ fu #ti null: T/ fu
1 #ti null: S; ¥ 1 ciptqt 1 #ti null: c'pl Sig/ tu i
Biq pl Byq 1 J
1 B, B, 1 B, B, U

considering that £ must be less than tmax : maxtt : ciptq/ 0:5 for all iu. Hence it
amounts to showing Er B-—BJ-S-A 2. This nal step can be shown by ap-plying

Barber and Candes (2019, Lemma 1) since conditional on (i) Tpig::: Bymyqand (ii)

tT; :iis non nullu, B1;:::;Bm, are independent Bernoullip0:5q random variables,
and J can be seen as a stopping time in reverse time with respect to the Itrations
tFju;,, where Fyo tB3 Bj;Bj 1;:::;Bmyu.

Appendix C. Properties of the working model

In this section we will develop some properties of the beta-mixture model in
Section 3.2 and the assessor functions it induces. To simplify notation, we will
use i; ri; kii; kri; hii; hei to respectively denote the quantities and functions |.x,, r;x; ,
ki;x;, ke;xi, hi;xi, he;x, from Model (3.6) when the observed covariate X; is used,
where the underlying parameters ti;r;|;ru are unspecied but common for all i
1;:::; m. Likewise, we also use

1 ri
Pl i ria ihipug  rihripug
to denote the assessor function constructed with them, and T, Si and cipq will
denote the test statistics and null distribution function based on ajpq as in Sec-tion
3.1.

First, the following lemma states properties concerning the left and right alter-
native functions hj; and hy;.

(C.1) aipug ax, pug

Lemma C.1 (Properties of the non-null component densities). For | i 2, hjipqis
a strictly convex and strictly decreasing function with the properties

JIKI;Y(I) hipug 8 and Ilrlel;npuq 0:

Similarly, for . i 2, h¢,pgis a strictly convex and strictly increasing function with
the properties
JIKET(I) hripug 0 and IlTerwripuq 8:

Proof of Lemma C.1. It suces to show the facts for hj; since those for h;i can be
proven exactly analogously. Recall that

hipug : Bpkii; 1gtu*itp1 ug?;

where for brevity we have suppressed the dependence on X; in notations. Dieren-
tiating with respect to u we get

an \2 k|l

(C.2) hlpug Bpki;igtrpki 1qu2pl ug? pi 1gpl uqg
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which, given | i 2 (actually | i 1is sucient), can be seen to be always negative for
any u P p0;1q and hence proves that hy; is strictly decreasing. For convexity, we
dierentiate one more time to get

h? pug Bpki; iapki 1qpki 2qu
li

ki3 kii2

pi 1gpl uq? Bpki;igpr 1q p2 gpl

ug3uft  pkyi 1quii?

pl ug?t u

pl ug?

P lap, 29u% 5 o
where in the last equality, the positive terms are positive since 0 kii 1. As
such, hgpugq is strictly positive for all u P p0;1q as long as | i 2, which proves the
strict convexity of hy;.

A closer inspection of the proof above will reveal that for | P p1;2q, h;i may not
even be convex, and the same is true for h;;. Hence we have required that|; (i 2
in our model. To facilitate the proof in later sections we will also dene the reciprocal
assessor function

(C.3) bipug aipugq:

By the properties of hj; and hy; in Lemma C.1, one can readily conclude the fol-
lowing lemma, which will help us develop some useful facts later:

Lemma C.2 (Properties of the reciprocal assessor). The reciprocal assessor func-
tion dened in (C.3) (for ;i 2) is strictly convex and smooth, with the property that

(C.4) lim bipug lim_ bpug 8:
uNO uN1
Hence, there exists a unique minimal u; such that

bipu;g  bipuq for all u P p0; 1q:

Ti aipUiq as a random variable has the range p0; aipu;gs in light of Lemma C.2. By
construction, aipg’s level sets can only be of Lebesgue measure 0, so cpq is
continuous under the uniform null distribution of U;. With the strict convexity of
bipg, one can also conclude that cipq, its null distribution function, is invertible (or
equivalently, strictly increasing), since no interval in the range p0; aipu;qs will have
zero measure under the law of ajpUiq induced by the uniform null distribution of U; by
the intermediate value theorem. The smooth \bowl!" shape of bipg also implies that,
for any t P p0; aipu;qgs, the event tT; i tuis equivalent to U; taking values in a certain
sub-interval of p0; 1g. One can dene two smooth functions to describe this fact:

Denition C.1 (Expression for the event tT; i tu). For eachi, !iL : pO;aipu;gs N
pO; u;s and !ir : pO;aipugs N ru;; 1q are respectively two smooth functions such
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that for any t P p0; aipu;qs,
tTii tu tliiptq Ui lirptqu tSi i ciptqu;

with liipg and lirpq being strictly increasing and strictly decreasing, respectively.
Since S;i and U; are uniformly distributed when H; 0,

Lirptg liiptg 1 cipta:
Moreover, bipliiptaq biplirptag 1{t.

Of course the variable S; cjpTiq has the range p0; 1s, and we can dene functions to
describe events of the form tS; i su similar to Denition C.1:

Denition C.2 (Expression for the event tS; i su). For each i, iL : p0;1s N
pO;u;s and g : p0;1s N ru;; 1q are respectively two smooth functions such that for
any s P p0; 1s,

tSii su t ipsq U; irpsqu tTi i c'psqu;

with iLpg and irpq being strictly increasing and strictly decreasing, respectively.
Since S; and U; are uniformly distributed when H; 0,

(C.5) iRPSQ iLpsq 1 s:
Moreover, bip iLpsqq bip irpsaq 1{C1p50|-

Appendix D. Proof for the asymptotic method

Before proving Theorem 3.1, we remark that the theorem is established by as-
suming that the mirror statistic™ is the exact reection of T under the null

distribution ¢. In practice, T‘im can be determined up to arbitrary precision in

Algorithm 1 as long as the number of uniform realizations N is set to be very large,
as recommended in Section 3.5.

We will make heavy use of the notation and results in Appendix C. We will also
use a; pq, bpiq, cpq,iT andi S; to denote the respective functions and statistics when

t; u is taken to be the pair t; u to construct aipq, bipg, cipg, Ti and S;.
Similarly, the quantities and functions appearing in Lemma C.2 and Denitions C.1
and C.2 all have their \star" versions: y, Liopd, Ligpa, ;pgand gpqg. Gener-ally

speaking, C;c i O will denote unspecied universal constants required for the
asymptotic arguments in this section.

D.1. Additional assumptions for Theorem 3.1.

Assumption 2 (Regularity conditions).

(i) max;}Xi}s / C almost surely for some universal constant C i 0, where
} }s indicates the sup norm.
(ii) Let rq;2s be any xed compact interval in p0;1qg. For each i, let V1; and Vy;
be two measurable subsets in p1;29. Then for large enough m,
o A PUi PViilXia PpUi PVailXiq/ Cp1j2q max pViVid;

—il
/i/m
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where pqis the Lebesgue measure, Cp1;2q is a constant that may de-pends
on 1 and 2, and S1S; is their symmetric dierence for any two sets S1;S; €
R.

(iii) ErlogpUigs and Erlogpl Uigs are nite.

Assumption 3 (Strong laws of large numbers). Let o PpH; Ogi 0. For anytP
pO; 1s, it holds that

m

(D.1) m!’ IpT / tqYN Gptg; i1
m

m? pl HiqlpT / tq YN oGoptg and

’
il
m
1

mt ' IpS, ¥ 1 cptag YN Goptq
i1
almost surely, where Gptq, Goptq and Goptq are positive continuous functions in t.
Moreover, Goptoq{Gptoq for some to i 0, and the limiting threshold
n *

t sup tPp0;ls: ¢ /

is such that maxipen c; pt¥y sfor s 1, or equivalently, t8 min; c; 'pg. Note
that the strong laws above, as well as the marginal probability o, are with respect to
the joint law of tH;; Z;; Xju.

Assumption 2 regulates the tail behaviors of the random variables X; and Uj; in
particular, piiq implies that conditional on X;, the density of U; can be unbounded
at the two tails, which is natural for multiple testing as it provides room for non-null
tail behaviors. Assumption 3 states properties of the strong law limits involved.

For technical reasons, that sup;py c; Bt qis bounded away from 1 ensures that our
result won’t rely on the strong law limits for very large values of t, which is hardly
restrictive in practice: any sensible multiple testing procedure should only consider
rejecting S; , which is uniformly distributed under the null, if it is much less than

the typically small target FDR level . Similar assumptions have also appeared in
the works of Storey et al. (2004), Zhang and Chen (2020).

We remark that our current assumptions for Theorem 3.1 are no stronger than
those in Zhang and Chen (2020) in any essential way, and can conceivably be further
relaxed; for example, if Assumption 2piq is phrased as a probabilistic bound, one can
still likely establish a version of Theorem 3.1 which says that the FDR is less than
with probability approaching 1. Moreover, we have assume, as stated in Section 2.1,
that tHi; Zi; Xju are independent across i, which can be further relaxed to a generic
weak dependence condition under which the strong laws in Assumption 3 hold. In
fact it is possible to prove an FDR bound in terms of the conditional expectation

been pursued here for a more streamlined presentation.
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D.2. Technical lemmas. Under Assumption 1 and Assumption 2pig, all ki;
krpXiq, ki kipXiq, ri rpXiq, 1i 1pXiq are bounded away from one and zero, i.e.
kri; kii P rk;ks, ri;1i P r;s for some compact intervals rk;ks;r;s € p0;1q, by the
compactness of B. Moreover, by continuity of the beta functions we can dene

B ax : Max pBpk; q_ pBp ;kapg and B min - Max pBpk; q_, pBp ;kag;
kPrk;ks kPrk;ks

which are both positive numbers.
The following \uniformity" properties will be heavily relied on later:

Lemma D.1 (Uniformity properties). Under Assumption 1 and Assumption 2piq,
the following are true for any pjqP B:

(i) For any to i 0, there exists a up uoptog i O not depending on p;qgsuch
that for all t ¥ to, pliptq; lirptaq € rug; 1 uos for all i.
(ii) For any sp i 0, there exists a up Uuogpsoq i 0 not depending on p;qsuch
that for all s ¥ sg, p iLpsq; irpsqq € rug; 1 ugs for all i.
(iii) There exists a small positive constant ug P p0;0:5q not depending on p;q
such that,
u; Prug;1 uos
for all i, where u; is as in Lemma C.2.
(iv)
lim  max bil rbipug; bipu;q 0; where
NO iPN;P; PB
is the Lebesgue measure, u; is as in Lemma C.2 and
bi'pT g tu : bipug P T u:

for any interval T in R.

Proof. pig: Note that
ut pigl ug  pl
pl 20B " pk29B max

(D.2 b; ¥ max for all i;

) pugq

which implies limygo min; bijpug limyg1 min; bipug 8, since the right hand side of
(D.2) tends to 8 as u tends to 0 or 1. Hence one must be able to nd a small enough
Uo i O such that minpbipuog;bipl uoqq i 1{to for all i, which implies that
pliipta; lirptaq € rup; 1 ues for all i by Denition C.1. This proves pig.

piiq: Suppose towards a contradiction, such a up doesn’t exist. Without loss of
generality, we assume there is a subsequence tiy; iz>; :::usuch thatlimjfs i;Lpsoq O.
As such, limjfs irPSoq 1so by the property stated in Denition C.2, which implies

pl sogpsoq’t pl soqpsott;

(D.3) -
R0 pl 2GBmin pl 2GBmin

On the pther bgng,  ps g/ 1
(D.4) Iijm bijp i Psoqq 8
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in consideration of (D.2) and limjfxs ; pSoq 0. (D.3) and (D.4) together reach

a contradiction since it must be that lim; bjp Psoqq limjbp gpsoqgasbp psoqq bp

. rPSoqaby Denition C.2. hon no
pilig: By the fact’that that bpbipu,gq O for all i, it suces to show that

(D.5) lim maxbpug 8 and lim minb.pug®8:
uNo i;; ! uN1 ;!
Note that
blpug . — hipug— ! hopug;— 1
' 10 Lo

where hl has the form

ki2 |2uk|i

pl ug? pi 1gpl uq s as shown in the proof

of Lemma C.1. Dene, for u P p0;1q, the functions

hlpug Bpki;igtrpki 1qu

hibug Bpairpk 1qu*?p1 ug? pi 1gpl ug?ukls;

hbug B, rpk 1qu?pl ug? p 1gpl ug®u¥ls so that h'pug/

h;puq/ P|1|puq 1 1 0 for all i. Note that
lim h lim h :
lim bug 8 and |mu_rd€uq] 0

One can similarly dene functions h, land h, 'on p0;1q such that 0 h:puq /
haipuq/ hr]puq for all i and

lim h! lim hpldq 8:
U|Nn(1) ;pug 0 and |rpNTrpuq 8

The fact that bijpug/ |, h'pyg ;, h' pug,together with two of the limit results
above, has shown the rst limit in (D.5). Similarly, that bplq ¥ lgﬂﬁsuq]
ﬂj)ujq, together with the other two limit results above, has shown the second
limit in (D.5).

pivg: By Lemma D.1piiiq, pick ug P p0;0:5q such that u; P rug; 1 ugs for all i.
Note that

i i
b? u 1ﬁa7ﬁu¢ 21“ rihﬁpu—,iz
pq p q
where the dependence on X; has been suppressed in notations for brevity. By
Lemma C.1, b? is always positive, hence there exists a universal positive number
ci 0 such that
blpuqi ¢

for all i and all u P rup{2; 1 uo{2s, considering that , B and rup{2;1 uo{2s are all
compact. Now for each i consider the quadratic function

2
C Uu. C
fipug p—lz bipu;q

dened on rup{2;1 up{2s. Then on the interval rup{2;1 uo{2s, b; ¥ f; sinceg; b;

fi is strictly convex with gpu,q gpulg 0. Then
c

5
btprmi;mi o/ frprmimi o —
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where the right hand side obviously converges to zero as N 0.

We will now state two crucial \event inclusion" lemmas that involve the most
delicate proofs in this paper, and may be skipped at rst reading. To state them, we
conveniently dene the long vectors pq pii;rid;; and K Kpg ™
pkii; krig; with 2m components. Note that they implicitly depend on the unspec-ied

parameters t;u. As such, we can also dene pgand K Kpqg to be the versions
evaluated at and .

Lemma D.2 (First event inclusion lemma). Suppose Assumptions 1 and 2piq are
true and let p;g P B. For giventi 0 and i O, there exists a | 0 such that
whenever } }g _ }K K}s ,

tS; / ciptgu€tSi/ ciptqu€tS; / c¢;ptg u foralliandallti t:

Proof of Lemma D.2. By Denition C.1, we will show, equivalently, that there ex-

ists i 0 such that whenever } }g _ }K K}g ,
(D.6)
tu; Py €tU; P Bloifidoflg € tU,
lengthlc; ptq lengthlciptq lengthlc; ptq
where we dene t;; : ¢ 1pci ptg g and ti; : ¢ 1pci ptg q that are respectively

less and greater than t. In particular, we will rst focus on showing
the second inclusion in in (D.6) , which amounts to showing

(D.7) biplipti;ag ® biplizpti;qq ¥ 1{t whenever
}ls _ }K Kls , in light of the fact that (D.8)
bi pli pti;aq bplgptiaq 1{ti;

by the denition of !, pg and !;zpq in Denition C.1 and properties of b; from
Lemma C.2.
Let uo i O be a small positive number such that p!; ptq; lizptaq € rug; 1 uos by

Lemma D.1(i), and consider the even larger compact interval rup{2;1 up{2s.
Consider each bipug bpu;;; kig as a function in pu;;; kiq, and let

;

.

rkbipuq BJ_BLpun; kig ;Bkﬁpu;i; kig
I |

be the gradient of b; with respect to pi; kig evaluated at u. Using the compactness of
ruo{2;1 uo{2s B and Assumption 2piq again, one can nd a universal constant
Cpuog i O such that the gradient bounds
(D.9  }ribipuqg}ly up foralli; alluP @;1 HUo all p;qP

) G g o B
the other hand, without loss of generality, we will let

(D.10) uof2

:On
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and, with Lemma D.1pivq, take ~ i 0 be a small enough constant such that
(D.11) pb; 1prbi pug; bpug ; g for all i:

By the mean-value theorem and the gradient bound (D.9), one can thennd | 0
such that when } }s _ }K K}s
(D.12) [bipug b; pug| ~foralluP @;1 5Uo

By the construction of ~in (D.11) and convexity properties from Lemma C.2,
one must have for all i

bpli pti;aq bpliptaq bplirpti;aq bp!i ptaq ¥ ~ which implies
(D.13) Ut ¥ ~ 1t
by the last property in Denition C.1. Since tS; i c; ptquetS; i c, ptqu, from the
property (C.5) in Denition C.2 both
L pti;q Ppli ptg ; liptaq and ligpti;q P plirpta; ligptq  qare true,

which implies

rli pti;q; Lirpti;as € ruo{2; 1 uof2s;
considering (D.10) and !; ptq; !,zptq P rug; L ues (as t ¥ t). Therefore by (D.12),
we must have
(D.14) biplipti;aq * bipligptiaq ¥ 1{ti; ~

given (D.8). Combining (D.13) and (D.14) gives (D.7).

The proof for the rst inclusion in (D.6) follows an analogous argument but is
with less resistance, since r!; pti; q; !;zpti; as€ ruo; 1ups for all i. We leave it to
the reader.

Lemma D.3 (Second event inclusion lemma). Suppose Assumptions 1 and 2piq
are true and let p;qgP B. For any xed t min; ¢; 1pq with s 1 and any
i 0, there exists a | 0 such that whenever } }s _}K K}sg ,

tS; i lcptquetSii 1cptquetS; i 1 ciptg wu;foralli
and all t/ t.

Proof of Lemma D.3. Note that from (C.5) in Denition C.2 and Lemma D.2 we
can conclude there exists a1 i 0 such that whenever}}s _}K K}sg 1,

(D.15) 1cptg / 1cptg/ 1 cptg

Based on (D.15), it suces to show that there exists a 2 i 0 such that whenever }
}s _ 1K K}sg 2,

(D.16) tSii 1cipiqu€tS; i 1 cptg 2y
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and
(D.17) tSii lcptg uetS, i 1cptg 2u

which conclude the lemma by taking 1 _ 2> and replacing with {2. In fact, since t
/ tand c, ptq are bounded away from 1, we will show the more general statement:
For a given s i O, there exists psgi O such that whenever} }s _ }K K}sg ,

(D.18) tSii su€tS; i su
and
(D.19) tSii suetS; i s u

for all s¥ s and all i. This will necessitate (D.16) and (D.17) for t/ t.
We will rst show (D.18) which amounts to
(D.20) P iLPSq; RPSAA€P ; PS G .PS O

in light of Denition C.2. In particular, it suces to only consider the case where
s, sinceifs / 0,tS; i s u tS; ¥ Ou becomes the whole underlying
probability space which makes (D.20) trivially true. Now for each i, let

spiq : supts’ P p0;1q: p iLpsq; wrpsad € p ; ps'a; wps‘aqu:
By Denition C.2 it must be the case that
(D.21) spiq 1 .pspiqq ipspiqq/ 1  irpsq iLpsq s; and
only one of the following possibilities can be true:

(i) . pspiaq iLpsq and irRPSq «=Pspiqq,
(i) wpspiqq  ipsq and RPSA  RPSPIqQ,
(iii) ;. pspiqq iLtpsq and  irRPSQ  ;rPSpPIqq.
In light of the monotone properties in Denition C.2, it suces to show that

(D.22) s spiq ;

which will then imply (D.20). Obviously, if piiig is true then (D.22) must be true in
light of (D.21). We will focus on showing (D.22) in the case of piq since the proof for
the case of piiq follows a parallel argument.

By Lemma D.1piig, there exists a up ugpsqi O such that

(D.23) p iLpsq; irPsqq € rup; 1 ues for alli PN and s ¥ s:

Consider each bipug bpu;;; kig as a function in pu;;; kiq, and let
TT
rikbipuq : thpu;i; kiq ; Bkﬁpun; kiq
i i

be the gradient of b; with respect to p;i; kig evaluated at u. Using the compactness of
rup; 1upsB and Assumption 2piq again, one can nd a constant Cpupg i O such that the
gradient bounds

(D.24) drcbipugla Cpuoq for all i and for all uP %;1 5Uo
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On the other hand, without loss of generality, with Lemma D.1pivq, let ~i 0 be a
small enough constant such that

(D.25) pbilprmi;mi g 5 for all i:

By the mean-value theorem and the gradient bound (D.24), one can thennd | 0
such that when } }s _ }K K}g

(D.26) |bipug b; pug| ~for all uPrup;1 ups:

Since ; pspiqq iLpsq P rug; 1uos, (D.26) and the last property in Denition C.2
suggest that

(D.27) b, pspigg b , pspiqq bi iLpsq ~ b iRPSq ~
But since irpsq is also in the interval rup; 1 ups, we must have

(D.28) b ikrPSq i bi iRPsSqQ ™

Combining (D.27) and (D.28), we get that 2~ i b;  zpspiqq b . irpsq which
in light of the construction of ~in (D.25) and convexity properties from Lemma C.2
gives that

ixPSPiqq  irPSq ;
which in turn implies (D.22) by the property (C.5) in Denition C.2. The proof of
(D.19) is similar. It amounts to showing

PiPs & RrPS ad€p iLpsq; irRPSAQ:
We will alternatively dene
Spiq : infts, P p0;1q: p ; ps'a; {"ps'qq € p wpsq; wpsqqu:

then show spiq s . We leave the details to the reader.
D.3. A Glivenko-Cantelli theorem.
Lemma D.4 (Pre-Glivenko-Cantelli theorem). Under Assumptions 1-3 , for any

i 0 and positive numbers 0 t t min; cilpq, there exists pgi O such that, for
suciently large m,

(D.29) sup ! ,  1pTi/ tq Gptq/
maxp}tKK}; g i1
t/t/t m
1 m
(D.30) sup — " pl HigqlpTi/ tq oGoptq/ ;
maxp}KK}; g t/t/t m_1
I1 ’ m
(D.31) sup IpSi ¥ 1 cptag Goptq/
maxp}KK};}}q —i
t/t/t m

with probability 1.
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Proof of Lemma D.4. In this proof, for any function Fpq, Fptq denotes the left

limit at the point t.
Proof of (D.29): Let

1, m
G;ptq —IpTi/ tg;i1

where the subscript emphasizes that the Ti’s are dened with an unspecied p;q, to

distinguish from G in Assumption 3. Let n be large enough such that 1{n {2

and consider G pl{nq/ / G pn{nqg. If we dene

nl:minti:’g G pi{fnq t;i 1;:::;nu;

d :|ti:t G pi{fng t;i 1;:::5;nul:

tq twithd d' 1. Following the proof of the Glivenko-Cantelli theorem in Resnick
(2019, p.224), we have

(D.32)
lld
sup |Gptq Gpta| / IGptvg Gptval _ |Gptvg Gptva|  1{ntstst
vO
We will rst bound the terms of the form |G,pt,qGpt,q| in (D.32). The strong law
of large numbers for Gpg in Assumption 3 suggests that
(D.33) |Gptva Gptua| / m* m pIpTi/ tq IpT / taq Ry; i1
o~ ’ I
where the remainder term Ry YN 0 almost surely. Now, realizing tT; / tyu
tS; / ¢, ptvqu, by Lemma D.2 and ti O, pick i O such that

1.m
(D.34) —_ plpTi/ tq lpT; / taq/
m

m SHpPS / ¢iptva g lpS; / c pt\,qqs_m1 ripS /" c; ptug q IpS; / c; ptvaas:

il il
PAg . PBq
for maxp}}; }1KK}q . Thisis because 1 rlpS /I g g IpS / cpt\,iqqs¥ii1pIpTi
L, wa IpTy / taq if the latter term is greater than 0; likewise,
mrlipS; / ¢, ptvq qlpS; / ¢, ptags / mplpTi / twq IpT;, / tqq if the

latter is less than 0.
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We will rst develop a bound for term pAg. One have

m

pAq/ E L7 rPpS;i cptvalXiq PpS i cptg ; [Xigs Q,
mia
1 m
E"_P UiPp pept,ag; pcptvﬂ(ql)i(i
m il

PpUiPp ;pcptva o grpPcPtya  qlXa Q v
(D.35) / Cptqg Q,

where Q, 0a:s:plqg is a remainder term coming from the strong law of Gpq in
Assumption 3. The second equality comes from Denition C.2. Note that the
intervals

by Denition C.1, which all belong to a compact sub-interval in p0; 1q by Lemma D.1piq
and the fact that ti 0. As such, Assumption 2piiq can be applied to give the last
inequality (D.35). By realizing, from Denitions C.1 and C.2, that the event

tS; i ¢iptvqu

is equivalent to U; belonging to an interval that is p!;, ptyq; !;zptvqq expanded by
a further width, it is obvious that one can analogously develop the bound

(D.36) pBg/ Cpta Q,

for a constant Cptq and Q, 0a:s:p1g. Combining (D.33), (D.35) and (D.36) gives
(by appropriately adjusting )

(D.37) |G.ptvq Gptyg| / {2 a.s.; for
suciently large m. A similar bound
(D.38) |Gptvg Gptva| / {2 a.s,;

can be derived in much the same way with no diculty by rst writing
m
Gptvg Gpt,g m*  IpT; t,q Gptuq
i1
using the continuity of Gpg, and the proof is omitted for brevity. Combining
(D.32), (D.37) and (D.38) give (D.29). (D.30) can be proved in the same way by

rst writing
m

pLHiqlpTi/ ta 1pTi/ to;
i1 Hi0
and noting that U; is uniformly distributed given H; 0 and X;, and thus omitted.
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Proving (D.31) is similar. One proceed by developing the bound

1 . .
—  rlpSii 1 cptag PpSi 1 cptaas ,
m
VR rlpS; i 1 ¢iptvga qPpS; i 1 ¢ ptvaas_
m
1. . .
- ripSi 1cptvg qPpSi 1 cphaas i
with Lemma D.3 for t, that are Inow quantiles of Go, for suciently small | 0 and
maxp} }; 1K Klq . From Denition C.2, the events tS; i 1 c; ptyqu have
the form

tUi Pp ; pl cptyqq; rP1 cptvaqqu;
and to show that the intervals p ; pl c, ptvaq; gpl c; ptuaq can be placed ina
compact sub-interval of p0;1q by Lemma D.1piig to apply Assumption 2piiq, one

ptg/ cptg/ s 1 for all i by denition. The same proof rundown goes through,
again, by realizing that p ; plc; ptuqg; zplc; ptuaq are just -expansion of p ;, pl ¢
ptvaq; gP1 c; ptvag from Denition C.2. The rest of the proof goes thru with no
resistance.

Lemma D.5 (Glivenko-Cantelli Theorems). Under Assumptions 1-3, for any 0
t t/ minig 1pg, we have

1.m L t/t/t
(D.39) sup . IpT/ tq GptqYN O;
mil
1 -
(D.40) sup ™ pl HiqlpTi{ tq oGoptg YN 0;t/t/t
i1 —
1,m .
(D.41) sup IpSh¥ 1 ¢ ptaq Goptg YN O; t/t/t

i1
almost surely. m

Proof of Lemma D.5. Let “p'; ™g";" p"; g, afd dene pgand K Kdg. We'will
rdt showthat

(D.42) 188 _ }K K}s"YN 0 a.s.; which is
a consequence of

(D.43) NN and YNA a:s:



41

by the mean value theorem, the compactness of B and Assumption 2pig. To
show (D.43), it suces to bound

(D.44) [logrpl 1i rig  ihipUiq rihripUigs| |loghx, pual

by an integrable function in U; that doesn’t depend on p;q (White, 1981, Theorem
2.1). Werstletupi ObeasinLemma D.1piiigq. By the compactness of B rug; 1uos
and Assumption 2piq, there exists universal constants C;c i 0 such that logpcq
0, logpCqi O, and
C ¥ hy,pUg¥ c

for all p;; Xig whenever U; P rug; 1ups. Note that Lemma C.2 also implies that hy,
pUiq ¥ c for U; P pO;uoqY pl uo;1q:

Moreover, for U; P p0;uoq, rihripUig / C by Lemma C.1, hence borrowing nota-
tions from Section D.2,

Ugtukt
loghx pUg/ log 1 C K i
' pl B
min
p Ug b Kk .
/ logp2 Cq log G T4 i mf&H‘\ﬂon
Plus  u o

fora constant C'i 1_ e Similarly, there exists a positive function mypq such
that

log hx, pUig/ mrpUiq
for U; P pl up; 1g. Combining these facts we have for all U; P p0; 1q,

|loghx, pUig| / |logpcg| _ logpCq _ mepUiq _ mipUig;

where the right hand side is integrable by Assumption 2 piiiq and (D.43) is proved.
We will only prove (D.39), and (D.40) and (D.41) can be shown the same way.
Let Dm Dmpl!q supw/tl i I'PTi / Mq Gptg, where ! denotes a pointin the
underlying probability space

. It suces to show that for any | 0, there exists a subspace pg€

such that Pppgq 1 and Dmp!q for suciently large m and every ! P pg. By
Lemma D.4, there exists 1 with Ppig 1 such that (D.29) holds on 1 for pgqi O.
By (D.42), there exists 2 With Pp2q 1such that } }s _ }K K}s pq on » for
suciently large m. Take pq 1 X 2.

D.4. Proof of Theorem 3.1. The proof is similar to that of Storey et al. (2004,

Theorem 4) but is a bit more sutble. Recall the ratio in (3.8). We shall rst
show that under all the assumptions of Theorem 3.1, for any ti 0 and any t P
pt& minic; 'pss, ' )

(D.45) IimmNithjr:ﬁt EDPasympptq FDPptqg ¥ 0a.s.

where FDPptq "PAHAIPT/tE cor anvti 0. From the rst two Glivenko-Cantelli ;

statements in Lemfa 'B'5 % See that
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t
(D.46) lim sup FDPptq om o

t/t/t |1IpT./ptq _1

. pi HiglpTi/ taq omGoptq
ligw ssyp, ——tpFAte—t ——tpF A te—1—
YA |’1]l IA — th I/\ -
. ° pl HiglpTi/ t
m o sup P alpTig tq G ptg O a.s.
i 1pTi/ g _ 1 t/e/t 0 o0
mN 8 m

since limmfs = F 1mIpT 7 —1{Gp_q 8 almost surely, given that Gptg i O.

On the other hand, it must be that Goptq ¥ o0Goptq considering that PpS; ¥
1 cptg|Hi O0g PpT / t|Hi 0q, which, together with the last Glivenko-

Cantelli statement in Lemmpa D 5, glves

+ .
A, 3 IpS ¥ 1 @ pigg )
Ilr'rpnlnft_/ugjt m ptf © ¥0
The preceding display and (D.46) will lead to
! )
Ilrmﬂlng?it FDPasympptq FDP ptqs
& . wi ,
¥ liminf inf o aTPSI L PG pp g Y 0
mN8 t/t/t % m lpT# tq _ 1 -
which is (D.45).
Towards nishing, we will establish that, almost surely,
(D.47) liminf fasymppq i 0 and limsup taymppag / ming; og:
m m i

8 8 case
Fix t1 P pt; minic; 1p(i|q. By the denition of t in Assumption 3 it must be the

that

Goptad | Gopi’q
Gptiq Gptq
and we can let %P"% | | 0. For suciently large m, because of Lemma D.5

Gp"p%%l@ Ptiga Gopti

we can get that ;i 1{2 a.s., which implies that FDPasymppt1q i

almost surely to gii\)é) ﬁ'e”\qw*%\sup‘gps’tgtement in (D.47). On the other hand,

let GoPtd o i 0 for to in Assumption 3. Since to t® (by continu-

ity of thé€r\G" functions), Lemma D.5 also suggests that for large enough m,
| Goptoq

FDPasympptoq| 0{2 almost surely, which implies FDPasympptoq
aImost surely and hence the \liminf" statement in (D.47).
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Now given (D.47) is true, since EDPasympptasymppPqq/ , by (D.45) it must be
true that
limsup FDP pthsymppqq / a.s.
m

By the reverse Fatou’s lemma, this implies
limsup ErFDP ptRsymppqqs/ E limsupFDP PtasympPaq /

and Theorem 3.1 is proved. "

Appendix E. Proof for the finite-sample method

The proof is almost exactly the same as that of Lei and Fithian (2018, Theorem
1) which relies on the key lemma in that paper (Lei and Fithian, 2018, Lemma
2), and we will only dene the notation required to apply their argument. First,
for eacht 0;1;:::, let V¢ #ti : Ui PRy and H; Ou and U: #ti : Ui PA: and
Hi Ou which are respectively the numbers of true nulls in the rejection set and
acceptance set at step t. Dene

m; lpU; ¥ 0:5qpU9 Uiq IpU; 0:5qp®; » Uiq

and
bi 1p0:25/ Ui/ 0:75q
so that

Ui bitlpm; ¥ 0:59p1:5 mig Ipm; 0:5gp0:5 miqu  pl bigm;:
Also dene C; ti:i PAtY Rt and H; Ou to give

Ut ' bi and Vi ' pl big |G| Ui:irc
iPCt
If we set the initial sigma-algebra Gi  tpXi; MiQipt1;::;mu; Pbidi:H,0u, then Ppb;
1|Gig 0:5 almost surely for a null i under the uniform null distribu-tion of U;.
With these ingredients, the arguments in the proof of Lei and Fithian (2018,
Theorem 1) will follow line by line, where the Ui’s will take the role of the p-values

in that paper.

Appendix F. Supplementary algorithms

We will inherit the simplied notation in Appendix C. The complete data log-
likelihood for Model (3.6), treated as a function of t; u, has the form
m
Ip; q Hii rpki 1glogpUiq pr 1qlogpl Uiq log Bpkii;iqgs
i1
m I p |
Hrirpkei 1g og 1 Uig  pr lqlogpUig ogBp:; krigs
i1

m
(F.1) " pl Hii Hrigqlogpl ii riq Hiilogpiq Hrilogpriq ;i1



44 D. LEUNG AND W. SUN

where for each i, H|; and H; are Bernoulli random variables with respective success
probabilities ;; and (i, and H|; and H;; cannot be both equal to 1 at the same time.
Note that the last line in (F.1) amounts to a multinomial logistic regression with
three classes.

F.1. EM algorithm for asymptotic ZAP.

Algorithm 3: EM algorithm for asymptotic ZAP

Input: initial guess P99, P4 \while

pPi9; Pidg not converged do
E step: Let P'f, P9, h"9 hP% and h"? pe as dened in Section 3.2
evaluated at pMi9;Pi9q. Compute

Q¥p;
mlo A o )
wi! % logrihipUias ~ w®logrihipUigs  pl w”® w™qlogpl i riq ;i1
where
pig , pid
Wlpijq Equ;qurHIi IXi;UiS i qugli h ;pUq
h ig pU

. pj o g P U
ngq Evia piarHri | Xi; Uis P %
' h
M step: Compute p? 19;° g arg max, Q"9p;qq. end
Output: Estimated coecients and

F.2. Updating the thresholding functions in nite-sample ZAP. We rec-
ommend using Algorithm 4 below to update the thresholding functions, which per-
forms estimations of our beta-mixture model, although nite-sample FDR control is
guaranteed as long as the conditions in the Theorem 3.2 are met. As seen in
Algorithm 4, assessor functions for the hypotheses are rst constructed based on
expression (3.7), using an EM algorithm that acts on the masked data tUy;i; Xim,,

(Appendix F.3) to estimate the parameters. Next, for each masked i P A+ Y Rg,
evaluated assessor value T} at whichever U; or O; is closer to the extreme ends of
the interval p0;1qg is computed, and among them the hypothesis j with the largest
such value is selected. This step aims to locate the hypothesis in the current masked
set that is the most likely to be a true null if all masked hypotheses are presumed
to be from the candidate rejection set R¢. Finally, one of the two thresholding
functions si;: and s+ will be updated, in a manner that satises condition piiq in
Theorem 3.2, to give a dierent s;x 1 0r sr;¢ 1: If Uj i 0:5, sr;+ 1 will be updated from
sr;t at the point X assr;t 1pXjq Uj_Uj, and rgmains the same at all other covariate
values; otherwise, si;: 1 will update from s;;; in a similar fashion using the value U; »
Uj. As suchg at the next step t 1, one of Ay 1 or Ry 1 will be shrunk
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by exactly one element which is j. This is intuitive since if EDPfiniteptq i at
step t, one would hope to reduce the size of R:.

Algorithm 4: Update thresholding functions at step t with Model (3.6)

Input: The masked data tUy;i; Xiu}

1 Compute 6’0 0 u’%ing the EM algorithm in Appendix F.3.

2 Construct t&x, pquiea y r , With (3.7) by setting the underlying parameters
as the estimates in the prior step.

3 Find j argmaxipa,vr, T; for T* &x, pUlq, where

Ui] IpU;i 0:5qUi A G;  IpU; ¥ 0:5qU;i _ 4;
4 if Uji 0:5then
5 srt 1pXig Ipi japUi_ Uiq 9 Ipi jgsrtpXig, si;t 1 Sit; 6 else
7 sit 1pXiq Ipi jgpUi ™ Uig Ipi jgsikpXiq, st 1 Srt; 8 end
Output: sit 1, Srit 1 q

F.3. EM algorithm for nite-sample ZAP. We will lay out aspects of the EM
algorithm required for Algorithm 4.

E-step computations. Let D¢i pXi; Ut,fq be the available data for i at step t of the
nite-sample ZAP algorithm. To update from the parameters p®i%; Pi%q at the j-th EM
iteration, we need to compute the following quantities:

(F.2) Epqu;m’qq rHii | Dtis; Epw‘q;PMquri | Dtis;
EppJq_ququri |0ngiq|Dti5} Epqu;DJquHri |0gp1 UiqlDtiS; Epqu_ququIi
logpUiq|Dus; Eppia piagrHii logpl Uiq|Duis:

These quantities are straightforward to compute when Uy;; is a singleton, so we will
only focus on computing them when Ui is a two-element set, i.e. corresponding

to a masked U;. Like Algorithm 3, we shall let |, 989 hlp_jq and h"¢ bexas dened
. . ri ] ri i
in Section 3.2 evaluated at p9;™9q. We will have
NI “hpj_qu?Uiqu_ L XC_I
P q hqupgiq hPi9U g

Api
Hfqu Epqu;ququnlDtiS Ppqu,pJquHli 1|Dtis

qurhqu U; rhqurluiqs. . q

ri

P a4 "hifBq hy/'pUg

H\?qu Epqu;ququrilDtiS Ppqu_pJquHri 1|Dti5
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Moreover, to express the last four quantities in (F.2), we dene

E H i j
Yoig ¢ 1 logpUsa | D; Hy 1s h™pUiq logpUiq thqDUiQIngUi%.Ii
li;a  piagpial i i tir Pi hP95U hP950
p “q . PYq

. d

pja E _ pra a q
yri;A qu;qurHriIngUiqlDti;Hri 1s hlpiquqjiq hli pgin
E H o

pid hP%pUiq logpil Uig hqupUinogplliUiqqln [

hqupUiq i .

Yii,s via;pial ii | gp1 Uiq|Dyi; Hyi 1s hqupuliq h:)jquq

bl h™pUiglo g1 Uig h pUglo pPlUE. q

Yvi;B Epia piarHri |ng1 UiqlDti;Hri 1s _ :
' g Hi'pUiq Eh,; pBig
then one can express

Epqu;PjquHIi |0ngiq|DtiS y”;AI'qu;A“ Epqu;ququri |ngUiq|DtiS yri,’AI-qjqu'.Ari

H pim, Apj

Epeia piaqrHii logplUiq|Dus vy, g H|i ™5 Epoia pieg"Hri logplUiq | Dys yPa yria. A

ri;B ri
Initialization. We now discuss how to specify values for polqi; quIHqu and Pay

initialize the algorithm. Specifying " and P03 s easy: For |, we only consider

the left group L ti : Uijq_ U;/ 0:5u, and t the left-leaning beta density hjpg to the

data points tU; A U; : P Lu to obtain an estimate for | as the initial value ", with a
given value for | (such as 4). Note that we t the model to the smaller point
Ui Wi instead of Ui _ g for each i P L with the goal of having a more \aggressive"

left alternative distribution. The initial value rqu can be obtained similarly by
considering the right group R ti : Ui@ U; i 0:5u, the data tU; _ U;4i PRu and
hripg .

. 0 [0] .
To speciy "%, for each i, we rst dene

(F.3)

/i PpHri 1]Xi;Uii 0:5q; i PpHi 1]Xi; Ui 0:5q; i PpUii 0:5]Xq;
PpHii 1]|X;;U;/ 0:5¢q; ri PPHri 1|X;; U;/ 0:5¢q; . PpUi/ 0:5]Xiq
and note that, by denition, (; ¥ arli’ldi ¥ . We willlifoirm estimates for ;7 5 A,

ri i i
estimates #;, and *;, can be obtained as predicted probabilities by tting a logistic
regression on the indicator responses D; IpU; i 0:5q with covariates Xi. For the
rest of this section we will focus on the estimates *;, since the estimates #|, can be
obtain analogously.
Let Ji IpUgv has one elementg. Then

0 , :
;A andlet * A A and®®? A A be conservative estimates for i and ii. The

0521 sr,.opXi
p 05 qq

ErJi|Xi; Di 1s PpJ; 1|X;;Di 1g¥ p1 i 1id

which is equivalent to
i ¥ E JiXi; Dol
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~ 0:5J;
where Ji 1 455575 soxa0-

EJiXi; D, 1

(3000000000001 0000000000 " 600000000000000000000000
e

PpUp;i has two elements |X;; D; 1q

i1

0:5
0:5 2p1 Sro i

As the probability of Hji 1 should be small under Ui | 0:5, |, is likely tobe
negligible, hence the right hand side of the previous display should still be a
conservative estimate for ;, i.e.

ol 1 =
ri PLyad g 0:5 2p1 Sr;oprqu.S—

of the logistic regression on J; with covariates X; restricted to samples with U; i 0:5.

Appendix G. Further numerical results

G.1. Further simulations for Section 3.5. We will perform extra simulations to
test how our model in Section 3.2 can robustly estimate the non-null probabilities.
We generate 8000 i.i.d. z-values from a normal mixture model with density

(G.1) pl wa fopzd  pW Bl AGRZd  PW APZ 0 1qgnen Wr
where the simulation parameters |, -, w, range as

| P t2:5;2;1:5;1;0:5u; r P 10:5;1;1:5;2;2:5u;
w P t0:1; 0:15; 0:2u; P t0:5; 0:7; 0:9u:

Apparently, w is the non-null probability, | and  are respectively the mean
parameters for the alternative normals on the left and right, and parametrizes the
degree of asymmetry reected in the mixing probabilities w; and w,. For each set of
8000 z-values, the beta mixture model (3.6) for pi;rq p4;4q is tted with regression
intercepts only by an EM algorithm, and the resulting left and right model-based
non-null probabilities A and *, estimates serve as estimates for wjand wy.

From the results in Tables 2 - 4, one can see that our beta mixture produces fairly
accurate non-null probability estimates p”j; Arq for pwi; wrg. Generally speaking,
the estimates are the most inaccurate when one of | or ; has a small magnitude,
which is reasonable since one of the two non-null components has a weak signal
and many z-values which are non-nulls could be regarded as null by the EM tting
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Table 2. Estimated probabilities A and ~, based on the beta
mixture (3.6) with p;;rq p4;4q and regression intercepts only, for
8000 z-values generated by the normal mixture (G.1) with 0:5. A
and 7, are respectively the left and right entries in each cell.

1Zr 0:5 1 1:5 \ 2 \ 2:5
w 0:1, pw;; wrg p0:05;0:05q
-2.5 | 0.073 0.056 | 0.066 0.055| 0.064 0.064 | 0.071 0.065 | 0.080 0.069
-2 0.061 0.037 | 0.062 0.038| 0.057 0.058 | 0.059 0.061| 0.071 0.079
-1.5 | 0.040 0.022 | 0.048 0.037 | 0.042 0.047 | 0.049 0.065| 0.058 0.070
-1 0.044 0.029 | 0.037 0.039| 0.034 0.046 | 0.047 0.064 | 0.066 0.072
-0.5 | 0.023 0.024 | 0.024 0.047 | 0.041 0.073 | 0.043 0.072 | 0.041 0.076
w 0:15, pw;; wrq p0:075;0:075q
-2.5 | 0.110 0.050 | 0.103 0.072| 0.100 0.087 | 0.106 0.095 | 0.102 0.095
-2 0.085 0.045 | 0.087 0.058| 0.089 0.070| 0.086 0.091 | 0.100 0.096
-1.5 | 0.080 0.052 | 0.076 0.065| 0.082 0.064 | 0.074 0.082 | 0.082 0.094
-1 0.065 0.040 | 0.044 0.041| 0.041 0.064 | 0.068 0.087 | 0.068 0.102
-0.5 | 0.022 0.024 | 0.049 0.065| 0.050 0.075| 0.041 0.071| 0.050 0.091
w 0:2, pw;; weq p0:1;0:1q
-2.5 |0.116 0.073 | 0.118 0.101 | 0.123 0.119 | 0.127 0.132| 0.122 0.136
-2 0.112 0.053 | 0.113 0.086 | 0.115 0.127 | 0.113 0.132 | 0.120 0.133
-1.5 | 0.089 0.047 | 0.090 0.074 | 0.086 0.104 | 0.096 0.124| 0.086 0.135
-1 0.067 0.042 | 0.055 0.068 | 0.060 0.095 | 0.071 0.117 | 0.090 0.134
-0.5 | 0.025 0.046 | 0.042 0.083 | 0.032 0.106 | 0.068 0.124 | 0.069 0.142

algorithm. This should not be too concerning, as it simply means some of the

hypotheses pose hard testing problems to begin with.



Table 3. Estimated probabilities A and *, based on the beta
mixture (3.6) with p;;rq p4;4q and regression intercepts only, for
8000 z-values generated by the normal mixture (G.1) with 0:7. 7
and 7, are respectively the left and right entries in each cell.
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1Zr 0:5 1 1:5 \ 2 \ 2:5
w 0:1, pw;; wrg p0:03;0:07q
-2.5 | 0.049 0.043 | 0.037 0.046 | 0.047 0.060| 0.050 0.079 | 0.058 0.091
-2 0.046 0.042 | 0.036 0.059| 0.037 0.072 | 0.046 0.077 | 0.042 0.089
-1.5 | 0.065 0.042 | 0.023 0.044 | 0.028 0.072 | 0.051 0.076 | 0.037 0.089
-1 0.036 0.041 | 0.057 0.061| 0.034 0.072 | 0.049 0.086 | 0.047 0.087
-0.5 [ 0.031 0.040 | 0.037 0.050| 0.042 0.077 | 0.036 0.074 | 0.030 0.091
w 0:15, pw;; wrq p0:045;0:105q
-2.5 | 0.066 0.054 | 0.057 0.058| 0.062 0.106 | 0.058 0.124 | 0.070 0.137
-2 0.047 0.051 | 0.057 0.079| 0.058 0.112 | 0.067 0.124 | 0.057 0.134
-1.5 | 0.043 0.055 | 0.044 0.075| 0.034 0.091 | 0.048 0.118 | 0.050 0.128
-1 0.053 0.058 | 0.024 0.069 | 0.049 0.100| 0.053 0.129 | 0.069 0.136
-0.5 | 0.038 0.057 | 0.034 0.076 | 0.034 0.111| 0.035 0.125]| 0.045 0.135
w 0:2, pw;; weq p0:06;0:14q
-2.5 | 0.078 0.070 | 0.079 0.116 | 0.088 0.152 | 0.079 0.159 | 0.088 0.185
-2 0.062 0.050 | 0.071 0.104 | 0.072 0.143 | 0.075 0.164 | 0.073 0.181
-1.5 | 0.049 0.052 | 0.058 0.114 | 0.059 0.146 | 0.059 0.164 | 0.074 0.184
-1 0.029 0.041 | 0.028 0.088 | 0.046 0.128 | 0.075 0.174 | 0.087 0.192
-0.5 | 0.031 0.059 | 0.021 0.106 | 0.026 0.137 | 0.050 0.164 | 0.059 0.186
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Table 4. Estimated probabilities A and *, based on the beta
mixture (3.6) with p;;rq p4;4q and regression intercepts only, for
8000 z-values generated by the normal mixture (G.1) with 0:9. A
and 7, are respectively the left and right entries in each cell.

1Zr 0:5 1 1:5 \ 2 \ 2:5
w 0:1, pw;; wrg p0:01;0:09q
-2.5 | 0.019 0.044 | 0.017 0.072| 0.015 0.093 | 0.030 0.100| 0.026 0.114
-2 0.037 0.065 | 0.008 0.064| 0.017 0.102 | 0.009 0.108 | 0.035 0.123
-1.5 | 0.022 0.050 | 0.011 0.071| 0.018 0.086 | 0.034 0.117| 0.053 0.120
-1 0.019 0.044 | 0.019 0.066| 0.021 0.079 | 0.026 0.112 | 0.041 0.125
-0.5 | 0.010 0.050 | 0.011 0.062 | 0.019 0.092 | 0.035 0.120| 0.049 0.116
w 0:15, pw;; wrq p0:015;0:135q
-2.5 | 0.024 0.060 | 0.022 0.096 | 0.024 0.115| 0.023 0.149| 0.024 0.164
-2 0.020 0.071 | 0.021 0.098 | 0.020 0.128 | 0.017 0.150| 0.035 0.167
-1.5 | 0.029 0.080 | 0.015 0.092 | 0.025 0.141| 0.035 0.148 | 0.035 0.156
-1 0.021 0.060 | 0.026 0.112| 0.017 0.124| 0.044 0.150 | 0.034 0.163
-0.5 | 0.011 0.065 | 0.017 0.105| 0.012 0.127 | 0.018 0.139| 0.032 0.158
w 0:2, pw;; weq p0:02;0:18q
-2.5 | 0.018 0.059 | 0.024 0.134 | 0.021 0.162 | 0.026 0.194 | 0.039 0.223
-2 0.015 0.046 | 0.017 0.125 | 0.026 0.162 | 0.020 0.196 | 0.043 0.226
-1.5 | 0.012 0.072 | 0.010 0.134 | 0.027 0.154 | 0.039 0.214 | 0.032 0.216
-1 0.014 0.077 | 0.010 0.120 | 0.021 0.175 | 0.037 0.213 | 0.035 0.225
-0.5 | 0.016 0.104 | 0.013 0.115 | 0.023 0.167 | 0.033 0.209 | 0.049 0.230
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G.2. Extended numerical results for Section 4. For good measure we have
also experimented with the following methods:

(a) BH: the vanilla BH procedure (Benjamini and Hochberg, 1995)

(b) oracle: The oracle procedure ?

(c) SABHA: Structure adaptive BH procedure with 0:5, 0:1 and stepwise
constant weights (Li and Barber, 2019)

(d) BL: Boca and Leek procedure (Boca and Leek, 2018).

Similar to IHW, SABHA is a method only applicable to univariate covariates. Hence
for the simulations in Section 4.1, it is applied with the covariate sum X;; for the
applications in Section 4.2, it is applied with the original log mean normalized read
count for the RNA-seq data and not applied for the neural data. Of course, the
oracle procedure is only applicable to simulated data.

The FDR and TPR plots for the whole set of methods are shown in Figure G.1
for the simulated data. Note that except for the oracle procedure, all the additional
methods are p-value based, and they cannot dominate the z-value based methods
in power as expected. In Setup 3, none among the extended set of experimented
methods has power comparable to the oracle procedure, suggesting that the data
generating mechanism poses a hard multiple testing problem. One additional ob-
servation is that FDRreg in fact has slightly more power than the oracle procedurein
Setup 1 when the covariates are the most informative. Of course, this has come at
the expense of violating the FDR bound.

The numbers of rejections for the extended list of methods applied to the real
data are shown in Figure G.2, and the conclusions we can arrive at are essentially
the same as those from Figure 4.2 in the main text. Lastly, one can refer to Lei
and Fithian (2018) for access to the bottomly and airway datasets. The other two
real datasets are available at:

(i) hippo: https://www.raynamharris.com/DissociationTest/
(ii) scott: https://github.com/jgscott/FDRreg

G.3. Dierential expression analysis of RNA-Seq data. We shall rst briey
discuss the importance of pre-ltering genes with excessively low read counts before
applying FDR methodologies for dierential expression (DE) analysis of RNA-Seq
data. For the unfamiliar reader, a good open resource on the relevant analysis
pipeline can be found on https://github.com/hbctraining/DGE_workshop. It
typically begins with a raw \count matrix" with the expression read counts as
entries, where each row corresponds to a mapped gene and each column corresponds
to a sample/library that is either in the treatment or the control group. This count
matrix is taken as an input to a suite of statistical analysis tools available from
one of the R packages for DE analysis that dier by their underlying modelling
assumptions, to produce test statistics that are re-scaled measures of dierential
expression between the two groups for all the genes involved. The two most popular
such R pipelines which can produce the z-values considered by the current paper
are limma (with the \voom" function therein) (Ritchie et al., 2015) and DESeq2
Love et al. (2014). limma operates with a linear model to produce t-statistics, and


https://www.raynamharris.com/DissociationTest/
https://github.com/jgscott/FDRreg
https://github.com/hbctraining/DGE_workshop
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Figure G.1. FDR and TPR performances of an extended list
of methods under Setup 1 - 3. All methods are applied at
a targeted FDR level of 0:05. The x-axes show the values of
non-informative, more informative and most informative
correspond to dierent values of from the smallest to the largest.

DESeq?2 operates with a negative binomial model to produce Wald statistics. These
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Figure G.2. (a)-(d) plot the numbers of rejections for dif-
ferent methods across datasets, against targeted FDR level at
0:01; 0:05; 0:1; 0:15; 0:2.

primary statistics can then undergo the further transformation in Section 3.1 to
give the u-values, on which our ZAP methods can be applied.

However, without suitable pre-processing, a raw count matrix will typically pro-
duce unusual distributions for the u-values (or p-values). Figure G.3 plots his-
tograms of the u-values produced by the original raw count matrices of the three
RNA-Seq datasets in the main text processed with DESeq2. Normally, if the test
statistics are well-calibrated, the null u-values should be approximately uniformly
distributed, and one should only expect spikes near the two ends of the interval
p0; 1q (or only close to 0 if the histogram is for two-sided p-values) which represent
genes that are non-null. This is clearly not the case in Figure G.3, and the spuri-ous
spikes in the middle of the unit interval for all three histograms are typically results
of genes that have excessive low read counts for which reliable DE analysis is
impossible and can at best be considered as nulls. In particular, the presence of
such spikes will make a procedure like the BH overly conservative. A standard
practice is to Iter out these genes according to some rules of thumb which have
been discussed by Chen et al. (2016) in some length. In the analysis of the main
text, we have adopted a simple convention of ltering out genes with a total raw
counts less than 15 using the function filterByExpr in the R package edgeR, which
implements the method in Chen et al. (2016). Apparently, spurious structures in
the u-value histograms have been more or less removed as a result, as is evident
by comparing Figure G.3 pcg and Figure 4.2peq, the latter of which has its u-values
produced by the Itered version of hippo dataset.
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Figure G.3. Histograms of u-values for the original unltered
versions of the three RNA-Seq datasets in the main text. In prin-
ciple, one should only see at most two \spikes" on the two ends
of the interval p0;1g. Spikes not located close to 0 or 1 in any
histogram result from genes with extremely low read counts.
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