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Z A P :  Z - V A L U E  A D A P T I V E  P R O C E D U R E S  F O R  F A L S E
D I S C O V E R Y  R A T E  C O N T R O L  W I T H  S I D E  I N F O R M A T I O N

D E N N I S  L E U N G  A N D  W E N G U A N G  S U N

A b s t r a c t .  Adaptive multiple testing with covariates is an important research
direction that has gained major attention in recent years. I t  has been widely
recognized that leveraging side information provided by auxiliary covariates
can improve the power of false discovery rate ( F D R )  procedures. Currently,
most such procedures are devised with p-values as their main statistics. How-
ever, for two-sided hypotheses, the usual data processing step that transforms
the primary statistics, known as z-values, into p-values not only leads to a loss of
information carried by the main statistics, but can also undermine the ability of
the covariates to assist with the F D R  inference. We develop a z-value based
covariate-adaptive ( Z A P )  methodology that operates on the intact structural
information encoded jointly by the z-values and covariates. I t  seeks to emulate
the oracle z-value procedure via a working model, and its rejection regions sig-
nicantly depart from those of the p-value adaptive testing approaches. The key
strength of Z A P  is that the F D R  control is guaranteed with minimal as-
sumptions, even when the working model is misspecied. We demonstrate the
state-of-the-art performance of Z A P  using both simulated and real data, which
shows that the eciency gain can be substantial in comparison with p-value
based methods. Our methodology is implemented in the R  package zap.

1. Int roduc t i on

In modern scientic studies, a ubiquitous task is to test a multitude of two-sided
hypotheses regarding the presence of nonzero eects. The problem of multiple test-ing
with covariates has received much recent attention, as leveraging contextual
information beyond what is oered by the main statistics can enhance both the
power and interpretability of existing false discovery rate ( F D R ;  Benjamini and
Hochberg, 1995) methods. This has marked a gradual paradigm shift from the
Benjamini-Hochberg (BH) procedure and its immediate variants (e.g. Benjamini
and Hochberg, 2000, Storey, 2002) that are based solely on the p-values. For in-
stance, in the dierential analysis of RNA-sequencing data, the average read depths
across samples can provide useful side information alongside individual p-values,
and incorporating such information promises to improve the eciency of existing
methods. The importance of this direction has been reected by its intense research
activities; see Boca and Leek (2018), Chen et al. (2017), Ignatiadis et al. (2016),
Lei  and Fithian (2018), L i  and Barber (2019), Yurko et al. (2020), Zhang and Chen

2000 Mathematics Subject Classication. 62H05.
Key words and phrases. multiple testing, false discovery rate, z-value, beta mixture, side infor-
mation.

1



2 D .  L E U N G  A N D  W .  S U N

(2020) for an incomplete list of related works. In contrast with BH and its variants
that apply a universal threshold to all p-values, these methods boil down to setting
varied p-value thresholds that are adaptive to the covariate information.

This seemingly natural modus operandi, which involves using p-values as the
basic building blocks, however, is suboptimal. For the most commonly tested two-
sided hypotheses, the p-values are typically formed via a data reduction step, which
applies a non-bijective transformation to \primary" test statistics such as the z-
values, t-statistics (Ritchie et al., 2015) or Wald statistics (Love et al., 2014). Sun
and Cai (2007) and Storey et al. (2007) argued that reducing z-values to p-values
may lead to substantial loss of information. A  main thrust of this article is to reveal a
new source of information loss in the context of covariate-adaptive multiple test-ing,
and to develop a z-value covariate-adaptive ( Z A P )  methodology that bypasses the
data reduction step. As illustrated in Section 2.2, the interactive relationship
between the z-values and the covariates can capture structural information that
can be exploited for more testing power. However, this interactive information may
be undercut, and in some scenarios, completely forgone when converting z-values
to p-values. Hence, the data reduction step not only leads to a loss of information
carried by the main statistics, but also undermines the ability of the covariates in
assisting with the F D R  inference.

Few works on covariate-adaptive testing have pursued the z-value direction since
combining the z-values and covariates poses an additional layer of challenges. Ex-
isting z-value based procedures either make strong assumptions on the underlying
model (Scott et al., 2015), or are not robust for handling multi-dimensional co-
variate data (Cai et al., 2019). By contrast, Z A P  retains the merits of z-value
based methods and avoids information loss, neither relying on strong assumptions
nor forgoing robustness. It faithfully preserves the interactive structure and eec-
tively incorporates both the primary statistics and covariates into inference. Z A P  is
deployed with a working model, whose potential misspecication will not inval-idate
the F D R  control. The proposed methodology fundamentally departs from p-values
based methods by sidestepping the information loss occurred in forming the p-
values.

Our contribution is twofold. First, Z A P  represents a z-value based, covariate-
adaptive testing framework that attains state-of-the-art power performance under
minimal assumptions, lling an important gap in the literature. Particularly, we
propose the rst z-value based procedure with nite-sample guarantee on F D R
control. Second, in light of a plethora of p-value based covariate-adaptive methods
that have emerged in recent years, our study explicates new sources of information
loss in data processing, which provides new insights and gives caveats for conducting
covariate-adaptive inference in practical settings.

The rest of the paper is structured as follows. Section 2 states the problem
formulation and describes the high-level ideas of Z A P.  Section 3 formally introduces
our two data-driven methods of Z A P  and their implementation details. Numerical
results based on both simulated and real data are presented in Section 4. Section 5
concludes the article with a discussion of extensions and open issues.
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2. P ro b l e m  Fo r m u l at i o n  and B as i c  F r a m e wo r k

2.1. T h e  problem statement. Suppose we are interested in making inference of
m real-valued parameters i , i   1; : : : ; m, and for each i, we observe a primary
statistic Z i  P R  (\z-value") and an auxiliary covariate X i  P Rp  that can be mul-
tivariate. We consider a multiple testing problem where the goal is to identify
nonzero eects or determine the values of the indicators

(2.1) H i   I pi  0q 
0     

o
therwise 

:

Assume that the triples tH i ; Z i ; X i u i 1  are independent and identically distributed,
and the data are described by the following mixture model:

(2.2) Z i | X i   x   fxpzq  fpz|xq  p1  wxqf0pzq      wxf1;xpzq;

where wx  P pHi   1|Xi  xq is the conditional probability of having a non-zero eect
given X i   x  and f1;xpzq  f pz|Hi  1 ; X i   xq is the conditional density under the
alternative. f0  denotes the null density, which is invariant to the covariate value. In
this article we assume f0pzq  pzq, the density of a N p0; 1q variable1. In contrast with
the model in Scott et al. (2015) that assumes a xed alternative density, i.e. f1 ; x   f1 ,
Model (2.2) provides a more general framework for multiple testing with covariates
by allowing both wx and f1;xpzq to vary in x.

Let R  € t1; : : : ; mu be the set of hypotheses rejected by a multiple testing
procedure. In large-scale testing problems, the widely used F D R  is dened as

F D R   E  
R  _  1 

;

where V        i1p1  Hi qI pi P Rq and R         i1 I pi P Rq are respectively the number
of false positives and the number of rejections. Throughout, Ers denotes

an expectation operator with respect to the joint distribution of tH i ; Z i ; X i u i 1 .
The ratio V {pR _ 1q is known as the false discovery proportion (FDP) .  The power of a
testing procedure can be evaluated using the expected number of true discoveries
E T D   E r R   V s or the true positive rate

T P R   E  
p

°
i 1  Hi q _  1 

:

Our goal is to devise a powerful procedure that can control the F D R  under a pre-
specied level  P p0; 1q.

2.2. Information loss in  covariate-adaptive testing. A  two-sided p-value is
formed by the non-bijective transformation P i   2p|Zi|q, where  is the cu-mulative
distribution function of a N p0; 1q variable. We call a testing procedure z-value
based if it makes rejection decisions based on the full dataset tZ i ; X i u i 1 ,  and p-value
based if it does so only based on the reduced dataset tP i ; X i u i 1 .  This section presents
examples to illustrate that the interactive structure between Z i  and

1This can be easily achieved via the composite transformation 1  G0pq if the primary test statistic
has a known null distribution function G0pq, e.g. a t-distribution, where pq is the standard
normal distribution function.



x x

10 10

m m

m m

4 D .  L E U N G  A N D  W .  S U N

X i  may not be preserved by transforming into p-values. The associated information
loss leads to decreased power in the F D R  inference.

Consider Model (2.2), and suppose X i   Unifp1; 1q. Our study examines three
situations:
Example 2.1 Asymmetric alternatives: fpz|xq  8

10 f0pzq   10
2pz  1:5q.

Example 2.2 Unbalanced covariate eects on the non-null proportions:

fpz|xq  0:8f0pzq   
1 

 
x

pz      1:5q   
1     

 
x

pz  1:5q:

Example 2.3 Unbalanced covariate eects on the alternative means:

fpz|xq  0:9f0pzq      0:1pz  1:5 sgnpxqq; where sgnpxq  I px ¥  0q  I px 0q:

We investigate two approaches to F D R  analysis for these examples that re-
spectively reject hypotheses with suitably small posterior probabilities tP pHi

0|Pi ; Xiqui1 and tP pHi   0|Zi ; Xiqui1 . The latter probabilities are assumed to be
known by an oracle2. In the literature the z-value based quantity P pHi   0|Zi ; Xi q is
also called the conditional local false discovery rate (CLfdr, Cai and Sun, 2009,
Efron, 2008). It is known that the optimal p-value and z-value based procedures,
which maximize true discoveries subject to false discovery constraints, have the
respective forms

P   I rP pHi   0|Pi ; Xiq ⁄  tP s
(

i 1  and Z   I rP pHi   0|Zi ; Xi q ⁄  tZ s
(

i 1 ;

where the rejection decisions are expressed by indicators, and the thresholds tP  and
t Z  are calibrated such that the nominal F D R  level is exactly ; see Appendix A.1 for
a review. In our comparisons we choose suitable thresholds such that the F D R  of
both methods is exactly 0:1, and their powers are reported as T P R  empirically
computed by 150 repeated experiments for m  1000:

Example 2.1: T P R P   4:4%; T P R Z   11:7%.
Example 2.2: T P R P   3:4%; T P R Z   5:5%.
Example 2.3: T P R P   0:6%; T P R Z   2:6%.

Apparently, Z  is more powerful than P .
To  understand the dierences in power, we rst remark that either oracle pro-

cedure essentially amounts to one by which i  is rejected if and only if

(2.3) Z i  P S pXi q € R

for some rejection region Spq on the z-value scale that is a function of the covari-ate
value; the theoretical derivation is sketched in Appendix A.2. Let S P pxq and S Z pxq
denote the respective rejection regions of P  and Z  on the z-value scale for a given
covariate value x, which are plotted for the three examples in Figure 2.1. On the left
panel, both S P pxq and S Z pxq enlarge as the covariate value increases, suggesting
that the covariates are informative for both methods. The information loss leading
to the lesser power of P  in Example 2.1 is intrinsically within the main

2In practice these posterior probabilities are unknown.
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F i gu r e  2.1. Comparisons of rejection regions. For each covari-
ate value x  P p1; 1q, the rejection regions S P pxq and S Z pxq are
respectively marked in green and red on the z-value scale. The
overlapped region is depicted in yellow.

statistics when converting z-values to p-values (Storey et al., 2007, Sun and Cai,
2007). By contrast, the middle and right panels show that S Z pxq changes with x,
while S P pxq is completely insensitive to the changes in x; see Appendix A.2 for
the relevant calculations. Hence, the covariates are only informative for Z .  This
fundamental phenomenon reveals that upon reduction to p-values, the information
loss not only can occur internally within the main statistics, but also externally due
to the failure of P  in fully capturing the original interactive information between Z i

and X i .  When the latter interactive structure represents the bulk of the informa-tion
provided by the covariates for testing, reduction to p-values can substantially
undermine the covariates’ ability to assist with inference.

2.3. T h e  Z A P  framework and a preview of contributions. The previous ex-
amples motivate us to focus on z-value adaptive procedures to avoid information
loss. This naturally boils down to pursuing the oracle procedure Z  in some shape or
form, which presents unique challenges. Existing z-value based works such as Scott et
al. (2015) and Cai et al. (2019) are built directly upon tP pHi   0|Zi ; Xiqui1 , the
CLfdr statistics, which unfortunately involves unknown quantities that can be dicult
to estimate in the presence of covariates. Commonly used algorithms may not
produce desired estimates, and even lead to invalid F D R  procedures if the mod-elling
assumptions are violated. That the theory on F D R  control critically depends on the
quality of these estimates has greatly limited the scope and applicability of these
works.

We aim to develop a new class of z-value adaptive ( Z A P )  procedures that are
assumption-lean, robust and capable of eectively exploiting the interactive infor-
mation between Z i  and X i .  The key idea is to emulate the oracle procedure Z

while circumventing the direct estimation of P pHi   0|Zi ; Xi q. Next we rst out-line
the key steps (ranking and thresholding) of our framework and then provide a
preview of its contributions.
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In the rst ranking step, we introduce the new concept of assessor function,
which can be estimated from the data based on a working model, to construct a
new sequence of signicance indices tTi ui1 as proxies for tP pHi   0|Zi ; Xiqui1 . While
many potential working models can be used, in this work we focus on a class of beta-
mixture models that are carefully dened on a bijective transformation of the z-
values and particularly suitable for two-sided testing (Section 3.2). In the second
thresholding step, Z A P  calibrates a threshold along the ranking produced by tTi ui1 .
The essential idea is to count the number of false rejections by any candidate
threshold value with a \mirroring" sequence of the rejected signicance indices,
which can be created via either simulation (Algorithm 1) or partial data masking
(Algorithm 2). The key strength of Z A P  over the methods in Scott et al. (2015) and
Cai et al. (2019) is that it seeks to emulate the oracle z-value procedure while
avoiding a direct substitution of P pHi |Zi ; Xi q with its estimate. Z A P  is
assumption-lean and robust in the sense that it is provably valid for F D R  control
under model misspecications, and the choice of the working model only aects the
power. We stress that the resulting rejection regions of Z A P  signicantly depart
from those of p-value adaptive methods, including the closely related C A M T  (Zhang
and Chen, 2020) and AdaP T  (Lei  and Fithian, 2018). Our simulation and real data
studies show that the eciency gain can be substantial.

3. Data - D r i v e n  Z A P  Procedures

This section develops the framework of Z A P  and its data-driven algorithms for
covariate-adaptive F D R  inference. Section 3.1 introduces the concept of assessor
function and a prototype procedure inspired by the oracle z-value procedure. The
assessor function can be constructed based on a working beta-mixture model, which is
proposed in Section 3.2. Sections 3.3 and 3.4 lay out two variants of data-driven Z A P
procedures and establish their theoretical properties. Further implementation details
are discussed in Section 3.5.

3.1. Preliminaries: oracle z-value procedure, assessor function and a pro-
totype Z A P  algorithm. To  facilitate the development of a working model, we
consider the following lossless transformation: Ui  pZiq. The transformed statis-tic Ui

is referred to as a u-value3, which, according to (2.2), obeys the induced mixture
model

(3.1) Ui |Xi   x   hxpuq  hpu|xq  p1  wxqh0puq      wxh1;xpuq;

with h0puq and h1;xpuq  hpu|Hi  1 ; X i   xq respectively being the null Unifp0; 1q and
conditional alternative densities. An optimal F D R  procedure (Cai and Sun, 2009,
Heller and Rosset, 2021, Sun and Cai, 2007) is a thresholding rule based on the
conditional local false discovery rates (CLfdr)
(3.2)

CLfdri   P pHi   0|Zi ; Xi q  P pHi   0|Ui; Xiq  
p

1
  

wX

p
qh

qp
Uiq; i  1; : : : ; m:

3Despite the similarity in their constructions, the u-values should not be treated as p-values for
one-sided tests, which are not the subject matter of this work.
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Since each CLfdri  is a function of Ui conditional on X i ,  we let CLfdrxpuq : p0;1q Ñ
p0;1q be the corresponding function dened on the u-value scale for a given realized
covariate value x. Related data-driven CLfdr procedures involve rst estimating the
CLfdr statistics, and second determining a threshold for them using, for example,
step-wise algorithms (Sun and Cai, 2007), randomized rules (Basu et al., 2018) or
linear programming (Heller and Rosset, 2021). However, the rst estimation step
poses signicant challenges as it boils down to a hard density regression problem
(Dunson et al., 2007). For example, to estimate fxpq (or equivalently hxpq), a line
of works (Deb et al., 2021, Scott et al., 2015, Tansey et al., 2018) proceeds by
assuming a xed alternative density, i.e.

(3.3) f1;xpzq  f1pzq;

to make way for the application of an EM algorithm. If the assumption fails to
hold, the CLfdr statistics can be poorly estimated and lead to both invalid F D R
control and adversely aected power. The non-parametric C A R S  procedure devel-
oped in Cai et al. (2019) does not require the assumption in (3.3). However, it
still employs the CLfdr statistics as its basic building blocks, which are estimated
with kernel density methods. Due to the curse of dimensionality, the methodology
becomes unstable in the presence of multivariate covariates, which has limited its
applicability. For example, the real data analyses considered in Section 4.2 requires
handling up to six (expanded) covariates.

By contrast, Z A P  strives to sensibly emulate the oracle procedure without heavy
reliance on the quality of the CLfdr estimates, which is its key strength. To  motivate
our data-driven procedures in the next sections, we shall rst discuss a prototype
Z A P  procedure to illustrate two key steps of our testing framework: (a) how to
combine Z i  (or equivalently Ui ) and X i  for assessing the signicance of hypotheses;
and (b) how to threshold the new signicance indices.

Step (a) involves the construction of an assessor function4 axpuq : p0;1q Ñ  p0; 1q,
which seeks to approximate the Clfdrxpuq function to integrate the information in
both the u-value and covariate. For the present assume that axpq is pre-determined.
Let Ti  a X i  pUiq be the new signicance index for i  and ciptq  P pTi ⁄  t|Hi  0q be its
null distribution. Assume that cipq is continuous and strictly increasing5, and
denote its inverse by c1pq. All  hypotheses will then be ordered according to
the Ti’s, with a smaller Ti indicating a more signicant hypothesis.

In Step (b), we aim to determine a threshold for the Ti’s to control the F D R .
This involves the construction of a conservative F D P  estimator for any candidate
threshold t by the Barber-Candes ( B C )  method (Arias-Castro et al., 2017, Barber
and Candes, 2015):

(3.4)
1      # t i  : S i  ¥  1  ciptqu 1   # t i  :  Ti      ⁄  tu

# t i  : Ti ⁄  tu _  1                # t i  : Ti ⁄  tu _  1

4Or simply known as an assessor.
5Both are true as the consequences of the way we will construct axpq; see the discussion after
Lemma C.2 in Appendix C .
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where, given that i  is a true null, S i   cipTiq is the probability of realizing a smaller
signicance index and Ti       c

1p1  Siq is the mirror statistic that \reects" Ti’s position in
the distribution ci . Dene

(3.5) tpq  maxtt P p0; tmaxs : FDPptq ⁄  u;

where tmax  maxtt : ciptq ⁄  0:5 for all iu. It follows from Barber and Candes
(2019, Lemma 1) that a procedure that rejects i  whenever Ti ⁄  tpq controls the
F D R  at level ; see Appendix B. Importantly, the F D R  is controlled under the
desired level  whether axpq is a good approximation of CLfdrxpq or not.

However, the assessor axpq, which is taken as pre-determined thus far, is to be
estimated from the observed data in practice. This leads to additional diculties in
both methodological and theoretical developments; for one thing, the theory in
Barber and Candes (2019) cannot be directly applied to prove the F D R  controlling
property. Section 3.2 discusses a working beta-mixture model, whose parameters
can be estimated from the observed data and subsequently used to construct a
data-driven assessor âxpq. From there we can test the hypotheses in a data-driven
manner by either implementing the prototype procedure directly using âxpq as if it
is pre-determined (Section 3.3), or mimic the prototype procedure in a more nu-
anced manner by leveraging the partial data masking technique in Lei  and Fithian
(2018) (Section 3.4). These two variants of Z A P  entail dierent techniques to quan-tify
the uncertainties in âxpq, with each having its relative strength and weakness: the
direct approach oers asymptotic F D R  control under suitable regularity con-ditions,
and is both computationally and power ecient, while the data masking approach
oers nite-sample F D R  control but is computationally intensive and moderately
less powerful in practice.

3.2. A  beta-mixture model. We now develop a working model to approximate
Model (3.1), which will be subsequently used to construct the assessor. We propose
to capture the overall shape of hxpuq using a three-component mixture:

(3.6) hxpuq  p1  l ; x   r;xqh0puq      l;xhl;xpuq      r;xhr;xpuq;

where, given X i   x, l ; x  and r ; x  respectively denote the mixing probabilities that i 0
and i  ¡  0 6, and hl ;x  and hr; x  respectively represent the densities of the negative
and positive eects (on the left and right sides of the null). Our working model
assumes that l ; x  and r ; x  are multinomial probabilities with regression parameter
vectors l  and r :

exppx~T 
lq exppx~T 

rq
l ; x 1      exppx~T rq      exppx~T lq r ; x 1      exppx~T rq      exppx~T lq

where x~  p1; xT qT is the intercept-augmented covariate vector. Further, hl ;x  and
hr; x  are chosen to be beta densities with regression parameters l  and r :

hl;xpuq  
Bpkl;x ; lq

ukl;x 1p1  uql1; hr;xpuq  
Bpr ; kr;xq

ur 1p1  uqkr;x 1 ;

6The dierent symbols l ; x  and r ; x  are used in the working model. In the true data generating
model (3.1), the mixing probability is denoted wx .
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where kl ;x   t1   exppx~T 
lqu1 and kr; x   t1   exppx~T 

rqu1, for two xed shape parameters
l  and r .     hl ;x  and hr; x  are respectively left-leaning (right-skewed) and right-
leaning (left-skewed) functions. We require that l  ¡  2 and r  ¡  2 to ensure that
both are strictly monotone and convex, and thus provide a reasonable
approximation to the underlying true density in practice; see Lemma C.1 in Appendix
C  for a precise result. The exact choices for tl ; r u will be further discussed in
Section 3.5. The working model may be generalized to capture non-linearity in x
using, say, spline functions.

Beta mixtures have long been identied as a exible modeling tool for variables
taking values in the unit interval; see Ferrari and Cribari-Neto (2004), J i  et al.
(2005), Markitsis and Lai (2010), Migliorati et al. (2018), Parker and Rothenberg
(1988), Pounds and Morris (2003) for related works. In the context of covariate-
adaptive multiple testing, Lei  and Fithian (2018) and Zhang and Chen (2020)
employ a two-component beta-mixture model for the p-values that consists of a
uniform and another left-leaning beta component. Our working model dened on the
u-value scale can be viewed as a natural extension of these works to capture
important patterns in the u-value distribution associated with two-sided covariate-
adaptive testing.

The assessor can be constructed as the CLfdrxpq function with respect to our
working model (3.6). Since h0  1, it follows that

(3.7)
1  l ; x   r ; x

x 1  l ; x   r ; x       l;xhl;xpuq      r;xhr;xpuq 0 u 1:

The corresponding data-driven assessor is denoted by âxpuq if the parameters
tl ; r ; l ; r u are estimated from the data for its construction.

3.3. Asymptotic  Z A P .  We now develop a direct data-driven version of the pro-
totype algorithm in Section 3.1. To  construct âxpuq, we rst obtain the maximum
likelihood estimates (ML E )  of the unknown regression parameters tl ; r ; l ; r u with
the data tUi ; Xi u i1 ; the EM algorithm for their computations are provided in
Appendix F.1. Denote Ti  â X i  pUiq, and let ĉ  pq be its null distribution by
treating â X  pq as if it is pre-determined. With S i   ĉ  pTiq, the estimated mirror
statistics are correspondingly dened as T m  ĉ1p1 Siq, which can be computed
numerically by performing quantile estimation. The F D P  for a candidate threshold
t can be estimated as

(3.8) FDPasy mp ptq   

# t i
 

:
 

T
 :
⁄  tu

 

_
 

1
 :

Dene tasymppq  supt0 ⁄  t ⁄  1 : FDPasy mp ptq ⁄  u, and reject i  whenever Ti ⁄
tasymppq. In practice, it suces to consider only the values of T1; : : : ; Tm as candidate
thresholds. This procedure is summarized in Algorithm 1.

The main theory requires the following classical assumption from the literature
on misspecied models (White, 1981, 1982):

Assumption 1 (Existence of a unique maximizer). The expected log-likelihood

E logrp1  l ; X i   r ; X i  q      l ; X i  h l ; X i  pUiq      r ; X i  h r ; X i  pUiqs
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Algor i thm 1: Asymptotic Z A P
1  Construct â X i  pq’s using the MLEs obtained via the EM algorithm in

Appendix F.1 and compute Ti  â X i  pUiq for each i. 2
Compute the mirror statistics tT m um     :

(i) Generate i.i.d. realizations u1; : : : ; uN from Unifp0; 1q for a large N .
(ii) For each i, evaluate â X i  pu1q; : : : ; âXi puN q to simulate the null
distribution ĉ  pq. Compute Ti      via e.g. q u a n t i l e ( )  in R.

3  Order tTi ui1 as Tp1q ⁄   ⁄  Tpmq. Reject i  if Ti ⁄  Tpkq, where k

max l P t1; : : : ; mu : 1 # t i : T i
1
⁄ T p l q u  ⁄   :

of the beta-mixture model (3.6) has a unique maximum at t; u over  P  and  P B  for
compact spaces  and B ,  where   pl ; T qT and   pT ; T qT . The expectation is taken with
respect to the true joint distribution of tH i ; Z i ; X i u .

Together with Assumptions 2 - 3 in Appendix D.1, which are standard regularity
and strong-law conditions, we can prove the following asymptotic F D R  controlling
property.

Theorem 3.1. Let âxpq be constructed with the M L E  t; u  argmax
°

i 1  log h X i  pUiq

of the beta-mixture model (3.6). Under Assumptions 1-3, the procedure that re-
jects i  whenever Ti ⁄  tasymppq controls the F D R  asymptotically in the sense that
l im sup m Ñ 8  F D R  ⁄  :

We highlight two aspects of this result. First, it doesn’t require the estimated
assessor function to be a good proxy for CLfdrxpq. Hence, its theory is more
attractive than that of Cai et al. (2019), which requires consistent CLfdr estimates
to ensure asymptotic F D R  control. Second, to establish Glivenko-Cantelli results
(Lemma D.5) for the following three empirical processes

m1 
‚  

I  Ti ⁄  t ; i1 m1 
‚

p 1   Hi qI  Ti ⁄  t ; i1 m1 
‚  

I  
!

S i  ¥  1  ĉ  ptq
)

; i1

typical of similar asymptotic analyses (Storey et al., 2004, Zhang and Chen, 2020),
we heavily utilize the concavity properties (Lemma C.2) of the functional form in
(3.7) to uniformly control the deviations of the estimated assessors â X i  pq from the
assessors a X  pq constructed with the population parameters t; u; the delicate
techniques involved may be of independent interest.

3.4. Finite-sample Z A P .  This section introduces an alternative Z A P  procedure
that oers nite-sample control of the F D R .  The operation again involves approx-
imating the CLfdr statistics via an assessor function. However, the thresholding
step is based on a more nuanced approach to F D P  estimation inspired by the p-
value method AdaP T  (Lei  and Fithian, 2018). In this approach, multiple testing
is conducted in an iterative manner, where data are initially partially masked and
then gradually revealed at steps t  0; 1; : : :, with the thresholds sequentially up-
dated based on the revealed data at each step. In what follows, if g1pq and g2pq
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are two functions dened on the same space, g1 ¤  g2 means g1pxq ⁄  g2pxq for all x  in
that space. If C  is a constant, g1 ¤  C  means g1pxq ⁄  C  for all x. Similarly we can
dene g1 '  g2 and g1 '  C .

Since the concavity7 of the assessor functional form in (3.7) suggests that re-
jecting hypotheses with small values of Ti  a X i  pUiq amounts to rejecting extreme u-
values near 0 or 1, our iterative algorithm emulates this essential operational
characteristic of the prototype procedure. We rst divide the covariate values into a
left and right group based on the observed u-values:

X l   t X i  : Ui ⁄  0:5u and X r   t X i  : Ui ¡  0:5u:

At each step t  0; 1; : : : , let sl;t : X l  Ñ  r0; 0:25s and sr;t : X r  Ñ  r0:75; 1s denote two
corresponding thresholding functions, and dene the candidate rejection set R t   R l ; t

Y  R r ; t ,  where

(3.9) R l ; t   t i  : Ui ⁄  sl;tpXiq ^  0:5u and R r ; t   t i  : Ui ¥  sr;t pXi q _  0:5u: Let

A t   A l ; t  Y  A r ; t  be the corresponding set of \accepted" hypotheses, where

A l ; t   t i  : 0:5  sl;tpXiq ⁄  Ui ⁄  0:5u and A r ; t   t i  : 0:5 Ui ⁄  1:5  sr;tpXiqu:

Intuitively, |Al;t| estimates the number of false rejections in the left candidate re-
jection set R l ; t :  Given H i   0 and Ui ⁄  0:5, the events tUi sl;tpXiqu and
tUi ¡  0:5  sl;tpXiqu are equally likely. The F D P  of possibly rejecting R t  at step t can
then be estimated as

(3.10) FDPf inite ptq  
|Rt

|
|

_
 1

:

If FDPf inite ptq ⁄  , the algorithm terminates and the hypotheses in R t  are rejected.
Otherwise, the algorithm proceeds to the next step t   1 and updates the two
thresholding functions under two restrictions. First, it must be that sl;t 1 ¤  sl;t

and sr;t 1 '  sr;t ; this ensures that R t  shrinks in size as t increases. Second, sl;t 1 and
sr;t 1 must be updated based on the knowledge of |Rt|, |At| and the partially
masked data tUt ; i ; X i u i 1  only, where

U if U R A  Y  R
(3.11) Ut;i  

tUi ; Ui u     if Ui P A t  Y  R t

is a singleton or a two-element set depending on whether i  is in the \masked" set
A t  Y  R t ,  and Ui is the \reection" of Ui about the \middle" axis at u  0:25 or u
0:75, depending on which group (left or right) Ui belongs to:

Ui  p1:5  UiqIpUi ¡  0:5q      p0:5  UiqIpUi ⁄  0:5q:

For example, if the underlying Ui is 0:1 and i  is masked at step t, the algorithm
can only update for slt 1and sr t  1 with the partial knowledge that Ui is either
0:1 or its reection value 0:4. Algorithm 4 in Appendix F.2 describes one such
updating scheme which applies an EM algorithm (Appendix F.3) acting only on
the partially masked data to estimate the beta-mixture model (3.6). Figure 3.1

7Refer to Lemma C.2
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illustrates how the data tUi ; Xi u i 1  are partitioned into At ,  R t  and the unmasked set
t1; : : : ; muztAt Y R t u  at a given step t, based on Example 2.2 in Section 2.2. In
particular, we remark that the algorithm cannot tell the true data point from a given
red-pink (blue-cyan) pair in the plot pbq where the reection points t U i u i P A t Y R t  are
also shown.

(a) without reflections (b) with reflections

1.00

0.75

0.50

0.25

0.00

−1.0 −0.5 0.0 0.5 1.0     −1.0 −0.5 0.0 0.5 1.0
x

unmasked rejected accepted reflections of rejected reflections of accepted

F i gu r e  3.1. Illustration of Algorithm 2 at a step t based on Ex-
ample 2.2, m  2000. (a): The red, blue and grey are points in
the respective sets R t ,  A t  and t1; : : : ; muztAt Y  Rt u,  where
FDPf inite ptq  193{389  0:5. (b) :  The reections of the points in R t

and A t  are respectively shown in pink and cyan. A  pink Ui below
(above) 0:5 is the reection of a red Ui with the same covariate
value about the middle axis at u  0:25 (u  0:75) of the left (right)
group; the cyan are the reections of the blue.

The steps described above are summarized in Algorithm 2, whose nite-sample
F D R  controlling property is stated in Theorem 3.2.

Theorem 3.2 (Finite-sample F D R  control). Under the conditions that ( i )  sr;t 1 '
sr;t  and sl;t 1 ¤  sl;t and ( i i )  sr;t 1, and sl;t 1 are updated based on |Rt|, |At|
and tUt ; i ; X i u i 1  only, Algorithm 2 controls the F D R  under  for nite samples.
Specically, we have

E  F D P t H i ; X i u i 1       ⁄  :

Lastly, we highlight a crucial dierence between Algorithm 2 and AdaP T  in the
present context. Operating on the two-sided p-values, AdaP T  proceeds iteratively

with a single thresholding function st dened on t X i u m        such that st ¤  0:5, and
the ratio 1 | t i : P i ¥1 s t p X i q u |  is used as an F D P  estimator for the candidate rejection

set t i  : P i  ⁄  stpXiqu. It is easy to see that

(3.12) P i  ⁄  stpXiq ð æ  Ui ⁄  stpXiq{2 or Ui ¥  1  stpXiq{2:



i1

z
z

13

Algor i thm 2: Finite-sample Z A P
Data: tU i ; X i u m

Input:  F D R  level , initial thresholding functions sl;0 ¤  0:5 and sr;0 '  0:5; 1
for t =  0,1 . . . , do
2 Compute FDPf inite ptq in (3.10);
3 if FDPf inite ptq ¡   then
4 Update sl;t 1 and sr;t 1 while respecting the two conditions in

Theorem 3.2. E.g. Apply Algorithm 4 in Appendix F.2;
5 else
6 Record R t ;  break;
7              end
8  end

Output:  Reject all hypotheses in R t .

Hence, on the u-value scale, AdaP T  always adopts symmetric rejection regions
about u  0:5. By contrast, Algorithm 2 employs two dierent thresholding func-tions
sl;t and sr;t , which allow for asymmetric rejection regions, and therefore pro-vides
additional exibility to fully capitialize on covariate information for two-sided tests.
As seen in Figure 3.1, the pattern of the candidate rejection points in red agrees
with the middle panel of Figure 2.1; as the covariate increases from 1 to 1, the
algorithm’s rejection priorities change from the u-values near 0 to those near 1.

3.5. Implementation details. An R package zap for our two data-driven methods is
available on https://github.com/dmhleung/zap, and we shall discuss further
details of their implementation.

For both data-driven procedures, the shape parameters tl ; r u of the working
model need to be pre-specied before running the EM algorithms. While requiring l ; r

¡  2 ensures a convex shape for the three-component beta-mixture density (Lemma
C.1), we recommend choosing pl; rq  p4;4q as a default, which has yielded
consistently good performance in our numerical studies.

To  illustrate the eectiveness of our recommendation, we simulate 8000 i.i.d.
z-values Z1; : : : ; Z8000 from the normal mixture model

(3.13) 0:78f0pzq      0:15pz      1:5q      0:07pz  2q

without any covariates. The histogram of the corresponding u-values is plotted in
Figure 3.2(a), overlaid with the true underlying density function, as well as es-
timated densities of the beta mixture (3.6) tted with regression intercepts only,
where pl; rq is respectively xed at p1;1q and p4; 4q. When modeling p-values with a
two-component beta mixture, Lei  and Fithian (2018) and Zhang and Chen (2020) set
an analogous shape parameter to be 1, so pl; rq  p1;1q would be a seemingly natural
choice to extend their model for two-sided tests. Both tted densities vi-sually
coincide with the true density, attesting to the exibility of beta mixtures for
modeling data on the unit interval. However, the estimated component proba-
bilities dier signicantly for pl; rq  p1;1q vs pl; rq  p4; 4q. In Figure 3.2(b),

https://github.com/dmhleung/zap
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(a)

2.0

true

1.5                            (gl,gr) = (1,1)

(gl,gr) = (4,4)

1.0

0.5

(b) (c)

2.0 2.0

1.5 1.5 kl = 0.1

pl = 0.355, pr = 0.167 gl = 1

1.0 pl = 0.146, pr = 0.081                    1.0 gl = 4

gl = 7

0.5 0.5 gl = 10

0.0 0.0 0.0

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

F i gu r e  3.2. (a): Histogram of Ui  pZiq generated by (3.13). The
red curve is the true density; while the blue and green curves
respectively correspond to the estimated densities of our beta-
mixture model with pl; rq set at p1;1q and p4; 4q. (b) :  The long
dashed blue curve is the entire non-null component of the solid blue
estimated density in paq. The two dotted blue curves are the left-
leaning and right-leaning non-null components that add up to the
long dashed blue. The green curves are constructed analogously
with respect to the solid green density in paq. The legend shows
the estimated probabilities for the left and right-leaning compo-
nents, where the subscript \ x "  is omitted from ^l and ^r as the t
uses intercepts only. (c) :  Plot of the left-leaning beta density
Bpkl; lq1ukl1p1  uql1 for kl  0:1 and dierent values of l .

we present the estimated quantities pertaining to the non-null components. We
can see that setting pl; rq  p1;1q has drastically overestimated the left and right non-
null probabilities, whereas setting pl; rq  p4;4q provides good approxima-tions to the
truths. To  gain insight into why larger shape parameters are preferred, in Figure
3.2(c) we plot the density of a left-leaning beta density

Bpkl; lq1ukl1p1  uql1

for dierent values of l  and a xed kl  0:1, which supposedly captures the negative eects in
two-sided tests. We can see that small values of l  tend to yield a density component
that slants in the middle of the unit interval. As a result, when added to another
right-leaning beta density for the positive eects with a similar but mirroring
shape, it gives rise to an overall non-null density component with a large plateau in
the middle of the interval p0;1q akin to the U-shaped blue curve in Figure 3.2pbq.
This inates the non-null probability estimates. In contrast, larger values of l  and r

eectively mitigate the issue by rendering sharply convex non-null component
densities like the purple in Figure 3.2(c), avoiding overestimation and leading to
better approximation of the tails. More setups are experimented in Appendix G.1;
the choice of pl; rq  p4;4q produces reasonable probability estimates throughout.
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Other aspects of implementation are as follows. For the asymptotic method
(Algorithm 1), since a large N  allows us to compute the mirror statistics up to
arbitrary precision, we evaluate at N   50000 uniform realizations by default. For the
iterative nite-sample method (Algorithm 2), we set the initial thresholding
functions as sl0  0:2 and sr0  0:8, but other values close to 0:25 and 0:75 tend to be
equally eective. We also update the thresholding functions every rm{100s steps.
Ideally one would want to update at every step along the way to reveal the masked
u-values sooner. However, it is more practical to carry out intermittent updates
since the EM component involved in Algorithm 4 is computationally costly. Lastly,
one can also perform feature selection at any step if X i  is multivariate, as long as it
is done properly based on the masked data, akin to what was suggested by Lei  and
Fithian (2018, Section 4.2). We have not performed this step for simplicity.

4. Nu m e r i c a l  studies

We conduct numerical studies to gauge the performance of Z A P  alongside other
methods on both simulated and real data. For expositional considerations, here
we only limit the comparisons to a selection of representative F D R  methods. This
makes the ensuing graphs (Figures 4.1-4.2) less crowded by lines and easier to read.
More methods in the literature are included to expand our studies in Appendix G.2,
but the basic conclusions do not change. The methods being considered here are:

(a) Z A P  (asymp): Algorithm 1 with specications described in Section 3.5.
(b) Z A P  (nite): Algorithm 2 with specications described in Section 3.5.
(c) C AMT :  the covariate-adaptive multiple testing method (Zhang and Chen, 2020).
(d) AdaPT:  the adaptive p-value thresholding method (Lei  and Fithian, 2018).

Their working model is updated based on the EM algorithm for every rm{100s
steps; other default specications are chosen based on the R  package adaptMT.

(e) IHW: independent hypothesis weighting method (Ignatiadis et al., 2016). We
remark here that IHW can only handle univariate covariates.

(f ) FDRreg: false discovery rate regression method (Scott et al., 2015). The theo-
retical null N p0; 1q has been used.

Among them, Z A P  and FDRreg are z-valued based, while all other methods are
p-value based.

4.1. Simulation studies. We simulate data to test m  5000 hypotheses. Two-
dimensional covariates X i   pX1i ; X2i qT , i   1; : : : ; m, are independently generated from
the bivariate normal distribution N      p0 q; p 1

0
2 

1{2 q : Conditional on X i   x   px1; x2qT

, Z i  is generated with a normal mixture density

(4.1) p1  wl;x   wr;xqf0pzq      wl;xpz  l;xq      wr;xpz  r;xq;

where wl;x  and wr; x  
8 are probabilities that control the sparsity levels of negative

and positive eects, and l ; x           0 and r ; x  ¡  0 are negative and positive non-null

8These data generating probabilities twl;x ; wr; x u should again be distinguished from t l;x ; r ; x u  in
the working model (3.6).
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normal means. The covariate-adjusted overall non-null density is then given by

(4.2) f1;xpzq  
wl;xpz  l;xq

 
    

 
wr;xpz  r;xq

: l ; x r ; x

We shall allow twl;x ; wr;x ; l ;x ; r;x u to depend on x  in dierent ways to induce the
simulation setups below, which can be considered as more realistic versions of the
stylized examples in Section 2.2. Note that the sum X i   X 1 i    X 2 i  of the covariate
components is N p0; 1q-distributed, and x   x1  x2 will denote a realized value of it in
what follows.

Setup 1 (Asymmetric alternatives). The quantities in (4.1) are

wr; x   
1      expp  xq

; r ; x   
1      exppxq

; wl;x   0; l ; x   0;

with the simulation parameters ranging as

 P t0; 0:5; 1u; " P t1:3; 1:5; 1:7; 1:9; 2:1u and   2:

Since wl ;x   0, all the non-null statistics come from the right centered alternative
density pz  r;xq. We briey explain the simulation parameters. " is an eect size
parameter. Generally,  controls the informativeness of the covariates in relation
to both the non-null probabilities and alternative means: when  ¡  0, a greater
value of x  makes the signals denser and stronger (i.e. wr; x  and r ; x  become larger).
The value of  controls the sparsity levels. For example, when the covariates are non-
informative at   0, setting   2 yields a baseline signal proportion of roughly 12%,
i.e. wr; x   wl;x   wr; x   11:9%. Note that f1 ; x  in (4.2) varies in x  given the dependence
of r ; x  on x, so (3.3) is an invalid assumption.

Setup 2 (Unbalanced covariate eects on the non-null proportions). Let

exppxq exppxq
r ; x exppq   exppxq   exppxq l ; x exppq   exppxq   exppxq

r x   " and l x   ". We x   2:5 and vary other parameters in the range  P t0; 0:7; 1u;

" P t1:3; 1:5; 1:7; 1:9; 2:1u:

Only wl ;x  and wr; x  depend on the covariate value: for  ¡  0, wr; x  increases and wl;x

decreases as x  increases, and vice versa as x  decreases. In consideration of (4.2),
the conditional non-null density f1;xpzq will change sharply in shape from
concentrating on negative z-values to concentrating on positive z-values as x
increases from being negative to positive. This relationship provides important
structural information which can be leveraged for enhancing the power. However, if
one collapses the z-values into two-sided p-values, then the analogous condi-
tional p-value density is less likely to capture drastic changes in x, since both very
negative and positive x  can correspond to very small p-values, making the
interactive relationship between the p-values and the covariates less pronounced.
Intuitively, this would lead to power loss of p-value based methods. The choice of
corresponds to a baseline signal proportion of roughly 14% when   0.
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Setup 3 (Unbalanced covariate eects on the alternative means). Let

w r ; x   
1   exppq

; wl;x  
1   exppq

; r;x  
1   exppxq

; l;x  
1   exppxq

: The simulation
parameters range as

 P t0; 1:5; 3u; " P t1:3; 1:5; 1:7; 1:9; 2:1u and   2:

Our choice of  corresponds to the a baseline signal proportion of roughly 12%
when   0. When the covariates are informative (  ¡  0), r ; x  and l ; x  respec-tively
become more positive and less negative as x  increases. Such a directional
relationship can be exploited by Z A P  for improving the power. However, if one
collapses the z-values into p-values, then under H i   1 both very positive and neg-
ative values of X i  can imply a small Pi ,  and the interactive relationship between the
main statistic P i  and auxiliary statistic X i  will be much weakened. Hence we
expect Z A P  to exhibit higher power than p-value based methods.

We apply the six methods at the nominal F D R  level 0.05. Since IHW can only
handle univariate covariates, it is applied with X i ,  which is an eective summary
covariate in all three setups. The simulation results are reported in Figure 4.1,
where the empirical F D R  and T P R  levels of dierent methods are computed based on
150 repetitions. The following observations can be made:

(a) Asymptotic Z A P,  depicted in blue, is in general more powerful than nite-
sample Z A P,  depicted in red. This is likely attributable to the latter’s informa-
tion loss from the \u-value masking" step. The advantage of the nite-sample
Z A P  is in its theoretical properties.

(b) Both asymptotic and nite-sample Z A P  methods achieve state-of-the-art power
performance in all three setups. The F D R  levels are consistently controlled
under the nominal level 0:05. Both Z A P  methods demonstrate superior perfor-
mances over the p-value based methods (CAMT,  AdaP T  and IHW). The gains
in power become more substantial when the covariates become more informa-
tive.

(c) The covariate-adjusted non-null density (4.2) depends on x  for all three setups,
so FDRreg, which makes the conicting assumption in (3.3), is possibly invalid
for F D R  control. Although FDRreg has comparable power to the Z A P  methods
in Setup 1, it overshoots the F D R  bound of 0:05, and it can’t match the power
of Z A P  in Setup 2 because the assumption f1;xpzq  f1pzq itself obstructs the
interactive information between the z-values and the covariates to be utilized.

(d) In Setup 3, Z A P  only has moderate power advantage over the other methods
when the covariates are informative, but still, it has \salvaged" more power
than others. In fact, it is shown in Appendix G.2 that Setup 3 poses a hard
multiple testing problem, and admittedly the beta mixture may not be the
most suitable working model for this data generating mechanism. In Section 5
we will discuss alternative working models to implement the Z A P  methods.

4.2. Real  data. This section investigates the performance of Z A P  using several
publicly available real datasets summarized in Table 1. Three data sets (bottomly,
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non−informative more informative most informative

0.06

0.04

0.02

0.00

0.06

0.04

0.02

0.00

0.05

0.04

0.03

0.02

0.01

0.00
1.50 1.75 2.00 1.50 1.75 2.00 1.50 1.75 2.00

effect size

non−informative more informative most informative

0.6

0.4

0.2

0.0

0.25

0.20

0.15

0.10

0.05

0.00

0.3

0.2

0.1

0.0
1.50 1.75 2.00 1.50 1.75 2.00 1.50 1.75 2.00

effect size

ZAP (asymp) ZAP (finite) CAMT AdaPT IHW FDRreg

F i gu r e  4.1. F D R  and T P R  performances of dierent methods
under Setup 1 - 3 . Al l  methods are applied at a targeted F D R
level of 0:05. The x-axes show the values of ". non-informative,
more informative and most informative correspond to dierent
values of  from the smallest to the largest.

airway, hippo) are generated by RNA  sequencing (RNA-Seq) experiments for de-
tecting dierential expressions in transcriptomes, where the primary statistic Z i
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Name #  tests
bottomly       11484

airway 20941

hippo 15000

s c o t t 7004

Brief description
D E  in striatum for the two mouse strains C57BL/6J(B6)  and
DBA/2J(D2);  bulk RNA-seq (Bottomly et al., 2011).
D E  in human airway smooth muscle cell lines in response to dex-
amethasone; bulk RNA-seq (Himes et al., 2014).
D E  in mouse hippocampus in response to enzymatic dissocia-
tion in comparison to standard tissue homogenization; scRNA-seq
(Harris et al., 2019).
Synchronous ring of pairs of neurons, based on neuron recordings in
the primary visual cortex of an anesthetized monkey in response to
visual stimuli (Scott et al., 2015).

Ta b l e  1. Description of four real datasets. \ #  tests" shows the
number of tests for each dataset after any necessary data pre-
processing. D E  =  Dierential Expression.

measures the observed dierence in the expression level of a gene under two ex-
perimental conditions. Meanwhile, an auxiliary covariate, the average normalized
read count for each gene, is collected alongside the primary data. The datasets
bottomly and airway have been analyzed by the works of Ignatiadis et al. (2016),
Lei  and Fithian (2018), Zhang and Chen (2020) with the methods IHW, AdaP T
and C A M T  respectively. The more recent data set hippo (Harris et al., 2019) is
generated by the cutting-edge single-cell RNA  (sc-RNA) sequencing technology to
study dierential expressions in mouse hippocampus. For all datasets above, we
have adopted the standard data pre-processing step, which lters out genes with ex-
cessively low read counts across samples before further downstream analyses (Chen
et al., 2016) such as model tting and multiple testing. This is a common practice
among bioinformaticians for a number of reasons; see Appendix G.3 for more dis-
cussion. The fourth dataset is based on the experiments in Smith and Kohn (2008)
and Kelly et al. (2010), where each Z i  is a normalized test statistic that, for a given
pair of neurons in the primary visual cortex, measures how synchronous their spike
trains are, and Scott et al. (2015) has applied FDRreg to it for detecting neural in-
teractions. Correspondingly, each such hypothesis has two covariates: the distance
and the correlation of the \tuning curves" between the two activated neurons. We
have named this dataset s c o t t  for short.

For the RNA-seq datasets, all the methods that accommodate multivariate co-
variates (CAMT,  AdaPT,  FDRreg and the two methods of Z A P )  are applied with
the log mean normalized read count expanded by a natural cubic spline basis with
4 interior knots, using the ns function in the R package s p l i n e s  (with its df  ar-
gument set to 6), and IHW is applied with the original log mean normalized read
count as it can only handle a univariate covariate. As there are two covariates for
the neural dataset scott ,  IHW is not applied, and following what was done in Scott
et al. (2015), the multivariate methods are applied with each of the two covariates
expanded by a B-spline basis using the bs function in R with its argument df  set
to 3, which results in six expanded covariates in total.
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F i gu r e  4.2. paq  pdq plot the numbers of rejections for dif-
ferent methods across datasets, against targeted F D R  level at
0:01; 0:05; 0:1; 0:15; 0:2. peq and pfq are respectively the histograms
of the \u-values" for the hippo and s c o t t  datasets.

The number of rejections for the various methods are shown in Figure 4.2paq-
pdq, and Z A P  has attained top power performance. For the datasets bottomly
and airway, we do not see substantial dierences between the rejection numbers of
Z A P  and other methods such as C A MT ,  with the exception of FDRreg, which shows
moderately more rejections than others for bottomly. However, as observed in our
simulation studies, FDRreg can be invalid for F D R  control and the power gain may
be due to overow in F D R .  Simple histogram plots (Figure G.3 in Appendix G.3, for
instance) show that the u-values are almost symmetrically distributed for these two
datasets, which suggests that p-value and z-value based methods tend to have
comparable power, unless reduction to p-values fails to capture the interactive in-
formation between the z-values and covariates. For the datasets hippo and scott ,
the histograms, which are shown in Figure 4.2peq and pfq, show that the u-value
distribution is asymmetric. This explains why Z A P  exhibits considerable power
improvement over the p-value methods. Specically, the patterns in Figure 4.2 pcq
and pdq are in agreement with our intuition that Z A P  is capable of exploiting the
distributional asymmetry. Similar to what we observed in the simulation studies,
the asymptotic Z A P  tends to reject more hypotheses than the nite-sample Z A P,
whose validity is based on fewer assumptions (Theorem 3.2). In summary, the real
data analyses arm that z-value based approaches to covariate-adaptive testing can
better exploit the full data tZ i ; X i u i 1  to boost testing power.
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5. Discussion

We have introduced Z A P,  which is a z-value based covariate-adaptive testing
framework that oers F D R  controls under minimal assumptions. In particular, our
method for nite-sample F D R  control assumes no more than the knowledge of the z-
value null distribution. The main thrust of our proposal is to avoid the common data
reduction step of forming two-sided p-values used by most other covariate-
adaptive methods in the recent literature, so as to preserve as much information as
possible, based upon which more powerful procedures can be devised.

As presented, Z A P  operates through a simple three-component beta mixture
working model which is a careful extension of the two-component beta mixture for
p-value based testing. While there is no \one-size-ts-all" solution to all F D R
analysis problems (see the extensive simulation studies in the recent paper of Ko-
rthauer et al. (2019), for instance), we believe the current form of Z A P  is widely
applicable to many covariate-adaptive testing situations. Apparently, one can also
extend our current approach by adopting other working models of choice while
guarding against potential model misspecications. For example, normal mixtures
are another popular class of models used by researchers for F D R  testing in dierent
applications (McLachlan et al., 2006, Nguyen et al., 2018), and naturally, one can
incorporate covariate information via a mixture of regressions (Leisch, 2008). Note
that any such working model does not have to be dened on the u-value scale like our
beta mixture, since it is just a means to arrive at a sensible assessor function via
CLfdr consideration. In fact, one can even pursue machine-learning ideas to
accommodate very exible predictive functional forms for the regressions involved,
such as the gradient boosted tree (Yurko et al., 2020). While the implementation
of these potential extensions deserves much deeper investigation than intended for
the present work, we shall briey discuss the subtleties that may arise.

Conceptually, our asymptotic method can be easily extended, since as long as one
has constructed the assessor function, presumably the CLfdrxpq under an estimable
working model of choice, rejection decisions can be based on computing the mirror
statistics as in Algorithm 1. There are two caveats: One is that if the working
model induces overly complex assessor functions, the determination of the mirror
statistics can be time consuming, which counteracts the relative eciency achieved by
the current simplistic beta mixture. For example, if an assessor involves a kernel
estimate which is typically a sum of m terms in the present context, the evaluation
of each uniform realization in Algorithm 1 will become very expensive. Moreover,
developing an asymptotic justication like Theorem 3.1 may be prohibitive, as nice
properties of the working model may not be readily available to prove the requisite
Glivenko-Cantelli results.
For nite-sample F D R  control, we rst note that at each step t in Algorithm 2, a \left"

u-value Ui is masked depending on whether it is in the \left masking region"

looooomooooon looooooooooomooooooooooon ;

\left"  rejection region \left"  acceptance region
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and similarly for a \right" u-value. By requiring that sl;t 1 ¤  sl;t and sr t 1 '  srt ,
the masked u-values are gradually revealed. However, this is only one particular
way of shrinking the rejection regions and their companying acceptance regions to
reveal the u-values; so long as the rejection regions are shrunk based only on the
partially masked information available at step t, the proof of Theorem 3.2 can be
adapted to establish nite-sample F D R  control. Hence, other working models, which
may lead to dierent ways of shrinking the rejection regions based on their associated
CLfdr calculations, can be deployed too. We leave these possibilities to future
research that may be opportune in other instances.

References

Arias-Castro, E., Chen, S., et al. (2017). \Distribution-free multiple testing." Electronic
Journal of Statistics , 11(1): 1983{2001.

Barber, R .  F .  and Candes, E.  J .  (2015). \Controlling the false discovery rate via knockos."
The Annals of Statistics , 43(5): 2055{2085.

|  (2019). \ A  knocko lter for high-dimensional selective inference." The Annals of
Statistics , 47(5): 2504{2537.

Basu, P., Cai, T .  T.,  Das, K. ,  and Sun, W. (2018). \Weighted false discovery rate control in
large-scale multiple testing." Journal of the American Statistical Association, 113(523):
1172{1183.

Benjamini, Y .  and Hochberg, Y .  (1995). \Controlling the false discovery rate: a practical
and powerful approach to multiple testing." Journal of the Royal statistical society:
series B  (Methodological), 57(1): 289{300.

|  (2000). \On the adaptive control of the false discovery rate in multiple testing with
independent statistics." Journal of educational and Behavioral Statistics , 25(1): 60{83.

Boca, S. M. and Leek, J .  T .  (2018). \ A  direct approach to estimating false discovery rates
conditional on covariates." PeerJ ,  6: e6035.

Bottomly, D., Walter, N. A., Hunter, J .  E., Darakjian, P., Kawane, S., Buck, K .  J., Searles, R .
P., Mooney, M., McWeeney, S. K. ,  and Hitzemann, R.  (2011). \Evaluating gene
expression in C 5 7 B L / 6 J  and D B A / 2 J  mouse striatum using RNA-Seq and microarrays."
PloS one, 6(3): e17820.

Cai, T .  T .  and Sun, W. (2009). \Simultaneous Testing of Grouped Hypotheses: Finding
Needles in Multiple Haystacks." J .  Amer. Statist. Assoc., 104: 1467{1481.

Cai, T .  T.,  Sun, W., and Wang, W. (2019). \Covariate-assisted ranking and screening for
large-scale two-sample inference." In Royal Statistical Society , volume 81.

Chen, X.,  Robinson, D. G., and Storey, J .  D. (2017). \The functional false discovery rate
with applications to genomics." Biostatistics .

Chen, Y. ,  Lun, A.  T.,  and Smyth, G. K .  (2016). \From reads to genes to pathways:
dierential expression analysis of RNA-Seq experiments using Rsubread and the edgeR
quasi-likelihood pipeline." F1000Research, 5.

Deb, N., Saha, S., Guntuboyina, A., and Sen, B.  (2021). \Two-component mixture model
in the presence of covariates." Journal of the American Statistical Association, 1{35.

Dunson, D. B., Pillai, N., and Park, J.-H. (2007). \Bayesian density regression." Journal
of the Royal Statistical Society: Series B  (Statistical Methodology), 69(2): 163{183.

Efron, B.  (2008). \Simultaneous inference: When should hypothesis testing problems be
combined?" Ann. Appl. Stat., 2: 197{223.



23

Ferrari, S. and Cribari-Neto, F .  (2004). \Beta regression for modelling rates and propor-
tions." Journal of applied statistics, 31(7): 799{815.

Harris, R .  M., Kao, H.-Y., Alarcon, J .  M., Hofmann, H. A., and Fenton, A.  A.  (2019).
\Hippocampal transcriptomic responses to enzyme-mediated cellular dissociation." Hip-
pocampus, 29(9): 876{882.

Heller, R .  and Rosset, S. (2021). \Optimal control of false discovery criteria in the two-
group model." Journal of the Royal Statistical Society: Series B  (Statistical Methodol-
ogy), 83(1): 133{155.

Himes, B.  E., Jiang, X.,  Wagner, P., Hu, R., Wang, Q., Klanderman, B., Whitaker, R .  M.,
Duan, Q., Lasky-Su, J., Nikolos, C., et al. (2014). \RNA-Seq transcriptome proling
identies C R I S P L D 2  as a glucocorticoid responsive gene that modulates cytokine func-
tion in airway smooth muscle cells." PloS one, 9(6): e99625.

Ignatiadis, N., Klaus, B., Zaugg, J .  B., and Huber, W. (2016). \Data-driven hypothesis
weighting increases detection power in genome-scale multiple testing." Nature methods,
13(7): 577{580.

Ji,  Y. ,  Wu, C., Liu, P., Wang, J., and Coombes, K .  R .  (2005). \Applications of beta-
mixture models in bioinformatics." Bioinformatics , 21(9): 2118{2122.

Kelly, R .  C., Smith, M. A., Kass, R .  E., and Lee, T .  S. (2010). \Local eld potentials
indicate network state and account for neuronal response variability." Journal of com-
putational neuroscience, 29(3): 567{579.

Korthauer, K. ,  Kimes, P.  K. ,  Duvallet, C., Reyes, A., Subramanian, A., Teng, M., Shukla,
C., Alm, E.  J., and Hicks, S. C .  (2019). \ A  practical guide to methods controlling false
discoveries in computational biology." Genome biology, 20(1): 1{21.

Lei, L .  and Fithian, W. (2018). \AdaPT:  an interactive procedure for multiple testing
with side information." J .  R .  Stat. Soc. Ser. B .  Stat. Methodol., 80(4): 649{679.

Leisch, F .  (2008). \FlexMix Version 2: Finite Mixtures with." Journal of Statistical
Software, 28(4): 1{35.

Li ,  A.  and Barber, R .  F .  (2019). \Multiple testing with the structure-adaptive Benjamini{
Hochberg algorithm." Journal of the Royal Statistical Society: Series B  (Statistical
Methodology), 81(1): 45{74.

Love, M. I., Huber, W., and Anders, S. (2014). \Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2." Genome biology, 15(12): 1{21.

Markitsis, A.  and Lai, Y .  (2010). \ A  censored beta mixture model for the estimation of
the proportion of non-dierentially expressed genes." Bioinformatics , 26(5): 640{646.

McLachlan, G. J., Bean, R., and Jones, L .  B.-T.  (2006). \ A  simple implementation of a
normal mixture approach to dierential gene expression in multiclass microarrays."
Bioinformatics , 22(13): 1608{1615.

Migliorati, S., D i  Brisco, A.  M., Ongaro, A., et al. (2018). \ A  new regression model for
bounded responses." Bayesian Analysis , 13(3): 845{872.

Nguyen, H. D., Yee, Y. ,  McLachlan, G. J., and Lerch, J .  P.  (2018). \False discovery rate
control under reduced precision computation for analysis of neuroimaging data." arXiv
preprint arXiv:1805.04394 .

Parker, R .  and Rothenberg, R .  (1988). \Identifying important results from multiple sta-
tistical tests." Statistics in medicine, 7(10): 1031{1043.

Pounds, S. and Morris, S. W. (2003). \Estimating the occurrence of false positives and
false negatives in microarray studies by approximating and partitioning the empirical
distribution of p-values." Bioinformatics , 19(10): 1236{1242.

Resnick, S. (2019). A  probability path. Springer.



24 D .  L E U N G  A N D  W .  S U N

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y. ,  Law, C.  W., Shi, W., and Smyth, G. K .
(2015). \limma powers dierential expression analyses for RNA-sequencing and mi-
croarray studies." Nucleic acids research, 43(7): e47{e47.

Scott, J .  G., Kelly, R .  C., Smith, M. A., Zhou, P., and Kass, R .  E.  (2015). \False discovery
rate regression: an application to neural synchrony detection in primary visual cortex."
Journal of the American Statistical Association, 110(510): 459{471.

Smith, M. A.  and Kohn, A.  (2008). \Spatial and temporal scales of neuronal correlation
in primary visual cortex." Journal of Neuroscience, 28(48): 12591{12603.

Storey, J .  D. (2002). \ A  direct approach to false discovery rates." Journal of the Royal
Statistical Society: Series B  (Statistical Methodology), 64(3): 479{498.

Storey, J .  D., Dai, J .  Y. ,  and Leek, J .  T .  (2007). \The optimal discovery procedure for
large-scale signicance testing, with applications to comparative microarray exper-
iments." Biostatistics , 8(2): 414{432.

Storey, J .  D., Taylor, J .  E., and Siegmund, D. (2004). \Strong control, conservative point
estimation and simultaneous conservative consistency of false discovery rates: a unied
approach." Journal of the Royal Statistical Society: Series B  (Statistical Methodology),
66(1): 187{205.

Sun, W. and Cai, T .  T .  (2007). \Oracle and adaptive compound decision rules for false
discovery rate control." Journal of the American Statistical Association, 102(479): 901{
912.

Tansey, W., Koyejo, O., Poldrack, R .  A., and Scott, J .  G.  (2018). \False discovery rate
smoothing." Journal of the American Statistical Association, 113(523): 1156{1171.

White, H. (1981). \Consequences and detection of misspecied nonlinear regression mod-
els." Journal of the American Statistical Association, 76(374): 419{433.

|  (1982). \Maximum likelihood estimation of misspecied models." Econometrica: Jour-
nal of the Econometric Society , 1{25.

Yurko, R., G?Sell, M., Roeder, K. ,  and Devlin, B.  (2020). \ A  selective inference approach
for false discovery rate control using multiomics covariates yields insights into disease
risk." Proceedings of the National Academy of Sciences, 117(26): 15028{15035.

Zhang, X .  and Chen, J .  (2020). \Covariate Adaptive False Discovery Rate Control with
Applications to Omics-Wide Multiple Testing." Journal of the American Statistical
Association, (just-accepted): 1{31.



m

m

m

m

m

# i 1

i 1

+

m

F D R   E      E

m

|R| _  1 i i i1tM ; X  u  E :

m

m

° i 1

1

m

ErV s

25

Appendix A. O r a c l e  procedures

A.1. Optimality  of P  and Z .  In this section we briey review the optimality
properties of the oracle procedures P  and Z  in Section 2.2 and how their thresh-olds
tP  and t Z  are determined. To  streamline the discussion, we will let tMi ui1 denote
the set of main statistics, where it can either be that Mi  P i  or Mi  Z i  for all i,
depending on whether p-value or z-value based methods are considered. Given the
data tMi ; Xi u i1 ,  it is well-known that optimal procedures, which aim to maximize
true discoveries subject to false discovery constraints, should operate by rejecting i  if
its corresponding posterior probability P pHi   0|Mi; Xiq falls below a data-
dependent threshold t M .  We will use M  (in a similar way as P  or Z )  to denote the
procedure that thresholds the quantities tP pHi   0|Mi; Xiqui1 with t M .

There are subtly dierent ways to dene \optimality", depending on the particu-lar
false discovery (e.g. F D R ,  mFDR,  p F D R )  and power (e.g. T P R ,  E T D ,  mFNR)
measures used, which may lead to dierent ways of setting t M .  A  most recent result
of Heller and Rosset (2021, Theorem 3.1) suggests that among all the testing proce-
dures that are functions of tMi ; Xi u i1 ,  the t M  that renders an ETD-maximing M

with F D R  ⁄   can be found by solving an integer optimization problem (Heller
and Rosset, 2021, Theorem 3.1). For our purpose, by letting Lp1q L p m q  be
the order statistics of the posterior probabilities tP pHi   0|Mi; Xiqui1, we have
considered the computationally simpler optimal procedure rst proposed in Sun
and Cai (2007) which takes t M   Lp j q ,  where

(A.1) j   max     i1 P t1; : : : ; mu : 
°

i 1  L p i q  ⁄       :

This procedure has F D R  ⁄   because for any procedure that produces a rejection
set R  based on tMi ; Xi u i1 , its F D R  can be written as

 °
i P R p 1   Hi q m      

°
i P R  P pHi   0|Mi; Xiq

loooooooooooooooooooomoooooooooooooooooooon                             |R| _  1

E r F D P | t M i ; X i u i 1 s

Conditional on any instance of the data tMi ; Xi u i1 ,  M  prioritizes rejections of the
hypotheses that are least likely to be true nulls, all the while controlling the
conditional F D R  ErF DP |tMi ; Xi u i1 s below  by setting t M   Lp j q ,  as the ratio

i1 Lpiq {i1  in (A.1) is precisely the conditional F D R  of rejecting the most promis-ing
i  hypotheses. As a result, its controls the F D R  under  since the conditional

version ErF DP |tMi ; Xi u i1 s is always not larger than .
We now give a more precise account of the optimal property of the prior pro-

cedure. Another popular measure of type 1 errors is the marginal F D R  (mFDR),
which for any rejection set R  is the ratio

m F D R   
ErRs

;
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where V and R  are dened as in the main text.     For  P p0; 1q, it is known
that among all the procedures based on tMi ; X i u i 1  with m F D R  ⁄  , the ETD-
maximizing procedure is the one given by M  that sets t M    , where

(A.2)       sup  P 
p

0; 1s : i  Erp1  HiqIpP pHi

|
 0|Mi; Xiq ⁄  qs 

⁄   ;

see Sun and Cai (2007) and Heller and Rosset (2021). In practice, since M  could
be tricky to obtain even with oracle knowledge, this optimal procedure for m F D R
control is often approximated by our computationally handy version with t M   L p j q

above when m is large, as is the case with most F D R  analyses. Their asymptotic
equivalence can be shown by standard arguments, such as those in Sun and Cai
(2007, Section 4). The aforementioned references provide a more detailed exposi-
tion.

A.2. Rejection regions for Examples 2.1-2.3. Consider the p-value conditional
mixture density

(A.3) P i |X i   x   gxppq  gpp|xq  p1  wxqg0ppq      wxg1;xppq;

induced by (2.2), where g0  1 is the uniform null density of Pi ,  and g1;xppq  gpp|Hi

1 ; X i   xq is the conditional alternative density of Pi .  The rejection regions S P pxq
and S Z pxq in Figure 2.1 are derived based on the threshold M  in (A.2), where

S Z pxq  tz : P pHi   0|Zi  z ; X i   xq ⁄   u      z : 
p1  w

 ;

qf
z

pzq 
⁄  

1  Z

and

S P pxq  tz : P pHi   0|Pi  p ; X i   xq ⁄   u      z : 
p1  w

;

qg
2
p2p|

z
|qq 

⁄  
1  P :

 and  are       dened with Mi  P i  and Mi  Z i  for all i  respectively. Since the examples
are relatively simple, these regions can be found by numerical means, and we will
derive S Z pxq in Example 2.2 as an illustration: It is the set

& 0:2 1x  expppz q2 
q   1 x  expppzq2 

q  .

%
z :

0:8 exppz2 q
⁄

-
;

where   1:5. By setting p1w
1

qf0 pz q  1 Z   , one arrives at the equation 
1      

x

expp2zq  4
1  

 
exp

2
exppzq   

1 
 x

 
 0:

in z. To  solve for a solution z, we can apply the formula for the solutions of a
quadratic equation to get

c
4 1 Z   expp

2 
q 16 1 Z  expp2q  p1  xqp1      xq
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which in turn implies the two boundary points
$

4 1   expp
2 
q 16 1        

2 
expp2q  p1  xqp1      x q

,  
z  

 
l
og

 ’
Z                                                                                  

1      x /

for the red regions in the middle panel of Figure 2.1 as a function of x.
We now explain why S P pxq doesn’t change with x  in Examples 2.2 and 2.3.

From the conditional p-value density (A.3), one can see that
p1  w X  qg0pPiq p1  w X  qg0pPiq

i i i g X i  pPiq p1  w X i  qg0pPiq      w X i  g1 ; X i  pPiq

Hence, if wx and g1;x do not depend on x, it is apparent that S x      will not vary in
x. Simple calculations can show that wx  0:2 and wx  0:1 for Examples 2.2 and 2.3
respectively, and

p1pp{2q  1:5q      p1pp{2q  1:5q p|z|  1:5q      p|z|  1:5q 1;x

2p1pp{2qq                                                    2p|z|q

for both examples; all of these quantities do not depend on x.

Appendix B. P r o o f  f o r  the p ro t o t y p e  method

We will prove the F D R  validity of the prototype procedure in Section 3.1. The
false discovery proportion of the prototype testing procedure, which thresholds the
test statistics Ti’s with the threshold t  tpq, can be written as

# t i  null: Ti ⁄  tu 1
_  # t T i  ⁄  tu

# t i  null: Ti ⁄  tu 1      # t i  null: S i  ¥  1  ciptqu 1

# t i  null: S i  ¥  1  ciptqu looooooooooooooooooomooooooooooooooooooon
⁄  by the dention of our procedure

# t i  null: Ti ⁄  tu
1      # t i  null: S i  ¥  1  ciptqu

We only have to show that E  1 # t i  null:
l 

S i ¥ 1 c i p t q u        is bounded by 1 using the
stopping time argument from (Barber and Candes, 2019).

Without loss of generality we will assume the true nulls are the rst m0 hypothe-
ses. For each i  P t1; : : : ; m0u, dene

q
S i when S i  ⁄  0:5
1  S i when S i  ¡  0:5

and Ti  c1pSiq. Using the order statistics Tp1q ⁄   ⁄  Tpm0 q of T1; : : : ; Tm0 , we moreover
let B i   I pSpiq ¡  0:5q for i   1; : : : ; m0, where the order of Spiq ’s here is inherited from
the order of the Tpiq’s, rather than the magnitudes of the Si ’s themselves. Let 1
⁄  J  ⁄  m0 be the index such that

Tp1q ⁄   ⁄  TpJ q ⁄  t Tp J  1q ⁄   ⁄  Tpm0 q;
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we then have

# t i  null: Ti ⁄  tu # t i  null: Ti ⁄  tu
1      # t i  null: S i  ¥  1  ciptqu 1      # t i  null: c1p1  Siq ⁄  tu p1

B1q            p1  BJ q 1      J
1      B 1             B J 1      B 1             B J

considering that t must be less than tmax : maxtt : ciptq ⁄  0:5 for all iu. Hence it
amounts to showing E r 1  B

  
  B

 s ⁄  2. This nal step can be shown by ap-plying
Barber and Candes (2019, Lemma 1), since conditional on (i) Tp1q : : : Tpm0 q and (ii)
tTi  : i  is non nullu, B1 ; : : : ; Bm0      are independent Bernoullip0:5q random variables,
and J  can be seen as a stopping time in reverse time with respect to the ltrations
tF j u j 1 ,  where F j   tB 1             B j ; B j  1 ; : : : ; Bm0 u.

Appendix C.  P ro pert ies  o f  the work ing  model

In this section we will develop some properties of the beta-mixture model in
Section 3.2 and the assessor functions it induces. To  simplify notation, we will
use l i ; r i ; kl i ; kr i ; hl i ; hr i  to respectively denote the quantities and functions l ; X i  , r ; X i  ,
k l ; X i  , k r ; X i  , h l ; X i  , h r ; X i  from Model (3.6) when the observed covariate X i  is used,
where the underlying parameters tl ; r ; l ; r u are unspecied but common for all i
1; : : : ; m. Likewise, we also use

(C.1) aipuq  a X i  puq  
p1  l i   riq      lihlipuq      rihripuq

to denote the assessor function constructed with them, and Ti , S i  and cipq will
denote the test statistics and null distribution function based on aipq as in Sec-tion
3.1.

First, the following lemma states properties concerning the left and right alter-
native functions hl i  and hr i .

Lemma C .1  (Properties of the non-null component densities). For l  ¡  2, hlipq is
a strictly convex and strictly decreasing function with the properties

lim hlipuq  8  and lim hlipuq  0:

Similarly, for r  ¡  2, hr i  pq is a strictly convex and strictly increasing function with
the properties

lim hripuq  0 and lim hripuq  8 :

Proof of Lemma C.1. It suces to show the facts for hl i  since those for hr i  can be
proven exactly analogously. Recall that

hlipuq : Bpkli ; lq1ukli 1p1  uql1;

where for brevity we have suppressed the dependence on X i  in notations. Dieren-
tiating with respect to u we get

(C.2) h1
ipuq  Bpkli; lq1rpkli  1qukli2p1  uql1  pl  1qp1  uql 2ukli 1s;



l i

u p1  uql i lk  3  3

2
l i l i l i lpk  1qpk  2qp1  uq 2pk  1qp  1qup1  uq

2

u Ñ 0 u Ñ 1
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which, given l  ¡  2 (actually l  ¡  1 is sucient), can be seen to be always negative for
any u P p0;1q and hence proves that hl i  is strictly decreasing. For convexity, we

dierentiate one more time to get
h2 puq  Bpkl; lqpkli  1q pkli  2qukli3p1  uql1  ukli 2pl  1qp1  uql2

 
 Bpkl; lqpl  1q p2  lqp1

uql 3ukli 1      pkli  1qukli2p1  uql2

 Bpkl;lqlooooooooomooooooooon
¡ 0

looooooooooooooomooooooooooooooonloooooooooooooooomoooooooooooooooon pl  1qp
l 

 2qu2; ¡ 0 ¡ 0

where in the last equality, the positive terms are positive since 0 kl i 1. As
such, hlipuq is strictly positive for all u P p0;1q as long as l  ¡  2, which proves the
strict convexity of hli .

A  closer inspection of the proof above will reveal that for l  P p1; 2q, hl i  may not
even be convex, and the same is true for hr i . Hence we have required that l ; r  ¡  2
in our model. To  facilitate the proof in later sections we will also dene the reciprocal
assessor function

(C.3) bipuq  1{aipuq:

By the properties of hl i  and hr i  in Lemma C.1, one can readily conclude the fol-
lowing lemma, which will help us develop some useful facts later:

Lemma C .2  (Properties of the reciprocal assessor). The reciprocal assessor func-
tion dened in (C.3) (for l ; r  ¡  2) is strictly convex and smooth, with the property that

(C.4) lim bipuq  lim bipuq  8 :

Hence, there exists a unique minimal ui such that

bipuiq bipuq for all u P p0; 1q:

Ti  aipUiq as a random variable has the range p0; aipuiqs in light of Lemma C.2. By
construction, aipq’s level sets can only be of Lebesgue measure 0, so cipq is
continuous under the uniform null distribution of Ui . With the strict convexity of
bipq, one can also conclude that cipq, its null distribution function, is invertible (or
equivalently, strictly increasing), since no interval in the range p0; aipuiqs will have
zero measure under the law of aipUiq induced by the uniform null distribution of Ui by
the intermediate value theorem. The smooth \bowl" shape of bipq also implies that,
for any t P p0; aipuiqs, the event tTi  ¡  tu is equivalent to Ui taking values in a certain
sub-interval of p0; 1q. One can dene two smooth functions to describe this fact:

Denit ion C .1  (Expression for the event tTi  ¡  tu). For each i, ! i L  : p0; aipuiqs Ñ
p0; uis and ! i R  : p0; aipuiqs Ñ  rui; 1q are respectively two smooth functions such



i

i

^m ^

i î

i i i

i

1
m‚

⁄ i ⁄ m
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that for any t P p0; aipuiqs,

tTi  ¡  tu  t! iL ptq Ui !iR ptqu  t S i  ¡  ciptqu;

with ! i L pq and !iR pq being strictly increasing and strictly decreasing, respectively.
Since S i  and Ui are uniformly distributed when H i   0,

!iR ptq  !iL ptq  1  ciptq:

Moreover, bip!iLptqq  bip!iRptqq  1{t.

Of course the variable S i   cipTiq has the range p0; 1s, and we can dene functions to
describe events of the form t S i  ¡  su similar to Denition C.1:

Denit ion C .2  (Expression for the event t S i  ¡  su). For each i, i L  : p0; 1s Ñ
p0; uis and     i R  : p0; 1s Ñ  rui; 1q are respectively two smooth functions such that for
any s P p0; 1s,

t S i  ¡  su  t  iLpsq Ui iRpsqu  tTi  ¡  c1psqu;

with     iLpq and     iRpq being strictly increasing and strictly decreasing, respectively.
Since S i  and Ui are uniformly distributed when H i   0,

(C.5) iRpsq  iLpsq  1  s:

Moreover, bip iLpsqq  bip iRpsqq  1{c1psq.

Appendix D. P r o o f  f o r  the asy m pt o t i c  method

Before proving Theorem 3.1, we remark that the theorem is established by as-
suming that the mirror statistic Ti       is the exact reection of Ti under the null

distribution ĉ  . In practice, T m can be determined up to arbitrary precision in
Algorithm 1 as long as the number of uniform realizations N  is set to be very large,
as recommended in Section 3.5.

We will make heavy use of the notation and results in Appendix C.  We will also
use ai pq, bpq, cpq, T  and S i      to denote the respective functions and statistics when

t; u is taken to be the pair t; u to construct aipq, bipq, cipq, Ti and S i .
Similarly, the quantities and functions appearing in Lemma C.2 and Denitions C.1
and C.2 all have their \star" versions: u, !iL pq, !iR pq,     iLpq and     iRpq. Gener-ally
speaking, C; c ¡  0 will denote unspecied universal constants required for the
asymptotic arguments in this section.

D.1. Addit ional  assumptions for Theorem 3.1.

Assumption 2 (Regularity conditions).

( i )  maxi } X i } 8  ⁄  C  almost surely for some universal constant C  ¡  0, where
}   } 8  indicates the sup norm.

(i i )  Let r1; 2s be any xed compact interval in p0; 1q. For each i ,  let V1i and V2i

be two measurable subsets in p1; 2q. Then for large enough m,

m 
i1 

P pUi P V1i|Xiq  P pUi P V2i|Xiq ⁄  Cp1; 2q
1
max pVi1Vi2q ;



m

i

‚ i

‚
i i

8 0G  ptq
" *

8 8

8
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where pq is the Lebesgue measure, Cp1; 2q is a constant that may de-pends
on 1 and 2, and S1 S2 is their symmetric dierence for any two sets S1 ; S2 €
R .

( i i i )  ErlogpUiqs and Erlogp1  Uiqs are nite.

Assumption 3 (Strong laws of large numbers). Let 0  P pHi   0q ¡  0. For any t P
p0; 1s, it holds that

(D.1)     m1 
‚  

IpT  ⁄  tq Ý Ñ  Gptq; i1
m

m1 p1  HiqI pT  ⁄  tq Ý Ñ  0G0ptq and
i1

m

m1 I pS  ¥  1  cptqq Ý Ñ  G0ptq
i1

almost surely, where Gptq, G0ptq and G0ptq are positive continuous functions in t.
Moreover, G0pt0q{Gpt0q  for some t0 ¡  0, and the limiting threshold

t  sup t P p0; 1s : 
Gp

t
q

 
⁄

is such that maxiPN ci pt q s for s 1, or equivalently, t mini ci  
1psq. Note

that the strong laws above, as well as the marginal probability 0, are with respect to
the joint law of t H i ; Z i ; X i u .

Assumption 2 regulates the tail behaviors of the random variables X i  and Ui; in
particular, piiq implies that conditional on X i ,  the density of Ui can be unbounded
at the two tails, which is natural for multiple testing as it provides room for non-null
tail behaviors. Assumption 3 states properties of the strong law limits involved.

For technical reasons, that supiPN ci pt q is bounded away from 1 ensures that our
result won’t rely on the strong law limits for very large values of t, which is hardly
restrictive in practice: any sensible multiple testing procedure should only consider
rejecting S i  , which is uniformly distributed under the null, if it is much less than

the typically small target F D R  level . Similar assumptions have also appeared in
the works of Storey et al. (2004), Zhang and Chen (2020).

We remark that our current assumptions for Theorem 3.1 are no stronger than
those in Zhang and Chen (2020) in any essential way, and can conceivably be further
relaxed; for example, if Assumption 2piq is phrased as a probabilistic bound, one can
still likely establish a version of Theorem 3.1 which says that the F D R  is less than
with probability approaching 1. Moreover, we have assume, as stated in Section 2.1,
that t H i ; Z i ; X i u  are independent across i, which can be further relaxed to a generic
weak dependence condition under which the strong laws in Assumption 3 hold. In
fact it is possible to prove an F D R  bound in terms of the conditional expectation
Er|H1; : : : ; Hm s, treating the hypotheses as xed. These embellishments have not
been pursued here for a more streamlined presentation.



max l r min l r

Ñ 0 P;

 

rk1  1u p1  u u p1
max max

lim sup b p ps qq ⁄  1   :

j
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D.2. Technical  lemmas. Under Assumption 1 and Assumption 2piq, all kr i

kr pXiq, kl i   klpXiq, r i   r pXi q, l i   lpXi q are bounded away from one and zero, i.e.
kr i ; kl i  P rk; ks, r i ; l i  P r; s for some compact intervals rk; ks; r; s € p0; 1q, by the
compactness of   B .  Moreover, by continuity of the beta functions we can dene

B : max pBpk;  q _  pBp ;kqq and B : max pBpk;  q _  pBp ;kqq;
kPrk;ks kPrk;ks

which are both positive numbers.
The following \uniformity" properties will be heavily relied on later:

Lemma D.1  (Uniformity properties). Under Assumption 1 and Assumption 2piq,
the following are true for any p;q P   B :

( i )  For any t0 ¡  0, there exists a u0  u0pt0q ¡  0 not depending on p;q such
that for all t ¥  t0, p!iLptq; !iRptqq € ru0; 1  u0s for all i .

( i i )  For any s0 ¡  0, there exists a u0  u0ps0q ¡  0 not depending on p;q such
that for all s ¥  s0, p iLpsq; iRpsqq € ru0; 1  u0s for all i .

( i i i )  There exists a small positive constant u0 P p0; 0:5q not depending on p;q
such that,

ui P ru0; 1  u0s
for all i ,  where ui is as in Lemma C.2.

(iv)
lim 

iPN;
max 

P B  
 bi

1 rbipuiq; bipuiq       0; where

is the Lebesgue measure, ui is as in Lemma C.2 and

bi
1pT q  tu : bipuq P T u:

for any interval T in R .

Proof. piq: Note that

(D.2
)

bi

puq 
¥  max

 
p1  2qB 

ql1 
; 

 
p1  2qB

uqk1
for all i;

which implies l imu Ñ 0  mini bipuq  l imu Ñ 1  mini bipuq  8 ,  since the right hand side of
(D.2) tends to 8  as u tends to 0 or 1. Hence one must be able to nd a small enough
u0 ¡  0 such that minpbipu0q; bip1  u0qq ¡  1{t0 for all i, which implies that
p!iLptq; !iRptqq € ru0; 1  u0s for all i  by Denition C.1. This proves piq.

piiq: Suppose towards a contradiction, such a u0 doesn’t exist. Without loss of
generality, we assume there is a subsequence ti1; i2; : : : u such that l i m j Ñ 8       ij Lps0q  0.
As such, l i m j Ñ 8       ij Rps0q  1s0 by the property stated in Denition C.2, which implies

(D.3)
p1  s0qk1ps0ql1 p1  s0qr1ps0qk1 

j
i j

i j R       0 p1  2qBmin                               p1  2qBmin

On the other hand,

(D.4) lim bij  p ij Lps0qq  8



j

i ij ji ij j

i j i j i j j
1

u Ñ 0 u Ñ 1i; ; i ; ;
1 1

i
l r i1 1

1

l

1 1

1 1

l
1 1

u Ñ 0
1

u Ñ 1
1

1 1 1

1 1
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1

i
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1 1
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in consideration of (D.2) and l i m j Ñ 8       i  Lps0q  0.     (D.3) and (D.4) together reach
a contradiction since it must be that limj b p  

Lps0qq  limj b p  
Rps0qq as b p  

Lps0qq  b p
i  Rps0qqby Denition C.2.

piiiq: By the fact that that bipbipuiqq  0 for all i, it suces to show that

(D.5)

Note that

lim max bipuq  8  and lim min bipuq  8 :

b1puq  
1  r i

i

 l i  
hlipuq   

1  r i   l i  
hripuq;

where hl i  has the form

h1
ipuq  Bpkli; lq1rpkli  1qukli2p1  uql1  pl  1qp1  uql 2ukli 1s as shown in the proof

of Lemma C.1. Dene, for u P p0; 1q, the functions

hlpuq  Bmaxrpk  1quk2p1  uql1  pl  1qp1  uql2uk1s;

hlpuq  Bminrpk  1quk2p1  uql1  pl  1qp1  uql2uk1s so that h1puq ⁄
hlipuq ⁄  hlpuq 0 for all i. Note that

lim hlpuq  8  and lim hlpuq  0:

One can similarly dene functions hr and hr on p0;1q such that 0 hrpuq ⁄
hripuq ⁄  hrpuq for all i  and

lim hrpuq  0 and lim hrpuq  8 :

The fact that b1puq ⁄  12 h
1puq  12 h

1 puq, together with two of the limit results
above, has shown the rst limit in (D.5). Similarly, that bipuq ¥  12 hlpuq

12 hrpuq, together with the other two limit results above, has shown the second
limit in (D.5).

pivq: By Lemma D.1piiiq, pick u0 P p0; 0:5q such that ui P ru0; 1  u0s for all i.
Note that

bi 
p

u
q

  
1  l i   r i  

hli
p

uq
 
  

1  l i   r i  
hripu

q
;

where the dependence on X i  has been suppressed in notations for brevity. By
Lemma C.1 , bi  is always positive, hence there exists a universal positive number
c ¡  0 such that

b2puq ¡  c

for all i  and all u P ru0{2; 1  u0{2s, considering that , B  and ru0{2; 1  u0{2s are all
compact. Now for each i  consider the quadratic function

fipuq  
c
p

u  ui            bipuiq

dened on ru0{2; 1  u0{2s. Then on the interval ru0{2; 1  u0{2s , bi  ¥  f i  since gi  bi

f i  is strictly convex with gipuiq  gipuiq  0. Then

 
b1prmi; mi      qq

 
⁄  

 
f 1prmi; mi      qq

 8



m

m

p!i L i ;pt q; !i R i ;  i L i Rloo oooomoo oooonpt qq p!i L i ;pt q; !i R i ;pt qq

i

B B

u0 u0
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where the right hand side obviously converges to zero as  Ñ  0.

We will now state two crucial \event inclusion" lemmas that involve the most
delicate proofs in this paper, and may be skipped at rst reading. To  state them, we
conveniently dene the long vectors   pq  pli ; riqi1 and K   Kpq
pkli; kriqi1 with 2m components. Note that they implicitly depend on the unspec-ied
parameters t; u. As such, we can also dene   pq and K   Kpq to be the versions
evaluated at  and .

Lemma D.2  (First event inclusion lemma). Suppose Assumptions 1 and 2piq are
true and let p;q P   B .  For given t ¡  0 and  ¡  0, there exists a  ¡  0 such that
whenever }   } 8  _  } K   K } 8 ,

t S i  ⁄  ci  ptq  u € t S i  ⁄  ciptqu € t S i  ⁄  ci ptq      u for all i  and all t ¡  t:

Proof of Lemma D.2. By Denition C.1, we will show, equivalently, that there ex-
ists  ¡  0 such that whenever }   } 8  _  } K   K } 8 ,
(D.6)
tUi  P looooooooooooomooooooooooooonu € tUi  P p!oo ptq; ! ooptqqu € tUi  P looooooooooooomooooooooooooonu;

length1ci ptq length1ci ptq length1ci ptq

where we dene ti; : ci 
1pci ptq  q and ti;  : ci 

1pci ptq   q that are respectively
less and greater than t. In particular, we will rst focus on showing

the second inclusion in in (D.6) , which amounts to showing

(D.7) bip!iLpti;qq ^  bip!iRpti;qq ¥  1{t whenever

}   } 8  _  } K   K } 8 , in light of the fact that (D.8)

bi p!iLpti;qq  bp!iRpti;qq  1{ti;;

by the denition of ! i L pq and !iR pq in Denition C.1 and properties of bi  from
Lemma C.2.

Let u0 ¡  0 be a small positive number such that p!iLptq; !iRptqq € ru0; 1  u0s by
Lemma D.1(i), and consider the even larger compact interval ru0{2; 1  u0{2s.

Consider each bipuq  bpu; i; kiq as a function in pu; i; kiq, and let 
T

T  T

r;k bi puq 
B i 

bpu; i; kiq ; 
Bki 

bpu; i; kiq

be the gradient of bi  with respect to pi; kiq evaluated at u. Using the compactness of
ru0{2; 1  u0{2s    B  and Assumption 2piq again, one can nd a universal constant
Cpu0q ¡  0 such that the gradient bounds
(D.9

)
}r;k bi puq}1

Cp
u0

q
 for all i; all u P

2 
; 1  

2
; all p;q

 
P  

 B
:  

On

the other hand, without loss of generality, we will let

(D.10) u0{2



ii i

u0 u0

i i i i
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and, with Lemma D.1pivq, take ~ ¡  0 be a small enough constant such that

(D.11) pbi 
1prbi puq;bpuq      ~qq  for all i:

By the mean-value theorem and the gradient bound (D.9), one can then nd  ¡  0
such that when }   } 8  _  } K   K } 8

(D.12) |bipuq  bi puq| ~ for all u P
2 

; 1  
2

:

By the construction of ~ in (D.11) and convexity properties from Lemma C.2,
one must have for all i

bp!iLpti;qq  bp!iLptqq  bp!iRpti;qq  bp!iRptqq ¥  ~; which implies

(D.13) 1{ti; ¥  ~      1{t:

by the last property in Denition C.1. Since t S i  ¡  ci ptqu • t S i  ¡  ci  ptqu, from the
property (C.5) in Denition C.2 both

!iL pti ;q P p!iLptq  ; !iLptqq and !iR pti ;q P p!iRptq; !iR ptq      q are true,

which implies

r!iLpti;q; !iR pti;qs € ru0{2; 1  u0{2s;

considering (D.10) and !iL ptq; !iR ptq P ru0; 1 u0s (as t ¥  t). Therefore by (D.12),
we must have

(D.14) bip!iLpti;qq ^  bip!iRpti;qq ¥  1{ti;  ~

given (D.8). Combining (D.13) and (D.14) gives (D.7).
The proof for the rst inclusion in (D.6) follows an analogous argument but is

with less resistance, since r! i L pt i ;  q; !iR pti;  qs € ru0; 1 u0s for all i. We leave it to
the reader.

Lemma D.3  (Second event inclusion lemma). Suppose Assumptions 1 and 2piq
are true and let p;q P   B .  For any xed t mini ci  

1psq with s 1 and any
¡  0, there exists a  ¡  0 such that whenever }   } 8  _  } K   K } 8          ,

t S i  ¡  1  ci ptq  u • t S i  ¡  1  ciptqu • t S i  ¡  1  ci ptq      u; for all i
and all t ⁄  t.

Proof of Lemma D.3. Note that from (C.5) in Denition C.2 and Lemma D.2 we
can conclude there exists a 1 ¡  0 such that whenever } } 8 _ } K K } 8          1,

(D.15) 1  ci ptq   ⁄  1  ciptq ⁄  1  ci ptq      :

Based on (D.15), it suces to show that there exists a 2 ¡  0 such that whenever }
} 8  _  } K   K } 8 2,

(D.16) t S i  ¡  1  ci ptq  u € t S i  ¡  1  ci ptq  2u;



B B

u0 u0
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and

(D.17) t S i  ¡  1  ci ptq      u • t S i  ¡  1  ci ptq      2u

which conclude the lemma by taking   1 _  2 and replacing  with {2. In fact, since t
⁄  t and ci ptq are bounded away from 1, we will show the more general statement:
For a given s ¡  0, there exists   psq ¡  0 such that whenever }   } 8  _  } K   K } 8 ,

(D.18) t S i  ¡  su € t S i  ¡  s  u

and

(D.19) t S i  ¡  su • t S i  ¡  s      u

for all s ¥  s and all i. This will necessitate (D.16) and (D.17) for t ⁄  t.
We will rst show (D.18) which amounts to

(D.20) p iLpsq; iRpsqq € p iLps  q; iRps  qq

in light of Denition C.2. In particular, it suces to only consider the case where
s, since if s   ⁄  0, t S i      ¡  s  u  t S i      ¥  0u becomes the whole underlying

probability space which makes (D.20) trivially true. Now for each i, let

spiq : supts1 P p0;1q : p iLpsq; iRpsqq € p iLps1q; iRps1qqu:

By Denition C.2 it must be the case that

(D.21) spiq  1  iRpspiqq   iLpspiqq ⁄  1  iRpsq   iLpsq  s; and

only one of the following possibilities can be true:

(i) iLpspiqq
(ii) iLpspiqq

(iii) iLpspiqq

iLpsq and
iLpsq and
iLpsq and

iRpsq iRpspiqq,
iRpsq      iRpspiqq,
iRpsq      iRpspiqq.

In light of the monotone properties in Denition C.2, it suces to show that

(D.22) s  spiq ;

which will then imply (D.20). Obviously, if piiiq is true then (D.22) must be true in
light of (D.21). We will focus on showing (D.22) in the case of piq since the proof for
the case of piiq follows a parallel argument.

By Lemma D.1piiq, there exists a u0  u0psq ¡  0 such that

(D.23) p iLpsq; iRpsqq € ru0; 1  u0s for all i  P N and s ¥  s:

Consider each bipuq  bpu; i; kiq as a function in pu; i; kiq, and let 
T

T  T

r;k bi puq :
B i 

bpu; i; kiq ; 
Bki 

bpu; i; kiq

be the gradient of bi  with respect to pi; kiq evaluated at u. Using the compactness of
ru0; 1u0sB and Assumption 2piq again, one can nd a constant Cpu0q ¡  0 such that the
gradient bounds
(D.24) }r;k bi puq}1 Cpu0q for all i  and for all u P

2 
; 1  

2
:
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On the other hand, without loss of generality, with Lemma D.1pivq, let ~ ¡  0 be a
small enough constant such that

(D.25) pbi 
1prmi ; mi      ~qq

2 
for all i:

By the mean-value theorem and the gradient bound (D.24), one can then nd  ¡  0
such that when }   } 8  _  } K   K } 8

(D.26) |bipuq  bi puq| ~ for all u P ru0; 1  u0s :

Since iLpspiqq      iLpsq P ru0; 1u0s, (D.26) and the last property in Denition C.2

suggest that 
(D.27) b  pspiqq  b iLpspiqq bi iLpsq      ~  bi iRpsq      ~:

But since     iRpsq is also in the interval ru0; 1  u0s, we must have

(D.28) b iRpsq ¡  bi iRpsq  ~:

Combining (D.27) and (D.28), we get that 2 ~ ¡  bi iRpspiqq b iRpsq which
in light of the construction of ~ in (D.25) and convexity properties from Lemma C.2
gives that

iRpspiqq  iRpsq ;

which in turn implies (D.22) by the property (C.5) in Denition C.2. The proof of
(D.19) is similar. It amounts to showing

p iLps      q; iR ps      qq € p iLpsq; iRpsqq:

We will alternatively dene

s~piq : infts1
 P p0;1q : p iLps1q; i

Rps1qq € p iLpsq; iRpsqqu:

then show s~piq  s . We leave the details to the reader.

D.3. A  Gl ivenko-Cantel l i  theorem.

Lemma D.4  (Pre-Glivenko-Cantelli theorem). Under Assumptions 1-3 , for any
¡  0 and positive numbers 0 t t mini c1psq, there exists   pq ¡  0 such that, for
suciently large m,                                     

(D.29) sup  
1

I pTi ⁄  tq  Gptq ⁄
m a x p } K K } ; } } q

t ⁄ t ⁄ t

(D.30) sup  1       
 
p1  Hi qI pTi ⁄  tq  0G0ptq ⁄  ;

m a x p } K K } ; } } q   t ⁄ t ⁄ t

(D.31) sup  1 ‚  
I pSi  ¥  1  ciptqq  G0ptq ⁄

m a x p } K K } ; } } q
t ⁄ t ⁄ t

with probability 1.
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Proof of Lemma D.4. In this proof, for any function F pq, Fptq denotes the left
limit at the point t.

Proof of (D.29): Let

G;ptq  
1 ‚  

I pTi ⁄  tq; i1
where the subscript emphasizes that the Ti’s are dened with an unspecied p;q, to
distinguish from G  in Assumption 3. Let n be large enough such that 1{n {2
and consider G—p1{nq ⁄   ⁄  G—pn{nq. If we dene

n1
 : min ti : t G—pi{nq t; i  1; : : : ; nu ;

d1
 : | ti : t G—pi{nq t; i  1; : : : ; nu |:

Dene t1 : G—pn1{nq; t2 : G—ppn1  1q{nq; : : : ; td1 : G—ppn1  d1 1q{nq, as well as t0  t and
td  t with d  d1   1. Following the proof of the Glivenko-Cantelli theorem in Resnick
(2019, p.224), we have

(D.32)

sup |G;ptq  Gptq| ⁄
“  

|G;ptvq  Gptvq| _  |G;ptvq  Gptvq|  1{n t ⁄ t ⁄ t
v0

We will rst bound the terms of the form |G;ptvqGptvq| in (D.32). The strong law
of large numbers for Gpq in Assumption 3 suggests that
(D.33) |G;ptvq  Gptvq| ⁄  m1 pIpTi ⁄  tvq  IpT  ⁄  tvqq      Rv ;  i1
where the remainder term R v  Ý Ñ  0 almost surely. Now, realizing tTi       ⁄  tv u
t S i  ⁄  ci  ptvqu, by Lemma D.2 and t ¡  0, pick  ¡  0 such that

(D.34)  
1 ‚

p I p T i  ⁄  tvq  IpTi     ⁄  tvqq ⁄
i1

m1          
 rI pS  ⁄  ci ptvq      q  I pSi  ⁄  ci  ptvqqs_ m1          

 rI pS  ⁄  ci  ptvq  q  I pSi  ⁄  ci  ptvqqs:
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

pAq pB q

for maxp}}; }K K }q . This is because i1 rI pS  ⁄  cptvq      q  I pS  ⁄  cptvqqs ¥  i1pIpTi

⁄  tvq  I pTi       ⁄  tvqq if the latter term is greater than 0; likewise,
i1 rI pSi ⁄  ci ptvq  q  I pSi  ⁄  ci ptvqqs ⁄ i1pIpTi ⁄  tvq  I pTi      ⁄  tvqq if the

latter is less than 0.
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We will rst develop a bound for term pAq. One have
m

pAq ⁄  E rP pS ¡  cptvq|Xiq  P pS  ¡  cptvq      |Xiqs      Qv
i1

 E
 1 m  

P
 
Ui P p  pcptvqq;  pcptvqq|Xi

i1

P pUi P p iLpcptvq      q; iRpcptvq      q|Xiq       Q

(D.35) ⁄  Cptq      Qv

where Qv      oa:s:p1q is a remainder term coming from the strong law of Gpq in
Assumption 3. The second equality comes from Denition C.2. Note that the
intervals

p iLpcptvqq; iRpcptvqq; i  1; : : : ; m

can be equivalently represented as

p!iLptv q; !iRptv qq; i  1; : : : ; m

by Denition C.1, which all belong to a compact sub-interval in p0;1q by Lemma D.1piq
and the fact that t ¡  0. As such, Assumption 2piiq can be applied to give the last
inequality (D.35). By realizing, from Denitions C.1 and C.2, that the event

t S i  ¡  ci ptvq  u

is equivalent to Ui belonging to an interval that is p!iLptv q; !iRptv qq expanded by
a further  width, it is obvious that one can analogously develop the bound

(D.36) pBq ⁄  Cptq      Qv

for a constant Cptq and Qv  oa:s:p1q. Combining (D.33), (D.35) and (D.36) gives
(by appropriately adjusting )

(D.37) |G;ptvq  Gptvq| ⁄  {2 a.s.; for

suciently large m. A  similar bound

(D.38) |G;ptvq  Gptvq| ⁄  {2 a.s.;

can be derived in much the same way with no diculty by rst writing

G;ptvq  Gptvq  m1 
‚  

I pTi tvq  Gptvq
i1

using the continuity of Gpq, and the proof is omitted for brevity.     Combining
(D.32), (D.37) and (D.38) give (D.29). (D.30) can be proved in the same way by
rst writing

m

p1  Hi qI pTi ⁄  tq I pTi ⁄  tq;
i1                                                         H i 0

and noting that Ui is uniformly distributed given H i   0 and X i ,  and thus omitted.
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Proving (D.31) is similar. One proceed by developing the bound

rI pSi ¡  1  ciptvqq  P pS  ¡  1  cptvqqs

 i

⁄             rI pSi ¡  1  ci ptvq  q  P pSi ¡  1  ci ptvqqs_
i

 
1 ‚

r I p S  ¡  1  cptvq      q  P pS  ¡  1  cptvqqs

with Lemma D.3 for tv that are now quantiles of G0, for suciently small  ¡  0 and
maxp}  } ; } K   K }q . From Denition C.2, the events t S i  ¡  1  ci ptvqu have
the form

tUi P p iLp1  cptvqq; iR p1  cptvqqqu;

and to show that the intervals p iL p1  ci ptvqq; iR p1  ci  ptvqq can be placed in a
compact sub-interval of p0;1q by Lemma D.1piiq to apply Assumption 2piiq, one

need to show that c1 ptvq; : : : ; cmptvq are bounded away from 1. This is true because ci

ptvq ⁄  cptq ⁄  s 1 for all i  by denition. The same proof rundown goes through,
again, by realizing that p iL p1 ci ptvqq; iR p1 ci ptvqq are just -expansion of p iL p1  ci
ptvqq; iR p1  ci ptvqq from Denition C.2. The rest of the proof goes thru with no
resistance.

Lemma D.5  (Glivenko-Cantelli Theorems). Under Assumptions 1-3, for any 0
t t ⁄  mini ci  

1psq, we have

(D.39)  sup  1 ‚  
I pTi ⁄  tq  Gptq Ý Ñ  0; 

t ⁄ t ⁄ t

i1

(D.40)  sup  1 p1  Hi qI pTi ⁄  tq  0G0ptq Ý Ñ  0; t ⁄ t ⁄ t
i1

(D.41)  sup 
 1 ‚  

I pSi  ¥  1  ĉ  ptqq  G0ptq
 
Ý Ñ  0; t ⁄ t ⁄ t

i1

almost surely.

Proof of Lemma D.5. Let   pT ; T qT ;   pT ; T qT , and dene   pq and K   Kpq. We will
rst show that

(D.42) }   } 8  _  } K   K } 8  Ý Ñ  0 a.s.; which is

a consequence of

(D.43)  Ý Ñ   and  Ý Ñ      
 a:s:
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by the mean value theorem, the compactness of   B  and Assumption 2piq. To
show (D.43), it suces to bound

(D.44) |logrp1  l i   riq      lihlipUiq      rihripUiqs|  | log h X i  pUiq|

by an integrable function in Ui that doesn’t depend on p;q (White, 1981, Theorem
2.1). We rst let u0 ¡  0 be as in Lemma D.1piiiq. By the compactness of   B   ru0; 1u0s
and Assumption 2piq, there exists universal constants C; c ¡  0 such that logpcq

0, logpCq ¡  0, and
C  ¥  h X i  pUiq ¥  c

for all p; ; Xiq whenever Ui P ru0; 1 u0s. Note that Lemma C.2 also implies that h X i

pUiq ¥  c for Ui P p0;u0q Y  p1  u0; 1q:

Moreover, for Ui P p0; u0q, rihripUiq ⁄  C  by Lemma C.1, hence borrowing nota-
tions from Section D.2,

log h X  pUiq ⁄  log     1      C       
p1

 
 
Uiql 1U k1

min

⁄  logp2      Cq      log     C  
p

1
 
 
Uiq

l1

Uk
1  mlpUiq;

¡ 0

for a constant C  ¡  1 _             . Similarly, there exists a positive function mrpq such
that

log h X i  pUiq ⁄  mrpUiq
for Ui P p1  u0; 1q. Combining these facts we have for all Ui P p0; 1q,

| log h X i  pUiq| ⁄  | logpcq| _  logpCq _  mrpUiq _  mlpUiq;

where the right hand side is integrable by Assumption 2 piiiq and (D.43) is proved.
We will only prove (D.39), and (D.40) and (D.41) can be shown the same way.

Let D m   Dm p!q  s u p t ⁄ t ⁄ t  
 1         

i1 I pTi ⁄  tq  Gptq, where !  denotes a point in the
underlying probability space

. It suces to show that for any  ¡  0, there exists a subspace pq €
 such that Pppqq  1 and Dm p!q        for suciently large m and every !  P pq. By

Lemma D.4, there exists 1 with Pp1q  1 such that (D.29) holds on 1 for pq ¡  0.
By (D.42), there exists 2 with Pp2q  1 such that }   } 8  _  } K   K } 8             pq on 2 for

suciently large m. Take pq  1 X  2.

D.4. Proof of Theorem 3.1. The proof is similar to that of Storey et al. (2004,
Theorem 4) but is a bit more sutble. Recall the ratio in (3.8). We shall rst

show that under all the assumptions of Theorem 3.1, for any t ¡  0 and any t P
pt ; minici 

1psqs,
! )

(D.45) lim inf inf F D P ptq  F DP ptq ¥  0 a.s.
t ⁄ t ⁄ t

where F DP ptq  
°

i p 1 H i q I p T i ⁄ t q  for any t ¡  0. From the rst two Glivenko-Cantelli i

statements in Lemma D.5, we see that
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(D.46) lim sup F DP ptq  0m
G

0

p
t
q

t ⁄ t ⁄ t i1 I pTi ⁄  tq _  1

 lim sup  ip1  Hi qI pTi ⁄  tq 
 0mG0ptq

t ⁄ t ⁄ t i1 I pTi ⁄  tq _  1 i1 I pTi ⁄  tq _  1

⁄  lim 
m  sup ip1  Hi qI pTi ⁄  tq 

  G  ptq  0 a.s.
i1 I pTi ⁄  tq _  1 t ⁄ t ⁄ t

since l i m m Ñ 8   °
i

1
 
I p T

 
⁄ t q

 
_ 1

  1{Gptq 8  almost surely, given that Gptq ¡  0.

On the other hand, it must be that G0ptq ¥  0G0ptq considering that P pSi     ¥
1  cptq|Hi  0q  P pT  ⁄  t|Hi  0q, which, together with the last Glivenko-

Cantelli statement in Lemma D.5, gives
+

lim inf inf i1 I pSi  ¥  1  ĉ  ptqq 
  G  ptq ¥  0

:

t ⁄ t ⁄ t

The preceding display and (D.46) will lead to
! )

lim inf 
t  

inf 
t      

FDPasy mp ptq  F DP ptq
,

¥  lim inf inf i1 I pSi  ¥  1 
 
ĉ

 
ptqq 

 F DP ptq ¥  0;
t ⁄ t ⁄ t

i1 I pTi ⁄  tq _  1

which is (D.45).
Towards nishing, we will establish that, almost surely,

(D.47) lim inf tasymppq ¡  0 and lim sup tasymppq ⁄  min ci 
1psq:

F ix  t1 P pt ; mini ci  
1psqq. By the denition of t in Assumption 3 it must be the 

case

that
G0pt1q G0pt8q
Gpt1q Gpt q

and we can let G0 pt 1 q   1 ¡  0. For suciently large m, because of Lemma D.5
we can get that 

 
p

i I p S i ¥ 1 ĉ  pt1 qq  G0 pt 1 q
1{2 a.s., which implies that FDPasy mp pt1q ¡

almost surely to give the \limsup" statement in (D.47). On the other hand,
let   G0 pt 0 q    

 
 0 ¡  0 for t0 in Assumption 3.     Since t0 t     (by continu-

ity of the \ G "  functions), Lemma D.5 also suggests that for large enough m,
| G0 pt0 q  FDPasymppt0q| 0{2 almost surely, which implies FDPasy mp pt0q
almost surely and hence the \liminf" statement in (D.47).
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Now given (D.47) is true, since FDPasympptasymppqq ⁄  , by (D.45) it must be
true that

lim sup F DP ptasymppqq ⁄   a.s.

By the reverse Fatou’s lemma, this implies
lim sup ErF DP ptasymppqqs ⁄  E  lim sup F DP ptasymppqq ⁄  ;

and Theorem 3.1 is proved.

Appendix E.  P r o o f  f o r  the finite-sample method

The proof is almost exactly the same as that of Lei  and Fithian (2018, Theorem
1) which relies on the key lemma in that paper (Lei  and Fithian, 2018, Lemma
2), and we will only dene the notation required to apply their argument. First,
for each t  0; 1; : : : , let V t   # t i  : Ui P R t  and H i   0u and Ut  # t i  : Ui P A t  and
H i   0u which are respectively the numbers of true nulls in the rejection set and
acceptance set at step t. Dene

mi  I pUi ¥  0:5qpUi _  Uiq      IpUi 0:5qpUi ^  Uiq

and
bi  Ip0:25 ⁄  Ui ⁄  0:75q

so that

Ui  bi tI pmi ¥  0:5qp1:5  miq      I pmi 0:5qp0:5  miqu      p1  biqmi:

Also dene Ct  t i  : i  P A t  Y  R t  and H i   0u to give

Ut bi and V t  p1  biq  |Ct|  Ut: iPCt

iPCt

If we set the initial sigma-algebra G1      tpXi ; miqiPt1;:::;mu; pbi qi:Hi 0 u, then P pbi

1|G1q  0:5 almost surely for a null i  under the uniform null distribu-tion of Ui .
With these ingredients, the arguments in the proof of Lei  and Fithian (2018,
Theorem 1) will follow line by line, where the Ui’s will take the role of the p-values
in that paper.

Appendix F.  Supplementary a l g o r i t h m s

We will inherit the simplied notation in Appendix C.  The complete data log-
likelihood for Model (3.6), treated as a function of t; u, has the form

lp;q  
‚  

H l i  rpkli  1q logpUiq      pl  1q logp1  Uiq  log Bpkli ; lqs
i1

‚  
H r i  rpkri  1q

l

og

p

1  Uiq      pr  1q logpUiq  

l

og Bpr ; kriqs
i1

(F.1) p1  H l i   Hriq logp1  l i   riq      H l i  logpliq      H r i  logpriq ; i1



l i l ir i r i X i

m

l i r i l i r i

l i
 h pU q

X i
pU

r i

q
r i  h pj q

r i pU

X i

~ m

i
q

q

q
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where for each i, H l i  and H r i  are Bernoulli random variables with respective success
probabilities l i  and r i ,  and H l i  and H r i  cannot be both equal to 1 at the same time.
Note that the last line in (F.1) amounts to a multinomial logistic regression with
three classes.

F.1. E M  algorithm for asymptotic Z A P .
Algor i thm 3: EM algorithm for asymptotic Z A P

Data: U1; : : : ; Um; X1; : : : ; Xm

Input:  initial guess p0q, p0q while
ppjq; pjqq not converged do

E  step: Let pj q , pj q , hpj q, hpj q and hpj q be as dened in Section 3.2
evaluated at ppjq; pjqq. Compute

Qpjqp; q

‚  !
w p j q  logrlihlipUiqs      wpj q logrrihripUiqs      p1  wpj q  wpjqq logp1  l i   r i q

)
;  i1

where
pj q pj q

wpj q  Ep j q ;p j q  rH l i  | X i ; Ui s       l i
hpj q 

l i  

iq 
i  ;

wpj q  Ep j q ;p j q  rH r i  | X i ; Ui s   
pj

h
p
jqpUi

q

 
iq :

M  step: Compute ppj 1q; pj  1qq  arg max; Qpjqp; qq. end
Output:  Estimated coecients  and

F.2. Up dat ing  the thresholding functions in  nite-sample Z A P .  We rec-
ommend using Algorithm 4 below to update the thresholding functions, which per-
forms estimations of our beta-mixture model, although nite-sample F D R  control is
guaranteed as long as the conditions in the Theorem 3.2 are met. As seen in
Algorithm 4, assessor functions for the hypotheses are rst constructed based on
expression (3.7), using an EM algorithm that acts on the masked data tUt ; i ; X i u i 1

(Appendix F.3) to estimate the parameters. Next, for each masked i  P A t  Y  R t ,
evaluated assessor value T1 at whichever Ui or Ui is closer to the extreme ends of
the interval p0;1q is computed, and among them the hypothesis j  with the largest
such value is selected. This step aims to locate the hypothesis in the current masked
set that is the most likely to be a true null if all masked hypotheses are presumed
to be from the candidate rejection set R t .  Finally, one of the two thresholding
functions sl;t and sr;t will be updated, in a manner that satises condition piiq in
Theorem 3.2, to give a dierent sl;t 1 or sr;t 1: If Uj  ¡  0:5, sr;t 1 will be updated from
sr;t at the point X j  as sr;t 1pXj q  Uj  _ U j ,  and remains the same at all other covariate
values; otherwise, sl;t 1 will update from sl;t in a similar fashion using the value Uj  ^
Uj . As such, at the next step t      1, one of A t  1 or R t  1 will be shrunk
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by exactly one element which is j .  This is intuitive since if FDPf inite ptq ¡   at
step t, one would hope to reduce the size of R t .

Algor i thm 4: Update thresholding functions at step t with Model (3.6)

Input:  The masked data tUt ; i ; Xi u i 1

1  Compute tl ; r ; l ; r u using the EM algorithm in Appendix F.3.
2  Construct t â X  pquiPA Y R      with (3.7) by setting the underlying parameters

as the estimates in the prior step.
3  Find j   arg m a x i P A t Y R t  Ti for T1  â X i  pU1q, where

Ui  I pUi 0:5qUi ^  Ui      I pUi ¥  0:5qUi _  Ui

4  if Uj  ¡  0:5 then
5 sr t 1pXiq  I pi  jqpUi _  Uiq      I pi  jqsrtpXiq, sl;t 1  sl;t ; 6  else
7 slt 1pXiq  I pi  jqpUi ^  Uiq      I pi  jqsltpXiq, sr;t 1  sr;t ; 8  end

Output:  slt 1, sr;t 1

F.3. E M  algorithm for nite-sample Z A P .  We will lay out aspects of the EM
algorithm required for Algorithm 4.

E-step computations. Let D t i   pXi ; Ut;iq be the available data for i  at step t of the
nite-sample Z A P  algorithm. To  update from the parameters ppjq; pjqq at the j -th EM
iteration, we need to compute the following quantities:

(F.2)     Epp j q ;p j q q rHli |Dti s; Epp j q ;p j q q rHr i |Dti s;

Ep p j q ;p j q q rHr i  logpUiq|Dtis; Ep p j q ; p j q q rHr i  logp1  Uiq|Dtis; Ep p j q ;p j q q rHl i

logpUiq|Dtis; Ep p j q ;p j q q rHl i  logp1  Uiq|Dtis:

These quantities are straightforward to compute when Ut;i  is a singleton, so we will
only focus on computing them when Ut;i  is a two-element set, i.e. corresponding
to a masked Ui. Like Algorithm 3, we shall let l i  

q, pj q , hpjq , hpj q and hpj q be as dened
in Section 3.2 evaluated at ppjq; pjqq. We will have

H p j q   Epp j q ;p j q q rHli |Dti s  Pp p j q ;p j q q rHli   1|Dtis  
pjqrhpjq

p
Ui

q 
    

 
hpjqpUiqs 

X i i X i

i

H p j q   Epp j q ;p j q q rHr i |Dti s  Pp p j q ;p j q q rHr i   1|Dtis  
pjqrhpjq

p
Ui

q 
 

p
hpjq

p
Uiqs

:
X i i X i i



pj q q q
l i l i

pj q pj q qh pU q      h pU q

pj q q qpj q
r i r i

pj q qh pU q      h pU q

pj q q q
l i l i
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Moreover, to express the last four quantities in (F.2), we dene

y
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then one can express

Ep p j q ;p j q q rHl i  logpUiq|Dtis  y l i ; A H p j q ;

Ep p j q ;p j q q rHl i  logp1Uiq|Dtis  y l i ; B H l i  
q;

Ep p j q ;p j q q rHr i  logpUiq|Dtis  yr i ; A H p j q ;

Ep p j q ;p j q q rHr i  logp1Uiq|Dtis  ypj q H p j q :

Initialization. We now discuss how to specify values for p0q; p0q, p0q and p0q to
initialize the algorithm. Specifying p0q and p0q is easy: For l , we only consider
the left group L   t i  : Ui _  Ui ⁄  0:5u, and t the left-leaning beta density hlipq to the
data points tUi  ^ U i  : i  P L u  to obtain an estimate for l  as the initial value p0q, with a
given value for l  (such as 4). Note that we t the model to the smaller point
Ui ^ U i  instead of Ui _ U i  for each i  P L  with the goal of having a more \aggressive"

left alternative distribution. The initial value p0q can be obtained similarly by
considering the right group R   t i  : Ui ^  Ui ¡  0:5u, the data tUi  _  Ui : i  P R u  and
hripq .

To  speciy p0q; p0q, for each i, we rst dene

(F.3)

r i   P pHr i   1|Xi ; Ui ¡  0:5q; l i   P pHl i   1|Xi ; Ui ¡  0:5q; i       P pUi ¡  0:5|Xiq; l i

P pHl i   1|Xi ; Ui ⁄  0:5q;      r i   P pHr i   1|Xi ; Ui ⁄  0:5q;      i       P pUi ⁄  0:5|Xiq

and note that, by denition, r i  ¥      
 
  and l i  ¥  . We will form estimates for ^r i ; ^i  ; ^li

; ^i     and let r i
q   ^r i ^ i      and p0q  ^ l i  ^i      be conservative estimates for r i  and l i . The

estimates ^i     and ^i     can be obtained as predicted probabilities by tting a logistic
regression on the indicator responses D i   I pUi ¡  0:5q with covariates X i .  For the
rest of this section we will focus on the estimates ^r i , since the estimates ^l i  can be
obtain analogously.

Let J i   I pU0;i has one elementq. Then
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where J i   1  0:52p1sr; 0 pXi qq and
E J i X i ; D i   1

 
 loooooooooooooooooooooooomoooooooooooooooooooooooon

1 J i 1

0:5
looooooooooooooooooooooomooooooooooooooooooooooon 0:5  2p1  sr;0

pX
i
qq

J i 1

As the probability of H l i   1 should be small under Ui ¡  0:5, l i  is likely to be
negligible, hence the right hand side of the previous display should still be a

conservative estimate for r i ,  i.e.

 
r i   p1  J i 1 q      J i 1       1  

0:5  2p1  sr;0pXiqq    
 
:

Now estimates for J  1 for any i  P t1; : : : ; mu can be obtained as the tted prob-ability
of the logistic regression on J i  with covariates X i  restricted to samples with Ui ¡  0:5.

Appendix G. F u rt h e r  numerica l  results

G.1. Fu r t h e r  simulations for Section 3.5. We will perform extra simulations to
test how our model in Section 3.2 can robustly estimate the non-null probabilities.
We generate 8000 i.i.d. z-values from a normal mixture model with density

(G.1) p1  wq  f0pzq      pw  p1  qqpz; l; 1q      pw  q pz; r; 1q; wl w r

where the simulation parameters l , r , w,  range as

l  P t2:5; 2; 1:5; 1; 0:5u; r  P t0:5; 1; 1:5; 2; 2:5u;

w P t0:1; 0:15; 0:2u;  P t0:5; 0:7; 0:9u:

Apparently, w is the non-null probability, l  and r  are respectively the mean
parameters for the alternative normals on the left and right, and  parametrizes the
degree of asymmetry reected in the mixing probabilities wl and wr . For each set of
8000 z-values, the beta mixture model (3.6) for pl; rq  p4;4q is tted with regression
intercepts only by an EM algorithm, and the resulting left and right model-based
non-null probabilities ^l and ^r estimates serve as estimates for wl and wr .

From the results in Tables 2 - 4, one can see that our beta mixture produces fairly
accurate non-null probability estimates p^l; ^rq for pwl; wrq. Generally speaking,
the estimates are the most inaccurate when one of l  or r  has a small magnitude,
which is reasonable since one of the two non-null components has a weak signal
and many z-values which are non-nulls could be regarded as null by the EM tting
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Ta b l e  2. Estimated probabilities ^l and ^r based on the beta
mixture (3.6) with pl; rq  p4;4q and regression intercepts only, for
8000 z-values generated by the normal mixture (G.1) with   0:5. ^l
and ^r are respectively the left and right entries in each cell.

l zr 0:5

-2.5       0.073     0.056
-2        0.061     0.037

-1.5       0.040     0.022
-1        0.044     0.029

-0.5       0.023     0.024

-2.5       0.110     0.050
-2        0.085     0.045

-1.5       0.080     0.052
-1        0.065     0.040

-0.5       0.022     0.024

-2.5       0.116     0.073
-2        0.112     0.053

-1.5       0.089     0.047
-1        0.067     0.042

-0.5       0.025     0.046

1                          1:5                          2
w  0:1, pwl; wrq  p0:05; 0:05q

0.066     0.055     0.064     0.064     0.071     0.065
0.062     0.038     0.057     0.058     0.059     0.061
0.048     0.037     0.042     0.047     0.049     0.065
0.037     0.039     0.034     0.046     0.047     0.064
0.024     0.047     0.041     0.073     0.043     0.072

w  0:15, pwl; wrq  p0:075; 0:075q
0.103     0.072     0.100     0.087     0.106     0.095
0.087     0.058     0.089     0.070     0.086     0.091
0.076     0.065     0.082     0.064     0.074     0.082
0.044     0.041     0.041     0.064     0.068     0.087
0.049     0.065     0.050     0.075     0.041     0.071

w  0:2, pwl; wrq  p0:1; 0:1q
0.118     0.101 0.123     0.119 0.127     0.132
0.113     0.086 0.115     0.127 0.113     0.132
0.090     0.074 0.086     0.104 0.096     0.124
0.055     0.068 0.060     0.095 0.071     0.117
0.042     0.083 0.032     0.106 0.068     0.124

2:5

0.080     0.069
0.071     0.079
0.058     0.070
0.066     0.072
0.041     0.076

0.102     0.095
0.100     0.096
0.082     0.094
0.068     0.102
0.050     0.091

0.122     0.136
0.120     0.133
0.086     0.135
0.090     0.134
0.069     0.142

algorithm. This should not be too concerning, as it simply means some of the
hypotheses pose hard testing problems to begin with.
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Ta b l e  3. Estimated probabilities ^l and ^r based on the beta
mixture (3.6) with pl; rq  p4;4q and regression intercepts only, for
8000 z-values generated by the normal mixture (G.1) with   0:7. ^l
and ^r are respectively the left and right entries in each cell.

l zr 0:5

-2.5       0.049     0.043
-2        0.046     0.042

-1.5       0.065     0.042
-1        0.036     0.041

- 0.5      0.031     0.040

-2.5       0.066     0.054
-2        0.047     0.051

-1.5       0.043     0.055
-1        0.053     0.058

-0.5       0.038     0.057

-2.5       0.078     0.070
-2        0.062     0.050

-1.5       0.049     0.052
-1        0.029     0.041

-0.5       0.031     0.059

1                          1:5                          2
w  0:1, pwl; wrq  p0:03; 0:07q

0.037     0.046     0.047     0.060     0.050     0.079
0.036     0.059     0.037     0.072     0.046     0.077
0.023     0.044     0.028     0.072     0.051     0.076
0.057     0.061     0.034     0.072     0.049     0.086
0.037     0.050     0.042     0.077     0.036     0.074

w  0:15, pwl; wrq  p0:045; 0:105q
0.057     0.058     0.062     0.106     0.058     0.124
0.057     0.079     0.058     0.112     0.067     0.124
0.044     0.075     0.034     0.091     0.048     0.118
0.024     0.069     0.049     0.100     0.053     0.129
0.034     0.076     0.034     0.111     0.035     0.125

w  0:2, pwl; wrq  p0:06; 0:14q
0.079     0.116 0.088     0.152 0.079     0.159
0.071     0.104 0.072     0.143 0.075     0.164
0.058     0.114 0.059     0.146 0.059     0.164
0.028     0.088 0.046     0.128 0.075     0.174
0.021     0.106 0.026     0.137 0.050     0.164

2:5

0.058     0.091
0.042     0.089
0.037     0.089
0.047     0.087
0.030     0.091

0.070     0.137
0.057     0.134
0.050     0.128
0.069     0.136
0.045     0.135

0.088     0.185
0.073     0.181
0.074     0.184
0.087     0.192
0.059     0.186
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Ta b l e  4. Estimated probabilities ^l and ^r based on the beta
mixture (3.6) with pl; rq  p4;4q and regression intercepts only, for
8000 z-values generated by the normal mixture (G.1) with   0:9. ^l
and ^r are respectively the left and right entries in each cell.

l zr 0:5

-2.5       0.019     0.044
-2        0.037     0.065

-1.5       0.022     0.050
-1        0.019     0.044

-0.5       0.010     0.050

-2.5       0.024     0.060
-2        0.020     0.071

-1.5       0.029     0.080
-1        0.021     0.060

-0.5       0.011     0.065

-2.5       0.018     0.059
-2        0.015     0.046

-1.5       0.012     0.072
-1        0.014     0.077

-0.5       0.016     0.104

1                          1:5                          2
w  0:1, pwl; wrq  p0:01; 0:09q

0.017     0.072     0.015     0.093     0.030     0.100
0.008     0.064     0.017     0.102     0.009     0.108
0.011     0.071     0.018     0.086     0.034     0.117
0.019     0.066     0.021     0.079     0.026     0.112
0.011     0.062     0.019     0.092     0.035     0.120

w  0:15, pwl; wrq  p0:015; 0:135q
0.022     0.096     0.024     0.115     0.023     0.149
0.021     0.098     0.020     0.128     0.017     0.150
0.015     0.092     0.025     0.141     0.035     0.148
0.026     0.112     0.017     0.124     0.044     0.150
0.017     0.105     0.012     0.127     0.018     0.139

w  0:2, pwl; wrq  p0:02; 0:18q
0.024     0.134 0.021     0.162 0.026     0.194
0.017     0.125 0.026     0.162 0.020     0.196
0.010     0.134 0.027     0.154 0.039     0.214
0.010     0.120 0.021     0.175 0.037     0.213
0.013     0.115 0.023     0.167 0.033     0.209

2:5

0.026     0.114
0.035     0.123
0.053     0.120
0.041     0.125
0.049     0.116

0.024     0.164
0.035     0.167
0.035     0.156
0.034     0.163
0.032     0.158

0.039     0.223
0.043     0.226
0.032     0.216
0.035     0.225
0.049     0.230
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G.2. Extended numerical results for Section 4. For good measure we have
also experimented with the following methods:

(a) BH: the vanilla BH procedure (Benjamini and Hochberg, 1995)
(b) oracle: The oracle procedure Z

(c) SABHA:  Structure adaptive BH procedure with   0:5,   0:1 and stepwise
constant weights (L i  and Barber, 2019)

(d) B L :  Boca and Leek procedure (Boca and Leek, 2018).

Similar to IHW, S A BHA  is a method only applicable to univariate covariates. Hence
for the simulations in Section 4.1, it is applied with the covariate sum X i ;  for the
applications in Section 4.2, it is applied with the original log mean normalized read
count for the RNA-seq data and not applied for the neural data. Of course, the
oracle procedure is only applicable to simulated data.

The F D R  and T P R  plots for the whole set of methods are shown in Figure G.1
for the simulated data. Note that except for the oracle procedure, all the additional
methods are p-value based, and they cannot dominate the z-value based methods
in power as expected. In Setup 3, none among the extended set of experimented
methods has power comparable to the oracle procedure, suggesting that the data
generating mechanism poses a hard multiple testing problem. One additional ob-
servation is that FDRreg in fact has slightly more power than the oracle procedure in
Setup 1 when the covariates are the most informative. Of course, this has come at
the expense of violating the F D R  bound.

The numbers of rejections for the extended list of methods applied to the real
data are shown in Figure G.2, and the conclusions we can arrive at are essentially
the same as those from Figure 4.2 in the main text. Lastly, one can refer to Lei
and Fithian (2018) for access to the bottomly and airway datasets. The other two
real datasets are available at:

(i) hippo: https://www.raynamharris.com/DissociationTest/
(ii) scott :  https://github.com/jgscott/FDRreg

G.3. Dierential  expression analysis of R N A - S e q  data. We shall rst briey
discuss the importance of pre-ltering genes with excessively low read counts before
applying F D R  methodologies for dierential expression ( D E )  analysis of RNA-Seq
data. For the unfamiliar reader, a good open resource on the relevant analysis
pipeline can be found on https://github.com/hbctraining/DGE_workshop. It
typically begins with a raw \count matrix" with the expression read counts as
entries, where each row corresponds to a mapped gene and each column corresponds
to a sample/library that is either in the treatment or the control group. This count
matrix is taken as an input to a suite of statistical analysis tools available from
one of the R packages for D E  analysis that dier by their underlying modelling
assumptions, to produce test statistics that are re-scaled measures of dierential
expression between the two groups for all the genes involved. The two most popular
such R  pipelines which can produce the z-values considered by the current paper
are limma (with the \voom" function therein) (Ritchie et al., 2015) and DESeq2
Love et al. (2014). limma operates with a linear model to produce t-statistics, and

https://www.raynamharris.com/DissociationTest/
https://github.com/jgscott/FDRreg
https://github.com/hbctraining/DGE_workshop
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F i gu r e  G.1. F D R  and T P R  performances of an extended list
of methods under Setup 1 - 3. All  methods are applied at
a targeted F D R  level of 0:05. The x-axes show the values of
. non-informative, more informative and most informative
correspond to dierent values of  from the smallest to the largest.

DESeq2 operates with a negative binomial model to produce Wald statistics. These
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F i gu r e  G.2. (a)-(d) plot the numbers of rejections for dif-
ferent methods across datasets, against targeted F D R  level at
0:01; 0:05; 0:1; 0:15; 0:2.

primary statistics can then undergo the further transformation in Section 3.1 to
give the u-values, on which our Z A P  methods can be applied.

However, without suitable pre-processing, a raw count matrix will typically pro-
duce unusual distributions for the u-values (or p-values). Figure G.3 plots his-
tograms of the u-values produced by the original raw count matrices of the three
RNA-Seq datasets in the main text processed with DESeq2. Normally, if the test
statistics are well-calibrated, the null u-values should be approximately uniformly
distributed, and one should only expect spikes near the two ends of the interval
p0;1q (or only close to 0 if the histogram is for two-sided p-values) which represent
genes that are non-null. This is clearly not the case in Figure G.3, and the spuri-ous
spikes in the middle of the unit interval for all three histograms are typically results
of genes that have excessive low read counts for which reliable D E  analysis is
impossible and can at best be considered as nulls. In particular, the presence of
such spikes will make a procedure like the BH overly conservative. A  standard
practice is to lter out these genes according to some rules of thumb which have
been discussed by Chen et al. (2016) in some length. In the analysis of the main
text, we have adopted a simple convention of ltering out genes with a total raw
counts less than 15 using the function f i l t e r B yE x p r  in the R  package edgeR, which
implements the method in Chen et al. (2016). Apparently, spurious structures in
the u-value histograms have been more or less removed as a result, as is evident
by comparing Figure G.3 pcq and Figure 4.2peq, the latter of which has its u-values
produced by the ltered version of hippo dataset.
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F i gu r e  G.3. Histograms of u-values for the original unltered
versions of the three RNA-Seq datasets in the main text. In prin-
ciple, one should only see at most two \spikes" on the two ends
of the interval p0; 1q. Spikes not located close to 0 or 1 in any
histogram result from genes with extremely low read counts.
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