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Abstract

We develop a new class of distribution—free multiple testing rules for false discovery rate
(FDR) control under general dependence. A key element in our proposal is a symmetrized data
aggregation (SDA) approach to incorporating the dependence structure via sample splitting,
data screening and information pooling. The proposed SDA filter first constructs a sequence
of ranking statistics that fulfill global symmetry properties, and then chooses a data—driven
threshold along the ranking to control the FDR. The SDA filter substantially outperforms the
knockoff method in power under moderate to strong dependence, and is more robust than existing
methods based on asymptotic p-values. We first develop finite—sample theories to provide an
upper bound for the actual FDR under general dependence, and then establish the asymptotic
validity of SDA for both the FDR and false discovery proportion (FDP) control under mild
regularity conditions. The procedure is implemented in the R package sdafilter. Numerical
results confirm the effectiveness and robustness of SDA in FDR control and show that it achieves

substantial power gain over existing methods in many settings.
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1 Introduction

Multiple testing provides a useful approach to identifying sparse signals from massive data. Re-

cent developments on false discovery rate (FDR; Benjamini and Hochberg) 1995) methodologies

have greatly influenced a wide range of scientific disciplines including genomics (Tusher et al., 2001

Roeder and Wasserman, 2009), neuroimaging (Pacifico et al., 2004; Schwartzman et al., 2008), ge-

ography (Caldas de Castro and Singer, 2006; Sun et al., 2015) and finance (Barras et al., 2010).

Conventional FDR procedures, such as the Benjamini—-Hochberg (BH) procedure, adaptive p-value

procedure (Benjamini and Hochberg, 1997) and adaptive z-value procedure based on local FDR

(Efron et al.,|2001; |Sun and Cai, 2007), are developed under the assumption that the test statistics

are independent. However, data arising from large—scale testing problems are often dependent. FDR
control under dependence is a critical problem that requires much research. Two key issues include
(a) how the dependence may affect existing F DR methods, and (b) how to properly incorporate the

dependence structure into inference.

1.1 FDR control under dependence

The impact of dependence on FD R analysis was first investigated byl Benjamini and Yekutielil (2001),

P
who showed that the BH procedure, when adjusted at level o/ ( J-p=1 1/j) with p being the number

of tests, controls the FDR at level a under arbitrary dependence among the p-values. However,

this adjustment is often too conservative in practice. Benjamini and Yekutielil(2001) further proved

that applying BH without any adjustment is valid for FD R control for correlated tests satisfying the

PRDS property. This result was strengthened by Sarkar!(2002), who showed that the FDR control

theory under positive dependence holds for a generalized class of step-wise methods. Storey et al.

(2004), IWu (2008) and Clarke and Hall (2009) respectively showed that, in the asymptotic sense,

BH is valid under weak dependence, Markovian dependence and linear process models. Although
controlling the FDR does not always require independence, some key quantities in FDR analysis,

such as the expectation and variance of the number of false positives, may possess substantially

different properties under dependence (Owen, 2005; Finner et al.} 2007). This implies that con-

ventional FDR methods such as BH can suffer from low power and high variability under strong



dependence. |[Efron! (2007) and Schwartzman and Lin|(2011) showed that strong correlations de-
grade the accuracy in both estimation and testing. In particular, positive/negative correlations can
make the empirical null distributions of z-values narrower/wider, which has substantial impact on
subsequent FDR analyses. These insightful findings suggest that it is crucial to develop new FDR

methods tailored to capture the structural information among dependent tests.

Intuitively high correlations can be exploited to aggregate weak signals from individuals to in-

crease the signal to noise ratio (SNR). Hence informative dependence structures can become a bless

for FDR analysis. For example, the works of Benjamini and Heller|(2007), Sun and Cai|(2009) and

Sun and Weil (2011) showed that incorporating functional, spatial, and temporal correlations into in-

ference can improve the power and interpretability of existing methods. However, these methods are

not applicable to general dependence structures. Efron|(2007), Efron|(2010) and Fan et al.|(2012

discussed how to obtain more accurate FDR estimates by taking into account arbitrary dependence.

For a general class of dependence models, Leek and Storey|(2008), Friguet et al.|(2009), Fan et al.

(2012) and [Fan_and Han|(2017) showed that the overall dependence can be much weakened by sub-

tracting the common factors out, and factor—adjusted p-values can be employed to construct more

powerful FDR procedures. The works by [Hall and Jin|(2010), Jin!/(2012) and Li and Zhong|(2017

showed that, under both the global testing and multiple testing contexts, the covariance structures

can be utilized, via transformation, to construct test statistics with increased SNR, revealing the

beneficial effects of dependence. However, the above methods, for example by Fan and Han (2017

and|Li_and Zhong (2017), rely heavily on the accuracy of estimated models and the asymptotic nor-

mality of the test statistics. Under the finite—sample setting, poor estimates of model parameters
or violations of normality assumption may lead to less powerful and even invalid FDR procedures.
This article aims to develop a robust and assumption—lean method that effectively controls the FDR

under general dependence with much improved power.

1.2 Model and problem formulation

We consider a setup where p-dimensional vectors §; = (§i1,...,&ip)>, i = 1,---,n, follow a multi-

variate distribution with mean p = (M1,..., Hp)” and covariance matrix 2. The problem of interest



is to test p hypotheses simultaneously:
HY:pj= 0 versus H':pj =0, forj=1,...,p.

_ P
The summary statistic § = n~1 .0, & obeys a multivariate normal (MVN) model asymptotically

Nao

€ = MVN(p, n"15). (1)
Denote Q = X! the precision matrix. We first assume that Q is known. For the case with unknown
precision matrix, a data-driven methodology and its theoretical properties are discussed in Section
[4] The problem of multiple testing under dependence can be recast as a variable selection problem
in linear regression. Specifically, by taking a “whitening” transformation, Model (L) is equivalent
to the following model:

Y = Xpu+, ="MVN(0,n"ll,), (2)
where Y = Q2 @ RP is the pseudo response, X = Q2 @ RP*P s the design matrix, I, is a p-

dimensional identity matrix and = (1,..., ) are noise terms that are approximately inde-pendent

and _normally distri 1::5; The connection between model selection and FDR was discussed in

Abramovich et al. (2 nd Bogdan et al. (2015), respectively under the normal means model and

regression model with orthogonal designs.

Let 8; = I{p; = 0}, j = 1,---,p, where | is an indicator function, and 6; = 0/1 corresponds to
a null/non-null variable. Let §; @ {0, 1} be a decision, where §; = 1 indicates that HJQ is rejected
and 6; = 0 otherwise. Let A = {j : uj = 0} denote the non—null set and A€ = {1,---, p}\A the null
set. The set of coordinates selected by a multiple testing procedure is denoted AP= {j : 6; = 1}

Define the false discovery proportion (FDP) and true discovery proportion (TDP) as:

!f:l(l‘ 0;)9 TDP = JP=1 6;5;
( .. &)E1’ (%.6)@1

FDP = (3)

where alBb = max(a,b). The FDR is the expectation of the FDP: FDR = E(FDP). The average

power is defined as AP = E(TDP).

1.3 FDR control by symmetrized data aggregation

This article introduces a new information pooling strategy, the symmetrized data aggregation

(SDA), for handling the dependence issue in multiple testing. The SDA involves splitting and re-



assembling data to construct a sequence of statistics fulfilling symmetry properties. Our proposed

SDA filter for FDR control consists of three steps:

e The first step splits the sample into two parts, both of which are utilized to construct statistics

to assess the evidence against the null.

e The second step aggregates the two statistics to form a new ranking statistic fulfilling sym-

metry properties.

e The third step chooses a threshold along the ranking by exploiting the symmetry property

between positive and negative null statistics to control the FDR.

To get intuitions on how the idea works, we start with the independent case [Zou et al.|(2020)].

The more interesting but complicated dependent case will be described shortly, with detailed
discussions, refinements and justifications deferred to later sections. Suppose the vectors §; =
(&i1,...,8ip)” arei.i.d. obeying MVN(p, lp). The proposed SDA method first splits the full sample
into two disjoint subsets D1 and D,, with sizes n; and n, and n = n; + ny. A pair of statistics,

both of which follow N (0, 1) under the null, are then calculated to test HOJ.:
P P
(T1j, Toj) = iD_l&j , iD_Zﬁj
m e

The product W = T;;Ty; is used to aggregate the evidence across the two groups. If || is large,
then both Ty; and T; tend to have large absolute values with the same sign, thereby leading to a

positive and large W;. By contrast, W; fulfills the symmetry property under qu i.e.
Pr(Wj 2 t |H?) = Pr(W; < -t |H)), for any tBR. (4)

This motivates one to consider the following selection procedure Ab= {i :Wj 2 L}, whereL is the
threshold chosen to control the FDR at level a:

#{ cWi< -t}

<
L =inf t>0: = <
" W, s Bl

(5)

According to the symmetry property (&), the count of negative W;’s below -t strongly resembles
the count of false positives in the selected subset (i.e. the null Wj’s above t). It follows that the

fraction in Equation (B) provides a good estimate of the FDP.



The dependent case involves a more carefully designed SDA filter. After sample splitting, we
apply variable selection techniques such as LASSO to D; to construct Ty;. Tyj, which is calculated
based on linear model (2), can effectively capture the dependence structure. Before using D
to construct T,;, we carry out a data screening step to narrow down the focus. We show that
the screening step can significantly increase the SNR of T; under strong dependence, hence the
correlations are exploited again to increase the power. The ranking statistic Wj is constructed by
combining T1; and T,; with proven asymptotic symmetry properties. The theory of the proposed
SDA filter is divided into two parts: the finite sample theory provides an upper bound for the FDR
under general dependence, while the asymptotic theory shows that both the FDR and FDP can be

controlled at o+ o(1) under mild regularity conditions.

1.4 Connections to existing work and our contributions

The SDA is closely related to existing ideas of sample—splitting (Wasserman and Roeder,| 2009

Meinshausen et al., 2009) and data carving (Fithian et al.] 2014; Lei et al., 2021), both of which

firstly divide the data into two independent parts, secondly use one part to narrow down the focus
(or rank the hypotheses) and finally use the remainder to perform inference tasks such as variable

selection, estimation or multiple testing. These ideas have a common theme with covariate—assisted

multiple testing (Lei and Fithian} [2018; (Cai et al.} 2019; Li and Barber, 2019), where the primary

statistic plays the key role to assess the significance while the side information plays an auxiliary

role to assist inference [see also the discussion by Ramdas|(2019)]. SDA provides a novel way of

data aggregation where both parts of data, which are combined under the symmetry principle, play
essential roles in both ranking and selection. This substantially reduces the information loss in con-
ventional sample—splitting methods, while the symmetry principle, which is fulfilled by construction,

enables the development of an effective and assumption-lean FDR filter.

The SDA is inspired by the elegant knockoff filter for FDR control (Barber and Candeés) 2015),

which creates knockoff features that emulate the correlation structure in original features, to form
symmetrized ranking statistics for selecting important variables via the same mechanism (E]l The

knockoff method, which is originally developed under regression models, can be applied for FDR



control in Model (1) via the equivalent Model (2). The knockoff filter employs local pairwise con-
trasts: the ranking variable is constructed to capture the differential evidences against the null
exhibited by the pair (i.e. the original feature vs. its knockoff copy). While it is desirable to make
the pair as “independent” as possible, high correlations will greatly restrict the geometric space in
which the knockoff can be constructed; see Appendix B.1]for detailed discussions and illustrations.
This would significantly increase the difficulty for distinguishing the variable and its knockoff and
hence lower the power. By contrast, the SDA filter, which does not rely on pairwise contrasts, will

not suffer from high correlations.

To visualize the correlation effects, we consider a setup similar to Figure 5 in Barber and Candes

(2015), where correlated normal, t, and exponential data are generated based on an autoregressive

model 3 = (pli-il) (see Section B.Z]for more details about the setup). We vary p from -0.9 to
0.9 and apply BH, knockoff and SDA at FDR level a = 0.2. The actual FDRs and APs based on
500 replications are summarized in Figure Our first column (normal data) shows that knockoff
outperforms BH in some situations, but both the FDR and AP of the knockoff method decrease when
correlations grow higher. By contrast, SDA controls the FDR near the nominal level consistently,

and the power of SDA increases sharply with growing correlations. This pattern corroborates

the insights by Benjamini and Heller|(2007), Sun and Cai|(2009) and Hall and Jin|(2010) that high

correlations, which can be exploited to increase the SNR, may become a bless in large—scale inference.

The proposed research improves the previous work by Zou et al.l(2020) in several ways. First,

Zou et al. (2020) has mainly focused on the independent and weak dependent case, with the major

goal of deriving convergence rate of false discovery proportions when simultaneously performing

thousands of t-tests. The methodology in Zou et al.| (2020), which does not utilize LASSO and

does not include the data screening step, becomes highly inefficient under strong dependence. See
Appendix[B.2]for an illustration. Second, our new theories for FDR and FDP control under depen-

dence and the robustness of the SDA filter under model misspecification substantially depart from

the theory in|Zou et al. (2020).

The SDA filter provides a model-free framework that overcomes the limitations of many selective

inference procedures, for example, the methods in Lockhart et al.|(2014) and Javanmard and Javadi
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Figure 1: Impacts of correlation on different FDR procedures: “t” denotes the t distribution with 3 df and
“exp” denotes the exponential distribution with scale parameter 2. In both cases the models have been mis-

specified as normal when computing the p-values.

(2019), which require strong assumptions about the conditional distribution to construct asymptotic

p-values. Our numerical results show that the methods in Fan and Han|(2017) and Li and Zhong

(2017), which require correctly specified models, accurate estimates of parameters and normality

assumptions, are in general not robust for FDR control. The SDA filter, which employs empirical
distributions instead of asymptotic distributions, only requires the global symmetry of the ranking
statistics. It is more robust than its competitors for a wide range of scenarios since the asymptotic
symmetry property is much easier to achieve in practice compared to asymptotic normalityt! As
illustrated by the second column (multivariate t data) of Figure ] BH fails to control the FDR

under heavy-tailed models. The failure in accounting for the deviations from normality may result

in_misleading empirical null and severe bias in FDR analysis (Efron, 2004; Delaigle et al., 2011

Liu and Shao, 2014). Finally, our Theorem [[] which develops a finite—sample upper bound of FDR

LFor example, the average of several t-variables fulfills the symmetry property perfectly but violates the normality
assumption. For asymmetric distributions such as exponential, we usually need a smaller sample size to achieve
asymptotic symmetry compared to asymptotic normality — the latter is stronger than the former since it requires an

additional accurate approximation in the tail areas.



under dependence, is closely connected to robust knockoffs theory and is established utilizing key

arguments from [Barber et al.| (2020). More specifically, we employ the leave-one-out technique

suggested in |Barber et al.|(2020) to analyze the effect on the SDA filter of possible deviations from

normality and the sure screening property, similarly to the analysis of the effect on the Model-X
knockoff filter of errors in estimating the true covariance structure. This important connection
sheds lights on how the model uncertainty can affect the actual FDR level and how the error bound
in FDR can be explicitly quantified using appropriate deviation measures; a detailed discussion is

provided in Section [B.3]of the Supplementary Material.

1.5 Organization

The remainder of our paper is structured as follows. In Section B] we introduce the SDA filter for
FDR control and discuss the effects of dependence on multiple testing. We develop finite sample
and asymptotic theories for FDR control in Section Methodology and theory for the unknown
dependence case are discussed in Section B] Simulation and real data analysis are presented in
Sections 5land [6] respectively. The extensions, proofs of theories and additional comparisons are

provided in the Supplementary Material.

Notations. For M {1,---,p}, let X m be the design matrix with columns (X; :j B M)
and Xj = (Xqj,...,Xpj)” being the jth column. For a matrix or a vector A = (ajj), Am is
similarly defined. Let kAk be the L, norm, kAk; = max; P : laj|, kAkmax = max;,; |aj| and
kAkew = max; Pj [aj|. Let Amin(B) and Amax(B) denote the smallest and largest eigenvalues of
a square matrix B. The notation A, @ B,, means that A,/B, and B,/A, are both bounded in
probability as n = oo. The “&” and “.” are similarly defined. Let A, = B, denote the two

quantities are asymptotically equivalent, in the sense that A,,/B, S1.

2 The SDA Filter for FDR Control

We start with the assumption that the covariance matrix £ is known and then move to the case

with unknown £ in Section 4] Our discussion is mainly based on regression model (2} an equivalent



description of the methodology via model (fL] follows similarly. We first outline in Section 2.1]the
steps for constructing the ranking statistics, then provide intuitive explanations on how the SDA

filter works in Sections 2.2]and 2.3] The detailed SDA algorithm is provided in Section

2.1 Construction of ranking statistics and the symmetry property

SDA first splits the data into two independent parts D1 and D,, which are respectively used to
construct statistics T1j; and Tyj;. The information in the two parts is then combined to form the
ranking statistic W; = T4;Ty;. A wide class of pairs may be constructed from the sample. This
section presents a specific pair (T1j, Tj), which is used in all numerical studies. Examples of other

possible pairs are presented in Section [A.2]in the Supplementary Material.

We propose to use LASSO (Tibshirani,|1996) to extract information from D; as it simulta-

neously takes into account the sparsity and dependency structures. Let §; = n;! imp, i and

y1 = X§;. The LASSO estimator is given by i, = (b1, ..., p1,)” = argmin L(p), where
L(k) = (y1- Xp)7(y1 - Xp) + Akpks. (6)

Let S = {j : p1; = 0} denote the subset of coordinates selected by LASSO and S¢ = {1,---,p}\S

its complement.

Remark 1 Following Wasserman and Roeder| (2009), we suggest using ny = d2n/3e, which pro-

vides stable performance across a wide range of settings. To obtain asymptotically unbiased estima-
tor in the next step, it is required that S contains all the signals with high probability. In practice,

this can be achieved by deliberately choosing an overfitted model that includes most true signals

and many false positives; see also Barber and Candés|(2019) and Remark Rlin Section

- P
Next we use D, to obtain the least—squares estimates (LSEs)i Let €&, = ny7t imp, Sir Y2 = X§2,

Xs = (Xj 1] S) and ¢; = (0,---,0,1,0,---,0) The LSEs are only calculated for

2specifically, e is an |S|-vector with 1 in the jth coordinate and 0 elsewhere.

10



coordinates on the narrowed subset S. Let b, = (b21,..., l2p)>, where

_ P en (X Xs) Xy,

hyj = jas;

0, j @Sse. (7)
Section provides insights on why this data screening step can lead to increased SNR.

To aggregate information across both D1 and Dy, let W; = Ty;T;, where

Vv Vv
nitma;  notg;

0S,j 0S,]

(8)

(leszj) =

7

and og ;’s are the diagonal elements of (X3 Xs)~1. A multiple testing procedure consists of two
steps: ranking and thresholding. Next we show that W;’s play key roles in both steps. Intuitively, the
positive W;j’s can be used for ranking because a large and positive W; indicates strong evidence

against the null. Meanwhile, the negative Wj’s, which usually correspond to null cases, can be used

for thresholding. The key idea is to exploit the following asymptotic symmetry property:

\Y%

sup LiBSNAC (W 2 t)

0<t<clogp ipsnac [(Wj £ -t)

-1=o0 (il,) for some c> O, (9)
which holds if P (A BIS) = 1[| Next we explain how the SDA filter works.

2.2 FDR thresholding

The asymptotic symmetry property (B8] motivates us to choose the following data—driven threshold

to control the FDR at level a:

L=inf t>0: U :W"f “th .

O W, zgel o (10)

Our decision rule is given by § = (6, : 1 < j < p)> = {I(W; 2 L) : 1< j < p}>. Denote

R = {j :6, = 1} the discovery set. To see why (I0) makes sense, note that #{j : W; < -t} is an
j j

overestimation of #{j : W; < -t,j B A}, which is asymptotically equal to #{j : W; > t,j B A€},

the number of false positives, due to the asymptotic symmetry property (@). It follows that the

3
We shall see that S contains all signals, then the LSEs of the null coordinates are symmetrically distributed
around 0. Hence Wj’s satisfy l-—al) It is easy to see that Q) is an asymptotic version of the symmetry property given

by (@]; see Lemmas S.2]in Section [CJof the Supplementary Material for a rigorous discussion.

11



fraction in (10) provides an overestimate of the FDP, which (desirably) leads to a conservative FDR
control. Moreover, the empirical FDR level is typically very close to a because the gap between
the fraction in (L0) and the actual FDP is usually small in practice, where, for a suitably chosen L,

most cases in {j : W; < - L} should come from the null.

The operation of the SDA filter can be visualized in Figure[2. We generate {§; :i = 1,...,90}
from an MVN distribution with p @ RP=1000 and 3 = (0.8!"i1);4 ;<,. We randomly set 10% of
the coordinates in i to be 0.2 and 0 elsewhere. Panel (a) presents the scatter plot of 288 nonzero

W;’s with red triangles and black dots respectively denoting true signals and nulls. Panel (d) plots

the normalized knockoff statistics that are constructed according to (1.7) in Barber and Candés

(2015)%. We can see that both SDA and knockoff fulfill the symmetry property approximately for

the null Wj’s (black dots). However, SDA achieves a more clearcut separation of signals and noise.
As explained in Section [B.1] of the Supplement, the symmetrized knockoff statistics suffers from
high correlations. By contrast, the construction of SDA statistic, which does not depend pairwise
contrasts, eliminates the needs for creating fake variables. We can see from Panel (a) that the SDA
ranking places most true signals above 0, and many true signals stay well above the majority of
the null cases. However, in Panel (d) that illustrates the knockoff ranking, the true signals are not
well separated from the nulls, and many true signals even fall below 0. Since the threshold must be

positive, signals with negative W;’s will be missed, which leads to substantial power loss.

The impacts on the FDP processes are shown in the second column in Figure EJ] We can see that
the estimated FDP process [EDP(t)] of SDA approximates the true FDP process [FDP(t)] fairly
accurately. However, the knockoff method yields overly conservative estimates of the true FDPs,
which leads to overly conservative thresholds (marked by blue vertical lines). The last column in
Figure[2]Jcompares the TDP processes of SDA and knockoff. At the FDR level 0.2, the TDP of SDA
is 0.87 (threshold L = 0.62), which is much higher than that of knockoff (TDP=0.03 with threshold
L = 6.80). The low TDP of knockoff is due to the decreased power in distinguishing the signal from

noise [Panel (d)] and an overly conservative threshold [Panel (e)].

a4
The normalization, which makes the plot easier to read, does not affect the results of the knockoff method. This

is because only the relative magnitudes of W; matter in the thresholding step of the knockoff method.

12
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Figure 2: (a): Scatter plot of the 288 nonzero Wjs from the SDA filter with red triangles and black dots denoting true

signals and nulls respectively. A vertical space is added to the middle of the plot to better contrast positive and negative
W;’s. (b): the corresponding estimate of FDP curve (against t) along with the true FDP for the SDA filter; (c): the true
power curve (against t) for the SDA filter. (d)-(f): the scatter plot of p = 1000 Wjs, the corresponding FD P estimate,

and the true power for the knockoff method.
2.3 Power and effects of dependence
The impact of dependence on FD R analysis has been extensively studied but most discussions have

focused on the validity issue. This section first discusses the impact of dependence on power, and

then provides insights on the information loss of conventional data splitting methods.

Under the SDA framework, many possible pairs of (T1j, T2;) may be constructed. It is easy to

show that W; constructed via the pairs of sample averages
vV_ - V___
(TP, TH) = (n1€y, naty) (11)

also fulfill the asymptotic symmetry property. However, the pair in (L1}, which falls into the class
of marginal testing techniques, can be highly inefficient since it completely ignores the dependence
structure. Next we provide intuitions on how the dependence structure is incorporated into the

SDA filter to improve the efficiency of existing methods.

13



First, Tqj is superior to Ty by’ leveraging joint modeling techniques. The merit of joint mod-eling

has been carefully illustrated by|Barber and Candés (2015) through extensive simulations.

Candgés et al.| (2018) further argued that the conditional testing techniques are in general more

powerful in recovering sparse signals than marginal testing methods. Tij is constructed based
on LASSO (a conditional inference technique) and serves as a more suitable building block than
Tolj for constructing W4j. Second, T; enjoys a higher SNR than ng by exploiting the depen-
dence between §g and {sc. Clearly, the expectations of both h,5 and Ezs are W,s. The covari-
ance of p,g is n‘le, where Q = (X;Xs)‘l. By the inversion formula of a block matrix, we
have XIXs = Qs,s = Zs,s- Zs,seiglscEse,s " Hence, Q = 35 - 5s,5c8slscIsc,s,
which is the conditional covariance of {5 given §sc. Let sj be the (j,1)-th element of . Then
n,Var(€z) = sj;. However, nyVar(jy) = sjj - € zs,sczs‘cllsczsc,s ej < sjj. This provides the key
insight on the effect of data screening. In regression terms, strong correlations indicate that a large
fraction of variability in the variables in S can be explained by the variables in S¢. The higher the

correlations, the more reductions in the uncertainties and hence the higher SNRs. This explains

why SDA becomes more powerful as correlations increase (Figure [LJ.

Finally, both knockoff and SDA achieve the symmetry property at the expense of possibly
reduced SNR: the former increases the dimension of the design matrix by adding noise vari-

ables while the latter involves sample splitting. In contrast with the sample splitting method

in|\Wasserman and Roeder|(2009), where D; is thrown away after model selection, SDA provides a

new aggregation strategy: Ty; is kept and combined with Ty; to form the ranking statistic W;. This

substantially reduces the information loss in conventional sample splitting methods.

2.4 Effects of data screening

The data screening step is always beneficial as long as the tests are correlated. Intuitively, the
smaller the set S, the larger amount of uncertainty can be explained by the variables in S€. Hence
a more effective dimension reduction implies increased SNR and higher power. Meanwhile, our
theory on FDR control requires that P (A B S) holds with high probability, indicating that an

overly aggressive data screening step can hurt the FDR procedure. In practice, we recommend

14



deliberately choosing an overfitted model to ensure the validity in FDR control; this would slightly
compromise the power. To illustrate the tradeoff, Figure Blpresents a numerical study to investigate
how the size of S may affect both the FDR and power. We can see that the actual FDRs of SDA
may deviate from the nominal level when S is too small. By contrast, a large S (overfitted model)

has little impact on the FDR levels, but affects the power negatively.

model —&— (I) -%- () —*- ()

normal t exp

P |
0204 Pefnah o !

0.15-

dad

0.10-

0.05-

0.00- 7

0.75-

0.50 -

dv

0.25-
' ' ' ' ' ' ' ' ' ' ' '
-200 0 200 400 -200 0 200 400 -200 0 200 400

Figure 3: The effects of data screening. We choose n = 90, p= 500, and u= 0.2. The proportion of non-nulls is 10%

and a = 0.2. We investigate the performance of SDA over 3 distributions and 3 covariance structures described in

Section 5.[Here k denotes the excess counts of |S| with A selected by the AIC criterion (k can be negative).

3 Theoretical Properties of the SDA Filter

This section first establishes finite sample theory for FDR bounds (Section B.I}, and then develops

asymptotic theories for FDR and FDP control.
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3.1 Finite—sample theory on FDR control

Our finite-sample theory, which requires no model assumptions, establishes an upper bound for the
FDR under general dependence. We emphasize that the upper bound holds for both known and

estimated covariance matrices.

Our theory is developed for a modified SDA filter (SDA+) which chooses the threshold
1+ #{j :W; < -t}

L=inf t>0:-#H+W;>HB1 <
SDA+ is slightly more conservative than SDA but their difference is negligible when the number of
rejections is large. Recall S = {j : py; = 0}. Denote Ws = (Wj :j BS)> and W_; = Ws \ W;.

The key quantity that controls the upper bound is
A= |Pr(Wj>O||Wj|,W_J-)—1/2|, (12)

which can be interpreted as a measure of the extent to which the “flip-sign” property of W; is

violate Our finite sample theory for FDR control is given by Theorem [[]

Theorem 1 For any a @ (0, 1), the FDR of the SDA+ method satisfies

FDR < min a(l+ 5)+ Pr max Aj > . (13)
20 j BA

Our theorem is closely connected to Theorem 1 in Barber et al.|(2020). Both theorems involve

assessing how the deviations from the “idealized situation” would affect the actual FDR level. How-
ever, the interpretations are very different. In model-X knockoff the deviation (from the assumption
of a known X matrix) comes from the estimation errors of the X matrix whereas in SDA the de-
viation (from the perfect symmetry property) comes from the possible violations of the normality
assumption and sure screening property. Our theorem shows that a tight control of A;’s leads to
effective FDR control. Next we carefully interpret the bound and present several important settings

in which the upper bound in (i3] exactly achieves or is very close to the nominal level a.

5
FOT a null variable (i.e. ] @A), the flip—sign property means that W; is equally likely to be positive or negative

conditioning on its magnitude and other Wy’s in S.
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Consider the ideal case where (a) the error distribution is symmetric, (b) S contains all signals
and (c) Wj’s are independent of each other for j @S. We can show that A; = 0 for all j @A€ NnS.
The upper bound achieves the nominal level a exactly since Pr(W; > 0 | |W;|, W_j) = Pr(W; > 0 |
IW;j[) = 1/2 and hence we can set = 0. Even when the error distribution is asymmetric, we expect
that A;’s would become vanishingly small for moderate sample size n due to the convergence of fay;

to a symmetric distribution (Lemma [5.1). Hence the FDR bound would be close to a.

Next we turn to the dependent case. For simplicity, assume that §;’s come from a multivariate
normal distribution. Let Q = (XZXs)™ ! := (Qjk)q,xq, With qn = [S|. The matrix Q = s, s -
zslsczs_c%SCZSC’s is the conditional covariance matrix of §¢ given §sc. The following lemma shows

that the magnitude of A; is controlled by the matrix Q.

Lemma 1 (Flip—sign property under Gaussian dependence). Assume that §;’s obey a multivariate

normal distribution. Denote Q_-j j the jth column of Q excluding Q;;. If Q-j,j = O, then A; = 0.

To provide some intuitions on how close the bound is to a in practice, consider the autoregressive
(AR) structure Z = (oj,1) = (p!i='1). Since the precision matrix of AR structure is tridiagonal, only
consecutive coordinates are correlated with each other conditional on remaining variables. Suppose
sparse signals are randomly distributed on the p coordinates and the dimension reduction via S is
performed effectively, e.g. q, p. Let E be an event such that for any null variable j @S n A€,

remaining variables in S are conditionally uncorrelated with it. We expect E to occur with high
probability since for large tridiagonal precision matrices, there is a small chance that two consecutive
coordinates are selected into a small set S simultaneously. On event E, we have Q-;,; = 0 and
it follows from Lemma [I]that A; = 0. Consequently the FDR bound would converge to a when
Pr(E) = 1. In the same vein, we expect that the bound would be close to a for the class of power

decay covariance matrices and the class of sparse precision matrices.

3.2 Asymptotic theory on FDP control

Under the asymptotic paradigm we can prove that the FDR can be controlled at a+ o(1) under

suitable conditions (asymptotic validity). Denote g = X(§; - p). Let d, = |A]|, gn = |S|, qon =
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|SnAcl, and A(S) := (XZXs )‘1X§ = (ajk)gnxp. Assume that qn is uniformly bounded above by

some non-random sequence (, that will be specified later. We start with some regularity conditions.

Condition 1 (Sure screening property) As n = o=, Pr(ARS) = 1.

Remark 2 Condition [[]ensures that fy; is unbiased for j @S. This pre—selection property, which

has been commonly used (Wasserman _and Roeder]) 2009; Meinshausen et al., 2009; Barber and Candes,

2019), can be fulfilled with suitably chosen A under the “zonal” assumption (Bihlmann and Mandozzi,

2014). In practice, we recommend applying AIC to deliberately choose an overfitted model. The

sure screening property may not hold exactly but missing small p;’s is inconsequential. For exam-

ple, if we ignore “unimportant” signals, then Condition 1 is fulfilled by LASSO for large signals
p

exceeding the rate of d, log p/n. Asymptotically unbiased estimators are usually sufficient for

effective FDR control. This has been corroborated by our empirical results in Section §]

Condition 2 (Estimation accuracy) The estimator |, fulfills kjp; - pke = Op(cnp), Where cpp is

4
a sequence satisfying cnp = 0 and 1/( ncnp) = O(1).

Remark 3 Condition [Z]assumes that b, is a reasonable estimator of y; this condition typically

p
holds with ¢y, = dn log p/n for the LASSO solution (Van de Geer and BilhImann, 2009).

The next two conditions are standard: Condition Blimposes constraints on the diverging rates
of g, and p, both of which depend on the existence of certain moments; Condition Elrequires that

the eigenvalues of the design matrix are doubly bounded by two constants.

Condition 3 (Moments) There exist two positive diverging sequences K,1 and K, such that

E(k§ - pk®) < K8 and E(kA(S)eik® ) < K% uniformly in S and i @D, where 8 > 2. Assume
v . _

that as n > oo, K1 Togp/nl/2-v-07" >, q,z]/ean/nl/z‘V‘e " > 0 for some small y > 0.

Condition 4 (Covariance) There exist positive constants k and k such that with probability one,

K < lim inf Amin(XS Xs) < lim sup Amax(XsXs) < k.
n—> oo n->oo
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Condition 5 (Signals) As n,p = o=, n,=|Cy| = o=, where

Cu={j BA :u7{max(cyg, logdo/n)} = =},

Remark 4 Condition[Slimplies that the number of identifiable effect sizes should not be too small

as p > o=. This seems to be a necessary condition for FDP control. For example, Liu and Shao

(2014) showed that if a multiple testing method controls the FDP with high probability, then its

number of true alternatives must diverge when the number of tests goes to infinity.

Condition 6 (Dependence) Let pjx = ij/ijijk. Assume that for each j, Card{1 < k< qn:

lpik| = C(logn) 27V} < ry, where C > 0, v > 0is any small constant, and rp/n, > 0 as n,p > .

Remark 5 Condition [lallows §; to be correlated with all others but requires that the number of

large correlations cannot diverge too fast. The condition appears to be similar to the regularity

conditions in|Fan et al./ (2012) and Xia_et al.| (2020) but in fact our condition is much weaker. For

instance, the correlation between jy;, and |yj, is just the partial correlation of &, and §j, given
the rest variables. In particular, large correlations would be highly unlikely after data screening
for a wide range of popular models, such as the class of power decay covariance matrices and the
class of moderately sparse precision matrices. This reveals the advantage of SDA, which effectively

de—correlates the strong dependence via data screening and conditioning.

Our main theoretical result on the asymptotic validity of the SDA method for both FDP and

FDR control is given by the next theorem.

Theorem 2 Suppose Conditions [I}Elhold. For any a @ (0, 1), the FDP of the SDA method satisfies

#4j W, 2 L, j BAS}
#{j W, 2 L} @1

FDPw(L) := < a+ op(1). (14)

It follows that limsup(, 55 FDR < a.
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4 Unknown dependence

Now we turn to the case where the covariance structure is unknown. When Q is unknown, the SDA

filter operates in the same way except that we substitute the estimate ® in place of Q.

We propose to estimate Q using only the first part of the sample D;. Denote ® the corresponding
estimator. Then the SDA filter can be readily constructed via the steps in Sections 2.1-2.2 with X =

1/2
) / . Various high-dimensional precision matrix estimation methods, such as the graphical LASSO

(Friedman et al., 2008) and CLIME (/Cai et al., 2011), can be used to obtain ® An attractive

feature of the SDA filter under unknown dependence is its robustness for FDR control. We next
show that the SDA filter is robust for FDR control if ® is constructed based only on D1. We first

state a modified version of Condition 6, which uses Q° in place of Q.

q -
Condition 6" Let Q% = (X3 Xs) 1XZXQ 1X>Xs(X%Xs) ! := (Q})q,xq, and pf = Q3 / QJ?Qk(k'
Assume that for each j, Card{l < k< q,: |2 C(logn) 27V} < r,, where C > 0, v > 0 is any

small constant, and r,/n, > 0 as n,p = oo.

The following theorem, which is in parallel with Theorem ] establishes the asymptotic validity

of the SDA filter for estimated covariance.

Theorem 3 Let B denote an estimator based on Dj. Suppose Conditions [1l{5 and 6’ hold. Then
1/2
the FDP of the SDA method utilizing X = o} / satisfies FDP < a + op(1). It follows that

limsup, p)>- FDR < a.

Remark 6 Our FDR theory does not require an accurate estimator for Q. The accuracy of the
estimator only affects the power but not the validity. Consider a working covariance structure

that “estimates” Q as the identity matrix. Then it can be shown that the FDP can still be

controlled. This is more attractive than the FDR theories in, for example, Fan_and Han!(2017) and

Li_and Zhong (2017) that critically depend on the accuracy of the covariance estimators.

The key step in the proof is to verify the validity of (B]. This amounts to addressing two

major issues: the asymptotic symmetry of W; under the null and the uniform convergence of
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P

don jms nac [(Wj 2 t). Because ® is obtained from D1, then fy; is unbiased conditional on D; and
P P

thus = psnac P(Wj > t) is approximately equal to  j55,ac P (Wj < -t), establishing the symme-

P
try property. The dependence assumption on Q° ensures the convergence of qaﬁ jmsnac (W) 2 t).

While sample—splitting ensures the independence between b, and b, and hence the robustness

of the SDA filter, as one would expect, a more accurate estimate of Q yields better power. Previ-
ously we have proposed to estimate Q using D1 and construct the LSE (El using D,. In practice
one may consider using D1 to construct Tij, and then obtaining the LSE via the full sample es-
timator, denoted B¢, that is estimated using {D1, D,}. The caveat is that, although X = Qi/z
can potentially increase the power, stronger conditions will be needed to guarantee the asymptotic
validity of the “full-sample” SDA method. As pointed out by an insightful referee, the asymptotic
theory requires that & must converge to Q at a very fast rate, which can be impractical in appli-

cations. We recommend the robust SDA filter that estimates Q using only D;. Next we specify the

requirements on the estimation accuracy of (’9; .
Condition 7 The estimated precision matrix d?p satisfies k@; - Qke = Op(anp) with anp > 0.

The following theorem shows that the FDR and FDP can be controlled asymptotically when

@F is sufficiently close to Q. Let s, = kQke.

Theorem 4 Consider a modified SDA procedure where we use D; to construct T1j; and the full
sample estimator ®¢ to construct the LSE (7). Suppose Conditions [136]hold and ®; satisfies

Condition [7] Then, if
p—— ;
Chp@npSnUn N log p(log qn)1+\’ -0 (15)

for a small y > 0, the results in Theorem E]hold for the procedure with & .

This theorem, which is a complementary result to Theorem 3, provides conditions that warrant
the implementation of a more efficient version of SDA. It is worth further investigating the con-
dition (Z5), which seems to be unavoidable because T1j and T; are no longer independent when

the whole sample is used to estimate Q. To fix ideas, suppose that Q = (wij)pxp is kn-sSparse, i.e.
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P

MaXicisp =i [(wi; = 0) < ky, and that all its elements wjjs are bounded. First, standard argu-

ments in, for example, Yuan|(2010) and Liu et al.|(2012) indicate that an, = Op(kn P logp/n). Ac-

cordingly, with cpp = dnplm, Equation ([[5] is equivalent to the condition d,kn,snd,/n%/2 = 0
if p is of a polynomial rate of n. The condition above imposes restrictions on the diverging rates
of dn, kn, sn and g , Assume that d,, k, and s, are all bounded. Then we must require thatq =
o,(nl/z). Alternatively, if we only assume that k, and s,, are bounded, then a sufficient condi-tion for

(15) is GE o(n%*4) (since dn < § ). These rates are consistent with those in the literature; see, for

example, Portnoy et al. (1984) and Fan and Peng (2004).

5 Simulation

This section first introduces the R package sdafilter (Section B.1], followed by simulation designs
(Section[5.2) and comparison results (Section E.3). Additional results for comparisons with unknown

covariance matrix and other correlation structures are provided in the Supplementary Material.

5.1 Implementation details

We describe the implementation details of the R package sdafilter. For sample—splitting, we follow

the strategy in Wasserman and Roeder|(2009), which uses n; = [2/3n] for selecting variables, and

the rest n, = n - nq for obtaining the LSEs. The AIC is used to select the tuning parameter
in LASSO. If the number of the variables selected by AIC exceeds [p/3], then only the first [p/3]
variables will be retained. For the case with unknown Q, our default option is to apply the R package
glasso to D1, where the tuning parameter is set by the R package huge. If prior knowledge suggests
a nonsparse Q, the “nonsparse” option in our package can be used. This option first estimates the
covariance matrix using the R package POET and then takes its inverse as the input. The stable
option implements the R-SDA method described in Section [A.1]of the Supplementary Material.
The kwd option enables the usage of different estimators to summarizes the information in the

first part of data, including the de-biased LASSO, innovated transformation of the sample means

(Hall and Jin} 2010), and factor-adjusted sample means (Fan and Han, 2017).
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5.2 Simulation settings

We consider three types of covariance structures: (1) Autoregressive (AR) structure: ¥ = (pli-il).
(1) Compound symmetry structure: all off-diagonal elements of the  are p, which can be regarded as
a factor model with one principal component. (I11) Sparse covariance structure: & = T~ + I,
where I' is a p x p matrix and each row of I has only one position with nonzero value sampled from

uniform distribution [1, 2].

The diagonal elements are normalized as unity for all three settings. To investigate the ro-
bustness of different methods, we consider three error distributions: (i) multivariate normal; (ii)
t-distribution with df = 3 and (iii) exponential distribution with scale parameter 2. The observa-
tions are then standardized to have mean zero and standard deviation one. The correlation structure

remains nearly unchanged after transformation. The following six methods will be compared:

(a) The Benjamini—Hochberg (BH) procedure with the p-values transformed from the t statistics.

(b) The principal factor approximation (PFA) procedure proposed by Fan et al.|(2012) for known

covariance and [Fan_and Han| (2017) for estimated covariance. Two versions of the PFA pro-

cedure using the unadjusted p-values and adjusted p-values are implemented using the R
package pfa, denoted as PFAy and PFA 5 respectively. We only report the results for PFA 5

as it generally outperforms PFAy.

(c) The sample-splitting method (SS; Wasserman and Roeder) 2009), which conducts data screen-

ing using LASSO and then applies BH to the p-values calculated based on b,.

(d) The knockoff method (Knockoff; |Barber and Candeés, 2015), which is implemented using func-

tion “create.fixed” in the R package knockoff.

(e) The DATE method (DATE; Li_and Zhong} 2017), which we implemented by ourselves.

(f) The stability-refined SDA filter (R-SDA) implemented using our package sdafilter with the
“stable” option. We only presented R-SDA, which we recommend to use in practice, to make

the plots easier to read. SDA has similar performance to R-SDA.
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Let n be the sample size, p the number tests, and m; the proportion of signals. For each
combination (n, p, y), we generate data and apply the six methods at FDR level a. The FDR and

AP are calculated by averaging the proportions from 500 replications.

5.3 Comparison results for known co'ariance structures

We fix (n, p, my, a) = (90,500, 0.1,0.2) and generate p; from the following random mixture model:
iid .
W B (1= m)o+ muglr), j=1,--,p,

where §g is the dirac delta function (denoting a point mass at 0), and g(-) is the density of the
non-null distribution, specified as a uniform distribution [po - 0.1, uo + 0.1]. The signals p;’s are
then randomly multiplied by a flip-sign. To assess the effect of signal strength, we vary po from 0.1
to 0.3 and apply the six methods to simulated data. The results for Structures (1) and (I11) are
summarized in Figure ] where in the top row we fix p = 0.8. The results for Structure (11) with
p = 0.8 are shown in Figure S5]of the Supplementary Material. The following observations can be

made.

(a) For the Gaussian error case, BH, knockoff, R-SDA and SS control the FDR at the nominal

level. The FDR levels of PFAA and DATE are inflated when signals are weak.

(b) For the non-Gaussian error case, BH, DATE, SS and PFA, fail to control the FDR under
various settings and the FDR levels can be much higher than the nominal level. Knockoff
controls the FDR in all settings but can be very conservative. R-SDA has the most accurate

and stable FDR levels among all methods.

(c) R-SDA vs SS and BH. As expected, SS and BH control the FDR under the Gaussian case but
are not robust for non-Gaussian errors. R-SDA has much higher power than both methods
(even when the FDR levels of R-SDA are much lower). It is interesting to note that although
SS only uses the second part of the data, its power can be much higher than BH when the
correlation structure is highly informative [Normal case under Structure (1) on top left]. This

is because the data screening step can significantly increase the SNR (Section R.3).
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(d)

R-SDA vs Knockoff. R-SDA and knockoff, both of which are distribution—free, are the only
methods that can control the FDR at the nominal level across all scenarios. The knockoff
method is overly conservative in Setting (1) due to the high correlation. The conservativeness
become less severe under Setting (I11). By contrast, R-SDA controls the FDR more accurately

near the target level and has significantly higher power than knockoff.

R-SDA vs DATE and PFAA. In some scenarios, DATE and PFA, can outperform SDA in
power. However, the higher power may be attributed to the severely inflated FDRs. The
numerical results reveal the promise of extending the SDA framework by employing other
methods, such as factor—adjusted z-scores or innovated transformations, as alternatives to the

LASSO estimates, to construct Ty;.

Next we turn to investigate how the six methods are affected by the strength of correlation.

For covariance structures (1) and (I1), we fix u = 0.2 under alternative and vary the magnitude of

correlation p from independence (p = 0) to strong dependence (p = 0.9). The results are summarized

in Figure[5] In addition to the observations that we have made based on the previous graph, the

following additional patterns are worthy of mentioning.

(a)

(b)

(c)

The knockoff method becomes more conservative when correlations become higher. Note that
the average correlations in Structure (I1) is much higher than that in Structure (1), the power
of the knockoff method deteriorates faster for Structure (I1) as p increases. For Structure (I1),

the FDR of BH also decreases as p increases.

In contrast with BH and knockoff, both of which suffer from high correlations, the FDR of
R-SDA remains at the nominal level consistently, and the power increases with the correlation.

The power grows faster for Structure (11). This corroborates the insights that high correlations

can be useful in FDR analysis (Benjamini and Heller, 2007; Sun and Cai, 2009).

In Column 2 of Figure 5] knockoff fails to control the FDR for heavy tailed distributions when

correlation is low. By contrast, SDA controls the FDR accurately under non-Gaussian errors.
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Figure 4: FDR and AP comparison for varying p in Settings (1) and (I11) with known variance.
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Figure 5: FDR and AP comparison for varying p in Settings (I)—(Il) with known covariance matrix.
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Figure 6: (a)-(b): Histograms of the off-diagonal elements of the sample correlation matrix for
BCR/ABL and NEG; (c)-(d): Histogram of the skewness of the p = 1263 genes for BCR/ABL and

NEG; (e)-(f): the ideal patterns of (c)-(d) when the data are normal.

6 A real-data example

This section illustrates the SDA filter for analysis of high-density oligonucleotide microarrays. The

data set, which contains 12,625 probe sets from 128 adult patients enrolled in the Italian GIMEMA

multi—center clinical trial, has been used in Chiaretti et al.| (2005) and Bourgon et al.|(2010) for

identifying genetic factors that are associated with acute lymphoblastic leukemia (ALL). The ALL

dataset is available at http://www.bioconductor.org.

We focus on a subset of 79 patients with B-cell differentiation because existing research reveals
that malignant cells in B-lineage ALL are often associated with genetic abnormalities that have
significant impacts on the clinical course of the disease. The patients are divided into two groups
based on the molecular heterogeneity of the B-lineage ALL: 37 with the BCR/ABL mutation and 42

with NEG. We further narrow down the focus to 10% of the genes (i.e., p = 1,263) before carrying

out the FDR analysis. Specifically, the uncorrelated screening method (Bourgon et al., 2010) has

been used to remove probe sets with small overall sample variances since they are unlikely to be

differentially expressed.

We apply a two—sample version of R-SDA (see Section [A.3]for details), BH, SS, PFAA, Knockoff
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and DATE at several significance levels for identifying differentially expressed genes across the two
groups. Table [Ilsummarizes the number of significant probe sets for each method. In Figure €{a)-
(b), we plot the pairwise correlations of the genes. We can see that a significant proportion of
the correlations exceed 0.4. These correlations can jointly exhibit non-negligible dependence effect.
This explains why the knockoff method is overly conservative. R-SDA is more powerful than SS by
exploiting additional information from the second part of data. BH, PFA, and DATE claims more
significant genes than R-SDA. However, some caveats need to be given regarding the reliability of
BH, PFA A and DATE, which all require normality assumptions (and the latter two require accurate

estimates of the unknown covariance matrices).

Next we conduct a preliminary analysis to investigate the normality assumption, which seems
to have been severely violated in this data set. From Column 2 of Figure EJwe can see that the
skewness scores of many genes exceed the conventional cutoff +1. As a comparison, we display in
Column 3 of Figure Blthe “ideal” pattern where the normality assumption holds. The histograms
in Column 2 are much wider than the histograms in Column 3, indicating a possibly highly skewed
error distribution. One possible explanation for the difference in power is that BH, PFA-A and
DATE may have inflated FDR levels under violation of normality. This has been observed in our
simulation studies (e.g. last column in Figure 53). By contrast, SDA and knockoff are distribution—
free methods, which tend to produce more reliable and replicable findings. The lists of 19 highest

ranked probe sets by the six methods are presented in Table B1]of Appendix E.]

Table 1: The number of rejections for six multiple testing procedures and various significance levels.

R-SDA SS BH PFA-A Knockoff DATE
a= 0.01 19 7 29 98 2 364
a= 0.05 33 15 146 182 2 452
a= 0.10 56 37 229 252 2 501
a= 0.20 139 68 350 339 7 546
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Supplementary Material for “False Discovery Rate Control Under

General Dependence By Symmetrized Data Aggregation”

This supplement contains some refinements and extensions of the SDA filter (Appendix RA)],
comparisons of the SDA filter with related ideas in the literature (Appendix B)], the proofs of main
theorems (Appendix [C], other theoretical results (Appendix D), and additional numerical results

(Appendix [E].

A Refinements and Extensions

SDA provides a general framework for constructing symmetrized statistics to aggregate structural
information from dependent data. In this section, we discuss some extensions to illustrate how this

framework can be implemented in different scenarios.

A.1 A stability refinement

To improve the stability in selection and avoid “p-value lottery” occurred in a single sample splitting

(Meinshausen et al., 2009), we propose a modified SDA algorithm that employs the “bagging”

technique to aggregate results from multiple sample—splitting procedures.

Denote A, k = 1,..., B, the discovery sets from repeatedly applying B times the SDA filter

P
at level a via random sample splittings. The decisions are aggregated by AR = #{j : B, I(j
ﬂa() > dB/2e}, the set of variables that are consistently selected in at least 50% of the replications.

The stability refinement picks Mo having the biggest overlap with Ab:

p n o

X
k? = arg max I(j BAR nAR) + I(j BAB N AB) . (S.1)
1<k<B .
j=1

The new method with stability refinement is denoted R-SDA. The asymptotic theory for the R-SDA
filter is presented and proven in Section [0 Our theory implies that the FDPs of AR can be controlled

uniformly for all k. Hence the discovery set ARa produces more stable results with guaranteed FD R



control. Our numerical studies show that compared to SDA, R-SDA generally yields similar FDR

and power but smaller variations in the FDP.

A.2 Other types of ranking statistics

The SDA filter utilizes Wj = T1;T; to rank the hypotheses. The asymptotic symmetry property
(B) is fulfilled as long as T,; are constructed as the LSEs on a subset S that includes all signals with

high probability. This leaves much flexibility for constructing T1;. We provide a few examples.

1) T1j = haj, where hyj is the LASSO estimate. In contrast with the scaled version p4j/os,;,
using fay; directly reflects the preference of selecting large effect sizes over significant ones. In

our numerical studies the two methods seem to perform similarly.

2) If there is prior knowledge that the covariance structure can be well described by a factor

model, then we can substitute the factor-adjusted statistics (Fan _and Han/ 2017) in place of

le.

3) Tyj is the de-biased estimate of p; (or its scaled version) based on inverse regression method

(Xia et al., [2020)).

4) Ty is the innovated transformation of the sample means (Hall and Jin,| 2010 m 2012).

In our simulation studies, we found LASSO works well and stably in a wide range of settings but
can be outperformed by other choices of Tyj in special situations. How to develop more powerful
ranking statistics is an interesting and challenging problem that requires further research. The
main message of this section is that in applications practitioners may develop new types of ranking

statistics tailored to problem contexts and prior knowledge about the data structure.

Finally we stress that our theory requires that T;; must be chosen so that the asymptotic
symmetry property is fulfilled. For example, it is not allowed to use the LASSO estimate again
to construct Ty; because this improper choice would lead to a violation of the symmetry property,

which no longer guarantees that the FDR can be controlled at the nominal level.



A.3 Two—sample inference

Suppose we are interested in identifying features that exhibit differential levels across two conditions.
Let €(K) = (Eik), .. ,Ep(k))>, k = 1,2, be two p-dimensional random vectors. The population mean
vectors and covariance matrices are p(k) and (%), k = 1,2, respectively. Consider the following

two-sample multiple testing problem:

w

;= ugz), forj=1,...,p.

H‘J? : uj(l) = uj(z) versus H!: p

The SDA filter can be easily generalized to handle the two-sample situation. Denote D(k) =
{«S(ik) = («Ei(lk), ) ..,§ék))>,i = 1,---,nM}. First, we split D(X) into two disjoint groups D\*) = (£/¥))
and D(zk) = (Egk)), with sizes nl(k) and nz(k), respectively. Denote n; = r]m+n|(2), D = DI(I)DI(Z),I =
1,2. Based on D;, the LASSO estimator can be obtained via minimizing (y1 - Xw)”(y1 - Xw) +
Akwk1, where y; = X( _(11) - 1;)), X = QY2 andQ = (nl/nil)z(l)+n1/n(12)2(2))‘1. Denote S the
selected subset by LASSO. Next we calculate the LSEs, using data D,, for coordinates in S. The
formula is identical to [7) except that now we takey, = X(E_(Zl)—f(zz)) and X = Q2. Finally, we can
calculate Wj and determine the threshold L using (L0). This procedure is implemented in Section €]
in the main text to identify differentially expressed genes in microarray studies. Asymptotic theories

for the two—sample SDA method, which are presented in Appendix D] can be established similarly

as done for the standard SDA method.

A.4 The SDA algorithm: detailed steps

We summarize the operation of the SDA algorithm in this subsection.

e Step 1: Split the data set into two parts D1 and D,. If the precision matrix Q is unknown,

use D; to obtain its estimate ®.

1/2
o Step 2: Let X = @ / . Compute b, by (B) and find the narrowed subset S. Record the

estimated coefficients ;.

e Step 3: Compute |, by (Z) by restricting on the coordinates in the subset S.



e Step 4: Compute the ranking statistic W; by (B].

e Step 5: Find the threshold L using (0} and output AP= {j : W; > L} as the selected features.

B Comparisons with Existing Literature

This section presents comparisons of SDA with existing literature. The goal is to provide insights

on the limitations of existing works and highlight some key features of SDA.

B.1 SDA vs. Knockoff

We present some theoretical insights on why the knockoff method suffers from power loss under

dependence. The whitening transformation from Model (L] to Model (R) implies that the fixed-

design knockoff filter in [Barber and Candes| (2015) is directly applicable to our problem with the

Gram matrix X> X = Q, where Q is the precision matrix. The augmented design matrix can

accordingly be constructed as (Q/2,0)> (c.f. Section 2.1.2 of [Barber and Candés, |2015). The

knockoffs X must fulfill X>X = Q and X>X = Q - diag{s}, where s = (s1,...,sp)” is a p-
dimensional nonnegative vector. Denote X the jth column of the design matrix and )?j its knockoff
copy. In a setting where the features are normalized, i.e. Q;; = 1 for all j, the correlation between X ;
and X;j is 1 - sj, where 0 < sj < 1. Intuitively, it is desirable to make the entries of s as large as
possible; this ensures that X; would deviate from its knockoff copy as much as possible (hence we

will hopefully have sufficient power to distinguish the true signals from faked ones).

Consider two settings where the correlation structures are respectively AR(1) [Corr(Xj, X) =

pli=kl,j = k] and compound symmetric [Corr(Xj, Xx) = p,j = k]. We consider two approaches,

namely equi-correlated and SDP knockoffs, both of which were considered in Barber and Candes

2015) for optimizing s;’s. Figure[S] depicts the “average similarity score” 1- s as a function of

>
different correlation levels p, where s = p~1 jp=1 sj is calculated using both the equi-correlated
(left column) and SDP (right column) optimizers. The plots for AR(1) and compound symmetric
structures are shown in the top and bottom rows, respectively. We can see that the similarity score

1 - s increases rapidly in p. For example, 1 - s has already exceeded 95% when p is only 0.25 under



the compound symmetric structure. Consequently, it becomes extremely difficult to distinguish the
original variables and their faked copies. This leads to substantial power loss of the knockoff filter.

The relationship between the similarity scores and the correlation levels are consistent with the

patterns in the power loss of the knockoff method as noted in Fig.5 of Barber and Candes|(2015

and Figure [1lin the main text of this article.

In contrast with the knockoff filter, the operation of SDA does not rely on pairwise contrasts. It
only utilizes the global symmetry property among all W;’s. The sample-splitting approach eliminates
the needs for constructing fake variables under a possibly highly restricted geometric space. This

explains why the SDA does not suffer from high correlations.

equi sdp
1.00-

0.75-
0.50- g

0.25-

method
0.00-
1 equi

1.00- —~ sdp

0.75-

0.50 -

(1]

0.25-

Figure S1: The knockoff filter suffers from power loss under moderate to strong dependence. The average
similarity score (i.e., 1 -s) between the original variable and its knockoff as a function of p. Top row: AR(1)
structure; bottom row: compound symmetric structure. Both equi-correlated knockoff (left) and SDP knockoff

(right) have been considered. The number of tests is p = 100.



B.2 SDA vs. RESS

The reflection via sample-splitting (RESS) method in Zou et al.|(2020) was developed for inde-

pendent two-sample t-tests. It can be substantially improved by SDA that effectively exploits the

informative dependence structure. For illustration, FigureET)ompares the FDR levels and average
2

powers (AP) for SDA vs. BH and RESS in Zou et al.| (2020) at different correlation levels. The

simulation settings are the same as those in Figure fL]in the main text. We can see that the average
powers of RESS and BH remain roughly the same across all correlation levels since the depen-
dence structure has been ignored. In contrast, the power of SDA increases sharply with growing
correlation levels. Section 2.3 in the main text provides high-level ideas on how the dependence is

incorporated into the SDA filter to improve the power.

method - BH -¥' R-SDA %  RESS

normal t exp

0.75-

dv

0.50 -

0.25-

ua4d

0.20 -

0.15-

Figure S2: Impacts of correlation on different FDR procedures. Here RESS refers to the Refection via

Sample Splitting procedure in Zou et al.|(2020).



B.3 Model uncertainty and error bound for FD R analysis

This section highlights the important connection of our theory to the robust knockoff theory in

Barber et al. (2020)), as pointed out by an insightful referee.

The model-X knockoff assumes that the distribution of the feature vector X is known exactly.

However, in practical situations the X distribution must be estimated. In Theorem 1 of Barber et al.

(2020), the KL divergence between the true distribution and its estimate is employed to quantify

the effect of estimation errors on FDR control. The KL divergence can be interpreted as a measure

of the extent to which the pairwise exchangeability property of the model-X knockoff is violated.

Under the SDA inferential framework, the idealized setting corresponds to the case where the
error distribution is perfectly symmetric about 0 and W;’s are independent of each other for j @S.

This idealized situation implies that Pr(W; > 0 | |W;|, W_;) = 1/2. We call this, borrowing the

term from |Barber et al.| (2020), the flip-sign property, which indicates that W; is equally likely to

be positive or negative conditional on its magnitude and other Wy’s in S. However, in practi-
cal situations the flip-sign property only holds asymptotically. Therefore the actual FDR would

unfortunately deviate from the nominal level. The amount of deviation is characterized by
Aj = | Pr(Wj > 0| |W;], W) - 1/2],

which can be interpreted as a measure of the extent to which the flip-sign property is violated. We
subsequently use Aj’s to quantify the effect of asymmetry (i.e. deviation from the perfect symmetry

assumption) on FDR control.

Barber et al.J(2020) introduced an elegant leave-one-out argument to establish the upper bound

for the actual FDR level of the model-X knockoff where the X matrix must be estimated from data.
The analysis of SDA in Section B.I] reveals that the technique can be readilt| extended to other

important settings where the issue on model uncertainty must be addressedt] In summary, the

work of Barber et al.| (2020) provides a set of useful technical tools for developing finite sample

theory on (a) how the FDR control can be affected by the model uncertainty and (b) how the

6
In model-X knockoff the model uncertainty comes from the estimation errors whereas in SDA the model uncer-

tainty corresponds to the possible deviation from normality and sure screening property.



error bound can be explicitly quantified using appropriate deviation measures. The connection of
our theory to the robust knockoff theory also provides insights on the impact of deviation from

symmetry on the performance of the SDA filter.

C Proofs of Main Theorems

C.1 Finite Sample Theory

This section proves Theorem 1. The proof of this theorem has extensively used the techniques

developed by |Barber et al.| (2020), which shows that the Model-X knockoff (Candés et al., 2018

incurs an inflation of the FDR that is proportional to the errors in estimating the distribution of

each feature conditional on the remaining features.

Fix > 0 and for any t > 0, define

P
jAICDI(WJ'Z t, A < )1

RO == izac (W) < —t)

Consider the event that A = {A := maxjpac A < }. Furthermore, consider a thresholding rule

L = T (W) that maps statistics W _to a threshold L > 0. For each index j = 1,...,p, by adopting

the leave-one-out argument in Barber et al.|(2020), define

L; = T(Wl,...,Wj_1, |Wj|,Wj+1,...,Wp)2 0.

For the SDA filter with threshold L, we can write

P P P
jaac I (Wj2 L, 45 <) 1+ 5 1W< -L)  jpac LW 21,4;2)1

INYERS T1E H(wyz L) 1+ (WS -L)

< aR(L).



Next we derive an upper bound for E{R(L)}. Note that

X ,
E{R (L)} = e Wzt 4 <)
A LMWy -L)
_ E( A(WjZLj,AJS) )

igae 1t xeac k= (W < -Lj)
’ g(Wj2Lj,85<)

) #
1 T [ TW; ], W
o macks) | (Wies )

E E

jEAC

_ X PrW > O WL W) TW | 2 Ly, 4 <) 52
jmAc I+ aac,k=j H{Wk s -Lj) : :

The last step (§.2) holds since, after conditioning on (|W;|, W_j), the only unknown quantity is

the sign of W;j. By the definition of A;, we have Pr (W; > 0 | |[Wj]|, W_j) £ 1/2+ Aj. Hence,

E(R(L)}
X GAagigwii=,a <), )

D
< ,AlE" koA, k=j 1 (Wk < =Lj)
e ( | ( .
= X Wy 2 Ly, 4 < X (W, € -L;
s(5+) 0@ £ I(J j J<) . - . (W, J)<
2 jEAC 1+ kaac,k=j | (Wi = -Lj) i2Ac T+ A TWE=T5)
( )
X B — .
= (1+)E{R(L)}+ E p (W <-1y) i
2 jEAC 1+ kAc'kzjl(Wk S—Lj)

The sum in the last expression can be simplified. If for all null j, W; > -L;, then the sum is equal

to zero. Otherwise

( ) ( )
X : o 1W< -Ly) _ X : o W< -L)

1+ kBAC, k=j I(Wk £ _LJ) jmAC 1+ kBAC, k=] I(Wk < —Lk)

= 1,
jEAC

where the first equality holds because for any j, k, if W; < - min(L;, Lx) and Wi < - min(Lj, L),

then Lj = L. Accordingly, we have

]./iﬁl'i's,

E{R(L)} < 7

which proves the theorem.



C.2 Asymptotic Theory with Known Q

We present the proofs of Theorem 2] here along with two key lemmas. The lemmas play key roles
in our technical arguments and may be of independent interest in their own rights. Other technical

lemmas and proofs are provided in Appendix D]

For notational convenience, throughout this section, we consider variables that are included in

the set S, and suppress “j @ S” in all the summations with respect to j. Let ®&(x) = 1- ®(x),
> P .

G(t) = Ggn  jaac Pr(Wj 2 t|Dy), G-(t) = dg jmac Pr(W; < -t |D;) and G™1(y) = inf{t> 0:

n

G(t) s y}forO<s y< 1.

The first lemma characterizes the closeness between G(t) and G_(t).

Lemma S.1 Suppose Conditions [I] B] and E|ho|d. We have

G H -1->0.

uniformly for all 0< t< G- (ann/qon).

v
Proof. Define by = o Clogq, where C > 4. Denote Ty; = \/nlekj/O'j forj = 1,...,9n and
o? = Qjj/o?. Observe that
P
G(t) o _iBAC {Pr(T1jT2; 2 t, [Ty € by [D1) = Pr(Ty; Ty £ —t, |Ty| < by [D1)}
G-{t) G0nG- (1)
joac {Pr(T1j T2 2 t, | Ty| > bn |D1) = Pr(TqjT2j € -t, | T2 > bn [D1)}
quG—(t)
=0 + A5,

Firstly, for the term A,, by Lemma [5.8]we obtain that

P p
jmac Pr(T1T 2 t, [Ty > by [D1) o _iBAC Pr(|T2| > bn [D1) g, x o(1/4,)

qonG-(t) ann Nn

It follows that A, = o(1).

By Lemma[S.7] it can be verified that

Pr(lesz
PI’(leZ

t, [Ty < by |D1)
t,[Z] < by |D1)

-1,

V| IV

10



where Z B N(0, 62) which is independent of Ty;. Recall that
X2 X'

-1
sz/O’j = nil eJ> X§X25 X2>S€i/0'j = n§1 ij/O’j.
i=1 i=1

_ P _
Note that B, = n,o2 and L, = B %2 "2 E(]519) < an1 e/anez. We have

- p —_—
{210g(1/La)}Y? 2 [210g{n)/> /(K% N2 = 4Tog 4,
according to Condition @ The result follows by applying Lemma

Similarly we get

Pr(lesz
Pr(leZ

=t, [ T2j| < by |D1)

- 1L
-1, |Z| < bn IDl)

IN]IA

Note that

Pr(leZ < -, |Z| < by |D1) = PI’(leZ > t,lZl < by |D1).

This implies that A; = o(1), which completes the proof.

P
The next lemma establishes the uniform convergence of 5, (W) 2 t)/(qonG(t)).

Lemma S.2 Suppose Conditions [3] |Z_F| and ] hold. Then, conditional on D1, we have

e (Wi 2 t)
sup A 1=0()),
0<t<G-!(ann/qon) qonG(t)
iBlAC |(W S _t)
sup jBA : - 1= o (1).
0<t<G ' (ann/gon) qonG (1)

(S.3)

(S.4)

Proof. We only prove the first formula; the second can be proven similarly. In the proof of Lemma

we show that

X
G(t) = qpn Pr(TyTo = t,|Tyl < by [D1){1+ 0(1)} := &t){1 + o(1)}.
jEAcC

Similarly we can show that

X X
oo I(Wj > t) = qgl (W) > t,|Ty| € ba){1+ op(1)}
jBAC jEAC

Hence, it suffices to show that

P
imac HWj 2 t,|[Ty] < by)
sup o LT - 1= op(1).
0<t<G-!(ann/qon) qonG&(t)

11



Note that the &Rt) is a decreasing and continuous function. Let ap = an,, zo< z1< -+ < zp, £ land
ti= G 1(£), where zo = ap/don, zi = ap/don + bp exp(i®)/don, hn = {log((don —ap)/bp)}/* with by/ap
>0and 0< T < 1. Note that G(t;)/&(t;+1F= 1+ 0(1) uniformly ini. It is therefore enough

to derive the convergence rate of

>
jmAc {|(Wj > ti,|T2j| < bn)— Pr(Wj > ti,|T2j| < by |D1)} 0<i<hn

Dn= sup e GonG(ti) -

Define M = {k BAC : |pi| = C(logn) 27V}, B= {|Ty]| < bn,j @A} and

)
X
D(t) = EX {H(Wj > t,|Ty| < by) = Pr(Wj > t,|Ty| < by |D,)}B |D,B
jBAC
X X
= {Pr(Wj > t,Wy>t|D,,B)- Pr(Wy>t|D,,B)Pr(W;>t|D;,B)}{1+ o(1)}.
jEAC kBAC
Note that
X X
D(t) < rpqonG(t) + {Pr(Wy,>t,W;>t|D,,B)- Pr(Wy>t|Dy,B)Pr(W;>t|DyB)}.

jBAC kEM;

However, for each j @ A¢ and k @ M€, conditional on D,, the Pearson correlation coefficient between

W; and Wy is pjk. By Lemma 1 in|Cai and Liu|(2016),

Pr(Wyg > t,W; > t|D,,B)- Pr(Wy¢> t|D,,B)Pr(W; > t|D,,B)
Pr(Wx > tD;, B)Pr(W, > t Dy, B) < An,

uniformly holds, where A, = (logn)=17V1 for vi = min(v, 1/2).

From the above results, we can get
P

X" aac W > t, | Ty] € bn) = Pr(W; > t, [Ty € by | D1)] i=0
Pr(DnZnIDl)S Pr jEA j ||2]| n j ||21| n| 1 > |D1 [
on i q G(t)
)t‘” 1
5 -
< 2 e D(ti)

1 g:o %mGz(til)
- r

)
S
2 P i=0 quG(ti)

IA

hnAn

Moreover, observe that

X0 L
S S WY
io quati) ap i=1 ap + bpel

12



Finally, note that (a) { can be arbitrarily close to 1 such that h,A, = 0, and (b) b, can be
made arbitrarily large as long as b,/ap - 0, we conclude that D, = op(1) when r,/n, = 0. This

completes the proof.

In Lemma [S.1]and Lemma we have established the symmetry property and uniform con-

sistency for W;’s. Now we are ready to present the proof of Theorem E]

Proof of Theorem By definition, SDA selects the jth variable if W; > L, where

X X

L=inf t20: I(W; < -t)<amaxB I(W; 2 t),18 .
J_

We need to establish an asymptotic bound for L so that Lemmas 5.1J5.2]can be applied.

Let t% = G’_l(ann/qu). It follows from Lemma [5.2]that
) 1 X )
ann/don = G-(t") = —  H(Wj < -t"){1+ o(1)}.
Jon iBAC

On the other hand, for any j C., we can show that Pr(W; < t%,j B Cy) - 0. In fact, it is

straightforward to see that

Pr(W; < t?, for some j @ C,)

IN

v .V
Mn Pr TyTy - ‘Aimopi/o? < t9- nimapi/o?

IN

g oV
NnPro [l (Tbgy = wl+ b2 - )+ by - wl bz - wl > sz— t0j2/ niny - 0.

. . v_ . .
To see the last equation, denote d; = uJ? - tojz/ ninz. Under Condition B it follows that d; =

HZ{1+ o(1)}. We then get

Pr(lwl (lyy - wl+ b2 - i)+ by - willbz - wl > dj)

< Pr(lyl (1l = w1+ Thzi = wl) > d;j/2) + Pr(lby - wllby - Wl > dj/2) =: Hi + Ha.
Note that dj/|p;| = |pjl{1+ o(1)}. We observe that

Hi

IA

Pr(lby — wl| > dj/(4li ) + Pr(liz - Wl > dj/(41wl)),

O
Hz < Pr(liy - il > cnp) + Pr |- w| > C logg,/n

IA

13



Then the result follows from Lemmas 5.8]and Condition 2]

P P
Consequently, we have Pr( i I(Wj > t%) 2 n,) = 1. We conclude that

j |(Wj < —t) .
P
ann < a (W) > t?), and hence L . t%. By Lemmas B.135.2) we get
(W 2 L)
jmA j
; - 10 (S.5)
imac (W) <-1)
Next write
p p
18 ,(W;2 L) 18 (W= L) (W < - 1)
< ax R(L).

p P
Note that R(L) < j5pac 1(Wj 2 L)/ jgac (W) < -L), and thus limsup, 5., FDP < a by (4.5]]

Then, for any > 0,
FDR £ (1+ )aR(L)+ Pr(FDP = (1+ )aR(L)),

which proves the second part of this theorem.

C.3 Asymptotic Theory with unknown Q: Proof of Theorems 3 and 4

Proof of Theorem The proof follows similar lines as those of Theorem 2] except that we now
establish Lemmas [S.1]land B.2]under Conditions 1-5 and 6’. Note that Lemma §.81still holds under
Conditions [1] and 4] With unknown Q, conditional on D41, the Pearson correlation coefficient

between W; and Wy is changed to pj‘k. The rest of the proof is essentially the same as that of

Theorem Rland thus omitted.

Proof of Theorem 4 To establish this theorem, we consider another SDA procedure with the
A/
statistics W; = "Ain;b1je2j/P, where @, is the least-squares estimate that uses ® = Q%/2 and

¢, = ®E,. We choose a threshold 1€ > 0 by setting
( v )
. L =
B = inf t>0:#{J' 1= t}s
#{j :v; >t}m1

14



The proof of this theorem involves a careful investigation of the difference between W; and \fVJ-.

The main results are summarized by Lemmas Define G = {j : 1 = o(cnp)}-
From Lemma [S.3] we have, for any j,
v , I S
Wj - Wj = ninapy(ly; - ﬂZj)/Gj = Op(nx spdnanp logp/n) x {Kj + Op(cnp)}.

v__
Thus for any j B G, under condition that cnpanpsnd, nlogp(logg,)**Y = 0 for a small y > 0, the

absolute difference between W; and f\NJ- is negligible. While for j B G¢, we need to consider the

relative difference. That is,
( D )
" OP(SnCInar;‘p log p/n) _ Wj{1+ Op(l)}.

fvj=w, 1+ B2 - b _ w; 1 S L
hj W + Op( logdn/n)
. VvV _ Vv _
In fact, under conditions cnpanpsnd, N logp(logd,)t*Y = 0and 1/( ncnp) = O(1), we have:
p p —
shlnan, logp/n g
nfndnp (OBP/N _ q), Sndydmp logR/n g
cnp log Gn/n

From Lemma [S.4]and Lemma [S.5]given below, we conclude that

#li Wiz BjBAY FDPw (L) {1+ 0p(1)}.
#{j v > By 1

FDP (1) :=

Under Conditions 1-6, similar to the proof of Theorem 2, we can show that FDP g, (E) is controlled

at the nominal level asymptotically. Thus the claimed result follows.

p
Lemma S.3 If Conditions [1] B} ] and [7] hold, then we have h; = g; + Op(anpsnd, logp/n)

uniformly in j @S.

Proof. Note that

n (0]
- gl = e OFXR) 1R~ (X°Xs) XX (§- )
< (XEXE) IXEXE (X7Xs) 'X"X K- pkeo=:

kAKoo k€ = pkeo.

15



Similar to Lemma S.8, we get k§ - pke = Op( laogp/n). For the analysis of A, we note the
p

-

following fact

kggﬁs - XS>X5 Koo < kbp - QKoo = Op(anp),
kRZ®sc - X Xsckoo € kB = Qkeo = Op(anp),

K(RZ®s) ™ = (XeXs) Tkoo € K(R2I5) Koo k(XS Xs) 1 koo KK Rs = XtXs koo = Op(Gnanp).
Thus, by triangle inequality, we can conclude that

kAkoo = k(XS Rs) TR ®sc — (XeXs) X Xsckeoo

IN

K(RZ®s) ™1 = (X%Xs) ThkeokXTXsckeo + kKRI®sc = X7 Xsc koo k(RN ) koo

Op(GnSnanp)
. - P—
and accordingly max; |f - Bj| = Op(dnSnanp logp/n).
The next lemma establishes the approximation result of W; to \f\/j for those j [ G.

Lemma S.4 Suppose Conditions [TI] 2] B] E|and |Z|ho|d and

v_
CnpanpSndn N logp(logd,)t*Y = 0 for a small y > 0. Then, for any M > 0,
P

e H(WE > t)
sup PLEC 17 1= og(1),
Ms<t<G-l(ann/qon)  joG (W) 2 t)
P
e I fi £ -1)
sup piee : -1=o0 (}J).
M<tsG  (ane/aon) 86 NWj < -t)

Proof. By Lemma with probability tending to one,

X .
(Wi 2t)- (W] 21t
oG jBG

< X {|(Wj > t+ 1) - |(Wj > t)}+ X {|(Wj >t-1,) - |(Wj > t)}
jBG iBG

= A+ Ay,

v_
where |,/(cnpanpsnd, nlogp) > e as n,p > ==. We will deal with A; only and the part of A, is

16



\
similar. Define the events C; = {|Ty| > t/(C logq,), |Ty| > t/(YnThp),j B G}.
X
E(A,) = E I(t < WjSt+|n)
=
jBaG

X X

S Pr(tsWpst+ 1y |C)+ Pr(t< W< t+ l,,Cf)
jBG jAG
X

< Pr(ts W< t+ 1, |C)+ o(l),

jBG
P
where we use Lemmas [S.8]and Condition Z]to get jmg Pr(t s Wj < t+ 1,,C9 = o(1). Further

note that under the event, {t < W; < t+ I, C¢}, we have

| Ty <

v v

— o _

tl+ 1) < C(t+ Iy) loga - c logq + I, log
T:|J t M

P—0
<C logg = by,
under condition that I, > 0. Let T}} = Vn7(|b2j - Wj)/oj and Uj = n3j/0j. Thus from Lemma
[S.3] we conclude that

X
Prt- TyUj< TZ<t+ lh- TyUj |C)
inG

X
E{O((t+ 1n)/[Tyl - Uj) = O@/| Tyl = Uj) [ Ci}

iBG

X
< E Tyt o(t/I Tyl - Uj) [Ce
jGX
<Ih™ B (t/TE - U/ Tyl) + 1 @(t/| Tyl - Uj) |G
26 : S RET)

- X n o
InM tlogg, E @@t/|Tyl- Uj) |C ,
jBG

where ®(x) = 1- O(x). The second to last inequality is due to
X for all
md)(x) < ®(x), forallx > 0.
On the other hand,
X X n o]
Pr(Wj>t)= E (D(Q/|T1j|—Uj)|Ct {1+ o(1)}.

iBG iBG

Therefore, by Markov inequality and similar arguments in the proof of Lemmal[S.2] the assertion
v

holds if chpanpsn®, nlogplogg hn = 0. Note that h, can be made arbitrarily small as long as

h, = oo as n = oo, from which we completes the proof.
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In the next lemma, we obtain the approximation result for those j with relatively large y;.

Lemma S.5 Suppose Conditions [1] 2} B} B]and [7]hold and

v___
Cnp@npSndn nlogp(logd,)i*Y = 0. Then, for any M > 0,
P

o (W > t)
sup piEG ! - 1= o0p(1),
M<t<G-1(ann/qon)  jEGe (W) 2 t)
P
i Pl c |(V\f S _t)
sup piEs : = 1= o (}).
M<t<G  (ann/qon)  jBGE (W) £ —t)

Proof. Under the designed conditions, we have W; = Wj{l + 0p(1)} for any j B G€ uniformly.

Then the results follow.

D Proofs of Additional Theoretical Results

D.1 Proof of Lemma [1l (the coin-flip property under dependence)

v
Observe that W; = n1n2|hljhzj/crj2 =: ¢j X hpj. Conditional on D1, we have W; | W _;

Mil_; = Cov(W;, W_j)Var(W_;) "} (W_; - EW_j) and

67, = Var(W;j) - Cov(W;, W_j){Var(W_j)} " Cov(W;j, W_j)”.

For any k,I @S, we have Cov(Wy, W|) = cxc/Qy. Let C = diagf{ci,...,cq,} and D = CQC.

18



Then Cov(Wj, W_j) = Dj,-j and Var(W_j) = D_j,-;. So, we obtain that

Pr(Wj > 0] |W;j|, W_j,D1)

b Wi |-
_ Ojl-j
B [Wij - [WijT+1)-
¢ J. .J|J +¢ J- -J|J
Ojl-j Ojl-j I
[Wjl-Dj,-jB1; ;(W-j-EW_j)
o _
Dji—D|i,—jD,,-,,jD—j,J |
¢ |WJ-|—Djl,lej’_j(W,j—EW,j) + ¢ |Wj|+Djl,lej’_j(W7j—EW,j)
] <
Djj-Dj,-jDZ} ;D-j,j Djj-Dj,-;DI} ;D-j,j
=08 (|Wj [, W_j, D1)
Denote Q_j,j = 0 the jth column of Q excluding Qj;. Finally we have

Pr(Wj> 0| |W;|, W)= E{Pr(W;> 0]|W;|,W_.;,D1) | [Wj]|, W_;}

E{Aj(IWj],W_j,D1) | |W;], W_j}- 1/2.

It can be easily verified that if Q_j j = 0, Aj(|W;j|, W_j, D1) = 1/2 and consequently A = 0.

D.2 Asymptotic results for R-SDA and two—sample SDA

The next result is a direct corollary of Theorem Rlwhich establishes the FDR control of the multi-

splitting procedure R-SDA.

Corollary 1 Suppose Conditions [1}6] hold. For any a & (0,1) and a given B, the FDR of the

R-SDA method satisfies limsup, ;)5 FDR < a.

As in (14), the FDP is controlled for each replication so is the FDP of R-SDA, resulting in the FDR

control.

To establish the FDR control result of SDA procedure for the two-sample problem, we introduce

a new sequence of independent random variables {§ i} defined as follows:
(Dl _ (1)), 1< i< nld).
B n,/n (& - ulY); 1<i< n’h
§-ws= g (2)(2) 2. (L) :
-na2/n*5 (€ N ); ny+1<i< ny.
2
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Note that
(1) (2)

1 X RS 1 X2
R Bl SO R (AR S R R
n2 =1 n2 =1 21

By the proofs for Theorem [2] if we replace u as w and set Q1 = $(1)/% + 5(2)/(1 - %) with

%= lim nl(l)/m, Theorem [2]holds also for the two-sample problem.

Corollary 2 Suppose Conditions [Tl hold. For any a@(0,1) and 0 < %< 1, the FDR of the SDA

for the two-sample problem satisfies limsup(, 5)>- FDR < a.

We want to emphasize that as long as Condition Rlis satisfied, the above results hold for other
choices of Ty; as discussed in Appendix[A.2. For example, consider a hard-thresholding estimator

p p
b1 = &11(1&15] > ¢ lTog p/n) for some ¢ > 0. We know that chp, = log p/n if §;’s have uniformly

bounded fourth moments.

D.3 Additional lemmas

The first one is the standard Bernstein’s inequality.

Lemma S.6 (Bernstein’s inequality) Let X1,..., X, be independent centered random variables

P
a.s. bounded by A < oo in absolute value. Let 62 = n~1 2, E(X;2). Then for all x > 0,

B 2
Pr Xi2x <exp - X
7ncZ + 2Ax/3

The second one is a moderate deviation result for the mean; See Petrov|(2002).

Lemma S.7 (Moderate deviation for the independent sum) Suppose that X1,..., X, arein-
dependent random variables with mean zero, satisfying E(|X;|2*®) < e (j = 1,2,...). Let B, =

P

iL‘lE(XZi). Then, b y

Pr(" Ly Xi>x By)
1- O(x)

-1,

_1- P
as n = oo uniformly in x in the domain 0 < x < C{2log(1/Ly)}/2, where L, = B} %/2 D EIX| 28

and C is a positive constant satisfying the condition C < 1.
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The next lemma establishes uniform bounds for hy;.

Lemma S.8 Suppose ConditionsE] El and Elhold. Then, as n = oo, Pro™?
p - 1~ -
lbj ~ il > o Clogq /ny [Dy = 0(1/9 ), n

holds uniformly in S, where C > 4.

Proof. Write
X' -1 X’
b2 - My = nzt €7 XzsXas T XzeEii=nzl o
i=1 i=1

Let m, = (n2q,)Y/®*YK,2 and note that
ij = il(lii] € ma) = EGHG T € ma)b+ 5111 > ma) = EGIHCL T > mag)}
=it oij,2.
Conditioned on the first split D1,

V__ .
Pr(| nz (b2 - 1) > ojx for somej |D1)

|
) !

>

= Pr ij, 1t ij,2 > Vn-zcjx for somej |D;
i=1 i=1 |
® X v

< Pr ij,1+ i,2> Nna0jx forsomej |Dq
i=1 i=1 |
Xz v __

< Pr ij,1 > n2o;jx(1 - a) for somej |Dq
i=1 |
Xz v __

+ Pr ij,2 > nyojxa for somej |D; =: Py + Pj.
i=1

Here a is a small positive value.

(S.6)

Firstly consider the term P1. Note that 1j,1,...,n,j,1 are independent centered random vari-

ables a.s. bounded by 2m, in absolute value. Then the Bernstein inequality in Lemma §.6 lields

that

( n,o f(z(l- ’ h 2 )
2n2E(;3) +22m,-ng;x(1- a)/3

P1 < 29y maxexp -
j
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Recall that jj,1 = ijl(lijl < my) - E[J‘|(|j| < my)]. Thus

E(;,1) = Var{jI(l;] < mn)} < E{I(1;3 < ma)} < E(;) = Q.
We then have:
( )
nzojzxz(ll— a)?
2n,Qyj + 2-2m, - " Ao x(1- a)/3
)

P1 < 2gnmaxexp -
j

(

2 2
1_
< 24, maxexp - X _1a) ] (S.7)
j 202 + 4(1- a)o, xmy/(3 nz)
Next we turn to consider P,. First note that
!
X2 v _
P, < Pr max | [1(ij| > mn) + maxnE{[;[I(|;] > mny)} > nyojxa |D;
i=1 )
Further note that
2 2 5 E(1519)
E5 101> ma)} < ECYRr(l; | > ma) < BG)T T Sn—
We then conclude that
qa___
ECJEAT )
max n2E{[;[I(/;]| > mq)} < maxn; — > = of" M)
j j m,
From this, we then have
I
X2 '
P, < Pr max|ij[I(lij] > my) > Yn,Gjxa/2 |D1
i=1 !
< Pr max|j| > m, for somei |D;
i
E(kA(S)e; k&, __
< n, ( ( )e i )= o(qnl). (58)

mMn
v
Let x = o C logq,. From the inequalities (§.6), (5.7), and (5.8], we conclude that

V_ .
Pr(| n2 (2 - W)l > ojx for somej |Dy)

x%(1- a)? ’ T
202 + 4(1 - a)o; "xm,/(377) +olgy ) = (g, ).

< 24, maxexp -
j

p
holds uniformly in S, where we use the condition m,/ n/log g, = o(1) which is implied by Con-

dition [3]
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E Additional Numerical Results

E.1 Estimated co'ariance structures

This section compares the methods mentioned in Section Elfor the unknown covariance case. In

practice, one should adopt the most appropriate estimator tailored to specific correlation structures.

Specifically, we have used the method based on Cholesky decomposition in Bickel and Levina (2008),

the POET method proposed by Fan et al.| (2013), and the graphical lasso (Friedman et al., 2008

to estimate the unknown Structures (I)—(111), respectively.

Figure [S3] follows the settings in Figure @] (except that the covariance matrix or its inverse
is estimated). Figures S4]uses the same settings as those in Figures E]with estimated covariance
matrix. We omit a detailed discussion as the observed patterns seem to be very similar to those
in the known covariance case (except that the FDR control sometimes becomes less accurate due
to the additional estimation errors). Our conclusions based on Figure §3]and Figures B4]remain
essentially the same as before. Knockoff and R-SDA seem to be the only methods that can control
the FDR reasonably well in all scenarios, with the R-SDA method having much higher power in

most scenarios.

E.2 Additional comparisons

Figure [S5] demonstrates the FDR and AP for various signal magnitude p under the compound
symmetry error structure (I1) and three error distributions, for known and unknown covariance

structures, respectively.

E.3 Boxplots of FDPs

When the noises are sampled from the multivariate normal distribution, Figure B6 khows the boxplot
of the FDP and AP of the testing procedures for m; = 0.05 and 0.2, while fixing (n,p,a) =
(90, 500, 0.2). The signal magnitude p is adjusted according to the covariance structures so that the

APs are in a similar range. While the BH is conservative with little power, the R-SDA outperforms
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—-<— BH -¥ - KnockOff ->: R-SDA
method
—4— DATE -+- PFA-A SS
normal t exp
0.6 -

da4d

dv

0.00-

- 2

0.1 0.140.180.220.26 0.3 01 014018022026 03 01 014018022026

oC

(I

dv

01 0.140.180.22026 03 01 0.140.180.220.26 0.3
oC

0.1 0.140.180.220.26 0.3

Figure S3: FDR and AP comparison for varying p in Settings (1) and (I11) with estimated covariance matrix
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the DATE and PFA in the sense that it provides more accurate estimate of FDP and generally
higher power. The conclusions are consistent for different choices of m;, with narrower interquartile
range of FDP and AP for larger ;. As we can expect, the R-SDA has smaller variation than the

single-splitting SDA.

E.4 The impact of the number of tests and sample sizes

We also conduct experiments by altering the number of tests p, while keeping (n, m1, a) = (90, 0.1, 0.2).
To make the AP comparable across p, the signal u is adjusted viap= C IOI(WWwith C depend-
ing on the covariance structures. The results are summarized in the top half of Figure We can
see that all methods have more accurate control of FDR as p increases, but the PFA, and DATE
fail to control the FDR when p is small. To investigate the impact on sample sizes with unknown
covariance, we set p = CPIW, fix (p,my, @) = (500,0.1,0.2), and consider the normal error.
The results are summarized in the bottom half of Figure We can see that that our R-SDA
method is able to control the FDR and close to the nominal level regardless of the choice of n. Its
superior performance relative to the other three methods is significant in some cases. Though all
the methods exhibit steady AP pattern, the BH, PFA and DATE appear to need larger sample to
achieve satisfactory FDR control than the R-SDA does. This again concurs with our theoretical
result in Theorem [2land demonstrates the advantage of using the nonparametric estimation of FD P

in the SDA procedure.

E.5 List of selected genes by different methods

Table [ST] reports the list of 19 most differentially expressed probe sets obtained by the methods

R-SDA, BH, SS, PFA-A and DATE in the real-data example.
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Table S1: Differentially expressed probe sets in the B lineage ALL with BCR/ABL versus NEG molecular

rearrangement, for five different multiple testing adjustment methods

R-SDA BH SS PFA DATE
1635_at 1636_g_at 39730_at 1636_g_at 36502_at
39730_at 39730_at 39317_at 39730_at 38385_at
1636_g-at 1635_at 37027_at 1635_at 40202_at
36502_at 1674_at 38052_at 1674_at 37403_at
37403_at 40504_at 1635_at 40202_at 38052_at
32134_at 40202_at 1636_g-at 37403_at 33690_at
38052_at 37015_at 40202_at 32434 _at 39317_at
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32562_at 32542 _at 34800_at 31786_at 33304_at
34990_at 39329_at 36543_at 34850_at 34180_at
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Figure S4: FDR and AP comparison for varying p in Settings (1)—(11) with estimated covariance matrix.
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Figure S5: FDR and AP comparison for varying p in Setting (Il1) with known (top half) and unknown

variances (bottom half).
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Figure S6: The boxplot of FDP and AP when the proportions of alternative are 0.05 and 0.2. The normal
error is considered and (n,p,a) = (90,500,0.2). The signal strength pu is set as 0.2, 0.15, 0.3 for the

covariance structures (I)-(I11), respectively.
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Figure S7: Top half: The empirical FDR and AP for varying p. (n,m,a) = (90,0.1,0.2) and un =

Cp Tog(p)/n with C = 0.8,0.5,1.2. Bottom half: The FDR and AP for varying n when the covariances are
p

estimated. (p, 1, a) = (500,0.1,0.2) and pu, = C log p/n with C = 0.8,0.5,1.2.
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