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Abstract

Consider the online testing of a stream of hypotheses where a real-time decision must
be made before the next data point arrives. The error rate is required to be controlled
at all decision points. Conventional simultaneous testing rules are no longer applicable
due to the more stringent error constraints and absence of future data. Moreover, the
online decision—making process may come to a halt when the total error budget, or alpha—
wealth, is exhausted. This work develops a new class of structure—adaptive sequential
testing (SAST) rules for online false discover rate (FDR) control. A key element in our
proposal is a new alpha—investment algorithm that precisely characterizes the gains and
losses in sequential decision making. SAST captures time varying structures of the data
stream, learns the optimal threshold adaptively in an ongoing manner and optimizes the
alpha-wealth allocation across diderent time periods. We present theory and numerical

results to show that the proposed method is valid for online FDR control and achieves
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substantial power gain over existing online testing rules.
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1 Introduction

The online testing problem is concerned with the investigation of a possibly infinite stream
of null hypotheses {H1, H,, - - -} in an ongoing manner based on sequentially collected data
{X1, X5, --+}. At each time point, the investigator must make a real-time decision after
Xt arrives, without knowing future data {Xt+1, Xt+2, - -}. The control of multiplicity in
sequential testing typically involves imposing serial constraints on error rates over time, which
requires that, for example, the family wise error rate (FWER) or false discovery rate (FDR;
Benjamini and Hochberg, |1995) must fall below a pre—specified level ¢ at all decision points.

The online testing problem may arise from a range of applications. For example, the qual-
ity preserving database (QPD) framework (Aharoni et al., 2010) has been widely employed
by many research teams from diverse backgrounds. Some notable databases include Stan-
ford’s HIVdb that serves the community of anti-HIV treatment groups, WTCCC’s large-scale
database that is distributed to assist various whole-genome association studies, and the Na-
tional Health Institute (NIH) influenza virus resource (I1VR) that has been intensively queried
by numerous researchers for designing new vaccines and treatments. The proper and e cient
management of these large databases calls for new analytical tools for handling thousands of
hypothesis tests with real-time decisions made in a sequential fashion. For instance, the NIH
IVR has been used to investigate thousands of biomedical hypotheses and, per the record in
PubMed, has lead to more than 1,000 scientific publications as of January 2020. It has be-
come increasingly important to develop a powerful and e<ective monitoring system to control
the false positive findings over time. Another important application scenario, which is fre-
quently encountered in finance, social media and mobile computing, is the real-time detection
of anomalies based on high—frequency and large—scale time series data. For example, large
travel service providers closely monitor the number of changes or cancellation requests of ex-
isting itineraries. An abnormal spike usually signifies an unexpected event. It is important for
the company to detect such events early and make necessary adjustments. The development
of online detection system plays a key role for providing novel and timely marketing insights

and avoiding adverse financial losses.



Large-scale testing under the online setup poses several new issues that are not present in
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conventional “o=ine” setup. First, a real-time decision must be made before the next data
point arrives. This makes conventional step—wise testing methods no longer applicable. For
instance, the well-known Holm’s procedure (Holm/[1979) for FWER control and Benjamini—
Hochberg’s procedure for F DR control both involve first ordering all observed p-values and then
choosing a threshold along the ranking. However, the ranking step becomes impossible due to
the absence of future data. Second, in contrast with conventional FWER and FDR criteria
that only require an overall assessment of the multiplicity in simultaneous testing, the online
methods must proceed with more stringent error constraints that are imposed sequentially
at every decision point. This not only leads to decreased power in detecting signals but also
calls for more carefully designed online testing rules. Third, the data stream often encodes
useful local structures, including signal magnitudes, sparsity levels and grouping patterns, that
may vary over time. It is crucial to develop flexible and adaptive online rules to exploit the
underlying domain knowledge and informative structures. Fourth, the online decision-making
process, which proceeds sequentially without the knowledge of future, may come to a halt when
the total error budget, or alpha—wealth, is exhausted. As a result, the investigator may miss
all potential discoveries in the future. This concern must be carefully addressed because in
many applications the hypothesis tests are conducted in an ongoing manner with unpredictable
patterns — even the total number of hypotheses to be investigated can be unknown. Finally,
how to wisely allocate and invest the alpha—wealth to ensure the validity in error control while
maintaining high statistical power of online testing rules in the long run has remained as a key
issue that requires much research.

The online FDR control problem has received much recent attention and great progresses
have been made. The alpha-investing (Al) idea (Foster and Stine, 2008) and its various
generalizations (Aharoni and Rosset, 2014; Ramdas et al., 2017; Javanmard et al., 2018) have
served as the basic framework and proved to be edective. Carefully designed Al rules are
capable of handling an infinite stream of hypotheses and incorporating informative domain
knowledge into the dynamic decision-making process. Beginning with a pre—specified alpha—

wealth, the key idea in Al algorithms is that each rejection gains extra alpha—wealth, which



may be subsequently used to make more discoveries at later time points. The generalized Al
(GAI) algorithms (Aharoni and Rosset, 2014; Robertson and Wason,| 2018; Lynch et al.,[2017)
are developed for a wider class of pay-out functions, enabling the construction of new online
rules with increased power. The GAl++ framework (Ramdas et al.|2017) improves the power
of GAl methods uniformly and is capable of dealing with more general settings. The new
class of weighted G Al++ methods are flexibly designed to allow “indecisions” and are capable
of integrating prior domain knowledge. To alleviate the “piggybacking” and “alpha—death”
issues of Al rules, [Ramdas et al.|(2017) discussed the concept of decaying memory FDR. To
edectively incorporate structural information into online inference, the SAFFRON procedure
(Ramdas et al., [2018) derived a sequence of thresholds that are adaptive to estimated sparsity
levels and showed that the power can be much improved.

This article develops a new class of structure—adaptive sequential testing (SAST) rules for
online FDR control with several new features. First, in contrast with existing Al and GAI
rules whose building blocks are p-values, the class of SAST rules are built upon the conditional
local false discovery rate (Clfdr), which optimally adapts to important local structures in the
data stream. Second, the sequential rejection rule based on Clfdr leads to a novel alpha—
investing framework that is fundamentally di<erent from that in Foster and Stine (2008). The
new framework precisely characterizes the tradeo<s between di<erent actions in online decision
making, which provides key insights for designing more powerful online FDR rules. The new
Al framework also reveals that SAST automatically avoids the “alpha—death” issue in the
sense that its operation always reserves budget to reject new hypotheses, and can proceed
in an ongoing manner to any time point in the future. Finally, by adaptively learning from
past experiences and dynamically allocating the alphawealth, SAST can e<ectively avoid the
“piggybacking” issue and improve its performance as more data are acquired. Our theoretical
and numerical results demonstrate that SAST is edective for online FDR control, and achieves
substantial power gain over existing methods in many settings.

The article is organized as follows. Section 2 first introduces the model and problem
formulation, and then develops the oracle SAST procedure for online FDR control by assuming

that model parameters are known. Section 3 discusses computational algorithms, proposes the



data-driven SAST rule and establishes its theoretical properties. Simulation is conducted in
Section 4 to investigate the finite sample performance of SAST and compare it with existing
methods. SAST s illustrated in Section 5 through applications for identifying diderentially
expressed genes and detecting anomalies in time series data. The proofs are provided in the

online supplementary material.

2 Oracle and Adaptive Rules for Online FDR Control

We first describe the model and problem formulation in Section then discuss three key
elements in the proposed SAST rule in turn: a new test statistic to capture the structural
information in the data stream (Sections 2.2 and 2.3); a new alpha—investing framework to
characterize the gains and losses in sequential decision making (Section 2.4); and a new adap-

tive learning algorithm to optimize the alpha—wealth allocation (Sections 2.5).

2.1 Model and Problem Formulation

Denote T a continuous temporal domain and t 2 T a time point. Let T -» T be a discrete,
ordered and evenly spaced index set for time IabeIsE Suppose we are interested in testing a
sequence of null hypotheses {H¢ : t2 T} based on data stream X = (Xt :t2 T). To describe
the true states of nature, define Bernoulli variables v+, where vy = 0/1 if H; is true/false.
Let {Tt B P(V¢ = 1) :t2 T} denote the local sparsity levels that may vary over time. The

observations can be described using a hierarchical model:
\/t & Bernoulli(?t), th\/t ¢ Fy = (1 ‘/t)FO + \/tFlt; (21)

where Fg and Fy¢ are the null and non-null distributions, respectively. Denote fo and fi¢ the
corresponding density functions. We assume that Fg is known and identical for all t2 T. By

contrast, %y and fi¢ can vary smoothly int2 T.

T may be taken either as {1,2,---,t} on a growing domain or a set of points that lie on a fixed-domain
regular grid: {17, %, . %, 1} witht! 1.



Remark 1. The inhomogeneity assumption reflects that signals may either vary in strengths
or arrive at diderent rates over time. This structural information can be highly informative.
The smoothness assumption makes it possible for pooling information from the observations
in the neighborhood of t. We do not impose further assumptions on %; and Fy¢, both of which

will be estimated non-parametrically.

Let Xt = (X; :i 2 T; i @t) be the collection of summary statistics (e.g. p—values or
z—values) up to time t. Consider a class of online decision rules = { ((Xt):t2 T} 2 {0, 1}7,
where (X?!) represents a real-time decision in the sense that : only depends on information
available at time t, with { = 1 indicating that H¢ is rejected and = 0 otherwise. Denote

t= { (X)) :i2T; i@t} the collection of decisions up to t. The online FDR problem is

concerned with the performance of a stream of real-time decisions. For decisions up to t, let

(p )
i;i2T(1 Vi) i ) (2.2)

( imiar 1)1

FDRY( )= E

where the superscript “t” denotes that the FDR is evaluated at a specific time point. The
goal is to construct a real-time decision rule = { {(X!) :t2 T} that controls the FDR' at
level ¢ for all t 2 T. To compare the power of diderent testing rules, define the average power

(AP) and missed discovery rate (MDR) as

UV
pot;i2T Vi i . MDRY( %=1 APY(Y). (2.3)
E( it ¥

)

To simplify the discussion, throughout this section we assume that the distributional in-

APY( ) =

formation such as the non-null proportion %; and density function f; in Model re known.
Section 3 considers the case where model parameters are unknown and discusses in detail

related estimation and implementation issues.

2.2 The oracle rule for simultaneous testing

The goal of this section is to justify the fundamental role of Clfdr as the building block of the

proposed online FDR rule.



The online decision-making process is complicated due to the serial constraints on FDR
and absence of future data. To focus on the essential issue, we first consider an ideal setup
where a hypothetical oracle observes all data in a local neighborhood at once and makes a
batch of simultaneous decisions. Let d denote the size of a neighborhood. Consider the
collection of hypotheses in a neighborhood prior to t' d: {H; :t d+132i 3t}
Denote the neighborhood Ny4(t*“) = {t“ d+ 1,:--,t*“} and the simultaneous decisions ' = {
;12 Ng(t<)}, where < is allowed to depend on the entire d-vector X'~ = {X; :i 2 Ng(t“)}.
Unlike (, we only require that the FDR is controlled for the d simultaneous decisions:

(p
iBNd(t“-)(l \/i) i

FDRS( “)=E , (2.4)

(" i2ang(e=) )1

“w_r”n
S

where the superscript indicates a simultaneous—type FDR concept.

The simultaneous testing of multiple hypotheses can be conceptualized as a two-stage
inferential process: firstly ranking all hypotheses according to a significance index and secondly
choosing a cuto< along the ordered sequence. This process can be described by a thresholding

rule of the form

= {I(«; Bc):i2 Ng(t)},

where () is an indicator function, «; is the significance index of H; and c is the cutod of
k-i. For example, the BH procedure uses the p-value as the significance index to order the
hypotheses, and implements a step-up algorithm to determine a data-driven cuto< c.
However, the p-value is ine cient for online FDR analysis as it fails to capture the impor-
tant structural information in the data stream. We propose to use the conditional local false

discovery rate (Clfdr) as the significance index to order the hypotheses:

Clfdre(xe) = P(Ve= O[Xe = xq) = = )faxe) oo, (2.5)

ft(Xt)

Denote Clfdr(y), -+, Clfdr) the ordered Clfdr values in Ng(t“) and H(), -, H(q) the

corresponding hypotheses. To determine the cuto< for simultaneous testing, we apply a step-



wise algorithm ( _ )
1 X
k= max j:—- Clfdrj@ée . (2.6)
J i1
Then the threshold is ¢ = Clfdr, and we reject Hiy), -+, Hi). The Clfdr rule ( may
be viewed as an oracle rule that sees all data in a local neighborhood at once and then
makes simultaneous decisions. In Appendix we establish the optimality property of the
Clfdr rule for simultaneous testing under the “o=ine” setup. An infinite data stream can
be approximately by sequential data points arrived in batches. Intuitively, the Clfdr statistic

provides a good building block for developing new online sequential testing rules as it is optimal

for simultaneous inference in each batch of data points.

Remark 2. In the “o=ine” setup for simultaneous testing with a covariate sequence, which
includes the Clfdr rule ( as a special case, Cai et al.|(2019) develops asymptotic optimality
theory. We can similarly show that ( is asymptotically optimal in the sense that it achieves
the benchmark of a hypothetical oracle. However, the optimality issue in the online setup,
which depends on many other factors such as the optimal allocation of alpha—wealth and

prediction of future patterns over time, is still an open issue and requires much research.

2.3 Adapting to local structures by Clfdr: an illustration

The incorporation of structural information and domain knowledge promises to improve the
power of existing FDR procedures (Genovese et al.] 2006; Cai and Sun,[2009;/ Hu et al.,[|2010;
Lei and Fithian, [2018; |Cai et al.) 2019). For example, the works by Hu et al.|(2010), Li and
Barber|(2019) and Xia et al.|(2020) showed that the weighted p-values can be constructed
to capture the varying sparsity levels of ordered or grouped hypotheses. In contrast with the
p-value, the CIfdr takes into account important structural information such as t; and fy, which
makes Clfdr an ideal building block for multiple testing with inhomogeneous data streams. We
present an example to illustrate the advantage of the Clfdr rule.

Consider the following situation where the data stream {X1, X5, ..., X¢, ...} obeys a ran-



dom mixture model with varying sparsity levels:
Xe (1 F¢)N(0,1) + TeN(w, 1). (2.7)

Model is a special case of Model (: the null and alternative densities are fixed and
the dynamic part is fully captured by the varying proportion ;. The key idea of Clfdr and
weighted p-value (in the form of pi/wt, where w; is the weight for H¢) is to upweight the
hypotheses in a local neighborhood where signals appear more frequently (e.g. in clusters).
To compare the edectiveness of diderent weighting methods, we simulate a data stream for
testing m = 5000 hypotheses. The top row in Figure Esets *t = 0.5 in blocks [1001 : 1150],
[2001 : 2150], [3001 : 3100] and [4001 : 4150], and % = 0.01 elsewhere. We vary p from 2 to
4. The bottom row sets u = 2.5 and vary t; from 0.2 to 0.9 in the above blocks. The block
structure is highly informative and can be exploited by Clfdr and weighted p-values to improve
the power. We apply the following methods at FDR level ¢ = 0.05 by assuming that the model
parameters in ( are known: BH (Benjamini and Hochberg/ 1995), the structure—adaptive
BH algorithm (SABHA; [Li and Barber, 2019) using weighted p-values with wy = 1/(1 1),
the GAP method (Xia et al.; [2020) using weighted p-values with wy = T/(1 %), and the
Clfdr rule 1; We can see that all methods control the FDR at the nominal level. In terms
of the power, BH can be improved by SABHA and GAP, both of which are dominated by
the Clfdr rule. Clfdr captures the varying structure in the data stream more edectively: in

a

addition to varied %, it also adapts to fi, leading to further power improvement.

2.4 A new alpha—investing framework

Existing FDR methods such as the BH and Clfdr procedures are simultaneous inference pro-
cedures that involve first ordering the significance indices (p-value or Clfdr) of all hypotheses
and then applying a step-wise algorithm to the ordered sequence to determine the threshold.
However, the ranking and thresholding strategy cannot be applied to the online setting where
the investigator must make real-time decisions without seeing future observations. This sec-

tion discusses how to avoid the overflow of the FDR at any given time t and how to e ciently
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Figure 1: Structure—adaptiveness: Clfdr vs weighted p-values.

allocate the alpha—wealth to increase the power.

We start with a novel interpretation of the alpha—investing idea by recasting the Clfdr
algorithm ( as a varying—capacity knapsack process. Denote Ry -» {H1, Hy, -+, H¢} the
collection of rejected hypotheses at time t. The decision process ( can be conceptualized
as a sequence of comparisons of two quantities: the nominal FDR level ¢ and the average of

the rejected Clfdr values. Specifically, ( motivates us to consider the constraint
Ave{Clfdr; :i 2 Ry} B¢, forallt2 T, (2.8)

where Ave(A) denotes the average of the elements in set A. The simultaneous testing setup is
only concerned with one constraint at the last time point when all data have been observed.
By contrast, the online setup poses a series of constraints, e.g. ( must be fulfilled for every
t to avoid the overflow of FDR® (2.2).

We view ( as a dynamic decision process resembling a knapsack problem, where Hy can

10



only be rejected when the following constraint is satisfied:

X
Clfdry dBRCy = (Clfdr; ), fort=1,2,--- (2.9)

Hi2R: 1
where C; is the capacity (of the knapsack) at time t with the default choice C; = 0. The
capacity may either expand or shrink over time, depending on the sequential decisions along
the data stream. This dynamic process can be described as follows. The initial capacity is
C, = 0. Starting from t = 1, we reject Hy if ( is fulfilled. If Hy with Clfdry < ¢ is rejected,
then the capacity C increases by ¢  Clfdry (gain); hence we earn bonus room. By contrast,
if Hy with Clfdry > ¢ is rejected, then C; decreases by ¢  Clfdr: (loss).

The decision process ( provides a new alpha—investing framework that precisely char-
acterizes the gains and losses in sequential testing. In contrast with the alpha—investing frame-
work in |Foster and Stine|(2008), which views each rejection as a gain of extra alpha—wealth,
the new characterization ( reveals that not all rejections are created equal: rejections with
small Clfdr will lead to increased alpha—wealth whereas rejections with large Clfdr will lead to
decreased alpha—wealth. This view provides key insights for designing more powerful online
FDR rules. Moreover, the new Al framework reveals that utilizing Clfdr rules can automat-
ically avoid the “alpha—death” issue. Specifically, the process ( can always reject new
hypotheses with Clfdr < ¢ regardless of the current budget, and can proceed in an ongoing

manner to any time point in the future.

2.5 Oracle—assisted adaptive learning and the SAST algorithm

To e ciently allocate the alpha—wealth, we need to further refine the online algorithm (
to avoid making imprudent rejections that can potentially eat up all the budget. The specific
issue is referred to as “piggybacking” (Ramdas et al., 2017), which, in a vivid way, describes
the phenomenon that a string of bad decisions were made due to previously acquired budget.

To see the necessity of taking careful actions, suppose that we have accumulated some
bonus room over time before observing a very large Clfdr, satisfying (. Although rejecting

H: is an action that obeys the FDR constraint, the action can be unwise since it is possible

11



that we can invest the extra “cost”, Clfdry <, to make more discoveries at later time points.

A practical strategy is to incorporate a “barrier”  and modify ( as

Clfdre < ¢and Clfdry € X (Clfdr; ). (2.10)
Hi2R¢ 1
The barrier can edectively prevent “piggybacking” by filtering out large Clfdry and hence
saving budget for future.

The choice of  depends on the pattern of future hypotheses. However, all online methods
must proceed without seeing the future. To resolve the issue, consider the oracle Clfdr rule
that sees all data in a local neighborhood at once. If we assume that the hypothesis
stream is “locally stable” in its patterns, then  may be informed by the oracle rule (
simultaneously conducted on a local neighborhood Ng4(t) = {t d 1,:--,t}. The rationaleis
to use recent past data to get some ideas about the patterns of hypotheses to arrive in the near
future. Concretely, we first order {H; :i 2 Ng4(t)} according to their Clfdr values, then run the
“o==-ine” algorithm ) to set the barrier = Clfdr(.q). The online algorithm, by acting
as if it sees the future, can edectively filter out large Clfdr values and hence avoid ine cient
investments. The operation of algorithm ( also implies that the barrier  may be either
raised or lowered according to the varied %; and f; in the dynamic model, which is desirable in
practice for dealing with inhomogeneous data streams. In Section we illustrate that the
incorporating of the barrier can greatly reduce the MDR (.

Finally, we present the proposed structure—adaptive sequential testing (SAST) rule (oracle
version with known parameters) in Algorithm 1. The SAST algorithm essentially utilizes the
sequential constraints ( with barriers set by the o=ine algorithm .

We can see that Algorithm 1 runs two parallel procedures: an online procedure for making
real-time decisions and an “o==ine” procedure for determining the barrier. Thus the informa-
tion of every data point has been used twice: first X is used for real-time decision—making at
time t, then Xy is stored as past data so that we can “learn from experiences” via the o=ine

oracle. The following theorem shows that Algorithm 1 is valid for online FDR control.

Theorem 1. Consider the online FDR procedure = ( ¢:t2 T), where ¢ is determined by

12



Algorithm 1. The oracle SAST rule.

Intialization: Ag = ;, o= <.

Updating the barrier: Let Ng(t) = {t d+ 1,---,t}. Sort {Clfdr; :i 2 Ng(t)} from
the smallest to largest and denote the ordered statistics as {ledr(ﬁ), CIfdr(tz), - h

If Clfdr};) > ¢, keep the same barrier = 1. Otherwise let k= max{j : Q{j) @ ¢},
where Qt(j) = Jl I Clfdr};), and update the barrier as = Clfdr, ).

Decision: Let Ry = {i @t: ; = 1} and denote |R¢| its cardinality. If Clfdry <
$
P
and {|R¢ 1|+ 1} * ,5, ,Clfdri+ Clfdry B¢, then (= 1. Otherwise = 0.

Algorithm 1. Denote '= (;:iBt;i2 T). Assume that the Clfdr values are known. Then

we have FDRY( t) @ ¢, forall t2 T.

3 Data-Driven SAST and ,ts Theoretical Properties

We first develop estimation methodologies and computational algorithms to implement the
SAST rule in Section then establish the theoretical properties of the data-driven procedure

in Section

3.1 Data-driven procedure and computational algorithms

We assume that the null distribution of z-values fq is known, which is a standard practice in the
Iiteratur The key quantities remained to be estimated are T; and fi(x). In our motivating
applications such as queries of QPDs and anomaly detection in high—frequency time series, the
databases or servers have already collected large amounts of data at the beginning of the
online FDR analysis. Let {X ,,---, X 1, Xo} denote the available data and suppose we
start online testing at t = 1 with a data stream {X3, X5, .. .}ﬂ

The conditional density fy can be estimated using standard (one—sided) bivariate kernel

2|n situations where the empirical null is more appropriate (Efron,|2004), fo can be first estimated using the
method in|Jin and Cai|(2007) and then treated as known.

3In situations where the online FDR analysis must start without prior data, we suggest applying existing
methods such as LOND first and then switch to SAST as more data are acquired.
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methods (Silverman, [1986):

P t1 ;

filx) = 1200 _
j=t d«1 Kn (j t)

, (3.1)

where d @ Kq is the length of the moving window that includes a pre-specified number of

observations, K (t) is a kernel function, h; and hy are the bandwidths, with Kn(t) = h 1K(t/h).

Remark 3. In analysis of large-scale high-frequency time series data such as the NYC taxi
data (Section , we can pre-specify d, say, to be 1000 to speed up the computation. This
virtually has no impact on the estimator fe (compared to using all previous data). Otherwise
we can always set d = t. Note that our estimator has followed the standard practice in density

estimation, which does not include X; when estimating fi(x) at time t.

Next we propose a weighted screening approach to estimate the unknown proportion {% :
t2 T}. The key idea is to use a kernel, which weights observations by their distance to t, to
pool information from nearby time points. Let ht be the bandwidtfﬂ and K a kernel function
satisfying R K(t)dt = 1, R tK(t)dt = 0 and R t2K(t)dt < 1. Consider a screening procedure
T(B)={t d+ 1RiAt 1:P; > B}, where [ is a pre-specified threshold. We propose the
following estimator based on [Cai et al.|(2019):

P .
i27¢(0) Kh, (t 1)

(1 B) U} g Kn (t i)

-y
[agice)]
1
=

(3.2)

Now we provide some intuitions of the estimator . First, at time t, define vu(t,i) =
Kh. (It i])/Knh,(0). We can view my = P 1 411 Vn(t, i) as the “total” number of observations
at time t. Suppose we are interested in counting how many null p-values are greater than
among the my “observations” at t. The empirical count is given by Pi2T Vh(t, i), whereas the
expected count is given by {P tI:% g+1 Vh(t, )H1 %1 B). Equation ) can be derived

by first setting equal the expected and empirical counts and then solving for T;. In Section

“We recommend using the same ht in both ( and ( to stabilize the performance.
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3.2] we show that 1 is a consistent estimator of
=1 (1 @) 'P(P>0), (3.3)

which always underestimates Ty and guarantees (conservative) FDR control (Propositions

Remark 4. There is a bias-variance tradeo¢ in the choice of & for the proposed estimator %, . We

shall see that when @ increases, the “purity” of the screening subset T (@) increases, which

decreases the approximation bias of ? (desirable). At the same time, when B increases, the

. . . ~ . . . . . -~

sample size for estimating ¥, will decrease, thereby increasing the variance of the estimator %,
. . . . . .

(undesirable). The common choice of is 0.5. In Section E]we discuss a data—driven

algorithm that chooses @ adaptively.

Combining (B.1) and (B.2), we propose to estimate the Clfdr as
( )

(1 Dfolxd)

EIfdre = min - o1, t2T. (3.4)
ft(Xt)

Our proposed data-driven rule implements Algorithm 1 by substituting difdr, in place of

Clfdry. The data-driven algorithm is summarized in Algorithm 2.

Algorithm 2. The data-driven SAST.

Initialization: Rg = ;, o= €.

n 20 0 ~
Estimation: CIfdre = min %}f“;x‘), 1 , where %Zand f{ are defined by (3.2)]

t t

and (B.1), respectively.
Updating the barrier: Let Ng(t) = {t d+1,---,t}. Sort {dIfdri :i 2 Ng(t)} from
the smallest to largest and denote the ordered statistics as {dflfdr:l), ¢Ifdr§2), - If
(f,lfdrrl) > ¢, keep the same barrier = ¢ 1. Otherwise let k = max{j : Qt(j) @ ¢},
where Qt(j) = JlP .1 ¢Ifdr:i), and update the barrier as ¢ = C[Ifdrfkﬂ).

Decision: Let Ry = {il@t: ;= 1} and derépte |Rt| its cardinality. If clfdre <

v

P
and {|R¢ 1|+ 1} 1 i2r, , CIfdri+ Cifdry B¢, then = 1. Otherwise = 0.
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3.2 Theoretical properties of data—driven SAST

This section aims to show that the data—driven SAST procedure is asymptotically valid for
online FDR control. Our theoretical analysis is divided into three steps. The first step (Propo-

sition (1) shows that a hypothetical rule, which substitutes

cifgrz = & _Tolfolxe) f?))(f()’(xt) (3.5)
t\At

in place of Clfdry in Algorithm 1, is conservative for online FDR control.

Proposition 1. Consider 12 defined by (B.3], then we have 1@ % and CIfdr, @ Clfdr,."

Hence the hypothetical rule using ( is valid (and conservative) for online FDR control.

The second step (Proposition , shows that CI\dr; is a consistent estimator of Clfdr,. We
prove the result by appealing to the infill-asymptotics framework (S$tein, 2012), which
converts the set of time points {1,2,---, t} on a growing domain to a set of points that lieon a
fixed-domain regular grid: {1, 2, ..., ¥%, 1}.; The discussions in Stein (2012) indicate that the in-
fill model is equivalent to the growing domain model under mild conditions: Whent! 1,
the asymptotic arguments, which respectively correspond to letting the grid become denser and
denser in the fixed interval (0, 1] and letting the domain {1,2,---, t} to grow to infinity, can
be essentially established in the same manner. We state the fixed domain theory as it naturally
connects to the familiar density estimation theory, where the notations and regularity
conditions are standard and easy to understand. The growing domain version of the theory
is briefly discussed in Appendix B.3. E]

We can similarly define the bivariate density estimator and the following conditional pro-

portion estimator: p
N 1 izll't()Kht(l |/t)

(1 8) LlgaKn (1 i/t)

(3.6)

The two estimators ( and ( are essentially identical (with rescaled bandwidths).
We state the following regularity conditions. Condition (A1) requires that fi(x) is smooth
in t. Conditions (A2) to (A4) are standard in density estimation theory; see, for example,

(Wand and Jones; [1994).
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(A1l): For any s 2 (0,1] and == > 0, 9 such thatif |s | @ ,s°2 (0,1] then " | fs(x)
fso(x)[dx < omm,

(A2): hy! 0, he! O0andthehe! 1.

(A3): fj(x) < C and R |fj°°(x)|dx< C for all j.

(A4): dhy! 1 andd cth¢ for some c> 0.
Proposition 2. Suppose (A1l)—(A4) hold, then (flfdrt P CIfdr.

In the third step of our theoretical analysis (Theorem @, we establish the asymptotic

validity of the data-driven SAST procedure for online FDR control.

Theorem 2. Assume the conditions in Proposition hold. Then for any given time t, the

data-driven SAST rule (Algorithm 2) controls the FDR' at level ¢ asymptotically.

3.3 Theory for data streams with fixed distributions

SAST learns from past decisions and improves its performance over time through the assis-

tance from an o=ine oracle. The barrier : would become more informative as more tests
are conducted. Specifically, the initial barrier is set to be ¢ at time t = 1, which is very

»

conservative. In the special case when the mixture model has fixed % and fy over time, we
can show that the barrier  would converge to or, Where g is the optimal threshold of
the “om=ine” oracle procedure in Section Hence, provided that the capacity allows, the
operation of ( implies that SAST behaves like an oracle that sees all data points (includ-
ing future ones). Our numerical results show that the FDR levels of SAST are conservative

at the beginning but the FDR becomes closer to ¢ as we sequentially update the barrier with

information from more time points.

Theorem 3. Assume conditions from Theorem E]holds. Then under the model with % @ %
and fy @ f, the data-driven barrier "t ! or whent! 1, where R is the optimal threshold

of the oracle FDR procedure for simultaneous testing defined in Section
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4 Simulat.on

In this section, we first provide some details in implementation. Simulation studies are con-
ducted in Section 4.2 to compare the oracle and data-driven SAST procedures with other
existing online FDR rules. Section 4.3 presents an example to illustrate the merit of including

a barrier in online sequential testing.

4.1 Implementation Details

In our simulation, the conditional density function f¢(x) is estimated using R function density,
where the bandwidths hy, and hy are chosen based on |Silverman| (1986). A key step in the
SAST algorithm is to estimate t?. We propose to choose a data-driven Bgy by running BH at
4 = 0.5. Roughly speaking, in the subset Tt(;H) ={t d+ 1RiBt 1:P;< @}, 50% of the
cases come from the null (e.g. the expected proportion of false positives made by BH). It is
anticipated that in the remaining set T¢(@) = {t d+ 1R@i&At 1:P; > Bgy}, whichis used to
construct our estimator, majority of the cases should come from the null. This data-driven

scheme ensures a small bias in approximation, while maintaining a larger sample size compared

to the standard choice of @ = 0.5.

4.2 Comparisons of online FDRs and MDRs

We compare the proposed SAST procedure with its competitors for online FDR control. The

following methods are included in the comparison:

SAST with known %; and f; (SAST.OR, Algorithm 1)

SAST with estimated model parameters (SAST.DD, Algorithm 2)

e LOND: the method proposed by Javanmard, A. and Montanari, A. (2016).

e LORD++: the GAl++ rule proposed by Ramdas et al.|(2017).

For the general simulation setup, we choose m = 5000 and the pre-specified FDR level
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4 = 0.05. The data are simulated from the following model:
Xe (1 F¢)N(0,1) + TeN(w, 1).

For the data—driven method, we need an initial burn—in period. In simulation we generate
500 data points prior to t = 1 to form an initial density estimate. The varying density and
proportion estimates are updated every 200 time points. The following simulation settings are

considered:

1. Block Pattern: % = 0.01, fort2 (1, 1000][ (1200, 2000] [ (2200, 3000] [ (3200, 4000] [
(4200, 5000]; %t = 0.6, for t 2 (1000, 1200] [ (2000, 2200]; % = 0.8, for t 2 (3000, 3200] [

(4000, 4200]. Vary u from 2 to 4.2 with step size 0.2.
2. Constant Pattern: Ty = 0.05, t= 1,---,m. Vary p from 2 to 4.2 with step size 0.2.
3. Linear Pattern: Vary % linearly from 0 to 0.5. Vary p from 2 to 4.2 with step size 0.5.

4. Sine Pattern: %y = (sin 2—;: + 1)/4, %; ranges between 0 to 0.5, vary p from 2 to 4.2

with step size 0.5.

We apply diderent methods at ¢ = 0.05. The empirical FDR and M DR levels are evaluated
using the average of the false discovery proportions and missed discovery proportions from 1000
replications. To investigate the performance of diderent methods in the online setting, we
display the empirical FDR' and MDR?! levels at various time points, where the intermediate
evaluation points ranges from 1500 to 5000 with step size 500. The results for block and

constant patterns are summarized in Figure @ and the results for the linear and sine patterns

are summarized in Figure

The following observations can be made from the simulation results.

(a) All methods control FDR! at the nominal level at all decision points being considered.
SAST.OR achieves the nominal level very precisely. SAST.DD is conservative. LOND

and LORD++ are more conservative compared to SAST.DD.
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Figure 2: Simulation results for Settings 1 and 2: signal proportions are varied in a block
fashion and kept constant respectively. Various signal strengths are investigated as well. Our
data-driven and oracle procedures provide significantly more power while controlling FDR
under the nominal level in comparison with others.
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Figure 3: Simulation results for Settings 3 and 4: signal proportions are varied in linear and
sine patterns, respectively. Our data-driven and oracle procedures provide significantly more
power while controlling FDR under the nominal level in comparison with others.
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(b) SAST.DD is inferior compared to SAST.OR. This is largely due to the conservativeness
of the estimator 7%. The gap in the performances between SAST.DD and SAST.OR
narrows as the signal strength becomes stronger, in which situation the estimator %,?

becomes more precise.

(c) In general LOND can be much improved by LORD ++, which can be further improved by
SAST.DD. The gap in power performances between SAST.DD and LORD++ narrows
as the signal strength becomes stronger, in which situation it is easier to separate the

signals from null cases.

(d) When %y is fixed over time, the signals arrive at a constant rate and there is no informative
structural information in the data stream (Setting 2: constant pattern). SAST.DD still
outperforms LOND and LORD++ because our Al framework based on Clfdr precisely
characterizes the gains and losses of diderent decisions; this not only leads to more precise

FDR control but also optimizes the alpha—wealth allocation in the online setting.

4.3 Edects of the barrier

This section presents a toy example to illustrate that the barrier, which aims to prevent the
“piggybacking” issue (Ramdas et al.; 2017), can greatly reduce the M DR by allocating existing
alpha—wealth in a more cost—edective way. Consider the previous block structured setting
(Setting 1 in Section 4.2). Figure E|shows the FDR and MDR comparisons for the following
methods at FDR level ¢ = 0.05: (i) oracle SAST rule (OR); (ii) oracle SAST rule with no
barrier (OR_nob); (iii) data-driven SAST rule with estimated parameters (DD, Section 3);
(iv) data-driven SAST rule with no barrier (DD _nob).

We can see from the comparison that although the FDR levels between the two oracle
methods are roughly the same, the MDR levels are greatly reduced by incorporating the barrier
(hence the alpha—wealth is invested more e ciently). The same patterns can be observed for

the two data-driven procedures.
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Figure 4: The incorporation of the barrier greatly reduces the MDR levels.

5 Applications

Online FDR rules are useful for a wide range of scenarios. We discuss two applications,
respectively for anomaly detection in large—scale time series data and genotype discovery under

the QPD framework.

5.1 Time series anomaly detection

The NYC taxi dataset can be downloaded from the Numenta Anomaly Benchmark (NAB)
repository (Ahmad et al.,|2017), which contains useful tools and datasets for evaluating algo-
rithms for anomaly detection in streaming, real-time applications. The dataset records the
counts of NYC taxi passengers every 30 minutes from July 1, 2014 to January 31, 2015, during
which period five known anomalies had occurred (the NYC marathon, Thanksgiving, Christ-
mas, New Years day and a snow storm). In Figure E we plot the time series, with the known
anomalous intervals displayed in red rectangles.

We formulate the anomaly detection problem as an online sequential multiple testing prob-
lem. The basic setup can be described as follows. The null hypothesis H; corresponds to no
anomaly at time t. We claim that an anomaly occurs at t if Hy is rejected. A rejection within
the red intervals is considered to be a true discovery.

The application of online FDR rules requires summarizing the stream of counts data as

a sequence of p-values or CLfdr statistics. However, directly calculating the p-values based
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Figure 5: NYC Taxi passenger count time series from July 1st 2014 to Jan 31st 2015. Blue
lines are Loess smoothed time series indicating the overall trend change.

on this dataset would be problematic as the data demonstrate strong trend and seasonality
patterns. We first use the R package stlplus to carry out an STL decomposition (Seasonal
Trend decomposition using Loess smoothing; Cleveland et al., 1990) to remove the seasonal and
trend components. The residuals, displayed in the top 3 rows of Figure E]are standardized and
modeled using a two-component mixture (. However, as can be seen from the histogram
at the bottom of Figure @ the null distribution is approximately normal but deviates from
a standard normal. Following the method in Jin and Cai |(2007), we estimate the empirical
null distribution as N(0.028,0.618). We apply the BH (pretending all observations are seen
at once), LOND, LORD++ and SAST.DD at FDR level 0.0001. For the SAST.DD method,
the neighborhood size d and initial burn-in period are both chosen to be 500. In calculating
the Clfdr, fo(x) is taken as the density of the estimated empirical null FB. Moreover, the
p-values are obtained by the formula P; = 2Fo( |Zi|), where z-scores are computed based on
the residuals. Figure E]summarizes the anomaly points detected by di<erent methods.

We can see that for the several anomaly time periods labeled, SAST can detect more points
than other methods. Table summarizes the total number of rejections within the labeled

time windows. It may appear counter-intuitive that SAST, being an online procedure, rejects
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Method Number of Discoveries
O+=ine BH procedure 179
Online SAST.DD (Proposed) 201
Online LOND 137
Online LORD++ 178

Table 1: Number of discoveries made by various online and o=ine FDR procedures for the
NYC taxi dataset, nominal FDR level at 0.0001.

more null hypotheses than the o=ine BH procedure. The reason is that the anomalies tend
to appear in clusters. This structural information is captured by the Clfdr statistic, which

forms the building block of SAST and leads to improved power in detecting structured signals

(Section [2.3).

5.2 IMPC dataset Genotype Discovery

In this section, we demonstrate the SAST procedure on a real dataset from the International
Mouse Phenotyping Consortium (IMPC). This dataset, which has been analyzed in Karp et al.
(2017), involves a large study to functionally annotate every protein coding gene by exploring
the impact of gene knockouts. This dataset and resulting family of hypotheses are constantly
growing as new results come in. Karp et al.|(2017) tested both the roles of genotype and sex
as modifiers of genotype edects, resulting in two sets of p-values: one set for testing genotype
edects, and the other for sexual dimorphism. This dataset has been widely used for comparing
online FDR algorithms. Currently it is available as one of the application datasets in the
R-package OnlineFDR that implements methods such as LORD, LOND and LORD++. In
order to implement our proposed SAST procedure, we need the original z-scores instead of p-
values. However, the directions of edects cannot be determined based on p-value alone. Hence,
we transform the p-values into z-scores by introducing a Bernoulli random variable to ensure
asymptotic symmetry around 0: z= X  1(p/2) (1 X) 1(p/2), where X «- Ber(0.5

Table summarizes the total number of discoveries made by each method. We can see that

SAST makes more discoveries than other alpha—investing methods. Similar to the analysis

SWe recommend that in the future the biomedical community should report, in addition to p-values, the
edect sizes. Thus we also know the direction and magnitude of an interesting signal. In fact, converting z-scores to
p-values may lead to loss of information (cf. Sun and Cai, 2007).
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with the known anomaly regions marked in red rectangles. Bottom row: Histogram of the
remainder term from STL decomposition, the red curve indicates the estimated empirical null
distribution N(0.028, 0.618).
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Anomalies marked by offine BH procadure
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Figure 7: Anomaly points detected by various algorithms, our data-driven SAST procedure
detects the most anomaly points within the labeled window marked by red rectangles. Nominal
significance level chosen as 0.0001.

in Section SAST rejects more hypotheses than the o=ine BH procedure. One possible
explanation is that Clfdr is more powerful than p-values since it captures useful structural

information in the data stream.

27



Method Genotype | Method type
SAST 12975 online
BH 12907 o™==:ine
LORD++ 8517 online
LOND 2905 online
Fixed threshold 0.0001 4158 online

Table 2: Number of discoveries made by various online and o=ine FDR procedures for the
IMPC dataset on Genotypes, nominal FDR level at 0.05.
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Online Supplementary Material for “Structure—Adaptive
Sequential Testing for Online False Discovery Rate Control”

This supplement contains the proofs of main theorems (Section A), other theoretical results

(Section B), and optimality theory on simultaneous testing (Section C).

A Proof of main theorems

A.1 Proof of Theorem 1

Note that the Clfdr is defined as Clfdr; = P(vj = 0|X;). Then by the definition of FDR and
double expectation theorem, we have:
( X )
FDRt = Ex (|Re| _1) 1 Clfdr;
2Rt
. .. P N
By construction of the decision rule, (|R¢| _ 1) 1, r, Clfdri @ ¢ for all realization of X. It

follows that FDR @ <.

A.2 Proof of Theorem

We need the following lemma:
P

n

s _ ai
Lemma 1. Suppose ap ® 0 and |an| is bounded for all n, then Iilm1 _i=1 91 P,
n! n

The proof of lemma [1|is elementary thus omitted. By definition of our algorithm, if

élfdrt d then = 1. Note that, for any == > 0,
( ) ( )

X S
P I(Clfdri< ¢ =)< 1 =P I(CIfd?, < ¢ =)< M
i=1 M=(1 i=1 )
e X
P (CIfdrf < ¢ =)< M .
M=1 i=1



Note that Clfdr; is a random variable from random mixture model ( with a non-vanishing

proportion of nonzero signals, we have

( @ )

P I(CIfdrP< ¢ w=)< M =0
i=1
P 1 o = Pl .
for every M. We have P { ,Z; [(Clfdr{< ¢ )< 1} = 0. Now, _, I{CIfdr; B ¢) < 1
would imply[|CIfdr; CIfdt; | > == infinitely many times. By Propositi@ 2, H(|Clfdr; CIfdr, |

n P o
> =) 1 0. It follbws that P~ ,_, I(CIfdri@Bd)< 1 =0, hence |Re| ! 1. BB
Proposition

and Lemma [1] we have

P 7]

i2r, CIfdri  Clfdr} P

|Re | ’

P 1. clfd
Finally, the operation of Algorithm 2 implies that —2 l;;‘ | LB 4, It follows that
t
aP @ P > "p #
2 g CIfdri 1> g Clfdr,® 2 RCIFdr
FDR( )=Ex —*t—— BEx ——— =Ex —“——t—— +o(1)@+o(1).
IR ¢] IR ] IR ]

A.3 Proof of theorem 3

(1 T)fo(xi).

Note when both f; and % are fixed over time, the Clfdr statistic reduces to Lfdr; = o0

The optimal threshold in the o=ine simultaneous testing setup would be independent of time

t and the chosen neighborhood. The oracle o=ine rule coincides with the oracle procedure
described in Section 3.2 of Sun and Cai |(2007).

We now introduce some notations:

e Uf( )=t 1Pi=tl(C[fdr(i) <J)|{t|fdr(i) <}

P
ut( )=t 1 (Clifdrf) <){CIfdr{, < }.

US( )= E{(CIfdr® «)I{CIfdr® < }}.
e 1 =sup{ 2(0,1),U4( ) @0} is the “ideal” threshold.

Note that Ut is discrete. To facilitate the theoretical analysis, we define, for difd rip < <



¢Ifdr(i+1), a continuous version of Ut:

~t
i+1,

¢Ifdrm Ot ¢Ifdr(i+1)

6¢( ) = fr
¢ ¢Ifdr(i+1) (flfdr(i) I ¢Ifdr(i+1) (flfdr(i)

where Uit = Ut((flfdr(i)). It is easy to verify that L]E is continuous and monotone. Hence its
inverse UE Lis well defined, continuous and monotone.

Next we show the following two results in turn: (i) Ut( ) 1° ut()and (ii)Uté Yo)1* .

Proof of (i). Note that Ut( ) I Ul () by the WLLN, so that we only need to establish
that Ot( ) P Ut( ). We need to following lemma:
Lemma 2. Let V; = (CIfdr? <¢)I(CIfdr? < ) and V;

v R 2
E V; Vi = 0(1).

(dlfdri é)I{Cﬂfdri< }. Then

Proof of Lemma Using the definitions of \71 and V;, we can show that

H @, @, ¢ H @,
Vi V; = Cifdry CIfdr? 71 Clifdr @ ,Clfdr28  + Clfdr; ¢ "1 CIfdr @, Clfdr,®>
i
+ (CIfdr?  ¢)21 difdr; > ,CIfdrP®

Let us refer to the three sums on the right hand as I, Il, and I || respectively. By step 2 in

the proof of Theorem 2, | = o(1). Then let " > 0, and consider that
¥ 3
AP Clfdr;@ ,Clfdr; 2(, + ") + P Cifdr; Bt,Clfdr, + "

5

P {ifdri@ ,CIfdr®>

BP{CIfdr2 (, +")}+ P Clfdr® Clifdr; > "

The first term on the right hand is vanishingly small as " ! 0 because difdr; is a continuous
random variable. The second term converges to 0 by Proposition B Noting that 0 B Clfdr; B 1,
we conclude Il = o(1). In a similar fashion, we can show that 111 = o(1), thus proving the

lemma.



P o
Let St = iil(Vi Vi), by Lemma and the Cauchy-Schwartz inequality,

né B Bo
E \7i Vi \7] Vj = 0(1).
It follows that
xt 7l B,
Var t 1S =t 2Var(S¢)Bt 2 E Vi oV
0 i=1
ni B Bo

X . .
+ O @i2 E Vi Vi Vi V; A

RS

=0(1).

By Propositionﬁ E t 1S; ! 0, applying Chebyshev’s inequality, we obtain
t 'se= 0t U'P o,

establishing (i).
Proof of (ii). Since lj(t: is continuous, for any == > 0, we can find > 0 such that
n o

U H0) UF Y UL(4,) <"if US( ) < B. It follows that

n (o] n R n_ (o] (o]
P 08(4) >B P Of*0) Of* Of(q) >

Proposition and the WLLN imply that UE( ) 1P Ul( ). Notethat UL ( ;) = O, then,

¥
P U¢(,) >B ! 0.

Hence, we have

U&(4) = 4, (A.1)

completing the proof of (ii).



B Proof of propositions

B.1 Proof of Proposition

Let Ag = {x : Po(x) > @}, where Pg(x) is the p-value of x. Then

Z
(1 @)1 fo(x)(1 T+ Fefre(x)dx
zhe

(1 ®) * fo(x)(1 Te)dx
Am

(1 @) P(P:> )

= (1 %)

Hence T2 = 1 (1 B) P(Pt>B)B1 (1 %) = 7% By definition of Clfdr;, we have

t
Clfdrf  Clfdry.

Let %, be the decision rule described in Algorithm 1 with CIfdr used in place of Clfdr;.

Let R be the index set of hypotheses rejected by S:. The FDR of J; is

N P

FDR = —CR
( or) . ||'\|;_1|
>
E imr (1 Vi)
- IR_1]
1
= Ex Clfdr;
|R—1|i2R
Since CIfdr?  CIfdry, it follows that
|
1 X
- “li2r

The last inequality is due to the definition of J; which guarantees that

Clfdr? @ «.
i2R

IR _ 1]



B.2 Proof of Proposition

Under the in-fill model, we write

P ,
- jt=t1 a1 Kne (T j/t) Kn (x5 x)

el = "l kn i/

We first state 3 lemmas that will be proved in turn.
RN o,
Lemma 3. Under the assumption of Proposition E fi(x) fe(x) dx! o.

Lemma 4. Under the assumptions of Proposition

yA
Ekt?  tPk?=E  {19(x) 1%(x)}*dx! o.

Lemma 5. Let 12, fi(x), and fo be estimates such that Ek?E 1Bk 1 0, Ekfe(x) fe(x)k2 !

0, Ekfo fok? ! 0, and then EkdIfdr, CIfdrfk?! oO.

By Lemma and Lemma E] together with the fact that fo is known, it follows from Lemma
that Ekdlfdrt CIfdrk2 I 0. Since convergence in second order mean implies convergence

in probability, we have
P

ifdr, © Clfdry.

B.3 Growing domain version of Proposition
In the growing domain framework, Proposition P|takes the following form:

Proposition 3. Suppose:
hj k i
(A1’): For any == > 0, 9T such that for all integers i, j on the interval t log(t)h: ,t ,t
>
R
T, we have [fi(x) fj(x)|dx < o=
(A2’): hy! 0, h{Btand hyhy ! 1.
R
(A3’): fj(x) < C and |fJ.°°(x)|dx< C forallj.
(A4’): d ch¢ for some c> 0.

We have ¢ifdr, P CIfdrP.

The proof follows the same line as the proof of proposition @ thus omitted.



B.4 Proof of Lemma

- R
We first compute Efi(x) fi(x). Note that EKn, (X; x) = K(z)fj(x hyz)dz. Using

Taylor expansion, we have
0 1,2 2.0 2
fi(x hyz) = fj(x) hyzfj(x) + Ehxz f; (x) + o(hy).
It follows that

Z
EKn, (X;  x)  fe(x) = f;(x) ft(x)+%h§(fj@(x) 22K(2)dz + o(h2).

P n R °
let A= U0 gy Kn1 j/t)2h267°(x) 22K(z)dz + Kn (1 j/t)o(h2) . Then
PR Kl D) f(x)}+ A
Efy(x) fe(x)= 78 drtgi s @R I0T .
1 i
j=t d+1 Kn(1 %)
7 (p t 1 . R )
. N S VA « fi(x) fe(x)|dx
[Efe(x) fe(x)|dx= 0 =t 9+l t'“(l i), 150 felx| +o(h?)! o.

j=t d+1Kh 1 J/t)

To see why the last expression goes to 0, note that for any == > 0, by Assumption (A1), we

R
can take such that for all i > (1 )t,  |fi(x) fi(x)|dx < = Hence,
P . R
ite d+1 Kn (1 j/t) Ifi(x)  felx)|dx

P

jt=1il d+1 Kht(l J/t)

P A P R
S aaKn (L0 T IR R)Idx T T e Ke(1 378 (%) fe(x) | dx

= P ; + P ;
}=t1 d+1 Kht(l J/t) Jt=t1 d+1 Kht(l J/t)
Py .
'(=1t 3?1 Kn (1 j/t)
P Jt 1 - +
o j=t d+1 Kh((l J/t)
n o)
Po(1 e . R
Note that hy ! 0, we conclude that it de1 Kn (1 j/t)= 0O Kh,(x)dx ! 0. Also,

sincedhe! 1 ast! 1, wehave ;2 . Kn(1 j/t) ch? for some c.



Po(1 )ic

o Kn (1 j/t)
Thus P ’t'tl dvl " 1 J I 0, and
izt dv1 Kn (1 j/1)

P ., R
fim ATt d+1 Kn (1 j/t)  Ifi(x)  fe(x)[dx
m P

v .
tii ot g Kn(1 /1)

It follows from the boundedness of Ef; and f¢(x) that

z
|Efe(x) fe(x)|%dx ! O. (B.2)
n (o]
Next we compute Var fi(x)
z
Var {Kn,(X; x)}:h— K(z)%fj(x hxz)dz {fj(x) + o(1)}
xZ
= % K(z)?(fj(x) + o(1))dz  {fj(x) + o(1)}?
Y Z

=0 = K(2)dzfilx) +ofh,?)

X

Some additional calculations give

P n R (o]
LK (1 j/t))2o L K(z)2dzf (x)
j=t d+1 ht hx j

Varfe(x)

[»]
{ Jt=t1 d+1 Kht(13 j/t)}?

Ry
6 1 J Kz (x)dx 7
O 4(th ) : 5

n art

U3
o K p (x)dx 5
(z d/t )2

0 4(thshy) 1/ Kn,(x)dx 5
0

2

Therefore, by assumption (A3) and (A4),

Z
Varfe(x)dx = O (thehy) 2 1 0. (B.3)

Since E R {fi(x) fe(x)}2 = R{Ef;(x) fr(x)}2 +Var{fi(x)}dx, ( and ( together imply
that ER{f;(x) fe(x)}2 ! 0.



B.5 Proof of lemma

P
. e K (1 i/t
Define P(Py > B) := pzia@ Knld 1V

T K (L ) Let Py be the p-value of X¢. We will show

EkKP(P: > B) P(Py> B)k*! O. (B.4)

We first rewrite the term

P ) P '
,.,iZTt()Kht(1 i/t) _ iZTt()Kht(l i/t) I(P(x;) > @)
L . = P -

IF=t1 d+1th (1 I/t) itztl d+1 Kht (1 I/t)

R .
By Lemma we have, E ;fi(x) fi(x)dx ! O for every B. In particular, take B = {x :

P (x) > B} use the definition of f; we have

P R
o Kn (1 j/t)E 5 K (X; 0 x)dx
AT . Px)>8 : | PPy > B). (B.5)
j=t d+1 Kh (1 J/t)
To show the lemma, it is su cient to show
Z
E Kn (x;  x)dx ! E{I(P(x;j)> &)}. (B.6)
P(x)>m *

To see why (B.6) implies (B.4], note that (B.6] implies

P ) R P
S @ (1 J/E G0 Kny (X x)dx Cite g Kn (1 /U E((P(x;) > B))
it=t1 d+1 Kh, (1 j/t) . it=t1 d+1 Kh, (1 j/t) '
(B.7)
Next note that
(P, _ ) P, .
S ke (1 /DIPG) > B) S g Ke (1 /) EL(P(x) > B))
E P = P an

it:t1 d+1 Kht (1 i/t) it:t1 d+1 Kht (1 J/t) ’



2 3

(P t 1 H Rl 2
v it e Kn (3 i/t) (P (xi) > B) 06 1 o K: (x)dx 7
ar P - = 4t 5
; it=t1 d+1th(1 I/t) ”Rd/tKh(X)dXUZ
2 0( t ) 3
Zd/t 2

04(thy) Y/ Kn,(x)dx 5.
0

n (0}

R 2
By (A4), we have OlKht(x)dx ¢ for some constant ¢ > 0. Now thy ! 1, implies

S |
Var  _toipan K1 /OIP (x:)>E)

o gen Kng (19/1)

By Chebyshev’s inequality,

s gr1 Kn (1 1/8)1(P(xi) > ) p " arpKne (1 I/ E{I(P(x) > @)}

L . r .
it=t1 d+1 Kht (1 |/t) it=t1 d+1 Kht (1 J/t)

Combining (B.7) , (B.5], (A1) and (A2),

t 1
P(Py> @)= =°

g Kn (L /OIP () >B) p
g ) t

3 > @).
i=t d+1 Khe (1 i/t)

Therefore ( follows.

We now show (. Let o= = p‘h‘x. Write

Z z V4

E Knh (x; x)dx=E Kn (x; x)dx+E Kn (x; x)dx.

P(x)>m x P(x)>,|x,~ X | <o x P(x)>,|x1 X | > o x

Use the normal tail bound,

Z Z
Kn (x; x)dx@ Kn (x; x)dx

P(x)>B, |x; x|>= % [xj x|>em= %

B2exp{ 1/(2hy)}! O.

10



Define Ag = {xj : P(x;j) > @}, let f; be the density function for X;. Note that

z z,z2
E Kh (Xj X)dx = Knh (Xj X)ﬁj(Xj)dXdeP(XP'lxj
lem 2 1 Pl e
= Kn, (x;  x)dxfj(x;)dx;
SRa= D x|<=
= (1 Of{2exp( 1/(2hy))}Ifj(x;)dx;
Z\t--'

! fj(XJ')de: E{|(P(Xj)>)}.
Ap

Hence (B.6) is proved. The lemma follows.

B.6 Proof of lemma

Note that fy(x) is continuous and positive on the real line, then there exists K1 = [ M, M]
such that P(x 2 K, ! OasM ! 1.

Let infyak, fe(x) = lo and ALt = {x : [f(x) fe(x)| lo/2}. Note that

Ekfi(x)  fe(x)k2  (1o/2)2P(AR), then P(AT) 1 0,

we claim that f; and f; are bounded below by a positive number for large t except for an event
that has a low probability. Similar arguments can be applied to the upper bound of fe and fy,
as well as the cases for fg and fE). Therefore, we conclude that fg, fa , ft, and f; are all bounded
in the interval [I5, ly], 0< I3 < |y < 1 for large t except for an event A that has probability
tends to 0. Hence 0 < I < inf,oa min{fo, fo, ft, ft} < SUP,oac max{fo, fo, ft, ft} < Ip <

1. Next note that

fofe(F2 18+ (1 tAf(fo  fo)+ (1 TPfo(fe fi)

¢ifdr,  Clfdr, = )
feft

4

we conclude that

v 2 Vo n
difdr, Clfdr? Bci(1,? 8%+ fo fo +c3 fi fr  inAS.

11



It is easy to see that k¢|fdr Clfdrik? is bounded by some constant L, then
~ A
Ekdifdr, CIfdrik’ BLP(Awm) + c1EKTY  T0K%+ cyEkfy  fik? + c3Ekfp  fok?.

According to the assumptions, we further have that for a given = > 0, there exists M 2 Z*
such that we can find Aw, P(Aw=) < ==/(4L), and at the same time EkT? 1Bk? < w=/(4c,),
Ekat fik?2 < «=/(4c;), and Ek;‘o fok2 < «=/(4c3) for all t M. Consequently, we have

7]
Ekdlfdrt Clfdrik? < == fort M, and the desired result follows.

C Optiyality of the Clfdr rule in simultaneous .esting

The optimality of the Clfdr rule in simultaneous testing is summarized in the following propo-
sition. The idea in the proof essentially follows that in Cai et al.|(2019). We provide it here

for completeness.

Proposition 4. Consider a class of decision rules ( ) = {I(CLfdr; < ) :1&i & m} for
simultaneous testing of hypotheses {H; :i 2 Ng4(t)} in the neighborhood of t. Denote Qor( ) the
marginal FDR of ( ). If €< Qqogr(1), then the oracle threshold ogr = sup{ :Qor( ) @<} exists

and is unique. Define the oracle rule or = {I(CLfdr; or) : 1@i B m}. Then

oRr is optimal for simultaneous testing in the sense that
MFDR( or) B¢, ETP(de) BETP ( or) for all de such that mFDR(d..) B <.

Proof. The proof has two parts. In (a), we establish two properties of the testing rule that
thresholds the Clfdr at an arbitrary , {I(Clfdr; < ) :1&i @ m}. We show that it produces

mFDR < for all and that its mFDR is monotonic in t. In (b) we show that when the
threshold is R, the testing rule, or, exactly attains the mFDR level and is optimal amongst

all valid testing procedures controls mFDR at level <.

Part(a). For the testing rule {I(Clfdri < ) :1Ri B m}, let Qor( ) = ¢ . We first show

12



that ¢ < . Since ClIfdr; = P(Vi = 0|X; = xj), then

(X“ ) (Xm ) # o !

E (1 Vi)i = Ex Evix(1 Vi) = Ex  Clfdri (C.8)

i i i
where notation E is the expected value taken over (X, v'), notation E x is the expectation
taken over the distribution of (X), and E,|x is the expectation taken over v, holding (X)

fixed. We use ([C.8) in the definition of Qor( ) to get

( )

xm
E x (Clfdr; ¢ )I(Clfdr;@ ) = 0. (C.9)
i=1
The equality above implies that ¢ < . To see this, consider that all potentially non—zero

terms arise when Clfdr; , and when this is the case, either (i) ¢ Clfdr; <, (ii)
Clfdri@ ¢ < , or (iii) Clfdr; < d. Notice (i) produces zero or positive terms on the LHS
of , (ii) produces zero or negative terms, and (iii) produces negative terms. If ¢ ,
then only (iii) is possible, which contradicts the RHS. Thus, the testing rule is valid.

Next, we show that Qor( ) is nondecreasing in . That is, letting Q( j) = ¢, if 1< »,
then ¢ | @ ¢ ,. We argue by contradiction. Suppose that 1 < , but ¢; > ;. First, it
cannot be that I(Clfdr; < ;) = 0 for all i, because that implies ¢; = ¢, (both equal 0). Next,

since 1< >,
(ledri <J2)I(ledri < 2) = (ledr. <J2)I(ledri < 1) + (ledr. <J2)|( 1 ledri < 2)

and rewrite (CIfdr; ¢)I(Clfdr; < 1) = (Clfdr; <€9)I(Clfdri< 1)+(¢1  €2)I(Clfdri < 1).

If €, < €4, then

(Clfdr;  €y)I(Clfdri < ) (Clfdr;  <)l(Clfdri < 1)+ (¢7  €)I(Clfdri< 1) (C.10)
+ (Clfdr;  49)I( 1 BCIfdri < 3).
It follows that ( )

xm
E (C|fd|’i <J2)|(C|fdri < 2) > 0.

i=1

13



To see this, consider the expectation of the sum over m tests for the three RHS terms of
(C.10), which we reference as (i), (ii), and (iii) respectively. First, (i) is zero because of (.
Then for each Clfdr; < 5, either (ii) is positive because ¢, < 1, or (iii) is positive because
di < 1.

However, l establishes that E{Pi=”1"(CIfdri d5)I(Clfdri < 2)} = 0, leading to a

contradiction. Hence, ¢1 < <.

Part(b). The oracle threshold is defined as or = sup { 2 (0,1) : Qor( ) B <}. First, let@ =
Qor(1), which represents the largest mFDR level that the oracle testing procedure can be. By
part (a), Qor( or) is non—decreasing. Via the squeeze theorem, for all ¢ < &, thisimplies that
Qor( or) = €.

Next, consider the power of or = {I(Clfdri < oRr) :1Bi B m} compared to that of an

arbitrary decision rule di1= (d,._™..,d. ) such that mFDR(d.« ) @ ¢. Using the previous

result
from part(a), it follows that
( o | ) ( - .)
E (Clfdr; d) g =0 and E (Clfdr; <)d. @O.
i=1 i=1
Take the diderence of the two expressions to obtain
( oo | )
E ( or di)(CIfdri <) 0. (C.11)

Next apply a transformation f(x) = (x ¢)/(1 x) to each §z. Note that because fO(x) =

(1 ¢)/(1 x)?> 0, f(x) is monotonically increasing. Then order is preserved: if Clfdri < og
then f(CIfdr;) < f( ogr) and likewise for Clfdr; > og. This means we can rewrite b, =

I[{(ledr. 6’)/(1 C|fdr])}< OR]; where OR = ( OR 6’)/(1 OR)- It will be useful to note
that, from part (a), we have ¢ < gr < 1, which implies that g > 0.

Then, " #
xm o .
E (Lr dio){(Clfdr; <€)  or(1 Clfdry)} BO. (C.12)
i=1

To see this, consider that if ! di_= 0, then either (i) 'z > di or (ii)

OR - o) e < die I (i),

(o]

14



then iOR = 1 and it follows that {(Clfdr; <)/(1 Clfdr;)} < ogr. If (ii), then iOR = 0 and
{(Clfdr; €)/(1 Clfdr;)} or. For both cases,

( Lg dio){(Clfdr; ¢)  or(1 Clfdr)}@o0.

Summing over all m terms and taking the expectation yields (£.12).

Combine ( and ( to obtain

(xm ) (s )

0BE (or dl)(Clfdri @) B ogE (or dd)(Clfdr  «)
i=1 i=1
. . . P , - e
Finally, since or > O, it follows thatE T, ( \;g d!)(Clfdr; <) > 0. After distributing
the (igg d.:) term and separating the expectations for the sums of the two decision rules,
P
we apply the definition of ETP( )= E T, "(CIfdr; <) to conclude that ETP( or)

ETP(de). O
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