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GEODESIC LENGTH AND SHIFTED WEIGHTS IN FIRST-PASSAGE
PERCOLATION
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ABSTRACT. We study first-passage percolation through related optimization problems
over paths of restricted length. The path length variable is in duality with a shift of
the weights. This puts into a convex duality framework old observations about the
convergence of the normalized Euclidean length of geodesics due to Hammersley and
Welsh, Smythe and Wierman, and Kesten, and leads to new results about geodesic
length and the regularity of the shape function as a function of the weight shift. For
points far enough away from the origin, the ratio of the geodesic length and the ¢!
distance to the endpoint is uniformly bounded away from one. The shape function is a
strictly concave function of the weight shift. Atoms of the weight distribution generate
singularities, that is, points of nondifferentiability, in this function. We generalize to all
distributions, directions and dimensions an old singularity result of Steele and Zhang
for the planar Bernoulli case. When the weight distribution has two or more atoms, a
dense set of shifts produces singularities. The results come from a combination of the
convex duality, the shape theorems of the different first-passage optimization problems,
and modification arguments.
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1. INTRODUCTION

1.1. Stochastic growth models. Irregular and stochastic growth surrounds us, for
example in tumors, bacterial colonies, infections, spread of fluid in a porous medium,
and propagating flame fronts. These phenomena attract the attention of mathemati-
cians, scientists and engineers in various disciplines. Simplified mathematical models
of stochastic growth have been studied in probability theory for over half a century.
This work has inspired some of the central innovations of modern probability, such
as the subadditive ergodic theorem, and created new connections between probability
and other parts of mathematics, such as representation theory, integrable systems, and
partial differential equations.

A class of much-studied stochastic growth models possesses a metric-like structure
where growth progresses along paths that optimize an energy functional defined in
terms of a random environment. Depending on whether the optimal path is chosen
through minimization or maximization, these models are called first-passage percola-
tion and last-passage percolation.

A variety of settings for first- and last-passage percolation are studied. The admis-
sible paths can be general or they can be restricted to be directed along some spatial
directions. The underlying space can be a graph, the continuum, or a mixture of the
two. In the graph case, the environment is given by random weights attached to the
vertices or the edges. The most typical choice of graph is the d-dimensional integer lat-
tice Z¢. The one-dimensional case usually reduces to classical probability so the real
work begins from the planar case d = 2.

Much progress in the planar case has taken place over the past 25 years under the
rubric Kardar-Parisi-Zhang universality. A universal planar continuum limit, the di-
rected landscape, has recently been constructed [§]. It is expected to be the scaling
limit of a wide class of planar first- and last-passage percolation models, but this re-
mains conjectural at present. Evidence for the universality comes from proofs that
certain special exactly solvable directed models converge to the directed landscape [J].
We refer the reader to articles [4, 6] and the monograph [2] for general introductions
to the field.

Our paper studies first-passage percolation with undirected paths on the integer lat-
tice in arbitrary dimension. This has proved to be, in a sense, the most challenging
model, as no exactly solvable version has been discovered. A proof that this model lies
in the KPZ class, while universally expected, appears well beyond reach in the current
state of the field. Our results concern properties of the geodesics and the regularity of
the limiting norm as we perturb the random weights by a common additive constant.
We turn to discuss the background.

1.2. First-passage percolation and its limit shape. In first-passage percolation
(FPP) a random pseudometric is defined on Z¢ by T, = inf; )] ccr [(€) where the
{t(e)} are nonnegative, independent and identically distributed (i.i.d.) random weights
on the nearest-neighbor edges between vertices of Z¢ and the infimum is over self-
avoiding paths 7 between the two points x and y. A minimizing path is called a ge-
odesic between x and y. FPP was introduced by Hammersley and Welsh [12] in 1965
as a simplified model of fluid flow in an inhomogeneous medium. A precise technical
definition of the model comes in Section P.
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The fundamental questions of FPP concern the behavior of the passage times T, ,
and the geodesics as the distance between x and y grows. At the level of the law of
large numbers, under suitable hypotheses, normalized passage times converge with
probability one: =T, — u(§) as n — oo, whenever n=1x,, — £ € R%. The special
case u(e;) = lim,,_,, n‘lTo,nel of the limit is also called the time constant.

The limiting shape function u is a norm that characterizes the asymptotic shape of
a large ball. Define the randomly growing ball in R? for t > 0 by B(t) = {x € R¢ :
To,x) < t} where |x] € Z¢ is obtained from x € RY by taking integer parts coordinate-
wise. Under the right assumptions, as t — co the normalized ball t~!B(t) converges to
the unit ball B = {£ € R? : u(€) < 1} defined by the norm .

The shape function u is not explicitly known in any nontrivial example. Soft proper-
ties such as convexity, continuity, positive homogeneity, and u(&) > 0 for £ # 0 when
zero-weight edges are subcritical are readily established. But anything beyond that,
such as strict convexity or differentiability, remains conjectural. The only counterex-
ample to this state of affairs is the classic Durrett-Liggett [L(] planar flat edge result,
sharpened by Marchand [15], and then extended by Auffinger and Damron [[] to in-
clude differentiability at the boundary of the flat edge.

The FPP shape theorem occupies a venerable position as one of the fundamental
results of the subject of random growth models and as an early motivator of subadditive
ergodic theory. The reader is referred to the monograph [2] for a recent overview of the
known results and open problems.

1.3. Differentiability and length of geodesics. The success of the shape theorem
contrasts sharply with the situation of another natural limit question, namely the be-
havior of the normalized Euclidean length (number of edges) of a geodesic as one end-
point is taken to infinity. No useful subadditivity or other related property has been
found. This issue has been addressed only a few times over the 55 years of FPP study
and the results remain incomplete.

The fundamental observation due to Hammersley and Welsh is the connection be-
tween (i) the limit of the normalized length of the geodesic and (ii) the derivative of the
shape function as a function of a weight shift. For h € R let u"(¢) denote the shape
function for the shifted weights {t(e) + h}. Let I:(()h))c be the minimal Euclidean length
of a geodesic from the origin to the point x for the shifted weights {t(e) + h}. Then the
important fact is that when n~'x,, — ¢,

o m U9
1) Y}l—I;Iolo " Lok, T T as s=h
provided the derivative at h on the right-hand side exists.

The shape function £ (&) is a concave function of h and hence the derivative in
(1) exists and the limit holds for all but countably many shifts 4. But since the time
constant itself remains a mystery, not a single specific nontrivial case where this iden-
tity holds has been identified. The first results on the size of the set of exceptional h at
which the derivative on the right fails are proved in the present paper and summarized
in Sections [I.5 and [L.6.

Here is a brief accounting of the history of ([L1)).

Hammersley and Welsh (Theorem 8.2.3 in [12]) gave the first version of ([.I). It
was proved for the time constant of planar FPP, so for d = 2 and £ = e;, and for the
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particular sequence x, = (n,0). Their result applied to the geodesic of the so-called
cylinder passage time from (0, 0) to (n,0), and the mode of convergence in ([[.I) was
convergence in probability.

The limit (L.T) was improved in 1978 by Smythe and Wierman (Theorem 8.2 in [18])
and in 1980 by Kesten [[L3], in particular from convergence in probability to almost sure
convergence. The ultimate version has recently been established by Bates (Theorem
1.25in [B]): almost sure convergence in ([[.1) without any moment assumptions on the
weights, in all directions &, provided the derivative on the right exists.

A handful of precise results related to (.I) exist in specific situations defined by
criticality in percolation. Let p. denote the critical probability of Bernoulli bond perco-
lation on Z¢. When P(t(e) = 0) > p, the FPP problem becomes in a sense degenerate.
Geodesics to far-away points can take advantage of long paths of zero-weight edges and
the shape function u becomes identically zero.

Zhang [21]] proved in 1995 that in the supercritical case defined by P(¢(e) = 0) > p.,
for £ = e; and h = 0, the limit on the left in (.T) exists and equals a nonrandom
constant. In the planar critical case, that is, d = 2, P(t(e) = 0) = 1/2 = p. and h = 0,
Damron and Tang [ff] proved that the left-hand side in (.I)) blows up in all directions
&

In 2003 Steele and Zhang [[19] proved the first, and before the present paper the
only, precise result about the derivative in ([[.I), valid for subcritical planar FPP with
Bernoulli weights. When the distribution is P(¢t(e) = 0) = p = 1 — P(t(e) = 1), there
exists § > 0 such that if % —-0<p< %, d = 2 and £ = ey, then the derivative in ([[.I)
fails to exist at h = 0. Thus the Hammersley-Welsh differentiability criterion for the
convergence of normalized geodesic length faces a limitation.

1.4. Duality of path length and weight shift. We move on to describe the contents
of our paper. To investigate ([[.1) and more broadly properties of geodesic length, we
develop a convex duality between the weight shift 4 and a parameter that captures
the asymptotic length of a path. This puts the limit (.T) into a convex-analytic frame-
work. To account for the possibility of nondifferentiability in (.T), we enlarge the class
of paths considered from genuine geodesics to o(n)-approximate geodesics. These are
paths whose endpoints are order n apart and whose passage times are within o(n) of
the optimal passage time. Through these we can capture the entire superdifferential
of the shape function as a function of the shift k.

To be able to work explicitly with the path-length parameter, we introduce a version
of FPP that minimizes over paths with a given number of steps but drops the require-
ment that paths be self-avoiding (Section R.3). A further useful variant of the restricted
path length FPP process allows zero-length steps that do not increase the passage time.
The shape functions g and g° of these altered models are no longer positively homo-
geneous, but they turn out to be continuously differentiable along rays from the origin
(Theorem P.16).

The restricted path length shape functions g and g° are connected with the FPP
shape function u in several ways. A key fact is that g and g° agree with u on certain
subsets of R¢ described by positively homogeneous functions that are connected with
geodesic length (Theorems P.11 and P.16). Second, g and g° generate u as the maximal
positively homogeneous convex function dominated by g and g° (Remark P.15). Third,
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g and g° contain the information for generating all the shifts 4 through convex du-
ality (Theorem P.17 and Remark P.18).

From this setting we derive two types of main results for FPP: results on the Eu-
clidean length of geodesics and on the regularity of the shape function as a function
of the weight shift, briefly summarized in the next two paragraphs. The proofs come
through a combination of

(i) versions of the van den Berg-Kesten modification arguments [20],
(ii) the convex duality (Theorem P.17), and
(iii) a shape theorem for the altered FPP models (Theorem R.9 and Theorem B.1 in
Appendix B).
Our results are valid on 79 in all dimensions d > 2, under the standard moment bound
needed for the shape theorem and the assumption that the minimum of the edge weight
t(e) has probability strictly below p..

1.5. Euclidean length of geodesics. One of our fundamental results is that with
probability one, all geodesics from the origin to far enough lattice points x have length
at least (1 + 6)|x|, for a fixed constant § > 0 (Theorem .5). The equality in ([[.T) be-
tween the limiting normalized length of the geodesic and the derivative of the shape
function, which is conditional on the existence of these quantities, is generalized to
an unconditional identity between the entire interval of the asymptotic normalized
lengths of the o(n)-approximate geodesics and the superdifferential of the shape func-
tion as a function of the weight shift (Theorem P.17). When the random weight ¢(e)
has an atom at zero or at least two atoms that satisfy suitable linear relations with inte-
ger coefficients, there are multiple geodesics whose lengths vary on the same scale as
the distance between the endpoints (Theorem P.6). For any weight distribution with
at least two atoms, this happens on a countable dense set of shifts (Theorem R.7).

1.6. Regularity of the shape function as a function of the weight shift. A second
suite of main results concerns the regularity of the shape function £ (¢) as a function
of the weight shift h, in a fixed spatial direction ¢ € R%\{0}. This function is strictly con-
cave in h (Theorem .2). In the situations where the atoms of t(e) bring about geodesics
whose asymptotic normalized lengths vary, the concave function h — u™(£) acquires
points of nondifferentiability. In particular, there is a countable dense set of these sin-
gularities whenever the edge weight has two atoms (Theorems P.6 and 2.7). We extend
the Steele-Zhang nondifferentiability result [19] mentioned above to all dimensions,
all directions &, and all distributions with an atom at the origin. Furthermore, we dis-
prove their conjecture that 4 = 0 is the only nondifferentiability point in the Bernoulli
case (Remark 2.3).

1.7. Organization of the paper. Section P describes the models and the main results.
Section B describes open problems that arise from this work.

The proofs are divided into four sections. Section f| develops soft results about the
relationships between the different shape functions and the Euclidean lengths of opti-
mal paths. The main technical Sections § and [ contain the modification arguments.
The final Section [ combines the results from Sections @, § and f to prove the main
theorems.

Four appendixes contain auxiliary results that rely on standard material. Appendix
A extends the FPP shape function to weights that are allowed small negative values.
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Appendix B proves a shape theorem for the restricted path length versions of FPP. Ap-
pendix [J contains the Peierls argument that sets the stage for the modification proofs.
Appendix D presents a lemma about the subdifferentials of convex functions.

1.8. Further literature: Convergence of empirical measures. We close this in-
troduction with a mention of a significant recent extension to the differentiability ap-
proach to limits along geodesics, due to Bates [B]. By representing the weights as
functions t(e) = 7(U,) of uniform random variables, one can consider perturbations
f(e) = 7(U,) + ¥(U,) of the weights and differentiate the shape function in directions
¥ in infinite dimensions. This way the limit in (.1]) can be upgraded to convergence
of the empirical distribution of weights along a geodesic, again whenever the required
derivative exists. This holds for various uncountable dense collections of weight distri-
butions, exactly as ([[.I) holds for an uncountable dense set of shifts k.

These more general limit results continue to share the fundamental shortcoming
of the limit in ([.T), namely, that no particular nontrivial case can be identified where
the limit holds. If P(t(e) = 0) > p. the empirical measure along a geodesic converges
trivially to a pointmass at zero.

Finding extensions of our results to the general perturbations of [B] presents an in-
teresting open problem.

1.9. Notation and conventions. Here is notation that the reader may wish quick
access to. Z, ={0,1,2,3,...}, N = {1,2,3,...}, and R, = [0,0). Forn € N, [n] =
{1,2,...,n}. Standard basis vectors in R? are e; = (1,0,...,0), e, = (0,1,0,...,0),...,
e; = (0,...,0,1) and 0 is the origin of R%. The ¢! norm of x = (x;,...,%4) € R¢
is |x|; = Z?:l |x;|. Particular subsets of RY that recur are R = {+e,,..., ey}, R° =
RU{0L, U =coR ={¢ €R? : |£|; <1}, and the topological interior int 2.

A finite or infinite path or sequence is denoted by x,,,.,, = (X, ..., Xy) for —oo <
m < n < oco. Other notations for lattice paths are x, and 7. The steps of a path are the
nearest-neighbor edges e; = {x;_1, x;}. A finite path x,, ., that satisfies |x,, — x,,,|; =
n — mis called an ¢'-path.

A positively homogeneous function f satisfies f(cx) = cf(x) for ¢ > 0 whenever
both cx and x are in the domain of f [I7, p. 30]. One-sided derivatives of a function
defined around s € R are defined by f'(s+) = limy o ™! [f(s+h)—f(s)] and f'(s—) =
limp o h™'[f(s) = f(s = W)].

The diamond ¢ is a wild card for three superscripts (empty) (no superscript at all),
o (zero steps allowed), and sa (self-avoiding) that distinguish different FPP processes
with restricted path length.

A real number r is an atom of the random edge weight t(e) if P{t(e) = r} > 0.
M, = esssup t(e) and 1y = essinft(e). Superscript (b) on any quantity means that it is
computed with weights shifted by b: t®(e) = t(e) + b.

2. THE MODELS AND THE MAIN RESULTS

2.1. Setting. Fixan arbitrary dimensiond > 2. Let &5 = {{x,y} : x,y € Z%, |x—y|; =
1} denote the set of undirected nearest-neighbor edges between vertices of <4, (Q, &, P)
is the probability space of an environment w = (t(e) : e € &y) such that the edge
weights {t(e) : e € &4} are independent and identically distributed (i.i.d.) real-valued
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random variables. Translations {6, },cd act on Q by (6 w){u, v} = t{x + u, x + v}) for
a nearest-neighbor edge {u, v}.

A nearest-neighbor path 7 = x., = (x;)[L, is any finite sequence of vertices
Xg,X15...,X, € Z% that satisfy |x;,; — X;l; = 1 for each i. The steps of 7 are the
nearest-neighbor edges e; = {x;_;, x;}. The Euclidean length || of 7 is the number of
edges, so in this case |7| = n. Then we call 7 an n-path. The passage time of 7 is the
sum of the weights of its edges:

n
2.1 T(m) = ) t(ey).
i=1

These definitions apply even if the path repeats vertices or edges, as will be allowed at
times in the sequel. For notational consistency we also admit the zero-length path = =
Xo:0 = (xp) that has no edges and has zero passage time and length: T(x) = || = 0.

The main results are described next in three parts: results for standard FPP in Sec-
tion P.2, results for restricted path-length FPP in Section B.3, including the connections
between the two types of FPP, and finally in Section R.4 the duality between weight shift
and geodesic length.

2.2. Standard first-passage percolation. Instandard first-passage percolation (FPP)
the passage time between two points is defined as the minimal passage time over all
self-avoiding paths. A path 7 = xg., = (X;)iL, is self-avoiding if x; # x; for all pairs
i # j. Let I {5, denote the collection of all self-avoiding paths from x to y, of arbitrary
but finite length. Define the passage time between x and y as

2.2 T,y = inf_ T(m).
@2) = It TG

This definition gives T, , = 0 because the only self-avoiding path from x to x is the
zero-length path. A geodesic is a self-avoiding path 7 that minimizes in (2.2).

When t(e) > 0 the restriction to self-avoiding paths is superfluous in the definition
of T, . Let p. denote the critical probability of Bernoulli bond percolation on 7. A
frequently used assumption in FPP is that zero-weight edges are subcritical:

(2.3) P{t(e) = 0} < p,.

For nonnegative weights, the assumption (R.3)) guarantees the existence of a geodesic
(Prop. 4.4 in [2]).
For b € R, define b-shifted weights by

(2.4) w® = (®(e) i ec &) with tB)(e)=te)+b for e € &,.
All the quantities associated with weights «®) acquire the superscript. For example,
T,S,by) is the passage time in (2.2) under weights w®. Let
(2.5) ry = P-essinft(e)
w
denote the (essential) lower bound of the weights. So in particular, w(~"0) is the weight

configuration shifted so that the lower bound is at zero. Since we shift weights, most
of the time we have to replace (.3) with this assumption:

(2.6) P{t(e) = ro} < pe-
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Let {t;} denote i.i.d. copies of the edge weight ¢(e). The following moment assump-
tion will be employed for various values of p.

2.7) E[ (min{ty, ..., trg})P ] < 0.

We record the Cox-Durrett shape theorem ([5], Thm. 2.17 in [2]), with a small ex-
tension to weights that can take negative values. This theorem is proved as Theorem

in Appendix A.

Theorem 2.1. Assume 1, > 0, (.6), and the moment bound (R.7) with p = d. Then
there exists a constant €, > 0, determined by the dimension d and the distribution of the
shifted weights (=70, and a full-probability event Q such that the following statements
hold. Foreachrealb > —ry—¢ there exists a continuous, convex, positively homogeneous
shape function u® : RY — R, such that the limit

. _ b
2.38) &) = lim n1 T2,

holds for each w € Q,, whenever {x,} C Z¢ satisfies x,,/n — £. We have u®(0) = 0 and
u®)(€) > 0 for £ # 0.

If we require the shape function only for a single nonnegative weight distribution
without the shifts, then (R.6) can be replaced with the weaker assumption (2.3), and we
will occasionally do so. The shape function of unshifted weights is denoted by u = u(©.

To emphasize dependence on b with £ # 0 fixed, we write

(2.9) peb) = u®(€)  for b> —ry —¢.

Several of our main results concern the regularity of u¢ and its connections with geo-
desic length. The reason for allowing negative weights by extending the shift b below
—T; is to enable us to talk about the regularity of us(b) at b = —ry. Throughout this
paper, g, is the constant specified in Theorem P.1].

Theorem 2.2. Assume 1, > 0, (B.6), and the moment bound (R.7) with p = d. Fix
£ e R\ {0}
(i) The function ¢ of (R.9) is a continuous, strictly increasing, concave function on
the open interval (—ry — €y, o).
(ii) Strict concavity holds on [—ry, 0): ,u%(a+) > ,u’g(b—)for -1y £ a<b< oo
Furthermore, ,u%(b+) > ,u’g((—ro)+)for b e (—1y— €9, —1y).

Concavity implies that one-sided derivatives ,u’g(bi) for b > —ry —¢, exist, ,u’g(b—) >
,u’g(b+), and as functions of b, they are nonincreasing, u’g(b—) is left-continuous, and
,u’g(b+) is right-continuous. Strict concavity is the novel part of the theorem. This prop-
erty is proved in Section [}, based on the modification argument of Section p.2.

Introduce the notation

L, . = minimal Euclidean length of a geodesic for Tp »

(2.10) _
and Lo,x = maximal Euclidean length of a geodesic for Ty .,

. . . (b) (b) B T (b) i
with the superscripted variants L. = L (') and Loy = Lo x('”) for shifted

weights w®). For a continuous weight distribution L .= fo,x almost surely because
in that case geodesics are unique almost surely. This is not the case for all shifts because
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as b increases the geodesic jumps occasionally and at the jump locations there are two
geodesics.

Recall that a geodesic for standard FPP is by definition self-avoiding. Under the
assumptions of Theorem P.1, Theorem in Appendix [Al proves that the following

—
holds on an event Q, of full probability: Ly , < co forall x € 7% and b > —1y — ¢y, and
there exist a finite deterministic constant ¢ and a finite random constant K such that
—(b) clx|y
2.11 Ly < —m———
(2.10) X = (b+r)A0+¢,
We justify part [Q) of Theorem P.2. This sets the stage for further discussion. Let
b> —ry—¢y. Take 0 < § < b+ 1y + ¢y and z > 0. Considering the shifted weights on

the minimal and maximal length geodesics of Té’bx) leads to

Vb > —ry — ¢y whenever |x|; > K.

- —()
(2.12) Tow® < g —6Lo, and Th™ < T4 + L.
Rearrange to
(b+1) (b) (b) (b-8)
Tox =~ —Tp, by _7® _ Tox —To,
(2.13) % < L(()))c < Lo,x < %

Here are the arguments for the properties of u; claimed in part [) of Theorem P.2.

(i.a) Strict increasingness. In (2.12) take x = x,, such that x,,/n — €. Since I_;ff,)c >
|x|;, the inequality uz(b — &) < pue(b) — §|§]; follows by taking the limit (2.8)
in (Z12).

(i.b) Concavity follows by taking the same limit in (2.13).

(i.c) Continuity of g on the open interval (—ry — o, c0) follows from concavity.

Since Lf)b))c > |x|;, (B.13) and the monotonicity of the derivatives give the easy bound

(2.14) He(bx) > [§],.

A corollary of the strict concavity given in Theorem P.2{11) is the strict inequality ,u’g(bi)
> |£|;. Theorem P.3 records a slight strengthening of this and consequences of (2.11)
and (R.13)). A precise proof is given in Section [j.

Theorem 2.3. Assume 1, > 0, (R.6), and the moment bound (R.7) with p = d. Let ¢,
be the constant specified in Theorem R.1 and let c be the constant in (.11). Then there
exists a full-probability event Q such that the following holds: for all shifts b > —ry — €,
directions & € R%\ {0}, weight configurations w € Qq, and sequences x,/n — &, we have
the bounds

Ly (@)
(1+ D(B))IE]; < Hy(b+) < lim —
2.15 nme
o Lo (@) )
Ti ~0,xp ’ C
< e < )< — =
< lim ——— < (b )_(b+r0)/\0+€0|§|1-

D(b) is a nonincreasing function of b such that D(b) > 0 for all b > —r, — €,

The first inequality in (2.15) says that the strict concavity gap ,u’g(b+) > |&|; is uni-
form across all directions |£|; = 1. This point is further strengthened to a uniformity
for fixed weight configurations w in Theorem P.5.
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Remark 2.4. Here are points that follow Theorems P.2 and P.3. Let & # 0.

(i) The inequalities in (.15) imply the limit of Hammersley-Welsh, Smythe-
Wierman and Kesten simultaneously for all sequences. Under the assumptions of The-
orem .3, suppose u is differentiable at b € (—ry — €y, o). Then (B.15) implies that for
all w € Qg and sequences x,/n — &,

Ly @ Ton (@)
(2.16) lim =2% 7 _ jim 225 _ ).
n— oo n n—oo n §

By concavity, this happens at all but countably many b. In particular, if u is a differ-
entiable function then geodesic lengths converge with probability one, simultaneously
in all directions and at all weight shifts. Presently there is no proof of differentiabil-
ity under any hypotheses. Further below we show failures of differentiability under
assumptions on the atoms of the weight distribution.

Suppose ,u’g(b+) < ,u/g(b—). Then (B.I5) tells us that all the possible asymptotic
normalized lengths of geodesics that go in direction & form a subset of the interval
[,u’g(b+), ,u%(b—)]. Presently there is no description of this subset.

For a characterization of [u’g(b+), /,t’,s,(b—)] in terms of path length, given in Theorem
R17, we expand the class of paths considered to allow o(n)-approximate
geodesics. These are paths from the origin to n§ + o(n) whose passage times are in
the range nu¢(b) + o(n), without necessarily being geodesics between their endpoints.

(ii) The strict concavity of ¢ given in Theorem P.2 and the inequalities in (2.15)
imply that, for all w, & € Qg and sequences x,/n — & and %,/n — &,

-

— L w
(217) lim Lo, (@)
n—oco n

L9 @)

< pi(b-) < pria+) < lim 21—

n—oo

forallb > a > —ry —¢.

In other words, distinct shifts of a given weight distribution cannot share any possible

asymptotic geodesic lengths, even under distinct but typical environments w and @.
(iii) There is a corresponding monotonicity for geodesics at fixed w. Namely, when

all the weights increase by a common constant, geodesics can only shrink in length.

Let 7(® and 7() be arbitrary geodesics for Tégc) and Té,bx), respectively. Then
(2.18) |7®)| < |7@| for fixed a < b and w.

This follows from
(2.19)
TO(7@) — (b — a)|7r(“)| = T@(7@) < T@(7®)) = T®O)(7B)) — (h — a)|7r(b)|

< TOFED) — (b — a)|z®).

Furthermore, suppose a unique geodesic is chosen, for example by taking the minimal
one according to some ordering of geodesics. Then as a increases to b, the geodesic
cannot change without its length strictly shrinking:

(2.20) for fixed a < b and w, |7?)| = |7(¥| implies 7(?) = 7(®),

This follows because the string of inequalities (2:19) together with |7 = |7()| im-
plies that T®(7(@) < T®)(7(1)) 50 7(@ s still at least as good as 7® for weights

{t®()}.
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(iv) We establish in Theorem P.17 that ,u’g(bi) — |€]; as b » oo. Naturally, as the
weight shift grows very large, it pays less to search for smaller weights at the expense
of a longer geodesic.

The first inequality in (B.13) implies that asymptotically the lengths of geodesics
in a particular direction £ exceed the #!-distance. Theorem B.5 strengthens this to a
uniformity across all sufficiently faraway lattice endpoints. Its proof in Section [] relies
on the convex duality described in Section B.4, the restricted path length shape theorem
of Appendix B, and the modification arguments of Section f.

Theorem 2.5. Assumer, > 0, (B.6), and the moment bound (B.7) with p = d. There

exist a deterministic constant 8 > 0 and an almost surely finite random constant K such
that L, > (1 + 8)|x|, whenever x € 74 satisfies |x|, > K.

We turn to nondifferentiability results for uz. An atom of the weight distribution is
avalue r € R such that P{t(e) = r} > 0.

Theorem 2.6. Assumer, > 0, (R.6), and the moment bound (R.7) with p = d. Addition-
ally, assume that the weight distribution satisfies at least one of the assumptions (a) and
(b) below:

(a) zerois an atom;
(b) there are two strictly positive atoms r < s such that s/r is rational.

Then there exist constants 0 < D, 8, M < oo such that
(2.21) P(Lox—L, 2DIx[1) =6  for|x|; > M.

Furthermore, for all ¢ € R? \ {0}, ,Ll'g(O—) - :“'.5(0“‘) > DI|£|y and so the function ug(a) =
u@ (&) is not differentiable at a = 0.

For unbounded weights the result above can be proved under more general assump-
tions on the atoms (see Theorem p.2 in Section f).

Theorem 2.7. Assume 1y > 0, (.6), and the moment bound (.7) with p = d. Addi-
tionally, assume that the weight distribution has at least two atoms. Then there exists a
countably infinite set B C [—r,, o0) with these properties.
(i) Bisdensein[—ry, ).
(ii) For each b € B, conclusion (B.21) of Theorem R.§ holds for the shifted weights
w® with constants D(b), 5(b),M(b) that depend on b.

(ili) Foreach ¢ € R%\{0}andb € B, pg(a) = U@ (&) is not differentiable at a = b.

The proof of Theorem P.7 in Section .2 constructs the singularity set B explicitly
from two atoms of t(e) as a countably infinite union of arithmetic sequences.

Remark 2.8. Standard Bernoulli weights satisfy P{t(e) = 0} + P{t(e) = 1} = 1. In the
subcritical planar Bernoulli case (thatis, d = 2, t(e) € {0,1}and P{t(e) = 0} < %), Steele
and Zhang [19] proved that y, (@) is not differentiable at a = 0, as long as P{t(e) = 0}
is close enough to % Furthermore, they conjectured that u,, (@) is differentiable at all
a such that u, (a) > —oo except at a = 0 (page 1050 in [19]).

Theorem P.6 extends the nondifferentiability at a = 0 to all directions &, all dimen-
sions, and all weight distributions that have an atom at zero. Theorem P.7 disproves the
Steele-Zhang conjecture by showing that, in all dimensions, in the subcritical Bernoulli
case the nondifferentiability points form a countably infinite dense subset of (0, o).
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2.3. Restricted path-length first-passage percolation. Next we discuss FPP mod-
els that restrict the length of the paths over which the optimization takes place but give
up the self-avoidance requirement. Remark P.15 characterizes the FPP shape func-
tion u as the positively homogeneous convex function generated by the restricted path
shape functions. In Section P.4 this leads to the convex duality of s and a sharpening
of Theorem P.3, and further conceptual understanding of the previous results.

It turns out convenient to consider also a version whose paths are allowed zero steps.
In this case the set R = {+e,..., +e;}of admissible steps is augmented to R° = RU{0}.
For x,y € 7% and n € N define three classes of paths x,.,, = (x), from x to y of
length n, presented here from largest to smallest:

112 .y = X0:n € (Z%y"+1 : xy = x,x, =y, each x; — x;_; € R°},
(2.22) Iy (n),y = {X0:n € @)™ 1 Xg = X, X, =y, each x; — x;_; € R},
and I, y = 1X0:n € Uy ),y * poINtS X, X1,..., Xy, are distinct}.

The superscript in IT%* is for self-avoiding. Paths in IT, (,,) ,, and T .(n),y A€ allowed
to repeat both vertices and edges. Paths in I1y () , are called R- admlsszble and those
in Hx () R°-admissible. An n-path x,., from x, = x to x,, = y is an ¢!-path if
n = |y—x|;. Forn = 0and o € {(empty),o,sa} we define each collection TI
as consisting only of the zero-length path (x). For x # y, Iy (s, and 137 ),y are
nonempty if and only if n — |y — x|; is a nonnegative even integer, while IT? (0
nonempty if and only if n > |y — x|;.

With the three classes of paths go three collections of points reachable by an admis-
sible path of length n from the origin: for the three superscripts ¢ € {{empty), o, sa},
define

(2.23) Dy ={x ez : 15, . # 0}

If 0 < k < n, any k-path can be augmented to an n-path by adding n — k zero steps, and
hence we have Dj, = Ug<k<pDk.-

The environment w = (t(e) : e € &;) is extended to zero steps by stipulating that
zero steps always have zero weight, even when weights are shifted: t®{x,x}) = 0
Vx e z4and b € R.

Define three point-to-point first-passage times between two points x,y € 74 with
restricted path lengths: for ¢ € {(empty), o, sa},

n—-1
(2.24) G;’(n)’y min Z t{xg, Xgp1}) for y—x e Dy.
Xo:n €Iy k=0

If H; )y = = @, set G;’ )y = - Obvious relations hold between these passage times

and the standard FPP from (2.2):

o _ .
(2.25) Gy = . ‘y£1361n<k<n G, (k),y»
mg= U M,
nx|y—x|
and
(2.26) I,y= inf T(m)=  inf

mellgs, n:nxly—xjy Y
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For nonnegative weights the restriction to self-avoiding paths is superfluous for T, ,
and hence
(2.27) if ry > 0 then Ty = . nizlilyf_x|1 G;c),(n),y = n- nizlllyf—xll Gx,(n),y-

These identities point to the usefulness of G and G°. Namely, they capture the FPP
passage time when the path length parameter n coincides with a geodesic length. After
taking this connection to the limit, the discrepancies between the shape function of G
and the FPP shape function u reveal which asymptotic path lengths are too short and
which are too long to be asymptotic geodesic lengths.

The reader may wonder about the purpose of G° and the zero-weight zero step. We
shall see that G is a convenient link between standard FPP and restricted path length
FPP because it is monotone:

(2.28) ifro>0and m < nthen Gy )y ), 2 Gy, = Ty

The monotonicity is simply a consequence of the fact that any m-path can be aug-
mented to an n-path by adding zero steps.

The self-avoiding version xsjn)’y is mentioned here to complete the overall picture
but will not be used in the sequel. Open problem B.3 points the way to an extension of
this work that requires a study of G, ..

We state a shape theorem for restricted path length FPP, but only on the open set
intU = {€ € R% : |£]; < 1}. Tts closure, the compact ¢! ball U, is the convex hull
of both R and R° and the set of possible asymptotic velocities of admissible paths in
H(‘;’(n)’_ as n — oo. In Theorem P.9 we introduce the parameter « as a variable that

controls asymptotic path length.

Theorem 2.9. Assumer, > —oo and that the moment bound (R.7) holds with p = d for
the nonnegative weights t; = t; v 0. Then there exist

(a) nonrandom continuous convex functions g : intU — [ry,0)and g° : intU —
[ro A0, 0) and
(b) an event Q of P-probability one

such that the following statement holds for any fixed w € Qq: for any & € R4, any real
a > ||y, and any sequences k, — oo inN, x,, € Dy, andy, € @ﬁn such that k,/n — «,
X,/n — & and y,/n — & we have the laws of large numbers

G Go
(2.29) ocg<§> = lim —2%nkXn g ocg‘)(é) = lim —2n)n
[e4 n—oo n (04 n—oo n
Furthermore, g(0) = ry and g°(0) = ry AO. In general g° < gonint U. Ifry < 0 then
g=glonallofintU. Ifry > 0 then g > g° in a neighborhood of the origin.

The laws of large numbers (R.29) come from Theorem B.1 in Appendix B. The soft
properties of g and g° stated in the last paragraph of Theorem P.9 are proved in Lemma
in Section . Figure P.2 illustrates the limit functions in (2.29).

It is convenient to have g° defined on the whole of U. An attempt to do this through
the laws of large numbers (R.29) would divert attention from the main points of this
paper. Furthermore, without stronger moment assumptions there cannot be a finite
limit, as can be observed by considering £ = e,. Since there is a unique n-path from 0
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to ne,, we see that a finite limit is possible only if t(e) € L} (P):

n
PR | — lim =1 -
(2.30) lim n Gonyme, = lim n k; t({(k — 1)e;, ke }) = E[t(e)].

Instead of limiting passage times, we take radial limits of the shape functions from

the interior as stated in Theorem P.I0. The proof of Theorem P.I0 comes in Lemma
AI[1v).
Theorem 2.10. Under the assumptions of Theorem 2.9 we can extend both shape func-
tions to all of U via limits along rays: for ¢ € {{empty),o} and |§|; = 1 define g°(§) =
lim; », g°(t§). The resulting functions g : U — [ry, 0] and g° : U — [ry A0, 0] are
both convex and lower semicontinuous.

With Theorem P.10 we can extend the functions g° to lower semicontinuous proper
convex functions on all of R by setting

(2.31) g°(f) =+ for £ & U.

If g° is finite on U, then g° is automatically upper semicontinuous on U [[17, Theorem
10.2], and hence continuous on U.

Theorem P.11 clarifies the relationship of g and g° with u, beyond the obvious u <
g° < g, and links their connection with the asymptotic geodesic lengths from Theorem
R.3. In particular, we introduce here two functions 1 < A that play several roles in our
asymptotic results. In Theorem R.11 they are first introduced as the boundaries of the
regions where u coincides with g and g°. Part [ii) indicates that A and A are also related
to the derivatives of us and geodesic length.

These properties are then elaborated on as we proceed. The interval [A(§ ), A6)]
captures all the asymptotic lengths of geodesics in direction £, while the full interval
is exactly the set of all asymptotic lengths of approximate geodesics (Remark R.13).
In Theorem P.16 we see that A and 2 describe ranges where g and g° are affine and
where these two functions disagree. The macroscopic description is completed in The-

orem P.17: as the weight shift b increases, the interval [/_l(b)(§' ),E(b)(g )] shifts to the
left and always equals the superdifferential du(b) of the concave function u¢. Then
we have reached the desired generalization of the Hammersley-Welsh connection ([L.1)):
the assumptions of differentiability and existence of limiting geodesic length have been
dropped, and the correct identity equates the superdifferential with the set of asymp-
totic lengths of approximate geodesics.
Set
(2.32) w* = sup u(§).

1§lh=1

In part [ii) of Theorem P.11], on both lines of (R.35) the first inequality depends on the
modification arguments and hence the subcriticality assumption is strengthened to
(B-6). To capture the complete picture we include in (2.35) the inequalities from (.15).

Theorem 2.11. Assume r, > 0, (B.3), and the moment bound (R.7) with p = d.
(i) There exist two positively homogeneous functions A : R¢ — R, and 1:RI >
[0, co] such that A < A and forall £ € U,

(2.33) g =ul) = A9 =<1
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and
(2.34) g&) =u® = A6 <10

Furthermore, A is lower semicontinuous and Lis upper semicontinuous. Ifry = 0
then 71(5) = oo, while A is finite in the case ry > 0.

(ii) Strengthen the subcriticality assumption to (B.6). There exists a nonrandom con-
stant D > 0 and a full-probability event Q, such that, for all € € R? \ {0},
sequences x,/n — £, and w € Q,,

(2.35)
(1 +D)IEl <AE) = pp(0+) < lim n7'L ()

n—oo

< lim n7'Ly . (@) < p(0-) < A =00 ifry=0
n—oo

and (1+D)[E| < A($) = up(0+) < lim n7'L (@)

n—oo
< lim n7'Lox, (@) < p(0-) = A8) < W/ro)lEl ifro > 0.
We spell out some of the consequences of Theorems P.9 through R.11.

Remark 2.12 (Coincidence of shape functions). There exists a finite constant x such
that A(€) < x|£]; V& € RY. This follows from lower semicontinuity and homogeneity,
but is also proved directly from Kesten’s fundamental bound in Lemma f.2. Hence the
set{u = g°} = {4 < 1} contains the nondegenerate neighborhood {§ € RY €] <71}
of the origin.

If ry = 0 then {u = g} = {1 = g°} because g = g°. If ry > 0 the equality u(§) = g(§)
holds for at least one nonzero point ¢ along each ray from the origin. With all of the
above, the first inequality of (2.35) implies that {u = g} and {u = g°} are both nonempty
closed subsets of int U.

Remark 2.13 (o(n)-Approximate geodesics). For o > |€|; > 0, (B-34) gives the equiva-
lence u(¢) = ag(é/a) ifand only if a € [/_1(5),/_1(5)]. (This is illustrated in Figure R.2.)
By the law of large numbers (2.29), this happens if and only if, with probability one,
there are lattice points x, and paths 7" from O to x,, such that x,/n - &, |7"|/n - «
and T(z")/n — u(§). These paths 7" do not have to be self-avoiding or geodesics be-
tween their endpoints. But T(z")/n — u() does imply that T(z™) is within o(n) of the
passage time of the geodesic between 0 and x,,. The asymptotic normalized lengths of
true self-avoiding geodesics for u(§) are a subset of the interval [/_1(5),/_1(5)] of asymp-
totic normalized lengths of o(n)-approximate geodesics, as indicated in (R.35).

Remark 2.14 (Convergence of geodesic length). We now see the connection between
the convergence of the normalized geodesic length and the coincidence of shape func-
tions. In the case ry > 0, (R.35) shows that convergence in direction § # 0 follows from
A8 = A(£), which is equivalent to the condition that the set { = g} has empty relative
interior on the -directed ray.

Remark 2.15 (Convexity). Fix ¢ € R?\{0}. For ¢ € {{empty), 0}, the convexity and con-
tinuity of g° on int U imply the convexity and continuity of the function a - ag®(§/a)
defined for a € (|¢|;, ). By Theorem R.10, ag®({/a) extends to a = |&|; by letting
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FIGURE 2.1. Illustration of Theorem in the case r, > 0. On the t-axis it

is possible that the two middle points Z(;g) and /%g) coincide. The separation

illustrated here is the case where A(§) = ,u’g(0+) < /.L%(O—) = /_1(§ ), which can
happen when r, > 0 for example in the situation described in Theorem P-6.
Strict concavity of 4, implies that the middle points are necessarily separated

1 1
from pen and T (see (2.50)).

a N\ |€];. By (B:31), we extend ag®(&/a) to a € [0, |£];) by setting its value equal to
+00. Thereby a — ag®(£/a) is a lower semicontinuous proper convex function on R, .
For g°, monotonicity (.28) implies further that

(2.36) a +— ag®(€/a) is nonincreasing for a € (|€];, ).
A consequence of Theorem 2.11 is that for & € R? \ {0},
(2.37)
, £\ _ . 3 ag’(§/a) Va € [A(§), ),
= f o2 ) = f °l2) = _
© = jof ox'(5) = nfee () {ag(&/a) Var € [A2). 2] 1 [A6). o).

In the language of convex analysis [17, p. 35], the identity above characterizes the stan-
dard FPP shape function u as the positively homogeneous convex function generated by
g°. This means that u is the greatest positively homogeneous convex function such that
1(0) < 0and u < g°. Figure R.2 illustrates (2.37).

Theorem R.16 records further properties of g°, illustrated in Figure R.1. Part
can be proved only in Section [] after the modification results and hence requires the
stronger subcriticality assumption (2.6).

Theorem 2.16. Assume ry > 0, (2.3), and the moment bound (R.7) with p = d. Fix

& € R4\ {0}. Foro € {{empty),o}, the shape functions g° of Theorem .9 have the
following properties along the &-directed ray from the origin.
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(i) The function t — g°(t&) is continuous, convex and strictly increasing for t €
[0, |€]7Y). Both functions are affine at least in one nondegenerate interval with
one endpoint at the origin: fort € [0, |£|T!],

te (0,07 < gtd) =+ Q)
te0, AN = g°(t&) = tu(®).
(ii) Fort € [0, |71,
te[0.AE)) = gtd) > g°(th),

te[AENLIET] = g = g8
(iii) Strengthen the subcriticality assumption to (.6). The function t — g°(t§) is con-
tinuously differentiable on the open interval (0, |€|71) and limt/‘glfl(g")’(té’) =
+00. If g°(£/|€|1) < oo then the left derivative of t — g°(t&) att = |€|7! exists
and equals +oo.

(2.38)

(2.39)

Notice that the right-hand sides in (B.38) agree if and only if r, = 0, as is consistent
with the agreement g = g° when r, = 0. From (£.39) and (.35) we read that if , > 0,
the set {g > g°} is an open neighborhood of 0 that consists of finite rays from the origin,
while its complement {g = g°} contains the nonempty annulus {{ € U : (1+ D) ! <
|¢|; < 1}, where D is the constant in (2.35). Another consequence of (2.38) and (R.39)
is that g° is never strictly between u and g but always agrees with at least one of them.

By Lemma D.Tin Appendix D, the differentiability property in part [ii) can be equiv-
alently stated in geometric terms as follows: for & € (int &) \ {0}, the subdifferential
9g°(&) lies on a hyperplane perpendicular to &.

2.4. Duality of the weight shift and geodesic length. This section develops the
duality between the weight shift variable b in w — »® and the path-length variable «
in the limit shapes (R.29). Nonnegative weights (r, > 0) are assumed throughout.

Fix £ € R%\ {0} for the duration of this section. We restrict the shape function u ¢(b)
of (2.9) to shifts b > —r, that preserve the nonnegativity of the weights and then extend
it to an upper semicontinuous concave function on all of R by setting

ped) = &), b= -,

2.40 u.(b) =
( ) #g( ) oo, b< —r,.

To emphasize, the function ﬁg(b) drops the extension to b € (—ry — €y, —F,) done in
Theorem R.1. The reason for this choice is that developing the duality for shifts b < —r,

requires a study of the shape function of the self-avoiding version Os?n) , of restricted

path length FPP. This is not undertaken in the present paper and is left as open problem

B3.

By definition, the concave dual ﬁz : R - [—o0, ) is another upper semicontinu-

ous concave function, and together ;7§ and [._AZ satisfy
(41)  Fe@) = inflab—E ()} and F(b) = inflab — Ey(@)}
The superdifferential of the concave function ;75 at b is by definition the set

Ofiy(b) = {a € R : 1 (b') < Hg(b) + (b’ — b) VD' € R},
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Original weights with ro =0 ‘ Shifted weights w® with b> —rg =0 ‘
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FIGURE 2.2. Fix ¢ € R%\ {0}. Left: Graphs of the functions a — au(£/a) =
u(§)anda — ag®(§/a) = ag(§/a)inthe casery = 0. All three agree from A(§)
onwards to A(£) = oo. Right: Graphs of au®(£/a) = u®(&), a(g®)®(&/a)
and ag®(¢/a) for the weights shifted by b > —r, = 0. The labeling of the
a-axis is the same in both figures. As the weights shift to higher values, the
shape functions move up. In particular, the thick graph a — ag®(¢/a) on
the right is obtained by adding the function @ — b« to the graph on the

—(b)
left. On the possibly degenerate interval [/_l(b) (&),A4 (&)] we have the triple
coincidence a(g°)®)(é/a) = ag®(&/a) = u® () and after that ag®(&/a)

—(b)
separates from the other two. As b increases, the interval [/_1(b)(§),/l )]
moves to the left, without overlaps, approaching |§|; as b /' oo. In both
pictures, at the left endpoint |§|,+ the graphs coming from g° and g have

—(b) —(b)
slope —oo. The three regions [[¢,,4” (), [A”(£),2 (§)] and (1 (£), 00)
of qualitatively distinct behavior in the diagram on the right are described in
Proposition 4.

By the definition 6;7§(b) = @ for b < —ry. For b > —r, 6ﬁ§(b) is the bounded closed
interval [ﬁlg(b+),ﬁ,§(b—)] and so aﬁg(b) = {a} if and only if ﬁ;(b) = a. These general
equivalences hold:

Va,beR :  a€duy(b) < Hy(a)+H(b)=ab < be ()

Theorem R.17 establishes the convex duality. The qualitative nature of the (negative
of the) dual function in (2.43) is illustrated in Figure B.2, on the left in the case ry = 0
and on the right in the case r, > 0. In particular, on the left the affine portion of

a — ag(é/a) on the interval [/_1(b)(§ ), /_1(b)(§ )] is the dual of the superdifferential du:(b)
in (R.46). The infinite slope at the left edge |&|;+ is the dual of the limit (2.43).

A convenient feature of the restricted path length shape function without zero steps
is that it transforms trivially under the weight shift:

(2.42) g®(&) = g(&) +b.

This and (237) applied to u®)(¢) give (2.44) for b > —r,, which is the basis for the
duality.

Theorem 2.17. Assume r, > 0, (B.6), and the moment bound (R.7) with p = d. Fix
£ e R\ {o}
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(i) The concave dual ofﬁg is

—ag(§/a), a>|§],
—00, a < |&]p.

(243) Hy(e) = {

In particular, we have the identities

(2.44) jz(b) = inf ag®(&/a)= inf {ag(é/a)+ab} for bER,
az|€y ax[&l

and

(2.45) ag(§/a) = sup {u (b) —ab} for a>|¢];.

b>—rg

(ii) For b > —r,, the superdifferential aﬁg(b) is the compact interval

_ — — b), o =D

(2.46) 3 (b) = [He(b+), me(b—)] = [, 2 (©)]

while

’ —r —(=ro)

(2.47) Oe(—10) = [He((—ro)+), 00) = [ A9, 1 7(9)).

Furthermore,
(2.48) lim 7 (bx) = [¢]s.
Remark 2.18.

(a) Let us make explicit the conversion back to the original FPP shape function
ue(b) = u®)(£) in Theorem R.17. In (2.44) ﬁg(b) can be replaced by ug(b) for b > —r.
In each of (R.45), (£.46) and (R.49), ﬁg can be replaced by p. (B:47) cannot be valid for
Oue(—ro) because ug(b) > —oo for some b < —ry. We do have

, — — , —(=rp)

(249 pp(—r)H) = Bel(-r)H) = A7@)  but p(r)) <0 =1 (©).

(b) The strict concavity of ﬁg that was stated in Theorem P.2 was purposely left out
of Theorem P.I7 so that this latter theorem can be proved easily at the end of Section
A, before we turn to the modification arguments. Combining Theorem P.17 with The-
orems R.2 and .3 and (B.35) gives the following. There exists a constant ¥ < oo that
depends on the dimension and the weight distribution such that, forall b > a > —r,
(2.50)

b —(b) (@) _ —(=r0)
€ <A%® <2 O <2®O <1 ©<2ATVO i <=2 ().

The strict inequalities above are due to the strict concavity of .

(c) When the infimum r, of the support of the weights is zero, g and g° coincide
(Theorem P.9 and Lemma {.1[i1)). Through (R.42) we get an alternative representation
of the concave dual in (R.43) in terms of the restricted path FPP shape that admits zero
steps:

(2.51) ag(€é/a) = agl=m)(E/a) + ary = a(g°) ") (E/a) + ar,.

We can combine (2:44) and (2.51) into a statement that shows that both g and (g®)(~"0)
contain full information for retrieving all the shifts of u among nonnegative weights:

(2.52) pg(b) = i>r|1§f| {ag(é/a)+ab} = inf {a(g®) ") (€/a)+a(ry+b)} forb > —r,.

a|&)y
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(d) Equations (2:33), (2.51), and positive homogeneity of A and u show that a —
ag(é/a) is affine for large a:

(2.53) ag(é/a) = pr(E) +ary  fora > A7)

The reader can recognize this statement as the dual version of aﬁg(—ro) = [/_1(_r°)(§ ), )
from Theorem P.17, and an immediate consequence of (2.38). This affine portion of
ag(&/a) is visible in both diagrams of Figure B.2.

Identities (B-51) and (R.53) suggest that, for o > /_1(_r°)(§ ), the recipe for an optimal
path of length approximately na from 0 to a point close to n is this: shift the weights
so that their infimum is zero and take the optimal path for the shifted weights w(~70).
In particular, once « is above the FPP geodesic length, we can follow the FPP geodesic
of the shifted weights w(~") and extend the path to length na by finding and repeating
an edge whose weight is close to the minimum r,.

3. OPEN PROBLEMS

We list here open problems raised by the results.

3.1. Asymptotic length of geodesics. Does the Hammersley-Welsh limit generalize
in some natural way when ,u’g(b+) < ,u’g(b—)? For example, are there weight configu-
rations w and @ and sequences x,/n — £ and %,/n — & such that
—(b
Ly, ) — Ton, @)
. = ,u’g(b+) and lim + = ,Lt/g(b—)?

n—oo

3.1 lim
n—-oo
If so, can these statements be strengthened to limits, and are they valid for all sequences
and almost surely? Even if one cannot know the limits, are the random variables
lim n_léo,xn and lim,,_,,, ™ 'Ly, almost surely constant?
3.2. Properties of the shape functions. Is u, differentiable when the weight dis-
tribution is continuous? What about the case of a single positive atom which is not
covered by Theorems P.6-P.7? Is any comparison between y: and Mg possible for two

distinct directions ¢ and £? Is the function A defined in (2:33) a norm on R¢? Do A and
1 possess more regularity than given in Theorem P.11[ii)?

3.3. Duality of the weight shift and geodesic length for real-valued weights.
The duality described in Section R.4 restricted the shape function u(b) to nonnegative
weights through definition (£.40). This leaves open the duality of uz(b) for b < —r,. To
capture the full convex duality over all shifts b requires a study of the process osf(‘n), .
restricted path length FPP that optimizes over self-avoiding paths, in a manner analo-
gous to our study of G () , and its shape function.

The present shortcoming can be seen for example in the case r, = 0 of (2.35) where
/_1(5) blows up and cannot capture the left derivative ,LL%(O—). Graphically this same
phenomenon appears in the left diagram of Figure P.2 where the graph of ag(£/a) never
separates from u(§) after A(§). The graph of the function ag*?(£/a) of the self-avoiding
version will separate from u(&) for large enough a and capture /,1’5(0—).
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3.4. Modification arguments for real weights. Do the van den Berg-Kesten mod-
ification arguments [20] extend to weights that can take negative values? Such an ex-
tension would permit the extension of the strict concavity of u¢(b) to b < —rp.

3.5. General perturbations of weights. Develop versions of our results for other
perturbations of the weights, besides the simple shift t(*)(e) = t(e) + h, such as the
perturbations considered in [3].

4. THE SHAPE FUNCTIONS AND LENGTHS OF OPTIMAL PATHS

This section develops soft auxiliary results required for the main results of Section
B. Along the way we prove Theorem P.10, part [1) of Theorem R.11, parts [D)}-{ii) of
Theorem .16, and Theorem P.I7. To begin, assume 7y > —oo and the moment bound
(B7) with p = d for the nonnegative weights t* (e) = t(e) v 0. Take the existence of the
continuous, convex functions g,g° : intU — [ry A 0, c0) that satisfy the laws of large
numbers (2.29) from Theorem B.1 in Appendix B. The limit implies g > g°. Extend the
shape functions g and g° to all of U through radial limits: for ¢ € {(empty), o}, define

(4.1) g°(§)=£i/rr11g°(t§) € [lpA0,00]  for [§]; =1.

The limit exists because t — g°(t£) is a convex function on the interval [0,1). Mono-
tonicity (2:36), g > g°, and the limit combine to give, for |[§|; < 7 < a,

(4.2) ag®(§/a) < 7g°(&/7) < t8(&/7).
Part of Lemma 1] proves Theorem P.10,
Lemma 4.1. Assumer, > —oo and the moment bound (R.7) with p = d for the non-

negative weights t* (e) = t(e) v 0. The restricted path shape functions have the following
properties.

(i) g(0) =ryand g°(0) =ry AO.
(i) Ifry <Otheng =gl onallof U. Ifry > 0 then g > g° in an open neighborhood

of the origin.
(ili) Forall¢ € R\ {0}and a > |€|;,
)= )
of >} — 2
(4.3) ag <O( T: |§1|11’le7£0£ 8 T

and the infimum on the right is attained at some T € [|&|,a]. In particular,
€11 = Limplies g°(§) = g(©).

(iv) For ¢ € {{empty), o}, the extended function g° is convex and lower semicontinu-
ouson U.

Proof. ([i)) The lower bounds g > r, and g° > r, AO on all of int U follow from t(e) > r,
and t({x, x}) = 0. Also immediate is g°(0) < 0. Given € > 0, we can fix as measurable
functions of almost every w,

4.4 an edge e = {x, y} such that t(e) < ry + ¢, and a path 7 from O to x.

For large enough n consider paths X, ., that follow 7 and then repeat edge e n — |7|
times. Then x,,/n — 0 and in the limit g°(0) < g(0) <1, + ¢.

((ii)) The claim for r, < 0 is true because the zero steps of a path 7,, € Hg’(n)’x can
be replaced by repetitions of an edge with weight close to r,. Here is a detailed proof.
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Fix £ € int U and a sequence x,, € D,, such that x,,/n — . Let 7,, be an optimal
path for Gg,(n)’xn and let k,, be the number of zero steps in 77,,. Let e and 7 be as in (£.4).
We construct an R-admissible path 7;, of length n from 0 to x,, or x,, + e, that repeats
edge e as many times as possible, as follows.

« First, ifk,, iseven, let y,, = x,,, and ifk,, is odd, let y,, = x,, + ;. Then 7,, (plus
the y,, — x,, step if necessary) goes from 0 to y,, in n — 2|k, /2| nonzero steps.

+ The remaining 2| k,,/2] steps are spent in an initial segment from 0 back to 0 by
first following 7 to x, then back and forth across e altogether 2(|k,, /2| — |z|)*
times, and then from x back to 0 along 7 (in reverse direction). If |k, /2| < |7|
then the initial segment does not go all the way to x but turns back towards 0
after | k,,/2] steps along 7.

Letey,..., e, denote the edges of 7. We get the following bound:

4.5)
mAlk, /2]

Gomuyy <T@ =2 > tle)) +2(1kn/2] — |7]) " t(€) + T(rp) + t({Xp, ¥u})

i=1

m
+
<2 Z t+(ep) + 2(1kn/2] — |7]) (ro +€) + Go (myx, T tY({x,, x, +€}).
i=1
Divide through by n and let n — oo along a suitable subsequence, utilizing r, < 0 and
Yu/n = £. We obtain

8(8) <e+g°(9) + lim n™* ({xy, X, + 1),
n—oo
The last term vanishes almost surely because n='t*({x,, x, + €;}) — 0 in probability.
Since g > g° always, letting € \, 0 establishes the equality g = g° under r, < 0.

The statement for r, > 0 in Part [ii) follows from Part [i} and continuity.

For ry < 0 (f.3) follows from g° = g and (@.2).

Assume 7y > 0. The inequalities in (f.2) imply that < holds in (£.3). To prove the
opposite inequality > in (f.3)), consider first « > |&|; so that we can take advantage of
the laws of large numbers. Choose k,, - oo and x,, € Dl‘zn sothatk,/n — a, |x,|; >
and x,/n — §. Begin with

G2 = min = Gg(i)x. -
Oa(kn)axn J |xn‘15j5kn 0;(]):xn

Lete > 0and choose a partition ||, = 75 < 7y < -+ < 7,,, = asuchthat7;—7;,_; <e.
Choose integers ¢, ; such that |x,|; = €0 < €p1 < <Cpms Cnm = kn, €niln = 75
and x,, € Den’i. (When €,,; > |x,|1, x, € l)gn’i only requires ¢, ; to have the right
parity.) Then

Co k), = 0D €n,i_lflsijns o Go(xa 2 WD Go,(¢, .3, — 2T(7) = 2ne(ry + ),
where we again utilize (f.4): for ¢,;_; < j < ¢,; whenever x,, € Dj, construct an
€y ;-path from 0 to x,, by first going from 0 to one endpoint of e, repeating e as many
times as needed, returning to 0, and then following an optimal j-path from 0 to x,,. (If
€p,.; — j is too small to allow travel all the way to e, then proceed part of the way and
return to 0. £, ; — j is even because x,, € l)é;n’i N D;.) The number of repetitions of e
is at most 2ne when n is large enough.
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In the limit

agl(é/a) > min 7;8(8/7;) —2e(ry +e) > inf  7g(€/7) — 2e(ry + €).
1<i<m T |g1<T<
Let € \, 0 to complete the proof of (f3) in the case a > |£|;. The infimum in (f3)
is attained because on the right either the extended function is continuous down to
7 = ||, or then it blows up to co.

To complete the proof of (f.3) we show that g°(¢) = g(&) when |€|; = 1. Only
g%(€) > g(&) needs proof. Let ¢ < g(&). Since g > r, > 0 we can assume ¢ > 0. Pick
u < 1 so that g(s§) > cfor s € [u,1]. Then by (§.3) applied to the case « > 1, for
t € [u,1) we have

opeey — o e 8(58)
g°(té) _t.séﬂ,fl]T > te.
Letting t /' 1 gives g°(§) > c.

Convexity extends readily to all of U. If § = af’ + (1 — a)§” in U, then for
0 < t < 1 convexity on int U gives g°(t§) < ag®(tf’) + (1 — a)g®(t&”) and we can let
t /1.

We check the lower semicontinuity of the extension g° on U. Since g° is continuous
in the interior, we need to consider only limits to the boundary. Let |&|; = 1, g°(§) > ¢
and §; — £ in U. By the limit in (A1) we can pick ¢ < 1 so that t71g°(t£) > c. By the
continuity of g° on int U, g°(t&;) — g°(t£). Pick j, so that t71g°(t&;) > cfor j > jo.
Apply (B2) to §; with « = ¢t and 7 = 1 to get g°(&;) > t~'g°(t£;) > c, again for all
J = jo- Lower semicontinuity of g° has been established.

Lower semicontinuity of g follows from g > g° and the equality g = g° on the
boundary: when [§]; = 1and §; - §in U, 11_qu00 g(§) > lim,  g°(&;) > g°(¢) =

—j—o

g(é). O

In the remainder of this section we investigate the connections of g° and g with
standard FPP and assume 7, > 0 and either (.3) or (2.6). We begin with the fact
that u and g° coincide in a neighborhood of the origin. Since Lemma B.2 considers
nonnegative weights without any shifts, the weaker subcriticality assumption (R.3) is
sufficient.

Lemma 4.2. Assumer, > 0, (.3), and the moment bound (2.7) with p = d. Then there
exists a constant x € (1, c0) and a positively homogeneous function A : R4 — R, such
that |€], < A(€) < x|£]; V¢ € R? and

(4.6) forée, u@=g¢) = AH<L

In particular, u(§) = g°(€) in the neighborhood {¢ € R? : |€|; < x~'} of the origin.
Proof. We claim that there exists a constant x € (1, c0) such that

(4.7) VE € RI\{0} 1 u(é/a) = g°(&/a) for a > x|€];.

It suffices to prove that a constant x works for all |§|; = 1. Towards this end we show
the existence of a deterministic constant x and a random constant M; such that

(4.8) Loy < 3xlx|; forall |x|, > M,.
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By Kesten’s foundational estimate (Proposition 5.8 in [14], also Lemma 4.5 in [2]),
valid under the subcriticality assumption (R.3), there are positive constants &, c; such
that, forallk € N,

(4.9)  P(3 self-avoiding path y such that 0 € 7, |[y| > k, and T(y) < k&) < e~“1¥.

By adding these probabilities over the cases |y| = k > n we get
(4.10)
P{3 self-avoiding path y from the origin with |y| > nand T(y) < 8|y|} < Ce~“1™.

Thus there exists a random constant M; such that any self-avoiding path y from the
origin of length |y| > M satisfies T(y) > Sy|.

Since the FPP shape function u is positively homogeneous, by the FPP shape theo-
rem ([2, p. 11] or (A.8) in Appendix [A) we can increase M; if necessary so that, for a
deterministic constant c,,

(4.11) Tox < Calx|y forall |x|; > M.
Let |x|; > M; and let 7 be a geodesic for T, ... Then
S|m| < T(7) = Tox < calxh

from which |7| < (c,/8)|x|;. (B8) has been verified.
Given § such that |§|; = 1, let x,,/n — £. Then for all large enough n, Lo, < nx.
Hence, recalling (R.25),

_ . _ o
Toxy =m0 Go.xn = Go,mep,x,

In the limit u(§) = xg°(§/x). (The requirement x > 1 was imposed precisely to justify

the limit n_ng,(lnxJ),xn — xg°(€/x).) By the lower bound g° > u and the monotonicity
in ({2), u(§) = ag(é/a) for a > x. (B.7) has been verified.
Define
(4.12) A§) = inf{a > [§]y : u(§/a) = g°(§/a)}.
The claimed properties of the function A follow. O

Later in the paper (Corollary [7.2) after much more work we can show that A(§) >

(1+D)I&h-
In Lemma [.3 we strengthen the subcriticality assumption to (B.6) so that we can
apply Lemma .2 to the shifted weights w(="0) and u(~"0)(¢) > 0.

Lemma 4.3. Assume ry > 0, (B.6), and the moment bound (R.7) with p = d. For ¢ €
{(empty), 0}, the shape functions g° have the following properties for a fixed £ € R\ {0}.

(i) On the &-directed ray these functions are affine in a nondegenerate interval
started from zero: for 0 < t < |€|7L,

@13 t€[0,AENT'] = g°t&) = tu(®)
' and  1€[0,QTO@)] = g0 =y + Q).

(ii) The function t — g°(t&) is continuous, convex, and strictly increasing fort €

[0, [E1T1).
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Proof. [i) The first line of (F.13) is exactly (B.6). Shifting weights gives g({) = ry +

g(=70)(¢) and Lemma FI[I0) gives g{~70)(¢) = (g°)(~"0)(¢). Then the first line of (F.13)
applied to w(~"0) gives the second line.

Continuity and convexity on int U are already in the construction of the func-
tions g°. Since u(€) > u(=0)(&) > 0 (Theorem B.1), t — g°(t£) is strictly increasing on
a nondegenerate interval from 0. By convexity, it has to be strictly increasing on the
entire interval [0, |£|71). O

Since the functions a — ag®(é/a) are central to our treatment, we rewrite (f.6) in
this form:

§

@14 forfer\(Ojanda> |gh ag’(2)=u®) < a2 A0,

Together with (£.3) the above implies that some 7 > |£|; satisfies 7g(&/7) = u(§). By
the 1 < g° < g inequalities, any such 7 must satisfy 7 > A(§). Now we have

d _ ¢
(4.15) for £ e R4\ {0}, u(é) = .. }Xrggh ocg(q).

Furthermore, for £ € R4 \ {0},

(@.16) A6) = supfe2 181y < ag(2) = w(®)} € (4,

is a meaningful definition as the supremum of a nonempty set. Positive homogeneity
of 2 on R9 \ {0} follows from the positive homogeneity of u. By Lemma and
E1D,

(4.17) ro=0 implies A(£) = co.

Recall u* = supg _, u(&). Let a be such that ag(é/a) = u(&). Then

arg < ag(é/a) = u(§) < (€.
Thus

(4.18) ro>0 implies A(&) < (u*/ro)l&];.

Since r, > 0 implies that g(0) = r, > 0 = u(0), (B.16) is not a meaningful definition
of 1(0). Cued by (.17) and (£.18), we can retain positive homogeneity by defining

0, rg >0,

0, Iy = 0.

(4.19) 2(0) = {

Proposition .4 collects properties of the functions a — ag®(€/a) for ¢ € {{empty), 0}.
These properties are implicit in the definitions and previously established facts. Note
that part [T) below is still conditional for we have not yet proved that ||; < A(§). The
trichotomy in Proposition .4 is illustrated in Figure B.2.

Proposition 4.4. Assume ry > 0, (2.3), and the moment bound (B.7) with p = d. Fix

& € R4\ {0}. Then fora € [ ||}, o), the functions a + ag(&/a) and a - ag®(&/c) have
the following properties.

(i) For |§]; < a < A§), ag’(§/a) = ag(é/a) are strictly decreasing, convex, and
strictly above u(§).

(il) For A(§) < a < A(E), ag’(§/a) = ag(é/a) = u(é).
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(iii) Fora > A(£), ag®(&/a) = u(&), while ag(£/a) > u(£) and ag(£/a) is convex and
strictly increasing. This case is nonempty if and only if ry > 0.

Proof. The inequalities
(4.20) A& <co and [ <AE) <AE) < oo

are built into the definitions and Lemma [£.2.

Assume |&]; < A(§) so there is something to check. Since a — ag°(§/a) is non-
increasing, convex, and reaches its minimum u(§) at a = A(£) but not before, it must
be strictly decreasing for |§]; < a < A(§).

Suppose ag°(§/ay) < apg(é/ay) for some ay > |€];. (Equality holds at ay = |&];
by Lemma F.I[ii1).) We show that A(§) < a. By (B3), for some 7, € [|£];, o) and all
a € [1g,ap]

a08°(€/ag) = 198(€/70) = " i<r;f< y tg(é/t) = | g|iilff<a t8(§/7) = ag®(é/a).

Thus a — ag°(§/a) is constant on [7y, ap] with 7y < oy. It must be that A(§) < 75 < a.

From Part [i) and (B.14), the behavior of ag®(é/a) is completely determined.
Furthermore, ag(§/a) achieves its minimum u(§) at « = A(£) by a combination of
(B-3) with Part [T) and (B.14). Then ag(&/c) must be nondecreasing for a > A(§), and

definition (&.16) forces ag(£/a) = u(£) for A(€) < a < A(%).
Part follows from convexity and the definitions. O

Lemma §£.5 shows that A is lower semicontinuous and 1 upper semicontinuous.
Lemma 4.5. Let &; — £ in R9 \ {0}. Then
(4.21) A(9) < lim A(8) < Tim 2(&) < A®2).
. =00

-0
Proof. If A(§) = |&|;, the first inequality of (B.21) is trivial. Suppose |§]; < a < A(§).
Then ag®(¢é/a) > u(£). By continuity on int U, ag®(§;/a) > u(§;) for large i, which
implies A(§;) > a.
If A(§) = oo, the last inequality of (&-2) is trivial. By (f-17) and (&.I8), the comple-
mentary case has r, > 0 and therefore 1(£;) < (u*/ry)|&;];. Then

Ateg(=2) = e,
(&)
Suppose a subsequence satisfies /_1(§'i) - T> /_1(&') > |&|;. Then for all large enough i,

(&) > (1 + 8)|£;|; for some & > 0. Continuity of g on int 2 and of i on R9 then leads
to 7g(&/7) = u(), a contradiction. O

At this point we have covered everything needed to prove part [i) of Theorem .11
and parts [D){ii) of Theorem P.16. The proofs of these theorems will be completed in
Section [7.1 after the modification arguments. As the last item of this section we prove
the claims about the convex duality.

Lemma 4.6. Assume (2.7) with p = 1. For all ¢ € R%, we have

)
.18
Jim === = 18-
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Proof. We may assume that & € 7¢ \ {0} for the following. The extension to & € R¢
follows from the homogeneity and convexity of u(®)(&) in €.

Claim 4.7. For each ¢ € 79, there exist 2d edge-disjoint paths {7;}?4, from 0 to & such
that their Euclidean lengths satisfy |7;| = |§|; and |7;| < |€|, + 8 for i # 2.

The proof of Claim f.7 comes after the proof of the lemma, but it is intuitively clear
that there exist 2d edge-disjoint paths from 0 to & such that at least one path has length
||, and the length of each path is at most ||, + C for some constant C (see [[14, Fig.
2.1] for the case & = ke;). Then,

) [(b)]
(4.22) (1+ )|§|1 £ (5) ; S[E[b_lizﬁ?ifmT(b)(”i)]’

where the first inequality follows from T( ) > |£];(b+ry), the second from subadditivity,

and the third from the fact that T g) is an 1nﬁmum over all paths from O to £. Denote
the integrand on the right-hand 31de of (.22) by Z,,.
Since T®)(7r;) < (Ce+1€l)b + T(r;) fori = 1,...,2d, we have

Zy < (Ce+ [+ Ilninzd T(m;) forallb > 1.
i=1,...,
Next, we show that min;_; . ,4 T(7r;)is integrable (see [2, Theorem 2.2]) in preparation

for the dominated convergence theorem. A union bound over the edges of each path
7; and independence of the edge weights in the paths implies

P{ min T(m;) > s} < (m?X|”i| P{te z %})Zd

i=1,...,2d

Integrating over s > 0 shows that for some constant C,

[E[izrlrji.rjzd T(7;)| < C¢ E[minfty, ..., g} ] < oo.

Since Zj, can be written as

T(ﬂi))’

Zy = min <|7ri|+ b

i=1,...,2d

we see that limy_, , Z,, = |7;| = |§|;. Therefore, by the dominated convergence theo-
rem, we have

b

€ < tim X080 < tim £12,] = g 0
b—co b b—o

Proof of Claim 7. For general ¢ € 79, let k be the number of nonzero coordinates

of £ and suppose k > 1. This is the effective dimension of the rectangle formed with

the origin and £ as extreme opposing corners. We may assume without loss of gen-

erality that the first k coordinates of £ are nonzero and the rest are 0. So let £ =

(a;,a3,...,0,0,...,0).

The first k disjoint paths run along the edges of the rectangle. Such a path is en-
coded by a permutation o € Sy. For example, o = (1,2, ..., k) corresponds to the path
0 - a,e; — a,e; + a,e, — ---. Two paths encoded by permutations o = (oy,...,0k)
and u = (ug,...,H;) meet (share a vertex) before £ if and only if for some j < k,
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{o1,...,0;} = {1, ..., u;}. Consider the k paths corresponding to the cyclic permuta-
tions:

T =01,2,....k), 1, =(2,3,...,1),..., 1 = (k,1,...,k = 1).

These k paths are vertex disjoint, except for their first and last vertices, and have length
I{

The next d — k paths are formed as follows. For each j € {k + 1,...,d}, start with
an e; step, follow the path 7, to £ + e;, and conclude with a —e; step to . Get another
d — k path by starting with —e; and finishing with e;. These paths have length |§]; + 2.

Now we have altogether k + 2(d — k) paths. The final k paths are a little trickier.

Foreachi = {1,...,k}, pair direction e; with path p;,; modx- We construct the path
fori = 1, and the rest are similar. The first step is —e;. Then follow 7, until 7, is about
to step in the e direction (the last step before it steps in the e; direction). On the ey
segment take a; + 1 steps and then take a; + 1 steps in the e, direction (this avoids the
7, path), ending up at £ + e;. Finish at £ by taking a final —e;, step. Replacing e, and
7, by ejand pjyimoak for j = 2,..., k gives us k such paths that are disjoint from each
other and all the previous paths (except for their first and last vertices). All these have
length |£|; + 4. Notice the crucial assumption of k > 1 for this construction.

The k = 1 case is covered in [[14, Fig 2.1], as mentioned earlier. One can verify that
this gives the worst case of |€|; + 8. |

Proof of Theorem R.17,

Step 1 (Identity (R.44)). For b > —r,, (B-44) is a combination of (£.I5) and (2.42). For
large a

(4.23) ag(§/a) < u(§) + ar

because an |nal-path from O to a point close to né can be created by following the
strategy in the proof of Lemma f.I[ii): repeat an edge close to the origin with weight
close to ry as many times as needed, and then follow a geodesic to a point close to n&.
Bound (f.23) implies that the right-hand side of (B.44) equals —co for b < —r,. Identity
(B-44) has been verified for all b € R.

Step 2 (The duality). The convexity and lower semicontinuity of « — ag(é/a) for a >
|&|; imply that the function defined by the right-hand side of (2:43) is concave and
upper semicontinuous. Thus (B.44) implies that ﬁg is the concave dual of this function.

Then we can identify the dual ﬁz of ;75 as (R.43), which gives (R.45).

—(b)
Step 3 (The superdifferentials). Letb > —ry. Then 1 (§) < oo by (F.18). By Proposi-
tion .4 and the duality,

—(b)
[APE,1 @) =1{a > [¢] : Ze(b) = ag®(E/a)}
(4.24) ={a> | : ﬁg(b) = ag(é/a) + ab}
={a € R : fy(b) = ab — fg(a)} = Hi(b).
Similarly
(A7), 00) = {a > [£]y ¢ (o) = ag (¢ )}

(4.25) _ _x _
={aeR: /«45(—"0) = —ary —#g(“)} = a#g(_"o)-
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Fixa > —ry and let b > a. From |§|; < ,u’g(bi) given in (B.14), concavity, and Lemma
£.6, _ _
Fe(b) — (@)

- - |€]; asb — co.

€l < g (b) <

5. MODIFICATION PROOFS FOR STRICT CONCAVITY

The modification arguments provide the power to go beyond soft results. In partic-
ular, these give us the strict concavity of the shape function in the shift variable (The-
orem R.2[i1)), the strict separation of A(§) from ||, (Theorem R.I1[i1)), and the strict
exceedance of ¢! distance by the geodesic length (Theorem B.5).

5.1. Preparation for the modification arguments. We adapt to our goals the mod-
ification argument of van den Berg and Kesten [20]. Throughout this section r, =
essinft(e) > 0.

An N-box B is by definition a rectangular subset of Z¢ of the form

(5.1) B={x=(x1,...,x9) €Z% : a; < x; < q;+3N fori € [d]\k, a < x; < ap+N}

for some a = (ay,...,a4) € 7% and k € [d]. In other words, one of the dimensions of
B has size N and the other d — 1 dimensions are of size 3N. The two large 3N X --- X 3N
faces of B in (B.1)) are the subsets

{xeB:xy=a;} and {xe€B:xx=ag+N}

The interior of Bis defined by requiring a; < x; < a;+3N and q; < x < a,+N in (B.1).
The boundary 0B of B is the set of points of B that have a nearest-neighbor vertex in the
complement of B. Our convention will be that an edge e lies in B if both its endpoints
lie in B, otherwise e € B¢. A suitable ¢!-neighborhood around B is defined by

(5.2) B={xez?:3yeB: |x—y; <3N(d-1)+N}

The significance of the choice 3N(d — 1) + N is that the ¢!-distance from any point in
B to the boundary of B is at least as large as the distance between any two points in B.

Introduce two parameters 0 < sy,d0, < oo whose choices are made precise later.
Consider these conditions on the edge weights in B and B:

(5.3) maxt(e) < sg,
eeB

(5.4) D t(e) < s,
eeB

and

(5.5 T(7r) > (ry + 8,)|y — x|, for every self-avoiding path 7 that stays entirely in B
"’ and whose endpoints x and y satisfy |y — x|; > N.

The properties of a black box stated in Definition .1 depend on whether the weights
are bounded or unbounded. We let M, = [P- ess sup t(e).
Definition 5.1 (Black box).

(i) In the case of bounded weights (M, < o), color a box B black if conditions

(B-3) and (B.9) are satisfied.
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(ii) In the case of unbounded weights (M, = o), color a box B black if conditions

(B-4) and (B.9) are satisfied.

By choosing sy and N large enough and §, small enough, the probability of a given
B being black can be made as close to 1 as desired. This is evident for conditions (5.3)
and (B.4). For condition (B.5) it follows from Lemma 5.5 in [20] that we quote here:

Lemma 5.2 ([20, Lemma 5.5]). Assume (R.6), that is, the infimum of the passage time
is subcritical. Then there exist constants 8, > 0 and D, > 0 such that for all x,y € 7¢,

(5.6) P{Ty, < (1o + 8o)[y — x|y} < e~ Poly=xl,

When r, > 0, Lemma 5.5 of [20] requires the weaker assumption P{t(e) = 1y} < p.
where p, is the critical probability of oriented bond percolation on Z¢. However, since
we consider shifts of weights that can turn r, into zero, it is simpler to assume (2.6) for
all ry > 0 instead of keeping track when we might get by with the weaker assumption.

The probability of the complement of (B.5) is then bounded by

P{E.3) fails} < Z P{Ty,y < (ro + 8o)ly — x[1} < CyN%de=DoN
x,y€B: [y-x[1>N

The bound above decreases for large enough N and hence gives us this conclusion:
(5.7) There exists a fixed §, > 0 such that for any ¢ > 0 there exist N
and s, such that P{box B is black} > 1 — ¢ while P{t(e) > sy} > 0.
Increasing N and s, while keeping &, fixed cannot violate this
condition as long as P{t(e) > sy} > 0.

Condition P{t(e) > sy} > 0 is included above simply to point out that s, is not chosen
so large that property (5.3) becomes trivial for bounded weights.

A nearest-neighbor path 7 = (x;)-, that lies in B is a short crossing of B if x, and
X, lie on opposite large faces of B. More generally, we say that

(5.8) a path 7 crosses B if some segment 7y, ., = (x;)[% of 7
is a short crossing of B and neither endpoint of 7 lies in B.

The second part of the definition ensures that 7 genuinely “goes through” B.

Let B be the countable set of all triples (B, v, w) where B is an N-box and v and w
are two distinct points on the boundary of B. A path 7 has a (B, v, w)-crossing if (5.8)
holds and v is the point where 7 first enters B and w is the point through which 7 last
exits B. (Then the short crossing of B is some segment 7, ,,» C 7, 4,.) If 77 crosses B,
then 7 has a (B, v, w)-crossing for some (B, v, w) € B with (v, w) uniquely determined
by 7 and B.

Partition the set B of all elements (B, v, w) into K subcollections B, ..., Bk such that
within each B; all boxes B are separated by distance N. Any particular box B appears
at most once in any particular B;. The number K of subcollections depends only on
the dimension d and the size parameter N. The particular size N of the separation of
boxes in B; is taken for convenience only. In the end what matters is that the boxes are
separated and that once N is fixed, K is a constant.

Let B(0,r) = {x € z% : |x|; < r}denote the ¢!-ball (diamond) of radius |r| in
79, with (inner) boundary dB(0,r) = {x € ¢ : |x|; = |r]}. Lemma B.3 is proved in
Appendix C.
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Lemma 5.3. By fixing s, and N large enough and &, small enough as in (5.7), we can
ensure the existence of constants 0 < 8;, D, n; < oo such that, foralln > n,

P{every lattice path 7 from the origin to 0B(0, n) has an index
(5.9) j(m) € [K] such that 7 has at least |n8; | (B, v, w)-crossings
of black boxes B such that (B,v,w) € Bj} > 1 —e P1",

We turn to the modification argument for the strict concavity of u, claimed in The-

orem P.2.

5.2. Strict concavity. Let §, > 0 be the quantity in (E.5) in the definition of a black
box. In addition to t(e) > 0 we consider two complementary assumptions on the weight
distribution. Either the weights are unbounded:

(5.10) My = o

and satisfy a moment bound, or the weights are bounded and have a strictly positive
support point close enough to the lower bound:

the support of ¢t(e) contains a point r; that satisfies

5.11
( ) 0<r1<r0+50<M0<00.

If r, > 0 we can choose r; = ry. Let ¢, > 0 be the constant that appears in Theorem

and in Theorem [A.T], also equal to the constant § in (§.10) for the shifted weights
(=ro)
w'~To),

Theorem 5.4. Assumer, > 0 and (B.6), in other words, that weights are nonnegative
and the infimum is subcritical. Furthermore, assume that one of these two cases holds:
(a) Unbounded case: the weights satisfy (5.10) and the moment bound (R.7) with
p=1
(b) Bounded case: the weights satisfy (5.11).

Then there exist a finite positive constant M and a function D(b) > 0 of b > 0 such that
the following bounds hold for all b € (0,ry + €¢) and all |x|; > M:

(i) In the unbounded case

(5.12) FlTgx"] < E[Tox] = bE[ Lo ] = D(b)blx];.
(ii) In the bounded case [b),

(513) E[T+"] < E[To.] - bE[L, ] - D(b)bx:.

Condition (B.7) with p = 1 guarantees that the expectation E[T, .| above is finite
(Lemma 2.3 in [2]). This together with Lemma [A.3 then implies that [E[Té;cb)] is finite
for b € (0,75 + ¢y). Since [E[Zo,x] > E[L o’x], (B-12) provides a better bound than
(B:13). This is due to the fact that the modification argument gives sharper control of
the geodesic under unbounded weights.

Our modification proofs force the geodesic to follow explicitly constructed paths.
These paths are parametrized by two integers k and € whose choice is governed by the
support of t(e) through Lemma B.5.
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Lemma 5.5. Fixreals0 < r < sand b > 0. Then there exist arbitrarily large positive
integers k, ¢ such that

(5.149) k(s+0) <(k+20)r—08)<(k+26)r+06) <k(s—86)+(2¢—-1)b
holds for sufficiently small real § > 0.

Proof. Tt suffices to show the existence of arbitrarily large positive integers k, ¢ that
satisfy the strict inequalities

(5.15) ks<(k+20)r<ks+(2¢—-1)b

and then choose § > 0 small enough. Let 0 < € < b/r and choose an integer m > 2/c.
Then for each k € N there exists ¢ € N such that

(5.16) k(;—1)<2€<k(§—1)+m5,

and k and ¢ can be taken arbitrarily large. Rearranging (B.16) and remembering the
choice of ¢ gives
ks < (k +2€)r < ks + mer < ks + mb.

To get (5.15), take k and ¢ large enough to have m < 2¢ — 1. O

Proof of Theorem B.4. The proof has three stages. The first and the last are common to
bounded and unbounded weights. The most technical middle stage has to be tailored
separately to the two cases. We present the stages in their logical order, with separate
cases for the middle stage.

Stage 1 for both bounded and unbounded weights. Let 77(x) be a geodesic for T .
When geodesics are not unique, 7z(x) will be chosen in particular measurable ways that
are made precise later in the proofs. Assume that |x|; > n; so that Lemma B.3 applies
with n = |x|;. The event in (B.9) lies in the union

K
U{n(x) crosses at least | |x[;6; | black boxes from B;}.
j=1

By (B.9), there is a nonrandom index j(x) € [K] such that

1 — e Dilxh
(5.17) P{7(x) crosses at least ||x|; 8, | black boxes from Bj(y)} > eK
Define the event
(5.18) Ap y.w.x = 1B is black and 7(x) has a (B, v, w)-crossing}.
Consequently

1—e~Dilxh

(5.19) P{Ap p,u,x occurs for at least ||x|; 5, | elements (B, v, w) € Bj(x)} > e
Turn this into a lower bound on the expected number of events, with a new constant
D, > 0:
(5.20)

> P(Apywyx) = E[ #{(B,v,w) € Bjiy) 1 Apyux Occurs}] > Dy|x|;.
(B,U,w)EBj(x)
Stage 2 of the proof shows that, after a modification of the environment on a black
box, the geodesic encounters a k + 2¢ detour whose weights are determined by the
modification. By this we mean that the geodesic runs through a straight-line k-step
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++ ++
Ty ke
u/
I € G
u
7Z'+
+ + _ o+t
o Tk = Tt
k

FIGURE 5.1. Illustration of (5:21)): u and u’ are two perpendicular unit vec-
tors in Z¢, 7+ is a path that takes k u-steps, while the detour 7+ first takes ¢
u’-steps, followed by k u-steps, and last € (—u’)-steps. The detour rectangle
G is bounded by these paths.

path segment of the form 7+ = (7§ + iu)o<;<x parallel to an integer unit vector u €
{+e;} |, with some initial vertex 7z . A k+ 2¢ detour associated to 7+ is a path 7+ =
(7 " )o<i<k+2¢ that shares both endpoints with 7+ and translates the k-segment by ¢
steps in a direction perpendicular to u: so for some integer unit vector u’ L u,

e +iu, 0<i<é,
(5.21) it =it +eu + (-0, e+1<i<k+¢,
rt+éu +ku—(i—k—-0u, k+é+1<i<k+2¢.

In particular, 7+ and 7 *+ are edge-disjoint while they share their endpoints.

The k X ¢ rectangle G = [n{, 7{ + ku] X [n¢,7{ + ¢u’] enclosed by 7+ and 7+
will be called a detour rectangle. Its relative boundary on the plane spanned by {u,u’}
is 0G = #t U tt. Throughout we use superscripts + and ++ to indicate objects
associated with the two portions of the boundaries of detour rectangles G. Figure B.1
illustrates.

Stage 2 is undertaken separately for bounded and unbounded weights.

Stage 2 for bounded weights.

Lemma 5.6. Assume (5.11). For i € {0,1,2} there exist nondecreasing sequences
{si(@)}qen with the following properties:

(5.22) ro + 8o < so(q) < 51(q) < 52(qQ) = My,

(5.23) lim so(q) =M, and lim P{t(e) < so(q@)} =1,
q— q—

(5.24) fore >0andq €N, P{sy(q) —e < tle) < 50(q)} > 0,

(5.25) and fori €{0,1}and q € N, P{s;(q) < t(e) < s;1(q)} > 0.

Proof. If P{t(e) = My} > 0 then let 5;(q) = M, for all i and q. So suppose P{t(e) =
M} =0.

Let 5¢(0) = 1y + &y. For q > 1 define inductively sy(q) in the interval (so(q — 1) V
(My — g~ 1), M,) so that P{s,(q) — € < t(e) < so(q)} > 0 for all € > 0. This can be done
as follows. Let so(q) be an atom of t(e) in (so(q — 1) V (M, — g 1), M) if one exists.
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If not, the c.d.f. of t(e) is continuous in this interval and we take s,(q) to be a point of
strict increase which must exist.

Then s¢(q) = M, and thus P{t(e) < so(q)} — 1. Furthermore, P{t(e) > so(q)} > 0
for all g because s¢(q) < My. Pick s'(q) € [s9(q), My) so that P{s,(q) < t(e) < s'(q)} > 0.
Define a nondecreasing sequence by s,(q) = max;, s'(j). Since s;(q) < M, we have
P{t(e) > s;(q)} > 0. O

We fix various parameters for this stage of the proof. Fix b € (0,7;) and determine
k,¢,6' by applying Lemmap.5t0 0 < b < r; < M, to have

(5.26) k(Mg +6") < (k +26)(r, — 8") < (k +20)(r, + 8') < k(Mg — 8") + (2¢ — 1)b.

Since sy(q) = M, from below, we can fix q large enough and § € (0, §") small enough
so that

(527)  k(sy +8) < (k+20)(r; — &) < (k +26)(ry + 8) < k(3o — 8) + (26 — )b

holds for sy = s¢(q). Note that this continues to hold if we increase q to take s, closer
to M, or decrease &.

Take N large enough, §, > 0 small enough, and q large enough so that the crossing
bound (5.9) of Lemma .3]is satisfied for the choice s, = s¢(q). Drop g from the notation
and henceforth write s; = 5;(q).

Shrink 6§ > 0 further so that

(5.28) n+d<ry+9,
and
(5.29) €+ 1)sg > €+ 1) +0)+ k6.

The construction to come will attach k + 2¢ detours to edges of cubes. The number
of such attachments per edge is given by the parameter

d
.

Let m, be an even positive integer and define two constants

(530) Cl = ZkSO + 2m1(}’1 + 5)
and
_ _ my k
(5.31) ¢y, =ry+ 9 ((rl +90) my+k + S p— k>'
We have the lower bound
r _ my k
Ccy>cy =1+ ((r1+5)ml+k+M0ml+k).

Fix m, large enough so that

16¢M,
(5.32) my 2 m ,
(5.33) ml(rl - 5) > (k + 26)(}’1 + 5),
ch(ko(my + k) — 2¢
(5.34) ¢, >0 and 2(ko(rm +K) —20) > 4m, + 3(k + 1)(€ + 1).

6dM,
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S N
my /2 {_ | i
q
ml{- i i
3
m1/2 <-l ™ I ™ -l ™ I ™ =
41

FIGURE 5.2. k + 2¢-detours attached to the south and west boundaries of
¢, X ¢, 2-faces. In this illustration each edge has k, = 2 detours attached to
it, spaced m, apart.

Note that after fixing m,, (5.32) and (5.33) remain true as we shrink & and (5.34) re-
mains true with ¢, in place of ¢, as we increase s, towards M.
Set three size-determining integer parameters as

Set
ngé Cz(ko(ml + k) - 2€)J
. = = >
(5.36) m, l6dM0J l 6dM, >4my +3(k+1)(€ + 1),

where we appealed to (5.34).
As the last step fix N so that N — 2¢ is a multiple of ¢; and large enough so that

(537) Q = CzN — 4d(€g + €1)M0 — Cl Z C2N/2.

Increasing N may force us to take s, closer to M, to maintain the crossing bound (5.9).
As observed above, this can be done while maintaining all the inequalities above.

We perform a construction within each N-box B. Let V be a box inside B that is
tiled with cubes V; of the form H;Ll[uj, uj + ¢;] where (u,,...,uq) € 74 is the lower
left corner of the cube and the side-length ¢; comes from (5.35). The cubes V; are
nonoverlapping but neighboring cubes share a (d — 1)-dimensional face. Then, V =
U?=1 V; where a = 394-1¢74(N — 2¢})% is the number of cubes required to tile V. Inside
box B, V is surrounded by an annular region B \ V whose thickness (perpendicular
distance from a face of V to B°) is ¢} in the direction where B has width N and ¢} in
the other directions.

A boundary edge of a cube V; is one of the 24-1d line segments (one-dimensional
faces) of length ¢, that lie on the boundary dV;.

Attach (k + 2¢)-detours along each of the boundary edges of the tiling so that the
k-path 7t is on the boundary edge and the detour z#** is in the interior of one of
the two-dimensional faces adjacent to this boundary edge. Adopt the convention that
if the boundary edge is [v,v + ¢;e;] then the detour lies on the 2-dimensional face
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H H H H*

FIGURE 5.3. From left to right: A two-dimensional face H (shaded), H' that
consists of the boundary dH of H and the boundaries of the detour rectangles
in H, H that consists of H and the full (shaded) detour rectangles in H, and
finally H* that consists of the z*-parts of the boundaries of the detour rect-
angles in H

[v,v + ¢1€;] X [v,v + £;€;] for some j # i (in other words, the detour points into a
positive coordinate direction). See Figure 5.2.

Place k, detours on each boundary edge of the tiling so that the detours are exactly
distance m, apart from each other and a detour that is right next to a corner vertex of the
tiling is exactly distance m,/2 from that vertex. This is consistent with the definition
of ¢, in (B.39).

Since m;/2 > ¢ by (B.I1) and (B.32), distinct detour rectangles that happen to lie on
the same two-dimensional face do not intersect and the points on a detour are closer
to the boundary edge of the detour than to any other boundary edge.

Inside a particular N-box B, for j € {0,1,2} let W; denote the union of the j-
dimensional faces of the cubes {V;} tiling V. Let Wy be the union of W, (the bound-
ary edges) and the detours 7+ attached to the boundary edges.

We describe in more detail the structure of the detours on the two-dimensional faces
inside a particular B. Let H C W, be a two-dimensional ¢; X ¢; face. For simplicity
of notation suppose H = [0, ¢;e;] X [0, ¢;e,]. Assume without loss of generality that
the boundary edge [0, ¢,e;] has its detours contained in H. For i € [k,] define the ith
detour rectangle:

Gis = [(m/2 + (i — D)(k + my))ey, (my/2 + (i — 1)(k + my) + k)e;] X [0, Ce,].

The subscript S identifies these detour rectangles as attached to the southern boundary
of H. Similarly, if the detour rectangles attached to the western boundary of H lie in H,
we denote these by {G;  : 1 <i < ko).

For alabel U € {S, W}, let (7 = dG; iy \ 6H be the portion of the boundary of G; iy
in the interior of H. 7r;'; is the detour path of k + 2¢ edges. Let 7{"; = dG; y N GH be
the portion of the boundary of G; ;; that lies on the boundary of H. 7rif v is a straight

path of k edges, the path bypassed by the detour. Let

(538)  H =6HU| )Gy, H=0HU|]J Gy, and H*=|]x/y.
1<i<kq 1<i<kq 1<i<kq
Ue{S, W} Ue{S, W} Ue{S, W}

See Figure B.3. Let W, (resp. W;") be the union of all H (resp. Ht) as H ranges over
all the two-dimensional faces that lie in W,. The union of all H' equals W as already
defined above.



FIRST-PASSAGE PERCOLATION 245

Since multiple geodesics are possible, we have to make a particular measurable
choice of a geodesic to work on and one that relates suitably to the structure defined
above. For this purpose order the admissible steps for example as in

(5.39) J<e<—e€ <e <—€<-<ejg<-—e;

and then order the paths lexicographically. Here @ stands for a missing step. So if 7’
extends 77 with one or more steps, then 7 < 7’ in lexicographic ordering. Recall the
choice of index j(x) in (5.17).

Lemma 5.7. Fixx € 7%\ {0}. There exists a unique geodesic  for T, , that satisfies the
following two conditions.

(i) For every N—b_oxB S Bj(_x) and points u,v € g = m N B the following holds: if
both u,v € W, oru € Wy and v € 9B (or vice versa), and if every edge of ,, ,,
lies in B but not in Wl, then there is no geodesic between u and v that remains in

B, uses only edges with strictly positive weights, and uses at least one edge in W,.
(ii) 7 is lexicographically first among all geodesics of Ty . that satisfy point (i).

Proof. 1t suffices to show the existence of a geodesic that satisfies point [1). Point
then picks a unique one.
Start with any Ty ,-geodesic 7 of maximal Euclidean length. For the purpose of this
proof consider 7 as an ordered sequence of vertices and the edges connecting them.
Consider in order each segment 7, , that violates point [i]. When this violation

happens, there is a particular N-box B € Bjy, such that 7, , C B\ W, and there is
an alternative geodesic 7;, ;, C B that uses only edges with strictly positive weights and

uses at least one edge in Wl. Replace the original segment 7, ,, with 7;, .

Since we replaced one geodesic segment with another, T(r;, ;) = T(7,, ;). Suppose
that after the replacement, the full path is no longer self-avoiding. Then a portion of
it can be removed and this portion contains part of 7, ,,. Since 7, ;, uses only edges
with strictly positive weights, this removal reduces the passage time by a strictly posi-
tive amount, contradicting the assumption that the original passage time was optimal.
Consequently the new path is still a self-avoiding geodesic.

Since the original path was a geodesic of maximal Euclidean length, it follows that
|7r3,.0| < |7ry]- Since the replacement inserted into the geodesic at least one new edge
from W;, 7Ty, has strictly fewer edges in B \ W, than Ty v

The new segment 7;, , may in turn contain smaller segments 7z, ..., 7Ty, »,, that

" "

violate point [i). Replace each of these with alternative segments 7, ..., 7y, o, -
Continue like this until the entire path segment between u and v has been cleaned up,
in the sense that no smaller segment of it violates [i). This process must end because
each replacement leaves strictly shorter segments that can potentially violate point [).

Observe that the clean-up of the segment 7, ;, happens entirely inside the particular
N-box B, does not alter the endpoints u, v of the original segment, and does not alter the
other portions 7, ,, and 7, , of the geodesic because each replacement step produced
a self-avoiding geodesic.

Proceed in this manner through all the path segments that are in violation of point
[i). There are only finitely many. At the conclusion of this process we have a geodesic
that satisfies point [iJ. O
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Define the event
FB={w tn=6<tle)<n+6 Vee W \ W,

so—6<tle)<s, Vee Wi,

(5.40) _
So<tle)<s, VYee W, \ W,

51 < tle) < M, VeeB\Wl}.

A key consequence of the definition of the event I} is that, by (5.27), the boundary
paths 7zt and 7% of all detour rectangles G in Wj satisfy

(5.41) T(xt) < T(x*t) < T(w*) + (2¢ — 1)b.

Once the parameters have been fixed, then up to translations and rotations there are
only finitely many ways to choose the constructions above. Thus

(5.42) 3D, > 0 such that P(I3) > D, for all B.

D, depends on N and the probabilities of the events on t(e) that appear in I3. In par-
ticular, D, does not depend on x.

Our point of view shifts now to the implications of the event Iy for a particular
Be Bj(x)'

Let y be a self-avoiding path in W;. Then ifw € FB,

k

where ¢; came from (5.30). The main term on the rlght of (B.43) contains the weights
of the k-paths of detours and m,-gaps completely covered by y, and c; accounts for the
partially covered pieces at either end of y.

We say that a pointy € Wl is associated with a boundary edge I of a cube V;  if
either y € I or y lies in one of the detour rectangles G; ;; attached to the edge I. We
say that points y,z € W, are (€1, W)-related if they are each associated to boundary
edgesI C V; andJ C V;, such that every point on I can be connected to every point on
J by an #!-path that remains entirely within W;. Recall that an ¢!-path x,, ., satisfies
1Xp = X1 =n—m.

Lemma 5.8. Letw € I Let y,z € W, be two (¢!, W;)-related points. Suppose a
geodesic between y and z lies within B. Then there exists a geodesic between y and z that
stays within B and uses at least one edge in W.

Proof. There are two cases:

(A) y, z are connected by an #!-path inside w;.
(B) y,z cannot be connected by an #!-path that remains entirely inside W;.

In case [A), any #!-path inside W takes weights that are at most s; and any path
inside B \ W, takes weights that are at least s;. Since we assume the existence of a
geodesic between y and z that lies entirely inside B, we see that there must exist a
geodesic that remains entirely within W;.

In case [B), suppose # C B is a self-avoiding path between y and z that lies outside
Wl Construct a path 7’ C Wl from y to z by concatenatmg the following path seg-
ments: using at most € steps, connect y to the closest point y’ on the boundary edge I
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that y is associated with; using at most ¢ steps, connect z to the closest point z’ on the
boundary edge J that z is associated with; connect y’ to z’ with an ¢!-path 7" in W;.
We show that T(z") < T(#), thus proving the lemma.

We argue that

(5.44) 7" uses at least m, /2 edges in W} \ W;t.

Indeed, observe that y and z cannot both be on W; nor both in the same detour rectan-
gle G; y, for otherwise we would be in case [A). On the other hand, if y is in a detour
rectangle and z is on W;, then 7" is an ¢#!-path that connects y’ to z’ = z. If in this
case |[7" N (W] \ Wi")|, < m;/2, then it must be the case that 7” C I = J. But then in
this case 7’ is an #!-path from y to z and we are again in case [A). The symmetric case
of y € W, and z in a detour rectangle is similar. Lastly, if y and z belong to different
detour rectangles, then the segment of 7" that connects the two rectangles must be of
length at least m;, the distance between two neighboring detours.
We have verified (5.44). From (5.44) and m; > 8¢ comes the lower bound

|z = yl, > my/2 - 26 > my/a.

The m, /2 edges in 7" N (W, \ W;") all have weight at most r; + 6. Furthermore, |7”|; <
|z — y|; + 2¢ and all the edges along 7" have weight no larger than s,. This gives the
bound

T(7") < my(ry + 6)/4 + (|z = y|, — my/4 + 20)s,.
Since 7 connects y to z and the weights along 7 are at least sy,
T(%) > mys;/4 + (|z — y|; — my/4)s;.
Together these observations give the lower bound
T(#) — T(7") > my(s, — (r, + 6))/4 — 2&s.
From this,
T(') < T(n") + 268, < T(#) — my(s; — (r; + 9))/4 + 4¢s, < T(#).

The last inequality used (532) and r, + 8 < 1y + 8y < 57 < M. O

Lemma 5.9. Let w € I. Suppose y,z € W, are not (€', W;)-related and that they are
connected by a path 7 that remains entirely in B\ W;. Then

T(#) > 5,(¢; — 20).

Proof. Inspection of Figure 5.4 convinces that any two points y, z € W, such that |z —
Y1 < €1 — 2¢ must be (¢, W;)-related. Thus |#|; > #; — 2¢ and by assumption it uses
only weights > s;. (]

Lemma 5.10. Letw € Iz and y,z € B. Assume that either both y,z € Wl or that
y € W, and z € 8B. Let 7t be a geodesic between y and z. Assume that the edges of 7 lie
entirely outside W,. Then either there is a geodesic between y and z inside B that uses at
least one edge in W; or

(5.45) T(7) > minfs, (¢, — 2¢), $,65} = 8,¢5.
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FIGURE 5.4. The proof of Lemma p.9. The light grid is W;. The thicker
square and its two detours are part of W;. The thickest edge of the square is
denoted by I. The hashed box, denoted by Gg, is a detour rectangle attached
to I. The points that are within distance ¢, — 2¢ from a point on I U G are
all inside the dashed rectangle. All these points that are also on W, can be
reached from any point on I via an ¢! path that stays on W;.

Proof. If  reaches the boundary 9B (in either case of y, z) then 7 must travel through
B\ V and consequently T(rr) > s;¢5. The other possibility is that 7z stays inside B\ W;.
If y and z are (¢!, W;)-related then Lemma .8 gives a geodesic in B that uses an edge
in W,. If y and z are not (¢, W; )-related, Lemma .9 gives T(7) > s,(¢; —2¢). The last
equality of (5.45) is from (B.35). O

Henceforth we often work with two coupled environments w and w*. Quantities cal-
culated in the w* environment will be marked with a star if w* is not explicitly present.
For example, Ty, = Tp «(@*) denotes the passage time between 0 and x in the envi-
ronment w*.

Recall the event Ap ,, ;,, « defined in (B.I8).

Lemma 5.11. Let w and w* be two environments that agree outside B and satisfy w €
Ap pwx and w* € Tg. Then there exists a self-avoiding path 7 from 0 to x such that

T*(7) < T(7(x)) = Q.
Proof. Since box B is black on the event Ag ;,
T(7mp,w(x)) > (rp + 8o)(|lw — v[; V N).

The bound above comes from (B.5), on account of these observations: regardless of
whether 7, ,,(x) exits B, there is a segment inside B of length |w—uv|;, and furthermore
7y,w(X) contains a short crossing of B that has length at least N.

Define a path 7’ from v to w in B as follows. Let A; be an ¢!-path from v to some
point a € W;. Similarly, let A; be an ¢!-path from w to some b € W;. These paths
satisfy |4, V |43]; < dé3 +(d—2)¢;. Let 4, be a shortest path from a to b that remains
in W;. Since |a — b|; < [v—w|, +2d¢5 + 2(d — 2)¢y, |A;]; < |v—wl|; +2d¢; + 2d¢;.
(To go from a to b along W, use 2¢; steps to go from a and b to the nearest vertices a’
and b’ in Wy, respectively, and an ¢'-path along W) will take [a’ — b'|, < |a — b|, +2¢;
steps.)
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4_%

B a; =Xx; Zy = X3 _ E
Y2 Wi _I__I
Y3 Ya
Y1 z21 =X Z3 = X4
L

FIGURE 5.5. The path segment 7, , (x) with four excursions 7',...,7*.

The segment 7z>! inside W, goes from x; to y; and the segment 7 outside
W, goes from y; to z;. Note that W is not actually a box but is represented
as one above for the purpose of illustration.

Let 7’ be the concatenation of 4,, 4, and 4;. Define 7 as the concatenation of 77y ;,(x),
7', and 7, (x). The next calculation uses (5.43), (5-37) and (5.31), and the facts that
@ = w* outside B, w € Ag;, ,,  and w* € Ip.

T(m(x)) — T*(70) = T(7wy,w(x)) — T*(7')
> (rp + o) max (v — w|, ,N) — 2(d¢5 + (d — 2)¢;)M,

n k
= (lv —w|, +2d¢; +2d¢,) <S0ml—+ +(n + 5) - k) -
> (rp + o) max (v — wl, ,N) — 2(d¢5 + (d — 2)¢;)M,
— (max(jv — w|, ,N) + 2d¢; +2d€1)< L +(1+5) k>_cl

= (ry + dp) max(|jv — w|; ,N) — 2(d¢5 + (d — 2)61)M0

— (max(Jv — w|, ,N) + 2dé5 + 2d¢; )(ry + 8o — ¢3) — ¢
= cymax(|jv —w|;,N) —2(d¢3 + (d — 2)¢1)M, — (2d¢5 + 2d¢;)(ry + Jp) — 1
> c,N —4d(65 +¢1)My —c; = Q.

In the first inequality, 2(d¢5 + (d — 2)¢;)M, bounds the time spent on 4; and 4; and
the remaining negative terms bound the passage time of 1,. The lemma is proved. [

Henceforth we assume that w € Ag,, 4, x and w* € Ip. Let 7*(x) be the geodesic
from O to x in the w*-environment specified in Lemma B.7. By Lemma p.11],

(5.46) T*(r*(x)) < T*(7) < T(7(x)) = Q < T(7*(x)) — Q.

This implies that 7*(x) must use edges in W, because w and w* agree outside B, while
t(e) < sy <57 <t*(e)onedgesin B\ w.
Let a, be the first vertex of 7*(x) in B, a; the first vertex of 7*(x) in Wy, and b, the
last vertex of 77*(x) in B. Decompose the path segment ”;1, by (x) between a; and b; into
1

excursions 7t,...,7° (¢ € N) as follows: each excursion 7 begins with a nonempty
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segment 77! of edges inside W, followed by a nonempty segment 72 of edges out-
side W;. The excursions 7, ..., 7! begin and end at a vertex in W;, while the last
excursion 777 begins in W, and ends at the vertex b, where 7*(x) exits B. Figure 5.5
illustrates.

By w* € I, (5.27) and (B.28), r; — > 0 and hence t*(e) > 0 for all edges e € B. Then
condition [T) of Lemma B.7 ensures that those portions of the segments 712, 722,...,
792 that connect W to itself or to B inside B cannot be replaced by segments that use
edgesin W,. Therefore these segments obey bound (B.45). This gives the last inequality
below:

ag
T* (5 5, (0) 2 T*(5, 4, () 2 Y, T*(212) 2 05,6}
i=1
Since the maximal side length of B is 3N, ay and b; can be connected with a path
7% such that T*(z°) < 3dNM,. Since 77*(x) is optimal, gs; ¢, < 3dNM,, and therefore
3dNM,
5165

Using (5.46), and that w = w* outside B while w < w* on B\ Wl,
Q < T(7*(x)) — T*(7*(x))
= T(why 0, (X)) = T*(@hy 0, (X)) + T(, () = TH( (X))
g
< [T = T (7))
i=1
Then some excursion 7 € {r!,..., 7} must satisfy
Q > 02N51€§ _ 0251%
o = 6dNM,  6dM,’
The second inequality comes from (5.37) and (5.47). The only positive contributions
to T() — T*() can come from 7!, the segment of 7 in W;. Since B is black, t(e) —
t*(e) < t(e) < sy < s for all edges e € B. Therefore the number of edges |7!|; satisfies
81|17, > T(7) — T*(#). From this and (5.36)

) T(7) — T*(®) _ ¢yt
5.49 > >
(5.49) 7z S = 6dM,

(5.48) T(7) — T*(7%) >

>my > 4m; + 3(k+ 1)(€ + 1).

Lemma ensures that the path segment 7! goes through the k-path of at least
one k + 2¢-detour.

Lemma 5.12. Let w and w* be two environments that agree outside B and satisfy w €
Ap yw.x and w* € Ig. Let w*(x) be the geodesic for Ty (w*) chosen in LemmaB.7. Then
there exists a detour rectangle G in B with boundary paths (z*,7+*) such that 7*(x)
follows &+ and does not touch **, except at the endpoints shared by nt and 7*+.

Proof. By construction, the portion 77! of 7*(x) has a continuous path segment of length
m, > 4m, +3(k+1)(¢+1) in W,. This forces 7! to enter at least three k x ¢ detour rect-
angles, because these rectangles are m; apart along Wl and the path can use at most
(k + 1)(¢ + 1) edges in a given detour rectangle. Let G be a middle rectangle along
this path segment, in other words, one that is both entered and exited, and such that
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7! covers two m, -segments on W; that connect G to some neighboring detour rectan-
gles. (Recall Figure f.2.) We can assume without loss of generality that G lies in the
(e;,€;)-plane and that it is attached to a boundary edge of some V; that lies along e;.

Let 7 and 7+ be the boundary paths of G and a and b their common endpoints.
Let 77 = ﬁ;,b denote the segment of 77! between a and b. For ease of language assume
that 7 visits a first and then b. We show that 7# = 7 by showing that all other cases
are strictly worse.

Definition (5.40) of T and inequality (5.27) imply T*(z*+) > (k + 2€)(r; — 8) >
sk > T*(x*) and rule out the case # = 7. If # coincides with neither 7+ nor 7+,
there are points a’ and b’ on dG such that # visits a, a’, b’, bin this order and 7’ = 7,/
lies in the interior G \ 0G.

If @’ and b’ lie on the same or on adjacent sides of 3G, the £!-path from a’ to b’ along
0G has smaller weight than 7’.

Suppose a’ and b’ lie on opposite £-sides of 7+ *. Then

T*(#) > T*(fqq) + Sok + T*(fpr p) > sok > T*(7r™).

The term syk is a lower bound on T*(z"). The strict inequality comes from r; — & > 0
(from (B.27)) and because the segments 7, o and 7, j, are not degenerate paths. This
is the case because no edge connects the interior G \ dG to either a or b.

The remaining option is that a’ and b’ lie on opposite k-sides of dG. Let a’ be the
first point at which 7 leaves 0G, and let b’ be the point of first return to G.

Case 1. Suppose a’ lies on the k-side of 7% and b’ € 7" (Figure B.6). Fix coordinates
as follows: a is at the origin, a’ = aje; + ¢e,, and b’ = b}e,. Then,

¢ ﬁa’,b’

FIGURE 5.6. Case[l: a’ lies on the k-side of z*+ and b’ € ™

T*(ﬁ'a,b’) = T*(ﬁ'a,a’) + T*(ﬁa’,b’)

2 —98)la—al,+|a" - b5

= (¢ +a))(n —6) + (¢ +|by — aiso

>20r — 66 + (ay(n — &) + |b} — dflso).

Combine the above with T*(?T;: ») < 5gb} and develop further:
T*(Rqp) — T*(7y ) = 261 — €8 + aj(r; — 6) + |by — ajlso — soby

> 26 — €6 —aj(sg—n +9)
>26(n —8)—k(sg—r, +8)>0.
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The last inequality is from (§.27). Thus # cannot cross the interior of G from 7** to
.

Case 2. Suppose a' € z* and b’ lies on the k-side of 7+, so that a’ = aje;, and
b = bllel + €e2. Then

T*(Fap) = T*(Faa) + T*(Rar pr)
> aj(so — 6) + (¢ + |b] — aj])so
> (€ + by)syg—aid
>E+b)Drn +8)+(E+1)(sg—1, —8)— kb
> (€ +by)(n +8) > T*(my ).

The last strict inequality is from (5.29). Thus it is strictly better to take 7+* from a to
b

In conclusion, 7 does not coincide with 7#+*, nor does # visit the interior of the
detour rectangle. The only possibility is that # = 7.

It remains to argue that 77*(x) does not touch 7z ** except at the endpoints a and b
when it goes through 7. Suppose on the contrary that 7*(x) visits a vertex Z on 7t +.
This has to happen either before vertex a or after vertex b. The two cases are similar
so suppose 2 is visited before a. Then, by the choice of the detour rectangle G, the
segment 773 ,(x) contains an m,-segment on W) that ends at a. Hence by the definition

of I and (B.33),
T*(m} (%)) 2 my(rp = 6) > (k +28)(r, + 6).

However, (k+2¢)(r, + 9) is an upper bound on the passage time of the path from a to 2
along 7**, which is then strictly faster than T3 4(X). Since 5 o(%) must be a geodesic,
the supposed visit to Z cannot happen. O

Stage 2 for unbounded weights. In the unbounded weights case we construct first
the k + 2¢ detour for a given triple (B, v, w) and then the good event I’y ,, ,,. Given any
k,¢ € N, the construction below can be carried out for all large enough N. We label
the construction below so that we can refer to it again. Figure 5.7 gives an illustration.

Construction 5.13 (The k + 2¢ detour for the unbounded weights case). Fix two unit
vectors u and u’ among {+e;}% | perpendicular to each other so that the point v + (k +
€ + 2)u + ¢’ lies in B. Hence also the rectangle of size (k + € + 2) X £ with corners v
and v+ (k+¢ +2)u+¢u’ liesin B. Switch the labels u and u’ if necessary to guarantee
that w does not lie in the set

(5.50) A={v+hu:0<h<blu{v+iu+ju : €+1<i<k+¢+1,0<Lj< ¢}

The two versions of A obtained by interchanging u and u’ have only v in common, so
at least one of them does not contain w.

From v+(k+£¢+2)u there is a self-avoiding path to w that stays inside B and does not
intersect A. The existence of such a path and an upper bound on the minimal length
of such a path can be seen as follows.

(i) If w does not lie on the plane through v spanned by {u,u’}, take a minimal
length path from v + (k + ¢ + 2)u to w that begins with a step z perpendicular
to this plane. Unit vector z is chosen so that (w — v) - z > 0. This path will
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v+fu v+ (¢ +1u v+(k+¢€+1u

¢

u

FIGURE 5.7. Tllustration of Construction 5.13. The set A of (5.50) consists of
the straight line from v to v+ (€ +1)u and the kX ¢ detour rectangle bounded
by the union of the k-path 7+ and the k + 2¢-detour 7**. The figure shows
case (ii) of the A-avoiding self-avoiding path from v + (k + ¢ + 2)u to w via
the point x, onoc U ¢’.

not return to the {u, u’} plane and hence avoids A. The length of this path is at
most k+¢ + 2+ |w—v|;. This is because a possible A-avoiding route to w takes
first the z-step from v + (k + € + 2)u, then k + € + 2 (—u)-steps to v + z, and
from v + z a minimal length path to w. A path from v to w includes a z-step,
hence the distance fromv + ztow is |[w — v|; — 1.

(ii) Suppose w lies on the plane through v spanned by {u,u’}. Then we move on
this plane from v + (k + € + 2)u to w and take care to avoid A. First define the
minimal A-avoiding path o fromv + (k+ ¢ + 2)utov —u’ in k + € + 3 steps,
and a minimal A-avoiding path ¢’ from v+ (k+ ¢ +2)utov+u’ ink+3¢€ +3
steps. (We may be forced to pick between v + u’ depending on which side of
A the point w lies.) Let x, be a closest point to w on o U ¢’ (possibly x, = w).
The A-avoiding self-avoiding path from v + (k + € + 2)u to w then goes first to
Xo along o or ¢’ and from there takes a minimal length path to w. The length
of this path is at most k + 3¢ + 4 + |w — v|;.

Using the construction above, fix a self-avoiding path 7’ in B from v to w that begins
with k + € + 2 u-steps from v to v + (k + € + 2)u, avoids A after that, and has

(5.51) |7'| < Jlw—1v|; + 2k +4¢ + 6.

Let 7+ C 7’ be the u-directed straight line segment of length k from #{ = 7., =
v+ (€ +Dutony =y, =0+ (k+ €+ 1u Let 74+ C A be the detour of length
k + 2¢ between the endpoints 73+ = 73 and 7}, = 7 defined as in (5:2I). The
two endpoints of 7+ lie on 7’ but 7+ is edge-disjoint from 7’. This completes the
construction of the k + 2¢ detour.
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Let b > 0 be given. By assumption (5.10) we can choose r < s in the support of t(e)
so that b < r < 5. Choose k, ¢, § to satisty (5.14).

Fix an element (B, v, w) for a while. Define the following event I's ;, ,,, that depends
only on the weights t(e) in B. Constants s, and §, are from definition (5.4)—(5.9) of a
black N-box B.

Tow ={t(e) € [ry, 1o+ 8o/2) for ee ' \ 7+,
tle) e(s—6,s+6) for ee nt,
tleye (r—6,r+6) for ee z**, and
t(e) > so for e€e B\ (7' um*)}.

(5.52)

By (B.14), on the event w € Ig ,, ,,
(5.53) T(xt) < T(x*t) < T(z*) + (2¢ — 1)b.

Once N has been fixed, then up to translations and rotations there are only finitely
many ways to choose the points v and w on the boundary of B and the paths 7', 7+, 7t +
constructed above. Thus

(5.54) 3D, > 0 such that P(I ,, ) > D, for all triples (B, v, w).

D, depends on N and the probabilities of the events on t(e) that appear in Iz ,, ,. In
particular, D, does not depend on x.

On the event Ag ,, ,, . of (B.18), 7(x) crosses B, v is the point of first entry into B and
w the point of last exit from B. Hence on this event we can define 7 as the self-avoiding
path from O to x obtained by concatenating the segments 7q ,(x), 7', and 7, (x). For
future reference at (5.57), note that 7 is edge-disjoint from 7z+.

Lemma 5.14. Let w and w* be two environments that agree outside B and satisfy w €
Apywx and w* € Ty, . Then 7 is a geodesic for Ty ,(w*). Furthermore, if w(x) was
chosen to be a geodesic of maximal Euclidean length for T ,(w), then 7 is a geodesic of
maximal length for Ty (w*). The same works for minimal length.

Proof. Since box B is black on the event Ag ;, 1,
(5.55) T(7y,(x)) > (g + Sp)(Jw — v|; V N).

The bound above comes from (B.5), on account of these observations: regardless of

whether 7, ,,(x) exits B, there is a segment inside B of length |w — v}, and furthermore

7y,w(X) contains a short crossing of B that has length at least N.

From w* € I ;, 4,
T*(Tp) = TH(') < k(s + 8) + ([w — V], + k + 4 + 6)(ro + 35)

< Jw = 0]y (1 + 380) + k(s + 1o + 8 + 580) + (4€ + 6)(ry + 56,)
< T(7y,0(0) = 3w = vl V N)&g + C18p + C
< T(7y,15()).

Before the last inequality above, C; = Cj(k, ¢, 6, s, 1) are constants determined by the

quantities in parentheses. The last inequality is then guaranteed by fixing N large
enough relative to §, and these other constants. Observation (B.7) is used here.
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Outside B the weights w* and w agree, and the segments 7, = 7¢ ,(X) and 7y, ,, =
7y x(x) agree and lie outside B. Hence the inequality above gives T*(7) < T(rr(x)) and
thereby, for any geodesic 7*(x) from 0 to x in environment w*,

(5.56) T*(*(x)) < T*(m) < T(7(x)).
This implies that every geodesic 7*(x) must enter B since otherwise
T*(r*(x)) = T(7*(x)) > T(7(x)) > T*(7),

contradicting the optimality of 7*(x) under w*.

If 75(x) ¢ 7’ uztt, then 7*(x) must use an edge e in B with weight > s,. Then by
property (B.4) of a black box B, T(75(x)) < sg < T*(7wg(x)). Since w and w* agree on
B¢, we get

T(7(x)) < T(7*(x)) = T(7pe(x)) + T(mp(x))
< T*(7pe(x)) + T*(7p(x))
= T*(7*(x)),

contradicting (5.56). Consequently 73(x) C 7' U w**. Part of event Ag ,, ,  is that
{0,x} n B = §J. Thus 7*(x) must both enter and exit B. As a geodesic 7*(x) does not
backtrack on itself. Hence it must traverse the route between v and w. By (5.53) 7% is
better under w* than 7**, and hence 73(x) = 7’ = 7p.

Outside B, under both w and w* since they agree on B¢, 7. is an optimal union of
two paths that connect the origin to one of v and w, and the other one of v and w to x.
This concludes the proof that 7 is a geodesic for Tg ,(w*).

Suppose 7(x) is a geodesic of maximal Euclidean length under w but under w* there
is a geodesic 7* strictly longer than 7. The argument above showed 73 = 7. Hence
outside B, 7. must provide an w*-geodesic from 0 or x to one of v or w that is longer
than that given by 7gc = 7gc(x). This contradicts the choice of 7(x) as a maximal
length geodesic, again because w and w* agree on B€. Same works for minimal. This
completes the proof of Lemma p.14. O

Stage 3 for both bounded and unbounded weights. We choose a particular geo-
desic 7(x) for Ty ,. In the bounded weights case, let 7r(x) be the geodesic specified
in Lemma B.7. In the unbounded weights case, let 77(x) be the unique lexicographi-
cally first geodesic among the geodesics of maximal Euclidean length. Let b > 0. For
N-boxes B € Bj,) define the event

(5.57)  W¥p, = {inside B 3 edge-disjoint path segments 7+ and 7** that share
both endpoints and satisfy 7 C 7(x), (m(x) \ z*)u ztt
is a self-avoiding path, |z *| = |zt| + 2¢, and
T(n%) < T(n**) < T(z*) + (2¢ — 1)b}.
Couple two i.i.d. edge weight configurations w = {t(e)},c ¢, and w* = {t*(e)}cc ¢, SO
that t*(e) = t(e) for e ¢ B (that is, at least one endpoint of e lies outside B) and so that
the weights {¢(e)}. c ¢, and {t*(e)}. < p are independent.

Lemma .12 for bounded weights (with Ig ;, , = I'y) and Lemma .14 for unbounded
weights imply that

{C‘) € AB,v,w,x} n {w* € 1-‘B,u,w} C {C‘)$ € IPB,x}-
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In particular, by inequalities (5.41) and (5.533), w* € I, ,, implies T*(7*) < T*(z**)
< T*(m*) + (2¢ — 1)b required for w* € ¥g ,, where T* denotes passage time in the
environment w*.

By the independence of {w € Ag, .} and {o* € Iy, ), and then by (5.42) for
bounded weights and by (5.54) for unbounded weights,

(5-58) I]:D(lPB,x) = P{CU* € lPB,x} > I]:D{w EAB,v,w,x}P{w* € 1—‘B,U,w} 2> DZP(AB,U,w,x)-

Let Y be the number of (B, v, w) € Bj() for which Wg , occurs. By the above and
(6:20),
ElY]> >, P(¥sn)
(B,U,w) S :B](x)

> D D,P(Ap,vw,x) = DDy |x[1 = Ds|x|y
(B,v,w) EBjx)

(5.59)

for a new constant Djs.

Since we have arranged the boxes in the elements (B,v,w) € B i(x) separated, we
can define a self-avoiding path 7 from 0 to x by replacing each 7t segment with the
7** segment in each box B € By for which event ¥ , happens.

Reduce the weights on each edge e from t(e) to t(-?)(e) = t(e) — b. By the definition
of W , the t(~)-passage times of the segments 7+ and 7+* obey this inequality:

TED(rt4) = T(at+) — blatt| < T(wt) + (2¢ — 1)b — b|ztt| = TCD)(+) — b,

Consequently, along the entire path 7(x), the replacements of 7+ with 7++ reduce the
t(-b)_passage time by at least bY. We get the following bound:

Ty < TED(R) < T (7(x)) — bY = T(n(x)) — b |7(x)| — bY
(5.60) < Tox —bL,  —bY in the bounded weights case,

=Tox— bI_Jo,x —bY in the unbounded weights case.

The case distinction above comes because in the unbounded case |7(x)| = Zo,x by
our choice of 7(x), while in the bounded case our choice is different, but any geodesic
satisfies |7(x)| > L o Note that the inequality above does not require that 7 be a
geodesic for Té;cb), as long as 7 is self-avoiding.

In order to take expectations in (5.60) we restrict to b € (0, ry + &) which guarantees
that fE[Té;Cb)] is finite, even if —b < —r; so that weights (=) can be negative (Theorem
in Appendix[A). By Lemma 2.3 in [2], moment bound (B.7) with p = 1is equivalent
to the finite expectation E[Tp ] < oo for all x. The inequalities above then force L ox

and Ijo,x to have finite expectations. Apply (5.59): in the bounded weights case
-b
E[Tox"] < ElTy.] — bE(L, ) — bE(Y) < E[Tyx] — BE(L, ) — Dsblx]y,

while in the unbounded weights case E(L, ) is replaced by [E(Zo,x). This completes
the proof of Theorem p.4. O
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6. MODIFICATION PROOFS FOR NONDIFFERENTIABILITY

In this section we consider three scenarios under which we prove that, with proba-
bility bounded away from zero, there are geodesics between two points whose lengths
differ on the scale of the distance between the endpoints. The setting and modification
proofs in this section borrow heavily from Section .

Assumption 6.1. We assume one of these three situations for nonnegative weights.
(i) Zeroisan atom: r, = 0 and 0 < P{t(e) = 0} < p,.
(ii) The weights are unbounded (M, = o0) and there exist strictly positive integers
kand ¢ and atoms r{, ..., ¥, 5., 51, .-, S (not necessarily all distinct) such that

k+2¢ k

(6.1) Z r= Z S}
i=1 j=1

(iii) The weights are bounded (M, < o) and there exist strictly positive integers k
and ¢ and atoms r < s such that (k + 2€)r = ks.

Theorem 6.2. Assume ry > 0, (.6), and the moment bound (2.7) with p > 1. Fur-
thermore, assume one of the three scenarios [1)-{iil) of Assumption b.1. Then there exist
constants 0 < D, 8, M < oo such that

(6.2) P(Lox — Ly, 2 Dlx|;)>6&  for|x|; > M.
Before the proof some observations about the assumptions are in order.

Remark 6.3. Condition (b.1)) of case [ii) is trivially true if zero is an atom for t(e). Since
this situation is taken care of by case [I) of Assumption p.1, let us suppose zero is not an
atom. Then a necessary condition for (b.I) is that t(e) has at least two strictly positive
atoms.

A sufficient condition for (.1) is the existence of two atoms r < s in (0, co) such that
s/r is rational. This is exactly the assumption on the atoms in case of Assumption
B.1. If t(e) has exactly two atoms r < s in (0, o) and no others, then (6.I) holds if and
only if s/r is rational.

With more than two atoms, rational ratios are not necessary for (6.1)). For example,
if & > 0 is irrational and {1, 6,1 + 26} are atoms, then (p.1) is satisfied and the ratios
0,1+ 26,6~ + 2 are irrational.

We can prove a more general result for unbounded weights because arbitrarily large
weights can be used to force the geodesic to follow a specific path. With bounded
weights the control of the geodesic is less precise. Hence the assumption in case is
more restrictive on the atoms.

Proof of Theorem p.2. We prove the theorem by considering each case of Assumption
in turn.

Proof of Theorem .2 in Case [i) of Assumption [6.1.

We assume that zero is an atom. In this case conditions (5.3) or (5.4) are not needed
for a black box, so color a box B black if (5.5) holds. Fix N large enough and &, small
enough. Consider points x with |x|; large enough so that the Peierls estimate (5.9) is
valid for n = |x|;.

Let 7r(x) be the unique geodesic for Ty, that is lexicographically first among the
geodesics of minimal Euclidean length. For this purpose order R = {*e,,...,+e;}in



258 A. KRISHNAN, F. RASSOUL-AGHA, AND T. SEPPALAINEN

some way, for example as in (§.39). The index j(x) and the event Ag ,, ,,, . are defined
as before in (5.17) and (B.18), and estimate (5.20) holds. Let I3 = {w : t(e) = 0 Ve € B}
be the event that all edge weights in B are zero and D, = P(I) > 0.

Given an N-box B, define edge weight configuration w* = {t*(e)}ece, by setting
t*(e) = t(e) for e ¢ B (that is, at least one endpoint of e lies outside B) and by resam-
pling {t*(e)}, < g independently. Then w* has the same i.i.d. distribution as the original
weights w = {t(e)}ecg,-

Lemma 6.4. On the event {w € Ag 4, 5} N {w* € I}, every geodesic from O to x in the
w* environment uses at least one edge in B.

Proof. On the event {w € Ag  x}, 7(x) goes through v and w. Let 7’ be an arbi-
trary path from v to w that remains inside B and define 7 as the path from 0 to x
obtained by concatenating the segments 7y ,(x), 7', and 7y, (x). Then on the event
{w € AB,v,w,x} n {CO* € FB}:

T*(ﬁv,w) = T*(ﬂ/) =0< 50(|w - U|1 VN) < T(ﬂv,w(x))-
The justification for the last inequality was given below (B.55).

Outside B weights w* and w agree, and the segments 7y, = 7o ,(x) and 7, , =
7y x(x) agree and lie outside B. Hence the inequality above gives T*(7) < T(7(x))
and thereby, for any geodesic 7*(x) from 0 to x in environment w*,

(6.3) T*(*(x)) < T*(7) < T(7(x)).

This implies that every geodesic 7*(x) must use at least one edge in B. For otherwise
T*(7*(x)) = T(z*(x)) 2 T(7(x)) > T*(7),

contradicting the optimality of 7*(x) for w™. g

For N-boxes B such that 0, x ¢ B define the event
W5 = {inside B 3 path segments 7+ and 7** that share both endpoints

(6.4) and satisfy 7+ C 7(x), (w(x) \ 7T) U ** is a self-avoiding path,
|zt*| > |7t + 2,and T(zt) = T(zx* ) L.

In particular, on the event W ., replacing 7+ with 7+ creates an alternative geodesic.

By Lemma p.4, w* € ¥, holds on the event {w € Ag ;) N {w* € Ip}. Thisis
seen as follows. Let 77*(x) be the lexicographically first geodesic of minimal Euclidean
length in environment w*. By Lemma .4, 77*(x) uses at least one edge in B. Let u; be
the first and u, the last point of 7*(x) in B. Since {w* € I} ensures that all edges in B
have zero weight and 7*(x) is a minimal length geodesic, the segment 77, ,,, (x) must
be a path of length |u, — u |, from u, to u, inside B. Now take 7+ = 7;, ,, (x) and let
7T be any other path inside B from u; to u, that takes more than the minimal number
|u; — uy|; of steps. By the choice of u; and u,, the other portions 7, (x) and 77, (x)
of the geodesic lie outside B, and consequently 77+* does not touch these paths except
at the points u; and u,.

By the independence of {w € Ag ,, ;, «} and {w* € Tp},

(6.5) P(¥p,) = P{¥p  occurs for w*}
> P(fw € A pwxtN{w” €15}
= P{w € AB,v,w,x}P{w* € FB} > DZP(AB,v,w,x)-
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Let Y be the number of (B, v, w) € Bj(y) for which ¥ , occurs. By (5.20), for another
constant Dy > 0,

66) E[Y]> > DyP(Apuuwx) > Dslxls.
: (B,v,w)€B(x)

By Proposition 4.7(1) of [2], under the assumption P{t(e) = 0} < p., for any p > 0
there exists a finite constant G such that for all x € 74,
(6.7) E[ (Lox)P ] < GoE[ (Tp )P 1.

By Lemma 2.3 in [2], under assumption (R.7) there exists a finite constant C’ such that
for all x € 74

(6.8) E[ (TP ] < C'|x[f.

An obvious upper bound on Y is the number of edges on the geodesic 7(x). Letp > 1
be the power for which (2.7) is assumed to hold and q = p%l its conjugate exponent.

Then, by a combination of (b.6), (b.7) and (b.8),
Dsx|; < E(Y) = E(Y, Y < Ds|x|,/2) + E(Y, Y > Dy|x|,/2)
< Dslx[1/2 + E(|(x)|, Y = Dsx|,/2)
< Dyfxly/2 + (EL |G 1)P PCY > Dyfx]y/2)7
< Dyfxy/2 + CIxB(Y 2 Dyfxly/2)7.
From this we get the bound
P(Y > %D3|x|1) > &5 >0 forlarge enough |x|;.

Since we have arranged the boxes B in the elements (B, v, w) € B i(x) separated, we
can define a self-avoiding path 7(x) from O to x by replacing each 7+ segment of 7(x)
with the 7%+ segment in each box B for which event W , happens. This path 77(x) has
the same passage time T(77(x)) = T(7r(x)) and hence both 7(x) and 77(x) are geodesics.
By the construction, the numbers of edges on these paths satisfy |7(x)| > |7(x)| + 2Y.
Thus we get these inequalities between the maximal and minimal geodesic length:

Loy > |R(X)| 2 |2(x)| +2Y > L, _+2Y

and then
- 1
P(Lox —Ly, 2 Ds|x|y) = P(Y > 3D5]x|;) > &5.

(b-2) has been proved.

Proof of Theorem p.2 in Case [ii) of Assumption p.1l.

By assumption (b.1) we can fix s; < oo large enough so that, for i.i.d. copies ¢;, tJ’- of
the edge weight t(e),

k+2¢ k
(6.9) P{ h<sVielk+20], f<sVielkl, and 3 ;=) t;} > 0.
i=1 j=1

Apply Construction B.1I3 of the k + 2¢ detour in an N-box B with given boundary
points v and w, to define paths 7, 7t and zt+ in Bwith |[z| = kand |7t*| = k + 2¢.
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Define the event Iz ,, ,,, that depends only on the weights t(e) in B:
Tp.ow = {t(e) € [rg, 19+ 6¢/2) for ee ' \ t,
tle)<s, foreent untt,

(6.10) Z t(e) = Z t(¢’) and

eemtt e'ent
tle) > s, foree B\ (x' untt) }

By (b.9), unbounded weights, and the detour construction, there exists a constant D,
such that P(I ,, ,,,) > D, > 0 for all triples (B, v, w).

The steps follow those of the proof of Theorem 5.4 and the proof of Case [i) of The-
orem p.2. First sample w, and then define w* = {t*(e)}.c¢, by setting t*(e) = t(e) for
e ¢ B and by resampling {t*(e)}, < g independently. Let 7z(x) be a self-avoiding geodesic
of minimal Euclidean length for T; (w). On the event {w € Ag 4, <} N{w* € Ig 1}
define the path 77 from 0 to x by concatenating the segments 7q ,(x), 7', and 7, ().

Lemma 6.5. When N is fixed large enough, on the event {w € Apy, 1 x} N {0 € Ty 1}
the path 7 is a self-avoiding geodesic of minimal Euclidean length for T, («*).

Proof. As before, since box B is black on the event Ag , ;; &,
T(7y,(x)) > (rg + 8p)(Jw — v|; V N).
Then by w* € Ig s
T*(Tyw) = T*(') < ksy + (Jw = v]y + k +4€ + 6)(ro + 550)
< (lw =l VN)(1p + 380) + k(s + 7o + 380) + (4 + 6)(1 + 56,)
< T(0(x)) = 5(|lw = vl VNS + €
< T(7p,1(X))-

Before the last inequality above, C = C(k, ¢, $;, 1, 8o) is a constant determined by the
quantities fixed thus far in the proof. The last inequality is then guaranteed by fixing
N large enough relative to these other constants. Outside B weights w* and w agree,
and the segments 7y, = 7y ,(x) and 7, , = 7, ,(X) agree and lie outside B. Hence
the inequality above gives T*(7) < T(7(x)) and thereby, for any geodesic 7z*(x) from
0 to x in environment w*,

(6.11) T*(m*(x)) < T*(7) < T(7w(x)).

As explained below (b.3), this implies that every w* geodesic 7*(x) must enter B.

If 75(x) ¢ 7' uztt, then 7*(x) must use an edge e in B with weight > s,. Then by
property (5.4) of a black box B, T(75(x)) < 5o < T*(7j(x)). Since ¢ and t* agree on B¢,
we get

T(7(x)) < T(7*(x)) = T(7pe(x)) + T(7p(x))
= T*(mpe () + T(7p(x)) < T*(mpe (X)) + T*(p(x)) = T*(7*(x)),

contradicting (B.11). Consequently 75(x) C 7’ U z+*. As a geodesic 7*(x) does not
backtrack on itself. Hence it must traverse the route between v to w, either via 7’ or
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via 7’ with 7+ replaced by zt+. By (6.10) T*(x*) = T*(«r* ) so there is no travel time
distinction between the two routes between v and w.

Since w and w* agree on B, g is an optimal union of two paths that connect 0 to
one of v and w, and x to the other one of v and w. Thus 7 is a geodesic for Ty ,(w*).

The argument above showed that every geodesic of Ty ,(w*) goes from v to w uti-
lizing edges in 7’ U 7t 1 and otherwise remains outside B. If there were a geodesic 7°
strictly shorter than 7, 7° would have to use an alternative shorter geodesic path be-
tween 0 and v or between w and x. This contradicts the choice of 7z(x) as the shortest
geodesic. O

Define ¥ . asin (6.4). By Lemmap.5, w* € W , holds on the event{w € Ag ;, ; x}N
{w* € Ty} The proof of this case is completed exactly as was done in the previous
case from equation (b.5) onwards.

Proof of Theorem p.2 in Case of Assumption p.1.

The weights are now assumed bounded. We work under assumption (.1) until the
last stage of the proof where we have to invoke the more stringent assumption of Case
under which (b.I) is restricted to the case where all ; = r and all s; = s. Since
the case of a zero atom has been taken care of, we can assume that these atoms {r;, sJ’-}
are strictly positive and that zero is not an atom. Since zero is not an atom, condition
(B-11)) holds.

As in the cases above, all that is needed for the conclusion is that the geodesic en-
counters (71, 7t *)-pairs whose passage times coincide. This proof follows closely the
bounded weight case of Stage 2 of the proof of Theorem p.4, which required condition
(5-11). Lemma .6 can be enhanced to include the additional conclusion

(6.12) ma_x{r{,s}} < s0(q).
l’.]
The only change required in the proof of Lemma B.6 is that induction begins with
50(0) = (rp + 6p) V maxi,j{ri’,s}}, after the case P{t(e) = My} > 0 has been taken
care of. .
The construction of Wy, W1+, W/, W; and W, in each black box B goes exactly as

before around (5.38). Let {7} ;, 75 h1<j<j () be the 7+ and 7** boundary path seg-
ments of the detour rectangles {Gp j}1<j<j,(8) constructed in the box B. In particular,

wit=|Jrf,cw and W= <W1 ulJ ng";) c (W1 uJ GB,J-> =W,
J J J
Define the event

FB={co:r1—5<t(e)<r1+5 Vee w; \ Wy,

D, o= D, te) Vi,

cens, o enh,

(6.13) 0<tle)<s, Vee W,
So <tle)<s, YeeW; \ W,
and s; <t(e) <M, VeeB\Wl}.

The condition t(e) < sy Ve € Wj is implied by the conditions before it. It is stated
explicitly merely for clarity. The condition ¢(e) > 0 Ve € W] can be imposed because
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(i) fore € W; \ W;' it follows from t(e) > r, — & (recall from (B.27) that r;, —§ > 0), and
(i) for edges e € J, <j<i, (B)(rrg, j U mE) we can use the strictly positive atoms {r/, s}}.
Again P(I) > D, for a constant D,.

As before, given an N-box B we work with two environments w and w* that agree
outside B. Let 7*(x) be the Ty (w*) geodesic specified in Lemma p.7. Starting from
inequality (5.43), Stage 2 for bounded weights in the proof of Theorem B.4 can be fol-
lowed down to inequality (5.49), to get the existence of an excursion 7 in 7*(x) whose
segment 77! in W, satisfies (5:49). Lemma .12 is then replaced by Lemma B.6.

Lemma 6.6. Assumew € Ag, ,, and * € Ig. Then there exist three path segments
#,wt, wtt in B with the same endpoints and such that the following holds:

(i) the pair (z*, 7w+ t) forms the boundaries of a detour rectangle,
(i) # c ©*(x), and
(iii) replacing # in 7v*(x) with either 7+ or = produces two self-avoiding geodesics
Jfor To x (™).

Proof. Asin the proof of Lemma[.12, 7! has a segment # = ‘é,b between the common
endpoints a and b of the boundary paths 7+ and 7+ of some detour rectangle G in B.
We show that 77*(x) can be redirected to take either 7+ or 7+, by showing that (i) #
cannot be strictly better than 77+ or #+* and (ii) replacing # with 7+ or 7*t* does not
violate the requirement that a geodesic be self-avoiding.

Suppose T*(#) < T*(x*) = T*(x**). Then there are points a’ and b’ on 4G such
that # visits a, a’, b’, bin this order and the edges of 7" = 7/}, lie in the interior G\ dG.
Recall that on the event Iz, the weights on dG are at most s, while the weights in the
interior G \ 9G are at least s,.

The points a’ and b’ cannot lie on the same or on adjacent sides of 4G since the
¢1-path from a’ to b’ along 3G has no larger weight than 7.

Suppose a’ and b’ lie on opposite ¢-sides of G. Then

T*(#) > T*(n') > sok > T*(x*) = T*(wr* ).
So we can do at least as well by picking 7+ or 7 *+.

The remaining option is that a’ and b’ lie on opposite k-sides of G. Let us suppose
that o’ is the first point at which 7 leaves G and b’ the first return to 0G.

For this argument we use the most restrictive assumption that there are two atoms
r < ssuch that (k + 2€)r = ks, with weights t(e) = s on edges e € 7" and t(e) = r on
edgese e wtt.

Case 1. Suppose a’ lies on the k-segment of 77+ and b’ € n*. (See again Figure 5.6.)
We can assume that a is at the origin, a’ = aje; + €e,, and b’ = bje;. Then,

T*(Agp) = T*(Fga) + T (o pr)
>la—a'|ir+|a —b'|;so
= (€ +apr+ (€ + |b] — ai])so-
From a; < k — 1 and the assumptions s, > s > r and ks = (k + 2¢)r we deduce:
o(r+5) >26r =k(s—r) > aj(s—r) > (b} — |b} — ai|)s — ajr
= (¢+a)r+ @+ |b]—aj|)so > bis
= T*(fap) > T (5 )
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In other words, we can do better by taking 7+ from a to b’.
Case 2. Suppose @’ € 7+ and b’ lies on the k-segment of 7++ so that a’ = aje; and
b’ = bje, + ¢e,. Then,
T*(Rqp) > ais+ (€ + |by — aj])so > (€ + bY)r = T*(m,35).

This time it is better to take 7+ * from a to b'.

We have shown that the passage time is not made worse by forcing 7 to take 7+ or
7tt. Suppose doing so violates self-avoidance of the overall path from 0 to x. Then
we can cut out part of the path, and the removed piece includes at least one edge of

either 7+ or 7+*. The assumption w* € Iy implies that t*(e) > 0 for these edges.
Consequently the original passage time could not have been optimal. ]

The event g . earlier defined in (b.4) has to be reworded slightly for the present
case. Let 7r(x) be the T, ,(w) geodesic chosen in Lemma [.7.

W . = { inside B 3 path segments 7, 7+ and 7z** that share both endpoints
and satisfy # C 7(x), both (7(x) \ #) Uzt and (w(x) \ #) U+
are self-avoiding paths from O to x,
|7t > |7t + 2, and T(#) = T(xt) = T(x+t) }.

(6.14)

It is of course possible that 7 agrees with either 7+ or 7**. By Lemma p.6, v* € ¥g
holds on the event {w € Ag ;,  x} N{w* € Ty}

Now follow the proof of the previous case from equation (b.5) onwards. Again, since
the boxes B in the elements (B,v,w) € Bj(y) are separated, we can define two self-
avoiding paths 7% (x) and 7+ (x) from 0 to x by replacing each # segment of 7z(x) with
the 7+ (respectively, 7+*) segment in each box B that appears among (B, v, w) € Bjy)
and for which event Wg , happens. Then both 7*(x) and 7**(x) are self-avoiding
geodesics for Tj y(w).

By the construction, the Euclidean lengths of these paths satisfy [zt (x)| > |7+ (x)|
+ 2Y where Y is again the number of (B, v, w) € Bj(y) for which ¥p , occurs. Hence

Loy > |7+ ()| > |7+ (x)| +2Y > L, +2Y.

This completes the proof of the third case and thereby the proof of Theorem p.2. O

7. PROOFS OF THE MAIN THEOREMS

This section proves the remaining claims of Section P by appeal to the preparatory
work of Section f and the modification results of Sections § and B.

7.1. Strict concavity, derivatives, and geodesic length. Theorem gives part
of Theorem P.2 and thereby completes the proof of Theorem P.2. Recall that r, =
essinft(e) and ¢, > 0 is the constant specified in Theorems P.I and [A.1].

Theorem 7.1. Assume r, > 0, (.6), and moment bound (R.7) with p = d. Then there
exist strictly positive constants D(a, h) such that the following holds for all £ € R? \ {0}:
whenevera > —1rgand —ry—gg <a—h<a,

(7.1) ue(a—h) < pe(a) — hug(a+) — D(a, h|§],.

AS a consequence, ,u’g(a0+) > u’g(al—) whenever —ry < ay < a; < oo and ,u’g(bi) >
ﬂ'g((—”o)‘*')for allb € (=ry — &y, —Tp)-
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Note that Theorem [7.T does not rule out a linear segment of 1 immediately to the
left of —r, which happens if,u’g(b+) = ,u’g((—ro)—) for some b € (—ry — €y, —1p). But
this does force ,u’g((—ro)—) > M'g((—”o)"‘) and thereby a singularity at —7,.

Proof. We start by deriving the last statement of strict concavity from (7.I). Suppose
that u’g(a0+) = /x'g(al—) = 7 for some -1y < @y < a; < co. Then by concavity u¢
must be affine on the open interval (ay, a;): uz(a) = ug(ag) + 7(a —ap) and /x'g(a) =1
for a € (ay,a,). This violates (.I). The second claim of the last statement follows
similarly.

For this and a later proof, we check here the validity of the middle portion of (.13).
Letb > —1y — g9, £ € R4\ {0}, w € Q, = the full measure event specified in Theorem
A, and x,,/n — &. Take limits (2.8) in the extremes of (R.13), limits li_mn‘lggb))cn (w)

— _,=(
and limn~'L () in the middle of (2.13), and then let §,7 \, 0. This gives

(b) —(b)
, . Lo,xn(w) -_— Lo,xn(w)
(7.2) ,u§(b+) < lim — < lim

n—oo

lim < ug(b-).

To prove ([7.1)), consider first the case where a > —ry or a = —ry but P{t(e) = ry} = 0.
The hypotheses of Theorem .4 are satisfied for the shifted weights w(®). In particular,
the extra assumption (5.11)) of the bounded weights case that requires the existence
of a positive support point r; close enough to the lower bound is valid because either
essinft(@(e) > 0 or essinft(®(e) = 0 but 0 is not an atom.

From Theorem F4 applied to the shifted weights w(® we take the conclusion (5.13)
which is valid in both cases of the theorem:

(7.3) ElTos "1 < EITG&1 - hELLE] - D(a, Whlx].

The constant D(a, h) given by the theorem depends now also on a.

In (7.3) take x = x,,, divide through by n, and let n — oo along a suitable subse-
quence. The expectations of normalized passage times converge by Theorem [A.1. We
obtain

(7.4) ugla—h) < pe(a)— h lim n='E[L) 1 - D(a, h)hIE];.

By Fatou’s lemma and (7.2),

(75)  ImaT'E[LS) 1> lim (L) 1> E lim n7'L{) ] > ui(as).
n—oo n—oo

This substituted into (7.4) gives (7.1).

Last we take up the case a = —r; and 0 < P{t(e) = ry} < p.. The shifted weights
w(-70) satisfy 0 < P{t(e) = 0} < p.. This puts us in case (i) of Theorem B.2. Its
conclusion (.2) implies the existence of a constant D > 0 such that

—(=ro) -
P( LO,x,? - Lf)’xr:) > D|x,|, for infinitely many n) > 6.

Hence (7.2) implies /,L’g((—ro)—) - /,t;g((—ro)+) > D|£|;. Note that D does not depend on
the sequence {x,,} or £. (7.1)) comes from concavity:

pe(=ro = h) < pg(=ro) — up((=ro)—)h < pe(=ro) — pe((—ro)+)h — Dh|§];. O
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Corollary 7.2. Assumery > 0, (.6), and moment bound (R.7) with p = d. There exists
a constant D > 0 such that A(€) > (1 + D)|€|, forall £ € R% \ {0}

Proof. Fix0 < a—b < aand let D = D(a, b) from (7.1). Then, for £ # 0,
ue(a) — pz(a = b)
b

(7.6)  AE) = Hp(04) 2

The first equality is from the characterization of the superdifferential in (2.46) if r, > 0
and in (R.49) if r, = 0. The first inequality is concavity and the second one is (7.1). The
last inequality is the easy bound from (2.14). O

> ug(a+) + D(a, b)[§ly = (1 + D)I&].

Proof of Theorem R.3. We prove the first inequality of (R.15). For b > —r, the character-
izations of the superdifferentials in (2.46) and (2.49) give u;(b+) = 4(b)(§ ). Corollary

[7.2 gives constants D(b) > 0 such that /_1(b)(§) > (1 + D(b))|€];- By the monotonic-
ity of the derivatives, D(b) = D(—r,) works for b < —r,. To produce a nonincreasing
function, replace D(b) with inf_, ;< D(a).

The three middle inequalities of (2.15) are in (7.2).

To prove the rightmost bound of (2.15), consider first b € (—ry — €y, —1y]. Take
a=((b-ry—¢g)/2 € (—ry — €y, b). Let w € Qq and x,,/n — &. Concavity, (7.2), and
(E2) give

L@
! _ ! < . "N
,ug(b )S/xg(a+) < lim o

n—oo

=
T (a+r)A0+¢g T (b+1) A0+ ¢

[{ig

The rightmost bound of (B.13) extends to all b > —r, because /x’g(b—) is nonincreasing
in b. -

Proof of Theorem R.5. Using Proposition f.4[1), the continuity of the shape functions u
and g° on int U, and A(§) > (1 + D)|&|; from Corollary 7.2, choose constants 1,6 > 0
small enough so that for any |£|; = 1,

(7.7) (u@) —1g°¢/D<n = 21436
From (@.8) or (A-2) pick finite deterministic ¥ and random K such that

(7.8) Lox <x|x|; forall |x]|; >K.

Let @ = /4. Increase « if necessary so that x > 2 + . Let 0 < € < /(1 + x). Increase
K if necessary so that (i) K > 4/6, (ii) K works in (B.I) for a, ¢, and (iii) K satisfies the
FPP shape theorem ([2, p. 11], also (A.3))

(7.9) | Toe — (0| <elxly  for|xl; 2 K.
Let |x|; > K and let 7 be a geodesic for Ty .. Let k = |7| V [(1 + a)|x|;]. Then
To.x = Gg e = Go,0.x
A combination of (B.I)) and (7.9), the homogeneity of u, and k < x|x|; give
|u(x) — kg°(x/k) | < elx]; + ek < e(1 +x)|x|y

X/ |xh ™ \k/|xly

)‘ <ed+x)<n.
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Now ([7.7) implies k > (1 + 8)|x|;. On the other hand, |x|; > K > 4/6 implies that
k=lz|vI[Q+a)xh] <|z|v (A +8/2)lx].
Together these force |7z] > (1 + 8)|x|;- O

Proof of Theorem R.11,. [i) The statements about A(§) come from Lemma f.2. The state-
ments about A(£) come from the definition (#-16) and Proposition F4[11). The semicon-
tinuity claims are in Lemma [.5. The finite-infinite dichotomy of A(¢) is in (#I7) and
(EI83).

To derive (R.35), combine Corollary 7.2, (F.17), (B.18), (7.2), and the charac-
terizations of the derivatives ,u’g(Oi) from (R.46) when r, > 0 and from (B.49) when

r0=0. I:l

Proof of Theorem R.16. Part [1) was proved in Lemma f.3. Part [ii) comes from Propo-
sition 4.

Begin by noting that differentiability of t — g°(t£) is equivalent to differen-
tiability of 7 — 7g°(§/7) and on an open interval a differentiable convex function is
continuously differentiable.

Since A(§) > |£|; and by the limit (2.48), the union of the superdifferentials on the
right-hand sides of (R.46) and (R.47) is equal to the interval (|£];, o). General convex
analysis gives the equivalence

—b € 9 [tg(§/1)] < 1€ dus(b).

By the strict concavity of ¢, a given 7 lies in dug(b) for a unique b, and hence the
subdifferential 3,[7g(&/7)] consists of a unique value —b € (—o0, y]. This implies that
7 — 1g(&§/7) is differentiable at T € (|&|;, o).

Continuous differentiability of 7 — 7g°(&/7) for T > |€|; now follows from Proposi-
tion 4. Namely, 7g°(§/7) = tg(§/7) for v € [|£|;, A(§)], which we now know to be a
nondegenerate interval, and their common left -derivative vanishes at the minimum
7= (). On [A(§), o0), 78°(&/7) = u(§) is constant and hence connects in a C* fashion
to the part on [|€5, A(E)].

If g°(£/|£]1) = oo then necessarily limtflg‘fl(g")’(tg) = +400.

The remaining claims follow if we assume g°(€/|£|;) < oo and show that

m g ) —g°(td) _
t71E! €Tt —t

It suffices to treat g since g° = g close enough to the boundary of U by part [ii).
Take o = 1/t > |§|, and rewrite the ratio above as

|§|1g(|§|1—1§) + |§|1 |§|1g(§/(|f|_1)|g—|106g(§/0£)
Thus by the duality in Theorem R.17, (7.10) is equivalent to
7@ — By (£
! — s = %
aNléh a—|&|;

By concavity, the ratio in (7.11) is a nonincreasing function of a > |&|;. Hence if (7.11)
fails, there exists b, < oo such that, Va > |£|; and Vb > by,

|€11b — 7 (1€]) < ab — Bg().

(7.10) +00

(7.11)
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It then follows from the duality ((B-41) or (2.44)) that
7z (b) = E]:b — B (€]))  forb > by
This contradicts the strict concavity of /75. (7-10) has been verified. O

7.2. Nondifferentiability.

Proof of Theorem R.6. Bound (R.21) is contained in Theorem p.2. (R.21)) implies that,
along any subsequence {n;},

P(Lo,x, —L

Loy > D|x, |, for infinitely many i) > 8.

Now (7.2) implies y1;(0—) — u;(0+) > DI¢];. -

Proof of Theorem R.7. Let r < s be two atoms of t(e) in [ry, c0). Fix an arbitrary ¢ € N
and then pick k € N so that
(k 12)€ES r) <r—n< k(SM r)'
Forme Z, let
_(k+m)(s—=r)
2¢
Then b,,, + r and by, + s are atoms of t(’m)(e) such that

b,, —r € (-1, ).

(k+m)(s+ by,) = (k+m+26)r + by,) forallm e z,.

The other hypotheses of Theorem .6 are inherited by w®m) and so the conclusions of
Theorem 2.6 hold for all w®m). In particular, since ,u(gb'")(a) = pug(a+by,), ,uéb'") hasa
corner at 0 if and only if u¢ has a corner at by,.

No point of [—7, 00) is farther than % from the nearest b,,. We get the dense set B

by combining the collections {b,,} for all £ € N. O

APPENDIX A. FIRST-PASSAGE PERCOLATION WITH SLIGHTLY NEGATIVE WEIGHTS

This appendix extends the shape theorem of standard FPP to real-valued weights
{t(e)} under certain hypotheses. The setting is the same as in Section P.I. As before,
{t;} denotes i.i.d. copies of the edge weight t(e). Assumption (R.7) is reformulated for
positive parts as

(A1) E[ (min{tf ..., 5,})P ] < oo.

Passage times Ty ,, are defined as in (2.2) and now the restriction to self-avoiding paths
is essential.

Theorem A.1. Assumer, = essinft(e) > 0, (.6), and (A.1) (equivalently, (B.7)) with
p = d. Then there exist
(a) aconstant gy > 0 determined by the distribution of the shifted weights w(=T0),
(b) foreach real b > —r, — €, a positively homogeneous continuous convex function
u® : Re - R, and
(c) an event Q of full probability,

such that the properties listed below in points (i)-(iii) are satisfied.
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(i) Foreach w € Qg and b > —r, — €, the following pointwise statements hold. For
each x € 74, T(b) is finite and has a geodesic, that is, a self-avoiding path 7 from
0 to x such that T(b) T®)(1r). There exist a deterministic finite constant ¢ and
an w-dependent ﬁmte constant K = K(w) such that
- c
(A.2) LOJ-S 5;172;1757;6
The shape theorem holds, locally uniformly in the shift b: for any a, < a; in
(=ro — €9, ),

|x|1 whenever |x|; > K.

(b) _ (b)
T, X
(A.3) lim sup sup M =

n—oo |x|,>n belag.as] Xl

(ii) Foreachb > —ry—¢, the following statements hold. Té,bx) € I(P) forall x € 7°.
-1 T(b)

For any sequence x,, € 7% with x,/n — & € RY, the convergence n -
u® (&) holds almost surely and in L} (P).
(iii) The shape function satisfies these Lipschitz bounds for shifts b, > by > —ry — €

and all ¢ € R4:
1 2) (b &
(A4) u®(E) < ul (§)S#b)(§>+a FGo+byao 2

Forb > —1y — €9, uP)(0) = 0 and u® (&) > 0 forall £ # 0.

We prove Theorem at the end of the section after proving a more general shape
result in Theorem [A.4.

Lemma A.2. Let P be a probability measure invariant under a group {6, },ca of mea-
surable bijections. Let A be a nonnegative random variable such that E[A%] < co. Then

(A.5) lim m~! max Ao6, =0 with probability one.

m—oo |x]1<m
Proof. The conclusion is equivalent to |x|7'A o 6, — 0 as |x|; — oo. Apply Borel-
Cantelli with the estimate below for € > 0:

ZP{Aoe >£|x|1}—2 Z P{A o6, >ks}<1+C(d)de IP{A > ke}
k=0 |x|;= k=1

<1+ C(d, £) E[A%] < 0. O

Because the inequalities in the proof can be reversed with different constants, an
ii.d. example shows that p < d moment does not suffice for the conclusion.

Let x~ = (—x) Vv 0 denote the negative part of a real number. Following [18], define
the random variable
(A.6) A =2 sup Tyy.

xezd

We first prove a moment bound for the shifts of A that was used in the concavity

result of Section 5.2,

Lemma A.3. Assume 1, > 0 and the subcriticality assumption (B.6). Let § > 0 be the
constant in the bound (B.10) for the shifted weights w(~"0). Then there exists s > 0 such

that E[e*A” ] < oo for all shifts A®) = 2sup._o(TS2) such that b > —ry — 6.
X€EZ 5
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Proof. By monotonicity it is enough to consider the case b = —ry — §. The proof is
the same as that of the corollary of Theorem 3 in [13]. A=10=8) > g > 0 implies the
existence of a self-avoiding path y from 0 such that T(-"0=9)(y) < —a/4. Turn this into

=8|yl < TC() = 8ly| = TC072(y) < —a/4 < 0.
Then |y| > a/(48) and (f.10) gives the bound
P{A"0~9) > a} < P{3 self-avoiding path y from the origin
such that |y| > a/(49) and T(_VO)(y) < 5|}/|} < Ce—19/(48) [

The next item is a shape theorem whose hypotheses are stated in terms of the ran-
dom variable A of (A.6).

Theorem A.4. Let w = (t(e) : e € &y) bei.i.d. real-valued weights.

(i) Assume (A1) with p = 1 and that the random variable from (A.6) satisfies A € I,
Then Ty, is a finite integrable random variable for all x,y € 7%, There exists a non-
random positively homogeneous continuous convex function u : R% — R, such that for
any sequence {x,} C Z¢ with x,,/n — £ € RY,

(A.7) lim E[|n~' Ty x, — u(©)I] = 0.

(i) Assume furthermore (A1) with p = d and E[A%] < co. Then the following hold
with probability one:

(A.8) lim sup ————— =0

n=0 |x|;>n |x[1
and for all ¢ € R? and any sequence x,, € 7% such that x,/n — &

To,xn

(A9) u(E) = lim 22

Proof. Let Ay = A o 6. Consider two paths 7, , € T3 and 7, , € II;%. Their
concatenation may fail to be self-avoiding. Choose a point u belonging to both paths
such that erasing the portion of 7, ,, from u to y (denoted by 7, ,) and erasing the
portion of 77, , from y to u (denoted by 77} ,,) leave a self-avoiding path 7, , from x to z.
(If the concatenation was self-avoiding to begin with, then u = y.) Note that 7, ,, and
7y are self-avoiding paths. This implies that

T(ﬂx,y) + T(ﬂy,z) = T(ﬂx,z) + T(ﬂ&,y) + T(ﬂ;,u) 2T+ Tu,y + Ty,u
2T, — Ty — Tyu =Tz — Ay

Taking infimum over 7, , and ), , gives T, , + T), , > Ty , — A,. Rearranging, we get

(A.10) 0T, +A, <T, +A,+ T, +A;.

To apply the subadditive ergodic theorem, we derive a moment bound.
Let w* = (t(e)* : e € &;). Take any ¢!-path x,.; from 0 to x (where k = |x|;) and
use the subadditivity of the passage times in weights w™ to write

k-1

TO,x<w+) S Z Txi,xi+1(w+)'
i=0
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Since E[ Ty 1, (w™)] are all identical,
(A11) E[To,x(@)] < E[To,x(@®)] < E[Toe, (@] |x]1.
Assumption (A1) with p = 1 implies that E[Ty ¢, (w*)] < oo (Lemma 2.3 in [2]). By
the assumption A € L},
E[Tox + Ax] < Clx|; + E[A] < oo.
Standard subadditivity arguments give the existence of a positively homogeneous con-

vex function u : Q¢ — R, such that for all ¢ € Q% and ¢ € N with ¢¢ € 74, almost
surely and in L1,

To,né’{ + Ané{ To,né’;’
né né
and (¢) does not depend on the choice of . The assumption A € L' allows us to drop
the term A,,,¢ from above. The first inequality of (A.10) gives u({) > 0.
Fix x,y € Z%. Use subadditivity (A.10) to write

To’x - To’y = TO,X +Ax + Tx’y +Ay - TO,y —A
> —Tx’y —Ax > _Tx,y(w+) _A)C‘

(A.12) &) = Aim = Jim € [0,C|¢) ],

- T

X,y — Ax

y

Switching x and y gives a complementary bound and so

(A.13) | To,x — Topl < Ty p(wt) + Ay + Ay,
By (A.11)
(A.14) E[| Ty, — To,yll < Clx — yl|; + 2E[A].

Now take ¢,7 € Q¢ and ¢ € N such that #¢ and ¢7 are both in Z¢ and apply the
above to get
|E[To,ne¢] — ElTo,nepll < Cné|$ —nly + 2E[A]
Divide by n¢ and take n to oo to get

(A.15) () = u(m| < CI¢ =7l

As a Lipschitz function u extends uniquely to a continuous positively homogenous
convex function u : R? — R.

Fix ¢ € R? \ {0} and a sequence x,, in Z% such that x,,/n — £. Fix ¢ € Q. Take
¢ € N such that £¢ € 74. For n € Nlet m,, = |n/¢]. By (A.14),

Eln™ To,x,, —u(I] < n ™ E[| Ty, = To,mpe| 1+ ELIn ™" To m, o0 =N+ () —p(&)]
< n_lclxn - mn€§|1 + 2n_1[E[A] + [E[ln_lTO,mn€§’ _ﬁ(g)”

+ () = u)I.

Take n — oo to get

lim n~1E[| Ty x,, — w(EI] < CIE = ¢y + [EE) — w(©)l.

n—oo

Let ¢ — & to get ([A.7). This completes the proof of part (i).

Now strengthen the assumptions to E[A%] < oo and (A1) with p = d. For (A.8) we
follow the proof of the Cox-Durrett shape theorem presented in [2, Section 2.3].

Let Q, be the full probability event on which (A.12) holds for all ¢ € Q?. By Lemma
2.22 and Claim 1 on p. 22 of [2], under ([A.1)) there exists a finite positive constant x and
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a full probability event Q; such that for any w € Q, and y € 74 \ {0}, there exists a
strictly increasing random sequence m(n) € N such that m(n+1)/m(n) - lasn — oo
and

(A.16) Ton(nyy,z(1 + @%) <xm(n)y —z|; forallz € z%andn € N.

Here, Ty ,(1 + ™) is the first-passage time from x to y under the weights 1 + w* =
(1 +t(e)t : e € &). The results from [2] apply because these weights are strictly
positive and satisfy (A.1)) with p = d.

Let Q, be the full probability event on which ([A.5) holds for the random variable A
of (A.6). We show that (A.8) holds for each fixed w € Qo N Q; N Q,. Let x; € Z% be an
w-dependent sequence such that |x;|; — oo and
(A.17) lim —'To’xk — KOl = lim sup —lTOx #l

k—oo x|y N=0 x| >p |x[1
By passing to a subsequence we can assume x/|xg|; — £ € R? with |£]; = 1. Let
¢ € Q4 satisfy |¢]; = 1 and pick ¢ € N such that ¢ € 74, Choose m(n) in (A.16) for
y = ¢¢. For each k € N take n;, € N such that

(A.18) m(ng)é < |xg|; < m(n, + 1)¢.

Abbreviate my = m(ny). There exists w-dependent k, such that for all k > kg, m(n; +
1) < 2my. Triangle inequality:

|f” u@)| <

|T0,xk - To,mk€§| my€ ‘To,mkeg
Xkl Xkl 1 omyl

| ] )] + () — @)l

k|1
Use (A.13), (A.16) applied to y = #¢, and take k > ky:

22 ) <

|k

— Q)|

mké’{,xk(l + CU+) +Amk€§ +Axk + mk€ . )To,mkeg‘
IXich Xl oyl

[FE = 1] Ol + Q) — )

- u(®)|

+

K| €& — x| N 2maxy|, <omye Ax N myl ‘To,mké’{
1xkl1 Mt Xkl T omye

—u(®)|
+ [0 = 1] Ol + ) = )l

As k — oo the right-hand side converges to x|¢ — &| + [u(¢) — u(&)|. Letting ¢ — £ then
proves that Ty . /||y — () as k — oo. Since u is continuous and homogeneous, we

also have u(xy)/|xi|; = u(xi/|xxk 1) = u(€). Now ([A-8) follows from (A.17).
(A.9) follows from (A.8) and the continuity and homogeneity of y. O

Remark A.5. In the last inequality of the proof above (m; €)= MaX|y|, <2m, ¢ Ax can be
replaced by a smaller term as follows. First, fix a rational € > 0. Take k to be large
enough so that for all k > kg, m(n;, + 1) < 2my, as before, but also

—€ and )%—ﬂl_%

[T -1 <
1|1
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Take ¢ € Q4 (still with |¢|; = 1) so that |¢ — £, < &/(3¢). Now we have

|xx — my €S|y
|xk|1

my € X €
s“xl’:'l—1‘+|§—§|1+(ﬁ—§)1sz.

Consequently,
|x — mte|y < el x| < em(ny + 1) < 2emy.
Thus, instead of (A.5) one now needs the hypothesis that for any fixed z € Z¢,

lim lim m~! max Ao6, =0 almostsurely.
e\0 m—-oo X:|x—mz|1<em

In our application to the proof of Theorem the random variable A has all moments,
so we do not pursue sharper assumptions on A than those stated in Theorem [A.4.

Proof of Theorem [A.1. The constant in point [a) is taken to be ¢, = § = the constant
in the bound (#.10) for the shifted weights w(~"0). Then by Lemma [&.3, A®) has all
moments for all b > —r, — ;. Hence we can apply Theorem [A.4 to the shifted weights
w® to define the shape functions u?) whose existence is asserted in point [b). We
specify the full-probability event Q for point [c) in the course of the proof.

Proof of part [1). Start with the obvious point that Té’bx) < T®)(7) < oo for any particu-
lar self-avoiding path 7 from 0 to x. By bound (£.10) there exist a full probability event
Qg and a finite random variable K(w) such that on the event Q,, every self-avoiding
path y from the origin such that |y| > K satisfies the bound T(-"0)(y) > ¢,|y|. Then for
any shift b these paths satisfy

(A19) TOXy) = TET() + (1o + b)lyl > (€0 + 1o + b)Iy-
From this we conclude that, for any x € 7%, b > —r, — ¢, and any path y,
(A.20) lyl =2 Kv i implies T®)(y) > 7%

‘ = g +7+Db 0.x

Thus the infimum that defines T&bx) in (B.2) cannot be taken outside a certain w-
dependent finite set of paths. Consequently on the event Q, a minimizing path ex-

—(b)
ists and both Té,bx) and Ly , are finite for all x € Z%and b > -1, — .

Next, shrink the event Q (if needed) so that for w € Q the shape theorem (A.8) is
valid for the weights @(=70). Then we can increase K and pick a deterministic positive
constant c so that Té,}r") < c|x|; whenever |x|; > K. By monotonicity Té’bx) < c|x|; for
all b < —r, whenever |x|; > K. If necessary increase c so that ¢ > ¢,. Then by (A:20),
when |x|; > K and b € (—ry — €y, —1y], a self-avoiding path y between 0 and x that
satisfies o

clx|;
[yl > m

T

cannot be a geodesic for T . We conclude that for w € Q,,

—(b) c

—|x whenever b € (—ry, — ¢y, —1y] and |x|; > K.
ox < s p (=1 — €0, =] and [x; >

—(b)
Since L  is nonincreasing in b (Remark P.4(iii)), we can extend the bound above to
all b > —r, in the form (A.2).
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By taking advantage of (A.2) now proved, we get these Lipschitz bounds: for all

w € Qg, by > by > —ry — gy and |x|; > K, and with 71'8,)36 denoting a geodesic of Té,bx),

b b b b b
Toot) < TS < T®)(7{PV) = TGO (LYY 4 (b, — b7y Y|

(A.21) < 7o 4 b2 =bVlx
- go+(y+b)AO
The last equality defines the constant x(b) which is nonincreasing in b.

We establish the locally uniform shape theorem (A.3). Let B be a countable dense
subset of (—ry — €, ). Shrink the event Q, further so that for w € Q, the shape
theorem (/&.8) holds for the shifted weights w(® for all b € B. By passing to the limit,
(A.2T) gives the macroscopic Lipschitz bounds (A.4) for shifts b; < b, in this countable
dense set B.

Letw € Qq, € > 0,and ay < a; in B. Pick a partition ag = by < b; < - < b, = a4
so that each b; € B and x(ay)(b; — b;_;) < €/2. Fix a constant K, = Kgo’bl""’bm(co)
such that

| Té}’;) —u®(x)| < elx|/2 fori=0,1,...,m whenever |x|; > K.

= T8 4 w(by)(by — by)|x]s.

Now for i € [m], b € [b;_4, b;], and |x|; > K, utilizing the monotonicity in b of Té,bx)

and u®(x) and the Lipschitz bounds (A.21) and (B4),
b; .
| 7622 = k00| < | oot = PP + () by — byl < el
The shape theorem ([A.3) has been proved.
Proof of part [ii). The integrability and I} convergence follow from Theorem BA.4(i).

The almost sure convergence comes from the homogeneity and continuity of u® and
the shape theorem (A.3).

Proof of part [iii). We already established (jA.4) for a dense set of shifts b; < b,. Mono-
tonicity of b — u®) (&) extends (A.4) to all shifts b.

That u®(0) = 0 follows from homogeneity. The final claim that u®(¢) > 0 for
(b)

b > —ry — ¢y and & # 0 follows from (A.19), which implies Ty > (g + 1 + b)|x|;
whenever |x|; > K. O

APPENDIX B. RESTRICTED PATH LENGTH SHAPE THEOREM

This section proves the next shape theorem in the interior of U for the restricted path
length FPP processes defined in (2:24). As throughout, the edge weights {t(e) : e €
&4} are independent and identically distributed (i.i.d.) real-valued random variables,
rp = essinft(e), the set D, of points reachable by ¢-paths is defined by (2.23), and
U ={& e R : |€; < 1}isthe £ unit ball. We also write {t;} for i.i.d. copies of the
edge weight t(e).

Theorem B.1. Assume r, > —oco and moment assumption (A1) with p = d. Fix
o € {(empty),0}. There exists a deterministic, continuous, convex shape function g° :
intU — [ry A0, 00) that satisfies the following: for each a, € > 0 there exists an almost-
surely finite random constant K(a, €) such that

(B.1) | G(f,(k)’x —kg®(x/k)| < ek

whenever k > K(a,¢€), k > (1 + a)|x|;, and x € Dg.
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The shape theorem can be proved all the way to the boundary of U. This requires
(i) stronger moment bounds that vary with the dimension of each boundary face and
(ii) further technical constructions beyond what is done in the proof below, because
there are fewer paths to the boundary than to interior points. We have no need for the
shape theorem on all of U in the present paper. Our purposes are met by extending the
shape function from the interior to the boundary through radial limits (Theorem P.10
and Lemma B.1)).

We begin with a basic tail bound on G

0,(¢6),x*

Lemma B.2. Assume the weights are arbitrary real-valued i.i.d. random variables. Let
¢ €N, ¢ € {(empty),o}and x € D;. Assume € — |x|; > 8. Then for any real s > 0,

(B.2) P{Gg (p).x = s} < €2Pmin(ty, ..., 1q) > 5/¢}.

Proof. 1t is enough to prove the lemma for ¢ = (empty). Then we can assume that
¢ — |x|; is an even integer because otherwise Iy (,) , = @. The reason that the case
¢ = ois also covered is that G ,y , < Go,(¢-1),x A Go,0).x-

To prove (BB.2) we construct a total of 2d edge-disjoint paths in Iy () . LetA = {z €
R:z-x>0}and B={z € R : z-x = 0} with cardinalities v; > 0 and v, = 2d — 2vy,
respectively. Enumerate these sets as A = {zy,..., 2y, }and B = {z,, 11, ..., Zy; 41, }-

Suppose x # 0, in which case v; > 1. For each i € [v;] let 7} € Tl (jx|,),x be the £1-
path from O to x that takes the necessary steps in the order z;, zj 1, ..., 2y Z15 -+, Zj_1-
Then foreachi € [v;]let7; € Iy (,) . be the path that starts with (€—|x|;)/2 repetitions
of the (z;, —z;) pair and then follows 7;. Fori € [v,] let 7, ,; € Iy () be the path
that starts with a z,, .; step, then repeats the (z;, —z;) pair (¢ — |x|; — 2)/2 times, then
follows the steps of 7}, and finishes with a —z,, ,; step. Thus far we have constructed
V1 + v, = 2d — v, paths. For the remaining v, paths we distinguish two cases.

If v; = 1 we need only one more path 7,4 € Il (4) .. Take this to be the path that
starts with a —z; step, repeats the (z;, —z;) pair (¢ — |x|; — 8)/2 times, takes two z,
steps, one z; step, follows the steps of 77, takes one z; step, two —z, steps, and finishes
with a —z; step.

Ifv; > 1, then fori € [v; — 1], let 7, 4y, 4; € Ty ()« be the path that starts with a
—z; step, repeats the (z;, —z;) pair (¢ — |x|; — 4)/2 times, takes a z; ., step, follows the
steps of 77}, ,, and ends with a z; step followed by a —z; ., step. For i = v, the path 7,4
is defined similarly, except that z;,; and 7;,, are replaced by z, and 7}, respectively.

One can check that the paths 77; € Il () «, i € [2d], are edge-disjoint. From

(B.3) Go,(0),x < min T(r;)
follows
2d 2d
B.4) P{Go,0)x > s} < [ [ PIT(my) > s} < (¢P{t(e) > s/¢})
. i=1

= ¢2P{min(ty, ..., tq) > s/¢}.

If x = 0 (and hence v; = 0 and v, = 2d) then redo the last computation with the
edge-disjoint paths 7;, i € [2d] that just repeat the pair (z;, —z;). d

Below we use the condition that a rational point { € U satisfies ¢{ € D; for a
positive integer ¢ such that £¢ € Z¢. When zero steps are admissible (¢ = 0) this is of
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course trivial, and without zero steps (¢ = (empty)) this can be achieved if £(1 — |{];)
is even. Therefore, one can take for example ¢ = 2¢’ for ¢ € N such that ¢'¢ € 79,
Properties of convex sets used below can be found in Chapter 18 of [17].

Theorem B.3 comes by a standard application of the subadditive ergodic theorem.

Theorem B.3. Assumer, > —oo. Fix¢{ € Q% n U and o € {(empty),o}. Let £ € N be

such that ¢¢ € Dj. Assume [E[G0°(€) %] < 0. Then the limit

[Gy ] G,
0.(no)ne¢d lim 0,(ne),neé

E
o — i -1 °
(BS) J (g) - ?lllelfg né n—oo né € [VO A0, ¢ [E[GO ]]

2(0),¢4

exists almost surely and in I' and does not depend on the choice of €. As a function of
¢ € Q4N U, g°is convex. Precisely, if {,n € Q% N U are such that [E[G(f(g) €§] < o0 and
E[ (i(e)fn] < oo forsome ¢ € N, then foranyt € (0,1) N Q, [E[G(;i(é”),é”(t{+(l—t)77)] < o0
forsome ¢’ € Nand

(B.6) g (g + (1 —1n) <tg°() + A~ )g° ().
Remark B.4 (Conditions for finiteness). By Lemma B.2, assumption (A1) with p = 1

implies that E[G; ©, eg] < oo for any ¢ € Q4 N U and any large enough ¢ € N that
satisfies ¢ € D;.

Next, from convexity we deduce local boundedness and then a local Lipschitz prop-
erty.

Lemma B.5. Assumer, > —oo and (A1) withp = 1. Fix{ € Q¢ nintU and o €
{(empty), 0}. There exist ¢ > 0 and a finite constant C such that

(B.7) g°(n) < C forally € Q% N U such that |n —¢|, < e

Proof. Take ¢ > Orational and small enoughsothatA ={ne U : [n—{|; <e} Cintl.
Let {n; : i € [2d]} c Q% n int U be the extreme points of the convex set A. For
n € QlnAwriten = Zfil a;n; with rational «; € [0,1] such that Zie[zd] a; = 1. By
bound (B.5) and Remark B4, g°(#;) < oo for i € [2d]. Convexity (B.6) implies
°(n) < a;g°(m;) < max g°(n;
g°(n) ie%;d] i8°(n1) < max g°(m)
and Lemma [B.3 is proved. O

Lemma B.6. Assumer, > —oo and (&) with p = 1. Fix¢{ € Q¢ nint U. There exist
¢ > 0 and a finite positive constant C = C(¢, €, 1) such that for both ¢ € {{empty), o}

lg°m) —g° M) < Cln—n'ly Vn,n' € Q¥ nintUwith|n—{|, <eand |y —¢|, <e.

Proof. The assumptions of Lemma [B.5 are satisfied and therefore there exists a rational
€ > 0 and a finite constant C such that (B.7) holds. By taking € > 0 smaller, if necessary,
we can also guarantee that for any 7 € RY, | — ¢|; < ¢ implies 5 € int U.

Take n # n' in intU with |n — {|; < ¢/2 and |’ — {|; < €/2. Abbreviate § =
27!y — 1’|, and write

— 1 / 5 -1 ’
n=175" +1+5-(77+5 (n-7)).

Note that .
I+ m-n)—Shs5+67m-nh=¢



276 A. KRISHNAN, F. RASSOUL-AGHA, AND T. SEPPALAINEN

Therefore, n + 6~1(n —n’) € int U. By convexity (B.6) and boundedness (B.7) we have

° 1 O (an! s .o =1(y _ 9/ 1 . o%(n' cé
g5 ¢+ 15 g+ n))sl+5 g+ 135

From C > g°(n') > 1y A O,

!/ 5 < ’ -— ’
gm—-gMm)< m(—g (') +C) < 8(rg A0 + C) = 267 (|rg A O] + O)n — 7'
The other bound comes by switching around 7 and #’. O

Lemma B.7 is an immediate consequence of the local Lipschitz property proved in
Lemma [B.6.

Lemma B.7. Assumer, > —oo and (A1) with p = 1. Then g and g° extend to locally
Lipschitz, continuous, convex functions on int U.

Before we prove the shape theorem we need two more auxiliary lemmas.

Lemma B.8. Assume (A1) with p = d. Then there exists a finite constant x such that

P{Vpaire < pin(0,1) 3¢, = €y(c, p,w) such that

(B.8)
Ve > €y, Vo € {(empty),0} : sup €‘1G(;’(é,)y < x} =1.
yeDg e
et<|yh<pt
Proof. It is enough to work with ¢ = (empty) since Gg’( 0y < Goo),y- Itis also enough
to work with fixed € < p since the suprema in question increase as we increase p and
decrease €.
Fix an integer r > 5 such that

p(1+8/r) < 1.

The strategy of the proof will be to bound G () , by constructing edge-disjoint paths
on the coarse-grained lattice rZ% to a point y that approximates y. An approach to
finding such paths was developed in the proofof Lemma B.2.

Take ¢ large enough so that

(B.9) >2(d+8)re7! and p(1+8/rf+(d+8)(r+8)+dr+8<¢.

For each y € D, with ¢/ < |y|; < pf pick y € rZ% so that |y — y|; < dr. Asin
Lemma B.2Z, let v; be the number of z € R such that y-z > 0and let vy = 2d — 2.
Following the construction in the proof of Lemma @_ we can produce edge-disjoint
nearest-neighbor paths 7}, i € [2d], on the coarse-grained lattice rZ¢ from 0 to y such
that, in terms of the number steps taken on rZ%, 7} has length ¢, = ¢ = |yli/r for
i € [v], mihaslength ¢, = ¢ +2fori € {v; +1,...,v, +v,}, and fori > v, +v,, 7; has
length ¢, = ¢ +8ifv; =1land ¢, =¢ +4ify, > 1.

From |y|; < p¢ and |y — y|; < dr follows € = |y|;/r < (o€ + dr)/r, and then from
(B

(£+8)(r+8)+|y—X|1+8s((,o€+dr)/r+8)(r+8)+dr+855.
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Define
€—8(r+8)—|y—y:—-38
1 Jh
q= b( 7 —-r— S)J
Then
€ ré
0<q<—<———<re!
1=2¢ = 2yl —an
Define
¢—8(r+8)—|y—yh—8—£4(r+8+2q)
(B.10) m= [ = J
Then

o<m<e.

Let 7; ¢ denote the position (on the original lattice) of the path 7} after s steps (of
size r). Let

(B.11) ¢, =+ 8)£i +2q¢ + 2m.
For each i € [2d] we have this identity:
(r+104+29m+(r+8+29)¢-m)+ T +8)¢, - +¢—¢;=¢.

This equation gives a way to decompose the ¢ steps from 0 to y so that we first go
through the vertices {7} ;}o<s<, and then use the last € — ¢; steps to go from y to y. We

5305, 2
continue with this next bound:

m-—1 £-1
Go,(é’),y < ll’el’ggl]{ Z Gﬂl{,s’(r+10+2q)’ﬂl{,s+l + Z G”l{,s’(r+8+2q)’7t£,s+1
s=0 s=m
(B.12) -
Zi
+ ze Gnlf’s,(r+8),ﬂ§’s+l + GX,(f—éi),y}'
s=

Bound m in (B.10) by dropping | | to turn (B.11) into this inequality (note that terms
2q¢ cancel):

G <(r+8)(+8)+¢—8r+8)—|y—yh —8—-(+8¢f=¢—|y—y -8
Similarly,
¢; 2€—|y—X|1—102€—dr—10.

Fixx > 0. For j =d +1,...,2d let e; = —e;_g. Define the events

& =1{3j €[2d] : Go (ri842q)re; = ¥€/14 01 Go (r410429),re; = KE/14},

& ={3jel2d]: G_re; (r+8)0 = KC/14

Or G_rej (r+8+29),0 = K€/14 01 G_pre, (r+10+29),0 2 x€/14],

& ={FkeN,zeDy : |z|, <dr, |z|; + 8 <k < dr +10, G, )0 > x€/14},

and the event €7 , on which for all i € [2d]
ma(£-1)-1 )

(B.13) > Gy 3

i,s’(H' 10+2q),7'rlf7s+1
s=1 s=mvl

Gy

i,s?

(r+8+2q),7} ¢\, > x€/14.
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Then for ¢, large enough to satisfy (B.9) and x > 0,

(B.14) {sup sup €7 Gy o),y > K} C ( U 8}) U ( U U EFo 92>

<y < z
e¢/2<|y <é
(U U eea)o(U U )
> yeZd >0y YED,
et<|y1 <t ef<|yli<t

Here is the explanation for the inclusion above.

(i) Further down the proof we add auxiliary paths around the r-steps of the path
m;. Because the first r-steps share their initial point 0, their auxiliary paths
would intersect and independence would be lost. The same is true for the last
r-steps that share the endpoint y. Hence these special steps are handled sepa-
rately. B

The event &} takes care of the first step of the path 7} which is either in the
first sum on the right in (B.12), or in the second sum in case m = 0 and the
first sum is empty.

The event &2 takes care of the last step to y which can come from any one
of the three sums on the right in (B.12). We have to check that the possible
endpoints fall within the range €€/2 < |r; (|; < ¢ of the union of shifts of &2
forie[2d]and¢ <s< ¢,

|7} gl > [yl = (d + 8)r > e&/2

and since 7; ¢ is on an admissible path of length ¢ from 0 to y, it must be that
|7r£,s|1 <¢.
(i) The event &; takes care of the path segment from y to y.
(iii) On the complement of the first three unions on the right-hand side of (B.14)
we have for each i € [2d],
Gﬂ{,o,(r+10+2q),7r{,l]]{m > 1} + Gﬂg’o,(r+8+2q),ﬂlf’lﬂ{m =0} + Gng,g_l,(r+10+2q),7r£,€ﬂ{m = ﬁ}
¢.—1

=1

+ Gﬂ{,e_l,(r+8+2q),7r£,gﬂ{m < ﬁ} + Z Gﬂg’s,(r+8),7l’[ + Gy,(e—ei),y < 13x¢/14.
B - €

i,5+1 E4
S=

Since gi — ¢ < 8, the left-hand side has at most 13 terms, which explains the
bound on the right. Thus, if in addition G¢ (), > x¢, then event 8§,y must
occur.

By bounding the probabilities of the unions on the right of (B.14), we show next that
for some fixed x that does not dependon 0 <e < p <1,

(B.15) lim Pisup sup €7 'Gg ),y >xp=0.
o= (¢3¢, yED,
et<|yl1<p?

This will imply the conclusion (B.8) as we point out at the end of the proof.
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FIGURE B.1. The light dashed grid is the coarse-grained lattice rZ¢. The
thin lines along this grid represent four 7r{-paths from 0 to y. Three r-steps

on two 7;-paths are decorated with auxiliary paths represente_d by thick lines.
The auxiliary paths are edge-disjoint as long as they associate (i) with differ-
ent 7rj-paths, (ii) with nonconsecutive r-steps on the same path 7;, or (iii)
with r-steps that are neither the first nor the last one of a 7;-path.

By (B2), P(&}) is summable if (A1) is satisfied with p = 1. Then P(|J PN &)—0
as €y — oo. Next, observe that

U U €2oeyc U USZoey

260 yezd ¢2ey yezd
ef<|yh <€ [Yl1=¢
and hence
3 3
(U U #oa)z 3 o a0)
> yezd >y yeZd
ef<|yh<¢ [yl1=¢

which goes to 0 when ¢, — co if #2~1P(E3) is summable. This is the case if (&.1)) is

satisfied with p = d. The union over &2 o 0, is controlled similarly.

It remains to control the probability of the union of the events Sﬁ’y in (B.14). For
i € [2d] and s € [¢ — 2], for each segment [7] ;, 7} ], bound both passage times
G, 7] (r+10429) 7, and Gﬂ;’s’(, +8+2q).7),, 3S Was done in (B-3) by using 2d indepen-
dent auxiliary paths of the appropriate lengths. For each segment [7} , 7} ¢ ,,] add the

two upper bounds and denote the result by A+ s

i,8°%0, S+1
The terms for s = 0 and s > ¢ — 1 were excluded from the events £} ,y so that
for distinct indices i € [2d] the 2d auxiliary paths constructed around the segments
{7} s> 7i 5411 se[e—2) Stay separated. (We chose r > 5 at the outset to guarantee this

separation.) Replace the edge weights t(e) with t*(e) = max(t(e),0) to ensure that
the upper bounds are nonnegative. After these steps, the left-hand side of (B.I3) is

bounded above by Zf;lz A o

1,871, S+1
All the A-terms have the same distribution as A ¢, . As explained above, over dis-

tinct indices i € [2d] the random vectors {An/ o, - SE [£ — 2]} are indepen-

dent. For any particular i € [2d], {Aﬂis,ﬂ . - S E [¢ — 2] even} are i.i.d. and
{Aﬂ{s,ﬂl W - SE [£ — 2] odd} are i.i.d. because now we skip every other r-step. See
Figure

We derive the concluding estimate. Recall that

& < (pé+dr)/r < (or ' + 1)¢.
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Let ¢ = [(or~! 4+ 1)/2]. Let S,, denote the sum of n independent copies of Ay ., . Since
the A-terms are nonnegative we have

P 3 A,

’
5 ’”i,s+
s€[¢—2] even

| 2 %6/28) S P(Sg 2 1£/28).

The same holds for the sum over odd s. Thus we have
P(E2,) < 22P(S,, > xe/28)%.

Take x > 28cE[A e, | and use the fact that there are no more than (2¢ + 1)¢ points
y € D, to get

[P>< U U e;{y> < D@+ 1AP(ER)) < D (80 + 4)AP(S,, > 1€/28)%
260  YED, £>64 626
ce<lyli<pe

(8¢ + 4)%c*! Var (A re, )
(x/28 — CE[Ag e, )*d2d

< 2,

>

The bound (B.4) can be utilized to show that each G (,) , and thereby Ay ., is square-
integrable if ([A.1]) holds with p = 2. The above then converges to 0 as £, — co. We
have verified (B.15). The claim of the lemma follows:

P{veo ¢ >06,: sup €G> K}

YED,
ee<|yli<pt
= lim P{3¢ > ¢, : sup €7 'Gopy > xp=0. O
) yeD,
ee<|yl1<p?

Lemma B.9. Assume (A1) with p = d. Then forany 0 < € < p < 1 there exists a
deterministic constant x € (0, c0) such that, with probability one for each x € 79, there
exists a strictly increasing random sequence {m(n)},en C Nsuch that m(n+1)/m(n) - 1
and for ¢ € {{empty),o}and £ € N

(B16)  Gpmyx(o)z S %€ Vz € m(n)x + D/ such that e¢ < |z — m(n)x|; < pé.

Proof. If x = 0 take m(n) = €, + n from Lemma B.8. Next suppose x # 0. Fixe < p in
(0,1). Apply Lemma [B.8 to choose a finite constant x such that

P(E) = P{Vo € {(empty),0} :  sup €_1Gg(€) y
¢eN,yeDy e
eC<|yh<p?

SK}>O.

The ergodic theorem implies that with probability one, for each x € 7%\ {0} there exist
infinitely many m € N such that
Vo € {(empty), o} : sup ¢71Gy @y <K
eN,yemx+Dg T
eC<|y—mx[1<pl
Enumerate these m’s as a strictly increasing sequence {m(n) : n € N}. Then for P-
almost every w

m(n)

lim D Wbk € E}=P(E) > 0.
k=1

n
— = lim ——
noco M(N)  n-co m(n)
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Consequently, m(n + 1)/m(n) converges to 1. ([
We are ready for the shape theorem.

Theorem B.10. Assumery > —oo and (A1) with p = d. Fix o € {(empty),o}. Let V be
a closed subset of int U. The following holds with probability one:
B.17 li 7Y Gy e — €8°(x/€)| = 0.

( ) é’l—glo xeDr;li%c);éev | 0,(6),x g (x/0)|
Proof. The proof follows steps similar to those of (A.3). We treat the case ¢ = o, the
other case being a simpler version. Let Qg be the full probability event that consists
of intersecting the event on which (B-5) holds for all ¢ € Q% n int U with the event in
(B:8) and the events in Lemma B.9 for all rational € < p in (0, 1). Fixw € Q. We show
that for this w

B.1 li i (G2 —£g° >
B9 ei_r?o xen}: aleev 07H(G3 0y~ 08°(x/) 20 and
(B.19) lim  max ¢7(Gy y.x — €8°(x/0)) < 0.

=00 X€DF: X/CEV

Proof of (B.18). Fix (w-dependent) sequences ¢, — oo and x; € Dy _that realize the
lim on the left-hand side of (B.I8). Since x; € Dy, there are coefficients af, € Z,
such that

d d
(B.20) X = Z(aifk —a;)e; and Z(aifk +a;;) < bk
i=1 i=1
Pass to subsequences, still denoted by € and x;, such that
d
(B.21) afi /by — af €[0,1] with Y (af +a7) <1.
> k—oo £

i=1

Let & = Z?zl(oci+ —a;)e; = limy_ o, xx /€, € V C intU. We approximate § with a
rational point ¢ to which we can apply (B.5). Bound (B.18) comes by building a path
from x; to a multiple of { and by the subadditivity of passage times. Here are the details.

First, we dispose of the case where there are infinitely many k for which a;} =
a;; = Oforalli € [d]. If this is the case, then going along a further subsequence we
can assume that x;, = 0 for all k. Applying (B.5) with { = 0 gives €,;1G3’( cor = g°(0)
and since g°(x/¢x) = g°(0) for all k we see that the lim on the left-hand side of (B.18)
is 0. We can therefore assume that for each k there exists some i € [d] such that ai*: =1
ora;; > 1. Consequently, if we let 7 denote the set of indices i € [d] for which a;,’ =1
or a;} > 1 for infinitely many k, then J # @.

Let

(B.22) y =min{a; : aj >0,i € [d]} Amin{a] : a}f >0,i € [d]} >0,

with the convention that min # = oo, which takes care of the case a;” = 0 foralli € [d].

Let & be a rational in (0, (y A 1)/(4d)). Fori € [d]\  let B} = B = 0 and note that we

also have af = aj = 0. For i € J take B € [8,1] n @ such that |af — BF| < 2d6,

d
B +B7)<1, and VjeJ: (A +5dy NB —p;)#af —aj.

=1

1
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Let ¢ = Z?zl([ﬁ’f — fB7)e; and take § > 0 small enough so that { € int &. We will
eventually take § — 0, which sends ¢ — £.
We have for alli € I

(B.23) (1+5déy )B —af >6 and (1+5d6y~Y)B; —aj > 6.
To see this, note that when oci+ > 0 we have
(1 +5dsy=H)BfF —aif > (1 +5d6y~)(af —2d6) —aff >d6/2>6
and when of = 0 (buti € J) we have
(1 +5d8y B —af = (1 +5d6y DB = B > 6.

The same holds with superscript —.
Let

S ieo((U+ 548y )BF — B7) — (af —ai))ey

ieo( + 548y} + 67 — (& +4ap))

The choice of ;" guarantees that ¢’ # 0. Furthermore, (B:23) shows that ¢’ is a convex
combination of the vectors {+e; : i € J} with all strictly positive coefficients. Conse-
quently, ¢’ € int U.

Take rational € < p in (0,1) such thate < |{'|; < p. Let € € N be such that
¢B;,¢B; € Nfori € J and take 71 such that

¢ =

m(iy, — 1) < (1 + 5d8y~1)e, /¢ < m(iiy),

for the sequence m(n) in Lemma B.9 corresponding to the above choice of € and p and
to x = ¢¢. Abbreviate m;, = m(7i;). Using (B.23) we have fori € J

(B.24) I}im O (e — afy) = (1+5d8yH)B; —af > 6.
The same holds with superscript —. Thus, for all i € J and for large k
(B.25) Ml > ajy + 66y /2.

This implies that when k is large, m,£¢ (which belongs to Z4) is accessible from x; by
an R-admissible path of length

d d
(B.26) Ji = 20meB —afh) + D (Ml — ap).
i=1 i=1
Note that
(B.27)
d d

lim it =2+ 5d8y DB —af) + D (A + 5d8y DT — ai) < (4d + 5y~ 1)d8.
- i=1 i=1
The first equality and (B.24) imply that
lim TS =Xk
k—oo J
k

{/

and therefore ejk < |mpfd —xi )y < pjk for k large enough. This will allow us to apply

(B.16).
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Since x is accessible from 0 by an R-admissible path of length Z?:I(aif K +ai) <
€1, concatenating this path and the one from x; to m; €¢ gives an R-admissible path
from 0 to m; ¢¢ of length

(<%

kag(ﬁfr +B7) < myf.

Hence my ¢ € Doﬁk .- Subadditivity now gives

GO

0 (0]
Coamorimees S Cotexe T Ox, Gommeer

Using this, (B.16)), and (B.27), we get

GO
(1+5d8y~1g°($) = llm G < lim —0Lxic

ocermeg < M . + x(4d + 5y~ 1)dS.

Taking § — 0 and the continuity of g° on int U gives

. - Goepn
2O < lim 20k,
k—o0 gk
Since xi /¢, € V C intU and x;/¢;, — &, using again the continuity of g° on int U
completes the proof of (B.I3):

;i_}_nolo ”plzl(G(()),(ék),xk — €kg°(xk/€k)) >0
Proof of (B.19). Proceed similarly to the proof of (B.I8), but with the sequences €, —
co and x; € Dy, realizing the lim on the left-hand side of (B.I9). Again, we have the
representation (B.20), the limits (B2I), and § = 3, d](oci+ —aj)e; €V.

We start by treating the case when £ = 0. In this case let j, = 2|xi|; or j, =
2|xk|; + 1, so that €, — ji is even. Observe that j, /¢, — 0 and hence ¢, > j, for k
large. Thus, one can make an admissible loop of length ¢; — j, from 0 back to 0 and
then take a path of length j; from 0 to x. From (B.3) we have ¢, ng’( =)0 g°(0).
If ji is bounded then so is |x|; and we have ¢} 1G0 o = O On the other hand,
if j, — oo along some subsequence, then along this subsequence, and for k large, we
have ji/3 < |xk|1 £ 2j,/3 and, applying (B.8), we then get

o 0 0 0 .
GO,(é’k),xk = GO,(ek_jk)yO + GO’(jk)’xk = Goy(é’k—jk),o Xk

for k large enough. Dividing by ¢ and taking k — oo we deduce that
Im €16 (), S 8°(0).

The continuity of g° at 0 implies then that the lim on the left-hand side of (BI9) is 0.
For the rest of the proof we can and will assume that & # 0.

Define y € (0, ) as in (B:22). Let & be a rational in (0, y/2). Choose 7, i € [d],
so that for 0 € {—,+}, when aj = 0 we have 87 = 0 and when a;’ > 0 we have
B € [6,1] n @ such that |af — B7'| < & and overall we have

Z(ﬁl +B7)<1 and (1-28y7Y) X (B —B)ei # ), (af —ai)e;.

i=1 ie[d] ield]
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This is possible since ¢ # 0 and therefore ;' > 0 for some i € [d] and O € {—, +}. Let
¢ = Z?zl(ﬁf — ;7 )e; and choose & small enough so that { € int U. Note that
af —(1-26yH)BY >0 foralli € [d]and o € {—,+}.
Indeed, this clearly holds when « = 0 and when a}’ > 0 we have
af —(1 =28y HBY > af — (1 =28y H(af +6) > 6.
The above two observations imply that
L il —a) == 2877)BF ~BD))ey
5+ D@ o) — (1= 2878 +BD))

We can then find rational € < p in (0,1) such thate < |{']; < p.
Let ¢ € N be such that £8;F,¢B; € Z, fori € [d] and take n, such that

€ int U\ {0}.

mn) < (1= 28y™)¢i/e < mn, +1),

for the sequence m(n) in Lemma B.9 corresponding to x = ¢¢ and to the above choice
of e and p. Abbreviate m, = m(n, ) and observe that if o > 0 then

(B.28) Jim oM af —m eBF) = af —(1=28y"DBF 2 6.
Then for large k
(B.29) aj —m, €BF > 0.

This inequality is trivial if &f = ;7 = 0. The same computation works with minus
sign superscripts. This implies that x;. is accessible from mkeg in

d d
J, = Yt~ m B + Y~ meB7)
i=1 i=1

R-steps and | €| O-steps. Note that

d d
lim j /€ = ;(a: = (1 =28y™NB) + Qe —(1=26y7)B) < (2d +2y71)8.

i=1
As a consequence,
X —m, €¢
lim ——k > —
koo [80k]+]

g/

and one can then apply (B.16). Then, as in the proof of (B.18), using subadditivity then
taking k - oo and then § — 0 and using the continuity of g° on int U give

e
lim —2RXk < go(g).
Cx

k—oo

Another use of the continuity of g° completes the proof of (B.19). d

Proof of Theorem B. Apply Theorem BI0Owith V={{e€ U : |§|; <1/Q1+a)}. O
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APPENDIX C. PEIERLS ARGUMENT

This appendix follows the ideas of [I1, 20]. First we prove a general estimate and
then specialize it to prove Lemma B.3. Let d € N. Tile Z¢ by N-cubes S(k) = Nk +
[0, N)4 indexed by k € 7¢. Each N-cube S(k) is colored randomly black or white in
a shift-stationary manner. Let p = p(IN) be the marginal probability that a particular
cube is black and assume that

(C1) p(N)»1 as N — co.

Assume finite range dependence: there is a strictly positive integer constant a, such
that

(C.2) Vu € 74, the colors of the cubes {S(k) : k € u + qyZ%} arei.i.d.

There are K, = ag distinct i.i.d. collections, indexed by u € {0, 1,...,a¢ — 14,

It may be desirable to let the separation of the cubes be a parameter. For a positive
integer a; andu € {0, 1,..., a; —1}9, define the collection 8, , = {S(k) : k € u+a,7%}
of cubes with lower left corners on the grid u + a,74. For a given a;, K; = af is
the number of distinct collections 8, , indexed by u € {0,1,...,a; — 1}4. We always
consider a; > a, where q is the fixed constant of the independence assumption (C.2).

Let B(0,7) = {x € Z¢ : |x|; < r}denote the ¢'-ball (diamond) of radius |r| in 24,
with (inner) boundary dB(0,r) = {x € 7% : |x|; = |r]}.

Lemma C.1. Assume (C.I) and (C.2). Let a; € Z5q, and K; = al. Then there exists a
constant Ny = Ny(d) such that for N > Ny and n > 2(d + 1)N,

[P’{ Vlattice path 7 from the origin to dB(0, n) Ju € ([0, a; — 1] N 2)? such that
(C.3)

n
7 intersects at least
4ANK

n
- black cubes from 85,y } > 1 — exp(— TV)

To prove Lemma [C.I we record a Bernoulli large deviation bound.

Lemma C.2. Assume (C.2) and let p € (0, 1) be the marginal probability of a black cube.
Then there exist constants A(p, K, d) > 0 such that, for all integers a; > ay, m € N, and
§ € (0, p/Ky), with Ky = a¢, and for any particular sequence S(k;), ..., S(k,,) of distinct
N-cubes, the following estimate holds for some u determined by {S(k;)}/Z;:

P{S(ky),...,S(ky,) contains at least m& black cubes from Sq, y} > 1 — e~A@:K1.0m,
Furthermore, limp/I A(p,K,8) = oo forallK € Nand § € (0, p/K).

Proof. Pickuso that 8, , contains atleast [m/K; | of the cubes S(k;), ..., S(k,,). Since
these are colored independently and § < p/Kj, basic large deviations give

P(at most md cubes among {S(k;)}{Z; N 8, ,, are black)
< P(at most md cubes among [m/K; | independently colored cubes are black)

_m _ o—A(p.K1,8)m
< exp{ K, Ip(chS)} =e Loym,

where the last equality defines A and the well-known Cramér rate function [L6] of the
Bernoulli(p) distribution is

1-—
— & for s € [0,1].

s
I,(s) = slog > +(1—-s)log T
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To complete the proof, observe that

= co. O

. 1 L K6 1-K§  1-K§8
%JI;I}A([),K, d) = 1)1;1} KIP(K5) = })1;%(5105; > +—% log = )

Proof of Lemma [C.1. Consider for the moment a fixed path 7 from 0 to a point y such
that |y|; = n. Assume n > dN so that y ¢ S(0).

For j € Z, let level j of N-cubes refer to the collection £; = {S(k) : |k|; = j}. Since
points x = (x1,...,xg) € S(k) satisfy

kiNSxiSkl-N+N—1 fOI‘iE[d],

level j cubes are subsets of {x : Nj—d(N —1) < |x|; Nj+d(N - 1)}
To reach the point y, path 7 must have entered and exited at least one N-cube at
levels 0,1, ..., my where m satisfies

Nmy +d(N —1) <|yl; N(mo+1) +d(N —1).
This calculation excludes the cube that contains the endpoint y. From this

> i —dN-1)

(C4) my N

n
> = — .
1> 5 —(d+1)

Consider the sequence of N-cubes that path 7 intersects: S(0) = S(ky), S(ky), ...,
S(k;y, ), with the initial point0 € S(0) = S(k,) and the final point y € S(k,,, ). Remove
loops from this sequence (if any), for example by the following procedure:

(1) Let iy be the minimal index such that k; = K; for some j > ij. Let j, be the
maximal j for iy. Then remove S(k; 11), ..., S(k;,).

(2) Repeat the same step on the remaining sequence S(ky), ..., S(k;,), S(kj, 1),
...»S(Kp, ), as long as loops remain.

After loop removal relabel the sequence of remaining cubes consecutively to arrive
at a new sequence S(Kg), S(k;)...,S(ky,,,) of distinct N-cubes with m, < m; and still
0 € S(0) = S(ky) and y € S(k,,,). This sequence takes nearest-neighbor steps on
the coarse-grained lattice of N-cubes, in the sense that |k; — k;_;|; = 1, because this
property is preserved by the loop removal. Since 7 enters and leaves behind at least
one N-cube on each level 0, ..., my, we have the bound m, — 1 > my,,.

We have now associated to each path 7 a sequence of m, distinct N-cubes that 7
both enters from the outside and exits again. We apply Lemma [C.2 to these sequences
of cubes.

Take a; > ao > 1and K; = af as in the statement of Lemma [C.1. Let 8, = (2K;).
Fix N large enough so that p = p(N) > % = §yK; and the constant given by Lemma
[CI satisfies

A(p,Ky,8p) > log2d + 1.
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Consider n > 2(d+1)N to guarantee that the rightmost expression in (C.4) and thereby
also my, is larger than n/(2N). Then also myd, > n/(4NK;). By Lemma [C.2,

[P’{V path 7 : 0 — dB(0, n) Ju such that 7 enters and exits

n -
at least m distinct black cubes from Sal’u}

> [P’{every nearest-neighbor sequence of m, N-cubes starting at S(0)
contains at least m,d, black cubes from some Sal,u}

> 1— (2d)M0e=APK100)mo > ] _ e=M0 > ] — e=1/(N),
This completes the proof of Lemma [C.1. O

Proof of Lemma B.3. Surround each N-cube S(k) with 2d N-boxes so that each d — 1
dimensional face of S(k) is directly opposite a large face of one of the N-boxes. Precisely,
first put S(k) at the center of the 3N-cube T(k) = Nk + [—N, 2N]¢ on 74, and then
define 2d N-boxes B*/(k) = T(k) n T(k + 2e;) for j € [d]. Any lattice path that enters
S(k) and exits T(k) must cross in the sense of (5.8) one of the N-boxes that surround
S(k).

Color S(k) black if all 2d N-boxes surrounding it are black. The probability that
S(k) is black can be made arbitrarily close to 1 by choosing s, and N large enough and
8o > 0 small enough in the definition (5.4)-(B.5) of a black N-box. The color of S(k)

depends only on the edge variables in the union T(K) of the 2d boxes Eij (k) enlarged
as in (B.2). The separation of a, in (C.2) can be fixed large enough to guarantee that
over k € u + ayZ4 the cubes T(k) are pairwise disjoint.

Apply Lemma [C.I with K; = a = ad. Tighten the requirement n > 2(d + 1)N of
Lemma [C.I to n > 4dN to guarantee that if a path 7 intersects S(k) then it also inter-
sects the complement of T(k). (If 77 remains inside T(k) then the #!-distance between
the endpoints of 7 is at most 3dN and 7 cannot connect the origin to 6B(0, n).) Thus
for every S(k) intersected by 7, at least one of the N-boxes surrounding S(k) is crossed
by 7 in the sense of (5.8). In conclusion, on the event in (IC.3) each path from the ori-
gin to 0B(0, n) crosses at least [n/(4NK,)| = [nay 4/(4N)] disjoint N-boxes. Of these, at
least [nag®/(4N)]/K must come from some particular collection B ;. Thus in Lemma
B.3 we can take §; = 1/(4agNK), n; = 4dN and D; = 1/(2N). O

APPENDIX D. CONVEX ANALYSIS

Lemma D.1. Let f be a proper convex function on R% (—co < f < oo and f is not
identically o0) and & € ri(dom f). Then the following statements are equivalent.

(a) ForsomebeR,df(§)c{heR?: h-&=h).
(b) f*is constant over 3 f(£).
() t — f(t&) is differentiable att = 1.

Proof. (#) = (B). Forallh € 6f(§), f*(h) = h-§ — f(§) = b— f(©).
(B) = (H). Suppose f*(h) = sforallh € df(§). Thenforallh € 3f(§), h & =

[ () + f(&) = s+ f().
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© = @). Letb = (d/dt)f(t8)|;=1 and h € 8f(&). Then forall |s| < ¢, by convexity,
f(& + &) — f(&) > sh - £. This says that h - £ lies in the subdifferential of the function
t — f(t&) att = 1, but by assumption this latter equals the singleton {b}.
(B) = (©). The directional derivatives satisfy the following, where in both equa-
tions the second equality comes from [[17, Thm. 23.4].
F&9 =tim LX) _qupie i neopey=b

N

and

w = sup{—t-h : hedf(£)} = —b.

f(= = lim

From this we see the equality of the left and right derivatives of p(t) = f(¢t£) att = 1:

gD/(l._) — %1/1,% f(g + tgt) - f('é::) — _f/(g;_g) =b
and
oon) =tm LB IO _ - 0
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