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Fig. 1. Any collection of closed loops can be expressed as the boundary of some collection of regions, plus additional nonbounding loops. We describe an
algorithm for recovering this decomposition, even from input curves that exhibit topological errors and ambiguities such as gaps and self-intersections.

In the plane, the winding number is the number of times a curve wraps
around a given point. Winding numbers are a basic component of geometric
algorithms such as point-in-polygon tests, and their generalization to data
with noise or topological errors has proven valuable for geometry process-
ing tasks ranging from surface reconstruction to mesh booleans. However,
standard de�nitions do not immediately apply on surfaces, where not all
curves bound regions. We develop a meaningful generalization, starting
with the well-known relationship between winding numbers and harmonic
functions. By processing the derivatives of such functions, we can robustly
�lter out components of the input that do not bound any region. Ultimately,
our algorithm yields (i) a closed, completed version of the input curves, (ii)
integer labels for regions that are meaningfully bounded by these curves,
and (iii) the complementary curves that do not bound any region. The main
computational cost is solving a standard Poisson equation, or for surfaces
with nontrivial topology, a sparse linear program. We also introduce special
basis functions to represent singularities that naturally occur at endpoints
of open curves.
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1 INTRODUCTION
Winding numbers are a basic concept from di�erential geometry
[Do Carmo 2016, Section 5.7], and arise naturally in settings rang-
ing from surface reconstruction [Kazhdan et al. 2006] to mesh
booleans [Zhou et al. 2016] to tetrahedral meshing [Hu et al. 2018].
This concept does not, however, have a standard extension to curves
on surfaces, posing challenges for surface processing algorithms
that seek to distinguish inside from outside. The basic issue is that,
on surfaces, a closed loop may not be the boundary of a well-de�ned
region (Figure 2). Standard tools from topology, such as basic sim-
plicial homology, are unfortunately insu�cient when curves have
topological errors, as often arise in applications. Conversely, exist-
ing algorithms for robust inside-outside tests do not handle curves
on surfaces [Jacobson et al. 2013]. We address both issues.

Basic Problem. Any collection � of unbroken (i.e., closed), oriented
loops can be decomposed into subsets that do and do not bound
regions of a surface " (Figure 1). Informally, we wish to label all
regions meaningfully bounded by �, and explicitly identify curves
that do not bound regions. A more precise problem statement is
given in Section 3. Unfortunately, computing such a decomposition
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Fig. 2. Is the point ? “inside” or “outside” the curve �? On surfaces, this
question does not always have a meaningful answer.

is not as simple as classifying each loop as bounding or nonbound-
ing: for one thing, a region boundary may be comprised of several
independent nonbounding loops (e.g. Figure 6). Moreover, the input
� may be given as an arbitrary set of oriented edges, which are not
a priori decomposed into distinct loops (Figure 7). When there are
errors in the input (e.g., gaps or spurious intersections) one must
also somehow complete the input to form closed curves.

Basic Approach. The classic winding number is a special case of
the signed solid angle function, which is itself a particular harmonic
function, i.e.,

winding number ⇢ solid angle ⇢ harmonic functions

Since classic winding numbers are not well-de�ned for broken
curves, Jacobson et al. [2013] consider the solid angle function,
which they call the generalized winding number (GWN). In turn,
solid angle is not well-de�ned for curves on surfaces—leading us
to consider more general harmonic functions D which jump across
�. For instance, if � is simple (i.e., has no self-intersections), then D
satis�es a Laplace equation with jump boundary conditions, namely

�D = 0, on" \ �,
D+ � D� = 1, on �,
mD+/m= = mD�/m=, on �.

(1)

Here D±(G) := limY!0 D (G ± Y=(G)) is the
value of D on either side of � in the nor-
mal direction = (see [Krutitskii 2001] for
a careful treatment in the case " = R2).
On surfaces, however, D can be “polluted”
by the in�uence of nonbounding curves
(Figure 3). Our approach is to �lter out this in�uence via de Rham
cohomology: rather than work with D itself, we process its gradi-
ent vector �eld (or more properly, the di�erential 1-form 3D), and
recover curves from this processed �eld. For broken input curves,
where there are many possible choices, we also introduce a regular-
izer that leads to a unique solution. Overall, just as solid angle has
provided robust tools for geometry processing in Euclidean space,
“cohomological geometry processing” provides a robust approach to
processing submanifolds in domains of more general topology.

1.1 Related Work
Connections between winding numbers, solid angles, and harmonic
functions have long appeared in mathematics, physics, and scienti�c
computing [Binysh and Alexander 2018]. Both Euler [1781] and
Lagrange [1798] give formulas for the solid angle of a triangle;
Gauss [1838, Sections 37-38] notes the relationship of solid angle to
magnetic potential; Maxwell [1881, Articles 409-11, 417-21] further
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Fig. 3. Both Poisson surface reconstruction (PSR) and generalized winding
numbers (GWN) compute a harmonic function subject to jump conditions
across the input curves. On surfaces, contouring this function can yield
regions that do not follow the input curves, and may give bogus winding
numbers that jump across nonbounding curves (compare with Figure 1).

makes connections to jump conditions à la Equation 1. Methods for
approximating solid angles also play an integral role in boundary
element methods (BEM) for the Laplace equation [Ning et al. 2010].
To date, however, there has been little focus on the surface case.

1.1.1 Computer Graphics. In computer graphics, winding numbers
were �rst applied to point-in-polygon queries [Shimrat 1962; Haines
1994]. Solid angle also plays a key role in rendering, e.g., for �nite
element radiosity [Goral et al. 1984] or importance sampling for
direct illumination [Veach and Guibas 1995, Section 2.1].

1.1.2 Geometry Processing. In geometry processing, the utility of
the solid angle function has been rediscovered twice, via both Poisson
surface reconstruction (PSR) [Kazhdan et al. 2006] and the generalized
winding number (GWN) [Jacobson et al. 2013]. These methods are in
turn key components of a wide variety of applications [Hu et al. 2018;
Zhou et al. 2016; Chi and Song 2021; Müller et al. 2021; Dvořák et al.
2022; Collet et al. 2015; Chang et al. 2017]. As brie�y noted by Barill
et al. [2018, Section 2.1], PSR and GWN are ultimately di�erent
numerical discretizations of the same continuous problem: PSR
e�ectively adopts the PDE perspective from Section 1, focusing on
reconstruction from oriented points. GWN instead uses a boundary
integral formulation, adopting hierarchical methods from the BEM
literature to obtain a fast approximation [Barill et al. 2018]. Either
way, contouring the function D does not in general yield useful
results for nonbounding curves on surfaces (Figure 3). In fact, GWN
is sometimes inadequate even for problems involving regions in the
plane (Figure 20), which can be viewed as surfaces with boundary.

11 00 11 00
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2

Harmonic functions with discontinuities do arise
in surface processing, e.g., for di�usion curves [Sun
et al. 2012] or SeamCuts [Lucquin et al. 2017]. How-
ever, these methods assign �xed Dirichlet boundary
conditions on both sides of the curve (inset, top),
whereas the harmonic function needed to compute
winding numbers must instead satisfy the jump con-
ditions from Equation 1 (inset, bottom). Harmonic functions contin-
uous up to jumps also arise naturally in surface parameterization,
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e.g., as conjugate harmonic functions in conformal mapping [Gu
and Yau 2003; Sawhney and Crane 2017]; our treatment of such
functions is similar to Tong et al. [2006].

1.1.3 Turning Numbers on Surfaces. The winding number, which
assigns a value to each point, is distinct from the turning number,
which assigns a single number to a whole curve, counting the rota-
tions experienced by its tangent. Erickson [2017] gives an amusing
account of the historical confusion between these two terms, noting
that much past work on “winding numbers” on surfaces in fact
concerns the turning number [Reinhart 1960, 1963; Chillingworth
1972; Humphries and Johnson 1989; McIntyre and Cairns 1993].

1.1.4 Winding Numbers on Surfaces. McIntyre and Cairns [1993,
Lemma 2] also describe a function that behaves like the winding
number for bounding curves, but for nonbounding curves must in-
troduce arbitrary discontinuities to keep this function piecewise con-
stant. Chernov and Rudyak [2009] de�ne a so-called a�ne winding
number, which is useful only for curves within a common homotopy
class. Concurrent with our work, Riso et al. [2022] give a method for
computing winding numbers of perfectly closed curves that are al-
ready partitioned into distinct loops. Nonbounding components are
addressed via user-guided edits. Though there are naïve ways to au-
tomate such edits (e.g., remove or duplicate all nonbounding loops,
or add extraneous homology generators), such strategies deviate
signi�cantly from the input. To �nd the minimal valid modi�cation
(as we do), Riso et al.would have to solve an integer linear program—
akin to our LP in Section 3.4 (or the reduced version proposed in
Section 6). In contrast, our method is already fully automatic, and
does not require that the input already be split into distinct loops.
Moreover, we handle broken curves, nonmanifold and nonorientable
surfaces, and curves terminating on the boundary, which Riso et al.
do not. On the other hand, our method takes seconds to minutes,
whereas theirs runs at real-time rates.

1.1.5 Cohomological Geometry Processing. Our approach is rooted
in the theory of de Rham cohomology: we reason about curves via
the dual perspective of di�erential forms. In a similar spirit, Born
et al. [2021] use de Rham cohomology to reason about the topology
of noisy maps between surfaces. Our curve completion step can
likewise be viewed as a variant of the optimal homologous chain
problem (OHCP) of Dey et al. [2010], reformulated via harmonic
1-forms. Both the OHCP and our problem can also be viewed as
simplicial versions of the nonlinear Hodge theory discussed by
Wang and Chern [2021, Appendix A]. A key di�erence is that this
past work applies applies cohomology constraints that are known
a priori, whereas we use cohomology as a tool to infer high-level
topological information from noisy input data.

1.2 Outline
We �rst establish de�nitions and notation (Section 2) used in our
algorithm (Section 3). Section 4 explains how this algorithm natu-
rally arises from a duality between curves and 1-forms, with jump
harmonic functions serving as a “bridge” between the two. Sec-
tion 5 evaluates our method in a geometry processing context, and
Section 6 discusses limitations and opportunities for improvement.

2 PRELIMINARIES
2.1 Meshes
We represent the domain as a triangle mesh
" = (+ , ⇢, � ), with no restrictions on connec-
tivity. We denote vertices by indices 8 2 + , edges
by pairs 8 9 2 ⇢, and faces by triples 8 9: 2 � . For
brevity, we often assume that any interior, mani-
fold, oriented edge 8 9 is contained in two triangles
labeled 8 9: , 98; , where : and ; sit to the left and right of 8 9 , resp. We
also denote triangle corners by indices 9:

8 2 ⇠ . We use m" to denote
the boundary of" , and ⇢int to denote the set of interior edges, i.e.,
edges not contained in m" . A quantity 5 at vertex 8 is denoted by 58 .
Similarly, a value at edge 8 9 is denoted by 589 , a value at face 8 9: by
589: , and a value at corner 8 of face 8 9: by 5 9:8 . We use ✓89 for edge
lengths, �89: for triangle areas, and U 9:

8 for corner angles.

2.2 Curves
The input to our algorithm is a collection of oriented curves on a
mesh" , which can in general be a union of open or closed curves,
and may intersect arbitrarily (e.g., two curves can run along the
same edge). We often use the terms broken and unbroken for open
and closed curves, resp., as they are more evocative of the application
context (e.g., curves that have been corrupted).

We encode any collection of oriented curves as a 1-chain �, i.e., a
signed integer �89 2 Z for each oriented edge, counting the number
of oriented traversals of � along 8 9 (hence, �89 = ��98 ). For example,
if a curve passes over 8 9 three times, going from 8 to 9 once, and
9 to 8 twice, then �89 = �1. By abuse of notation, we often refer
to � as a set, e.g., writing 8 9 2 � when �89 < 0. On nonmanifold
meshes, we omit edges 8 9 that pass through nonmanifold vertices
by setting �89 = 0, since here it is not clear how di�erent “sides” of
the curve should be de�ned. Instead, we leverage the robustness of
our method to deal with these additional gaps.

2.2.1 Regions and Boundaries. A 2-chain is a signed
integer '89: 2 Z per oriented triangle, encoding a
region of the surface (possibly multiply-covered). Its
boundary is the 1-chain given by (m')89 := '89: �' 98; .
We call a curve � bounding if it is the boundary of
a 2-chain, and nonbounding otherwise. Importantly, on domains
with boundary, we do not require bounding curves to include edges
8 9 2 m" , since we do not want to �lter out curves that bound a
region in conjunction with the domain boundary (e.g., the curve
� in the inset). Formally, such curves are congruent to zero in the
relative homology group �1 (", m").

-1

-1

+1

2.2.2 Endpoints. A 0-chain is likewise a signed in-
teger per vertex, encoding a set of points (possibly
with multiplicity). For any 1-chain �, its endpoints are
given by the boundary 0-chain (m�)8 := �

Õ
89 �89 . For

instance, if � is a path from 8 to 9 , then m� is �1 at
8 , +1 at 9 , and zero everywhere else. Note that one
can also have endpoints where multiple curves meet
(see inset). We use interior endpoints to refer to endpoints not con-
tained in m" . We use+ ⇤ to denote the set of vertices minus interior
endpoints, and ⇢⇤ for the set of edges with both endpoints in + ⇤.
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2.3 Jump Harmonic Functions
In the plane, the solid angle of a curve is a harmonic function that
jumps in value across the curve. We likewise consider harmonic
functions with discontinuous jumps. Such jump harmonic functions
are encoded by corner values 5 9:8 2 R, which are linearly inter-
polated within each triangle, and must be discretely harmonic up
to local piecewise constant shifts. More explicitly, there must exist
values f at corners such that for each vertex 8 2 + , adding the
shift f 9:

8 to each triangle 8 9: containing 8 yields a function 5̃ that is
discretely harmonic at vertex 8 , i.e., (!5̃ )8 = 0, where ! is the cotan
Laplacian given in Equation 6. As a consequence, the jump across
any edge 8 9 will be the same at both endpoints, i.e.,

5 9:8 � 5 ; 98 = 5 :89 � 5 8;9 . (2)

2.3.1 Reduced Coordinates.
If the jumps in 5 are known
values ⇤89 , then 5 can be ex-
pressed by adding the cumu-
lative sum of jumps around 8
to a reference value 5 90 918 at
some corner:

5
9? 9?+1
8 = 5 90 918 + 2

9? 9?+1
8 , where 2 9? 9?+18 :=

?’
<=1

⇤89< . (3)

Here the neighbors 9? of 8 are indexed in counter-clockwise order.
At the boundary we assume that the reference value is stored at the
most clockwise corner. Since we disallow jumps across nonmanifold
edges (Section 2.2), we set 2 = 0 for all corners around such vertices.

+1
+1

-1
2.3.2 Singular Points. Consider a harmonic function
5 that jumps in value only across the input curve (i.e.,
⇤ = �). At an interior endpoint 8 the jumps �89 do
not sum to zero, hence there are no corner values
compatible with all jumps. The function 5 thus has a
singular point at 8 . In practice, we do not store values of 5 at interior
endpoints of �—instead, 5 is encoded by the |+ ⇤

| reference values
5 90 918 , which we denote by a vector 50 2 R |+ ⇤

| .

piecewise-linear 
interpolation of θ

projective 
interpolation of θ

Fig. 4. Near endpoints of a curve �, a jump harmonic function behaves like
the angular coordinate function \ (G ) (le�), which is poorly captured by
piecewise-linear functions (center). Our custom interpolant (right) be�er
captures the singular behavior.

Interpolation. To visualize 5 in a triangle 8 9: containing a singular
vertex 8 , we perform the following projective interpolation, inspired
by Knöppel et al. [2015, Section 4.3]:

5 (_8 , _ 9 , _: ) :=
_ 9 5 :89 + _: 5

89
:

_ 9 + _:
(4)

where (_8 , _ 9 , _: ) are barycentric coordinates. The interpolated func-
tion is constant along rays emanating from 8 , correctly capturing
singular behavior near endpoints (Figure 4).

2.4 Derivative Operators
Since a jump harmonic function 5 can have discon-
tinuities, we must be careful when de�ning (dis-
crete) derivatives. In particular, the jump derivative
J5 (Section 2.4.1) describes discontinuous jumps
across edges, whereas theDarboux derivativeD 5 (Sec-
tion 2.4.2) captures the complementary continuous
change along edges. The jump Laplacian !� (Section 2.4.3) measures
the failure of a function to be a jump harmonic function.

2.4.1 Jump Derivative. We use J to denote the discrete jump deriv-
ative, which measures the size of the jump across edge 8 9 :

(J5 )89 := 5 9:8 � 5 ; 98 ,

which by Equation 2 is the same as the jump 5 :89 � 5 8;9 . We let
(J5 )89 := 0 at boundary edges, and have (J5 )89 = 0 (no jumps) at
nonmanifold edges (Section 2.2). Formally, J5 is a 1-chain.

2.4.2 Darboux Derivative. We also de�ne the discrete Darboux de-
rivative D, which for each edge 8 9 2 ⇢⇤ is given by

(D 5 )89 := 5 :89 � 5 9:8 . (5)

Since 5 is continuous up to jumps, D 5 is the same no matter which
side of the edge is used to evaluate it (Equation 2). Note that this
de�nition also applies to nonmanifold edges, where all jumps are
zero. For edges 8 9 8 ⇢⇤ we let (D 5 )89 := 0, since the interpolated
function is constant along 8 9 which points in the radial direction
(Section 2.3.2). Formally, D 5 is a discrete 1-form (Section 2.5); if
all jumps are multiples of 2c , it discretizes the usual continuous
Darboux derivative (see Corman and Crane [2019, Section 1.5]).

2.4.3 Jump Laplacian. Consider a function 5 at corners which is
not necessarily harmonic, but still has known jumps ⇤. The jump
Laplacian !� measures the failure of 5 to be jump harmonic. Explic-
itly, let w89 := 1

2
Õ
89:2� cotU

89
:
be the usual cotan weights [MacNeal

1949, Section 3.2], and let ! 2 R |+ ⇤
|⇥ |+ ⇤

| be the standard cotan
matrix on + ⇤ with nonzero entries

!89 = !98 = �w89 , 88 9 2 ⇢⇤,
!88 =

Õ
892⇢⇤ w89 , 88 2 + ⇤ .

(6)

We also de�ne 1 2 R |+ ⇤
| to be the vector of values

18 =
1
2

’
892⇢⇤

w89 (2
8:
9 � 2 9:8 ), (7)

where 2 is de�ned as in Equation 3, and for each edge 8 9 in the sum,
8 9: is any triangle containing 8 9 . Substituting Equation 3 into the
usual expression for the cotan Laplacian (written as a sum over

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



Winding Numbers on Discrete Surfaces • 1:5

integrate w/
shortest jumps

(Sec. 3.4)

extract jumps
& re-solve
(Sec. 3.5)

round
(Sec. 3.5.1)

Hodge
decomposition

(Sec. 3.3)

jump Laplace
equation
(Sec. 3.2)(Sec. 3.2)

Fig. 5. Top: main steps of our algorithm—notice that on surfaces with trivial topology, we need only solve a single Poisson equation. Bo�om: visualization of
the functions and derivatives used at each step. Though we round the final output to obtain integer region labels, and nonbounding loops⌧ , real-valued
data F,6 provides richer information about uncertainty.

triangles) shows that the Laplacian of the locally shifted function
can be expressed as the ordinary Laplacian ! applied to the reference
values 50, minus a constant vector 1 that depends only on ⇤:

!� 5 = !50 � 1 . (8)

We omit vertices 8 2 + \+ ⇤, since a function with jumps ⇤ cannot
be harmonic at interior endpoints—in the smooth setting, such
functions locally behave like the angle function \ shown in Figure 4,
left. Note that !� 5 = 0 discretizes Equation 1, by absorbing the jump
conditions into the de�nition of the operator.

2.5 Discrete Di�erential Forms

i

ij

We use discrete exterior calculus [Desbrun et al.
2006] to perform the Hodge decomposition in Sec-
tion 3.3; see Crane et al. [2013, Chapter 3] for a
more thorough introduction. However, since we
want to work with general (possibly nonmanifold)
triangle meshes, we follow Sharp et al. [2019a] and
de�ne the discrete Hodge star operators by taking
volume ratios involving all incident elements (see inset), yielding
diagonal matrices with entries (⇤0)8 := 1

3
Õ
89:2� �89: for all 8 2 + ,

(⇤1)89 := w89 for all 8 9 2 ⇢, where w89 are the cotan weights from
Section 2.4.3, and (⇤2)89: := 1/�89: for all 8 9: 2 � . Otherwise, we
use the standard discrete exterior derivative matrices 3: ; the discrete
codi�erential is then X: := ⇤

�1
:�13

)
:�1⇤: .

2.5.1 Helmholtz-Hodge Decomposition. As discussed by Desbrun
et al. [2006, Section 7], any 1-forml can be expressed via aHelmholtz-
Hodge decomposition

l = 3U + XV + W

where U and V are 0- and 2-forms, and W is a harmonic 1-form. As
detailed in Crane et al. [2013, Chapter 8], this decomposition can be
computed by solving a pair of Poisson equations

�0U = X1l and �2V = 31l, (9)

where �0 := ⇤
�1
0 3)0 ⇤1 30 and �2 := 31 ⇤�11 3)1 ⇤2 are the discrete

0- and 2-form Laplacians, resp., with their usual zero-Neumann
boundary conditions.

3 ALGORITHM
The steps of our algorithm are shown in Figure 5; see Section A of
the supplement for pseudocode. Given a collection � of input curves
on a mesh" , the output is an integer labeling, of regions bounded
by �, and closed curves ⌧ that do not bound any region. We also
compute a real-valued function F analogous to GWN, and a real-
valued 1-chain 6 corresponding to ⌧ . Just asF provides con�dence
about inside/outside classi�cation [Jacobson et al. 2013], 6 provides
con�dence about nonbounding loops in the input.

3.1 Overview
We seek a harmonic function F that (i) jumps in value across the
input curve �, and (ii) approaches a piecewise-integer function as
the size of gaps in � goes to zero. The starting point is to compute
a harmonic function D that jumps across � (Section 3.2). If � has
nonbounding components, this function will not look like a region
labeling. We therefore compute a residual function E corresponding
to this nonbounding part, and subtract it from D to getF .
Just by inspecting D, it is hard to determine the residual E , i.e., it

is hard to say what part comes from nonbounding loops. However,
if D were a piecewise constant region labeling, then its Darboux
derivative l := DD would be zero everywhere. Hence, a nonzero l
must be the derivative of E , and can thus be integrated to obtain E .

3.1.1 Broken Curves. More generally, we must modify this basic
algorithm to make it robust to defects in �. In particular, we replace
three steps with “best �t” versions, which e�ectively provide a guess
for what the original, uncorrupted curve might have been:

• When � has no defects,l is a harmonic 1-form, since locally it
is the derivative of a harmonic function. Hence, for a broken
curve we use Helmholtz-Hodge decomposition to �nd the
harmonic 1-form W closest to l (Section 3.3).

• Likewise, when � is unbroken, the residual E jumps only
across �. Hence, when � has gaps we seek to minimize the
length of the jump discontinuity between the gaps (Section 3.4).

• Finally, subtracting E directly may introduce new discontinu-
ities inF wherever gaps were �lled. Hence, we instead solve
for a harmonic functionF that jumps by ��JE (Section 3.5).
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Fig. 6. Even if individual loops do not bound regions, they can conspire
to define a meaningful partition—here for instance we produce a correct
labeling, reproducing an example from Riso et al. [2022, Figure 4].

The functions E andF are further processed to obtain integer la-
bels, a completion of the input curve, and a classi�cation of bounding
vs. nonbounding components (Section 3.6). When" is topologically
trivial (i.e. simply-connected), there are by de�nition no nonbound-
ing loops, so we need not �lter out their contributions. Here our
algorithm boils down to a single linear solve (Equation 1), followed
by rounding and curve completion ( Sections 3.5 and 3.6).

3.2 Jump Laplace Equation
We �rst solve for a harmonic function D that jumps in value by �89
across each edge 8 9 . In particular, we solve the Laplace equation
!�D = 0 with jumps ⇤ = �, or equivalently

!D0 = 1, (10)

where 1 is the constant vector de�ned in Equation 7, and D0 2 R |+ ⇤
|

provides reference values at each vertex. Unlike a discrete Poisson
equation, 1 need not be multiplied by area weights, since it simply
encodes the jump values. The corner values D 9:

8 = (D0)8 + 2
9:
8 , with

2 9:8 de�ned as in Equation 3, then describe a jump harmonic function.
Note that since we do not �x any boundary values (and instead
impose jump boundary conditions), the solution D to Equation 10
is determined only up to a constant shift. Since our next step is to
di�erentiate D, the constant does not matter here (though we will
carefully shift before rounding—see Section 3.5).

3.3 Derivative Processing
We next adjust the Darboux derivative l = DD (Section 2.4.2) to
account for the fact that � may be broken. In general, the discrete
exterior derivative 3 5 of a harmonic 0-form 5 is a harmonic 1-form.
If � is an unbroken curve, then l is harmonic, since D is a jump
harmonic function, for which DD behaves like the discrete exterior
derivative. However, if � is broken, l will not be harmonic, and we
use Hodge decomposition (Section 2.5.1) to extract its harmonic part
W . In this case, only XV will be nonzero, due to singular behavior
near interior endpoints (Appendix A). Hence, we need only solve
the second Poisson equation �2V = 3l , then evaluate W  l � XV .

3.4 Residual Function
Our goal is now to �nd a residual function E whose Darboux deriv-
ative looks like W , and hence describes the nonbounding part of our
input curves. If we imagine this nonbounding part is a 1-chain ⌧ ,
then E must jump across⌧ , and should not jump across the comple-
mentary bounding component � \⌧ . However, the choice of ⌧ is

Fig. 7. A collection of loops can be decomposed into bounding and non-
bounding components in many di�erent ways. We look for the decomposi-
tion whose residual is shortest (middle).

in general ambiguous (Figure 7). Hence, we look for the minimal
jumps needed for E to integrate W . Also, the jumps in E should never
be bigger than �, which would e�ectively add additional copies of
the input curves. Suppose for example that � consists
of two parallel nonbounding loops �1, �2 with same
orientation (see inset): if we do not limit the size of
the jump, then we may end up jumping by +2 across
�1 rather than +1 across both �1 and �2. Finally, since � may be
broken, we allow E to jump across edges of the mesh not originally
included in �. By making jumps across such edges expensive, and
using a sparsity-inducing ✓1-norm, we promote short completions.
Overall, we get an optimization problem

min
E2R|⇠ |

’
892�\⇢int

✓89 | (JE)89 | +
1
Y

’
892⇢int\�

✓89 | (JE)89 |

s.t. E:89 � E 9:8 = Wô
89 , 8

ô8 9 2 (,

0  (JE)89/�89  1, 88 9 2 �.

Here we use ô8 9 2 ( to denote an oriented side
within a triangle; hence, the equality constraint
ensures that E exactly integrates W within each
triangle. The parameter Y in the objective controls
the relative cost of jumps across edges in � versus
jumps elsewhere (we use Y = 0.01 in all examples).
The inequality constraint ensures that E jumps
by no more than �—since we take a quotient, the
sign of � does not impact the direction of the inequality.
We reduce the problem size from 3|� | to |� | via a change of

variables. First, we integrate W in each triangle 8 9: to get local values
E̊ 9:8 := 0, E̊:89 := Wô

89 , and E̊89
:

:= Wô
89 + Wô

9: . Next, along each edge 8 9
we let B89 := E̊ 9:8 � E̊; 98 be the jump between reference values. Rather
than optimize individual corner values, we can now just optimize
per-triangle shifts f89: , measuring the jump across each edge as
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(f89: � f 98; ) � B89 . Our �nal problem is then

min
f2R|� |

’
892�\⇢int

✓89 | (f89: � f 98; ) � B89 | +

1
Y

’
892⇢int\�

✓89 | (f89: � f 98; ) � B89 |

s.t. 0  ((f89: � f 98; ) � B89 )/�89  1, 88 9 2 �.

(11)

The �nal corner values are then recovered via E 9:8 = E̊ 9:8 + f89: .
As usual, Equation 11 can be transformed into a linear program in
standard form by introducing slack variables. In the nonmanifold
case, we require that there be no jumps across edges 8 9 incident
on a nonmanifold vertex 8 , which can be imposed as additional
linear constraints f89: �f 98; = B8 9 . This step is the bottleneck in our
method; Section 6 discusses a possible way to signi�cantly reduce
its size.

3.5 Winding Number Function
Finally, we �lter out the in�uence of nonbounding loops from D,
using the residual function E (Figure 8). If � is unbroken, we can
simply subtract E from D to get F . In general, however, a simple
subtraction will introduce discontinuities, since E may jump across
edges which are not part of �. Instead, to getF , we solve Equation 10,
but for edges 8 9 2 � now use jumps ⇤89 = �89 � (JE)89 to de�ne 2
(hence 1).

3.5.1 Integer Winding Numbers. To get an integer function, , we
round the real-valued functionF . However, our Laplace equation
determines F only up to a constant shift, which a�ects rounding.
To determine a reasonable shift, we compute an average shift over
edges in �, where the values ofF are most reliable. More explicitly,
for each edge 8 9 positively oriented along � (i.e., �89 > 0), letF+

89 :=
(F:8

9 +F 9:
8 )/2, i.e., the average value on one side of the curve. Our

global shift g is then themean of the per-edge shifts round(F+
89 )�F

+
89 ,

where round gives the closest integer. Our �nal per-face region la-
bels are then,89: := round((F 9:

8 +F:8
9 +F89

:
)/3+g). See Section 6

for discussion of contouring beyond simple rounding.

Fig. 8. The residual function E captures the nonbounding part of the input
curves � (top right). Simply subtracting E fromD introduces additional jump
discontinuities (bo�om le�), so we obtain our winding number function F
(bo�om right) by solving a second jump Laplace equation (Section 3.5).

orientable curve nonorientable curve GWN

Fig. 9. For a nonorientable surface like the Möbius strip, � is an orientable
curve if it can be assigned a consistent normal direction (top le�), and is
otherwise a nonorientable curve (top center). Our algorithm works as ex-
pected for collections of orientable curves (bo�om le�). As with GWN (right)
we do not obtain meaningful region labeling for curves with inconsistent
orientation.

3.6 Curve Completion
Bounding Curves. The �nal output bounding curves are given by

the boundary m, of the integer winding number function, i.e., the
1-chain with values (J, )89 at each edge 8 9 2 ⇢, where each corner
is assigned the value of its corresponding face (e.g.,, 9:

8 =,89: ).
These curves are always closed, since they are region boundaries.

Nonbounding Curves. To extract nonbounding curves, we likewise
compute the jumps in E . The resulting 1-chain 6 := JE has no inte-
rior endpoints: around any interior vertex 8 , we have a telescoping
sum

�(m6)8 =
’
892⇢

689 =
’
892⇢

E 9:8 � E; 98 =
’

89:2�

E 9:8 � E 9:8 = 0,

i.e., the value at the corner of each triangle containing 8 appears
twice, with opposite signs. To get an integer version of this chain⌧ ,
we simply let ⌧89 := round(689 ) for all 8 9 .

3.7 Nonorientable Surfaces
Our algorithm works on nonorientable domains, and will �lter out
nonbounding curves so long as they are orientable curves, i.e., can be
assigned a continuously-varying normal �eld (Figure 9). In practice,
we need only make one small change to the speci�cation of the
input. Ordinarily, we assume that jumps increase in the direction
obtained by rotating the tangent 90 degrees counter-clockwise. On
a nonorientable surface, however, there is no consistent notion
of counter-clockwise—even though curves can still meaningfully
bound regions. Instead, we can represent the curve as a dual 1-
chain, i.e., a value �89:, 98; for each edge 8 9 2 ⇢. For edges 8 9 in the
curve, the sign of this value determines the normal direction, or
equivalently, whether the jump goes from 8 9: to 98; or vice-versa.
Away from the curve, � = 0. Note that since we already set � to
zero for nonmanifold edges (Section 2.2), we need not de�ne jump
directions here.
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jump harmonic 
functions 1-forms1-chains

jump derivativedifferentiatefferentiateff Darboux derivative

jump Laplace equationintegrate integration w/ jumps

Fig. 10. Top: The derivative of any jump harmonic function 5 can be decom-
posed into a 1-chain ⇤ = J5 describing discontinuous jumps, and a 1-form
l = D 5 describing the continuous change in 5 . In the other direction, we
can find a function 5 that jumps by ⇤ by solving a Laplace equation, or
an 5 that explains l by solving an integration problem. Bo�om: from this
perspective, our algorithm for extracting the nonbounding part ⌧ of the
input � amounts to a round trip around this diagram.

4 DISCUSSION
Jump harmonic functions provide a natural “bridge” between curves
and 1-forms (or in the language of di�erential topology: between
homology and de Rham cohomology). This perspective, detailed
below, makes it easy to understand and motivate the algorithm in
Section 3. In particular, our strategy for extracting the nonbounding
part 6 of the input � amounts to a round trip around the diagram in
Figure 10, top, as illustrated in Figure 10, bottom.

From Functions to Derivatives. A key observation is that the de-
rivative of any jump harmonic function can be decomposed into
a continuous part, and a “jump part.” A useful didactic analogy is
piecewise smooth periodic functions 5 on the interval [0, 1]. The
distributional derivative of any such function can be expressed as

5 0 (G) = l (G) +
’
8

⇤8XG8

1 100

where l is a periodic piecewise
smooth function, and ⇤8 is the size
of the jump at G8 (Figure 11). Like-
wise, we decompose the change in
a jump harmonic function 5 into a 1-form describing continuous
change in 5 , given by the Darboux derivative l := D 5 , and a 1-
chain describing discontinuous jumps, given by the jump derivative
⇤ := J5 . Just as l (G) “forgets” about the jumps in a 1D piecewise
linear function (see inset), D 5 forgets about jumps across region
boundaries on a surface.

From Derivatives to Functions. We can also try to go the other
direction. For instance, given a set of jumps ⇤8XG8 on the periodic
interval [0, 1], what is a piecewise smooth function that exhibits
these jumps? There are many possibilities; a canonical choice is
perhaps a piecewise linear function with constant slope. Likewise,
the jump Laplace equation in Section 3.2 provides a canonical way to
construct a function 5 on" that represents any 1-chain ⇤. Similarly,
given a periodic function l on [0, 1], we can try to �nd a piecewise

0 1

1 10 0

Fig. 11. The derivative of any piecewise smooth function 5 (G ) on a periodic
interval (center) can be decomposed into a piecewise smooth functionl (G )
(right) plus a sum of delta functions (le�). The former captures continuous
changes in 5 while the la�er captures jumps in 5 .

110 0

di�erentiable function 5 such that
the continuous part of 5 0 equals
l . Ordinarily this function would
be determined (up to a constant)
via standard integration, but for a periodic function there may be
no continuous solution—e.g., if l is strictly positive. Instead, we
must decide where 5 should jump. Likewise, the linear program in
Section 3.4 constructs a harmonic function 5 on" that represents
any harmonic 1-form l , while choosing a sparse set of jump curves.

Algorithm Interpretation. Our algorithm can now be understood
from this perspective. Starting with step 1 of Figure 10 we solve
a Laplace equation for a harmonic function D that jumps across
�. This function does not yet meaningfully label regions, since it
encodes both bounding and nonbounding components of �. The
Darboux derivativel = DD in step 2 forgets the bounding compo-
nents, retaining information only about the nonbounding part. Since
any harmonic 1-form describes unbroken curves, step 3 �nds the
harmonic 1-form W that best explains l , via Helmholtz-Hodge de-
composition. To recover explicit nonbounding curves, step 4 looks
for another jump harmonic function E that integrates W . Since this
function is not unique, and could jump across many possible curves,
this step uses the input chain � to constrain the search for the new
jumps, along with an objective which encourages this curve to be as
short as possible. Finally, step 5 extracts the jumps 6 = JE to yield
the nonbounding part 6 of the input �. As suggested by the diagram,
extracting the nonbounding part 6 of a 1-chain � parallels extraction
of the harmonic part W from a 1-form l . The key di�erence is that
in the former case we use an !1-norm rather than an !2-norm to
�nd a solution concentrated on a low-dimensional subset, rather
than a smooth function supported on the entire domain.

5 EVALUATION AND RESULTS
Incomplete oriented curves arise in many settings, ranging from
curves projected onto noisy surfaces (Section 5.4), to strokes painted
on a noisy mesh (Section 5.3), to imperfect user selections (Sec-
tion 5.5). Here we apply our method, abbreviated as surface winding
numbers (SWN) to several such tasks, and evaluate its robustness
(Section 5.1) and performance on a large benchmark (Section 5.2).
We visualize the shifted functionF +g (Section 3.5.1), but for brevity
label it asF . Except for Figure 27, all examples (including the bench-
mark) involve broken curves, nonmanifold or nonorientable sur-
faces, and/or curves that terminate on the boundary, and hence
cannot be handled by past methods such as Riso et al. [2022].
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Fig. 12. Even on meshes with low element quality, SWN can produce reason-
able region labels (center). Since our formulation is intrinsic, any remaining
artifacts can be eliminated via intrinsic Delaunay refinement (right).

region 
labels

nonbounding 
curves

Fig. 13. Even on highly non-manifold meshes, SWN can produce an e�ective
region labeling and completions of nonbounding curves.

5.1 Robustness and Uncertainty
Like PSR and GWN (Section 1.1), SWN is robust to defects in the
input curves (e.g., Figures 1, 20 and 23). Especially if gaps are reason-
ably small, we generally recover the same regions as for equivalent
closed curves (Figure 14). In practice our method is also robust to
low-quality geometry (Figure 19), meshes with low-quality elements
(Figure 12), and highly nonmanifold connectivity (Figure 13), ow-
ing to the strong regularity of elliptic problems. Since it is purely
intrinsic, surface self-intersections do not result in region misclassi-
�cation. Moreover, an intrinsic formulation also enables us to use
robust methods for intrinsic retriangulation if the mesh is particu-
larly bad [Sharp et al. 2019b; Gillespie et al. 2021; Sharp et al. 2021],
as illustrated in Figure 12.

As with GWN and PSR, the real-valued functionF provides rough
information about uncertainty—e.g., the gradient norm |rF | will
tend to be nonzero (yet �nite) near gaps in a curve; see Sellán
and Jacobson [2022] for an in-depth discussion in the PSR context.
Likewise, the magnitude of JF and 6, resp. roughly captures the
con�dence that a piece of the curve comes from a bounding or non-
bounding curve (resp.) in the original, uncorrupted input (Figure 1,
bottom-left); see for instance Figure 14, bottom. One might also try
using jump sizes to decompose the nonbounding component into
distinct loops, though we do not pursue that idea here.

5.2 Benchmark
5.2.1 Data Set. To measure the success rate of our algorithm, we
constructed a synthetic dataset of models with ground truth regions

w

W

g

Fig. 14. As � becomes less broken, F approaches the expected winding
number function, and the coe�icients on nonbounding loops 6 approach
1. Throughout, the rounded winding number, yields the correct inside-
outside classification, filtering out nonbounding components even for very
broken inputs.

Fig. 15. Here we show four of the 934 test cases in our synthetic benchmark
(Section 5.2). Each model is assigned ground truth region labels (indicated
by colors), along with broken boundaries for those regions (black), and
additional broken nonbounding loops (red).

and nonbounding loops (Figure 15).We startedwith themeshes from
Myles et al. [2014], remeshed them to resolutions between 10k and
90k vertices, and generated random regions by taking sublevelsets
of low-frequency Laplacian eigenfunctions. To obtain nonbounding
loops, we computed a greedy homology basis [Erickson and Whit-
tlesey 2005], picked a random subset of the loops, and straightened
them slightly using FlipOut [Sharp and Crane 2020b] before snap-
ping them back to mesh edges. We then deleted random segments
from these curves. In total, we obtained 934 test cases of which
451 were de�ned on nonsimply-connected surfaces (i.e., those with
nontrivial topology).

5.2.2 Performance and Accuracy. We implemented SWN in C++,
using geometry-central for mesh processing [Sharp et al. 2019a],
CHOLMOD for linear systems [Chen et al. 2008] and Gurobi [Gurobi
Optimization, LLC 2023] (via CoMISo [Bommes et al. 2012]) for
linear programs. Timings were measured on an Intel i9-9980XE
with 32 GB of RAM. For each test case, we quantify error as the
percentage of surface area mislabeled by our method.
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Fig. 16. Error rates for SWN (top) compared to naïve rounding of D à la
GWN (bo�om). Error is quantified as percentage of mislabeled surface area.
The two highlighted examples show how naïve rounding can fail to filter
out nonbounding loops (in red) which are correctly identified by SWN.
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Fig. 17. Top: on topologically trivial surfaces, our method boils down to a
quick linear solve. Bo�om: on surfaces with nontrivial topology we must
also solve a linear program, which becomes the computational bo�leneck.

On simply-connected surfaces our method typically takes less
than two seconds (see Figure 17, top), and achieves a mean/max
error of only 0.14%/5%. On nonsimply-connected surfaces, there was
occasionally fundamental ambiguity in the input, yielding results
quite di�erent from the ground truth (Figure 18), but in general our
method remains quite accurate, achieving errors under 0.5% on 80%
of models. More importantly, SWN performs much better than naïve
rounding of the function D à la GWN, which can create phantom
curves (Figure 3) which signi�cantly degrade the accuracy of the
�nal labels (Figure 16). The linear program takes much longer than
the single linear solve, but still runs in a matter of minutes (Fig-
ure 17, bottom); see Section 6 for discussion of possible acceleration
strategies.

ground truth regions SWN

Fig. 18. Since SWN always extracts the shortest collection of nonbounding
curves (Figure 7), it may not always reproduce the ground truth—but still
gives a reasonable segmentation.

input SWN

Fig. 19. We can robustly identify regions even on geometry with severe
noise, intersections, and fold-over. Here, several strokes quickly painted in
screen space are used to color regions on the surface.

5.3 Sketching on Surfaces
Recent methods enable manipulation of perfect closed curves on
surfaces, making them appropriate for surface-based analogies of
classic vector graphics [Mancinelli et al. 2021; Riso et al. 2022]. In
contrast, SWN robustly handles imperfect broken curves, making
it more appropriate for tasks like surface sketching and painting,
where user input is far less precise. For instance, in Figure 19 a
user sketches very reasonable yet broken curves; SWN yields a
nice coloring of the sketched regions, which can be further re�ned
by the user. Figure 20 demonstrates the utility of SWN even in 2D,
where a user draws rough strokes to segment a complex shape. Here,
GWN yields undesirable results—despite being a 2D method—since
the in�uence of open strokes leaks across the domain boundary,
whether or not the boundary itself is included in �. Likewise, GWN
may not produce the expected result for 2D regions with holes—for
instance, directly rounding the function D in Figure 21 would yield
the same kind of phantom curves seen in Figure 3.

5.4 Stamping and Booleans
We can also perform robust boolean operations on surfaces, even for
defective domains and/or curves. To get initial shapes, we can for
instance “stamp” existing vector graphics onto the surface (Figures
23 and 24). Rather than worry about numerically robust intersection,
we can lean on SWN to ensure we obtain well-de�ned regions.
Boolean operations are then trivially computed via element-wise
logical operations (Figure 22). Unlike BoolSurf [Riso et al. 2022],
we can perform these operations for imperfect, broken curves—
albeit at larger computational cost. Note also that unlike extrinsic
mesh booleans [Zhou et al. 2016], we need not worry about self-
intersections of the surface itself.
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input
strokes

GWN w/ boundary curve
[Jacobson et al 2013]

GWN w/out boundary
[Jacobson et al 2013]

round

round

round

SWN
(ours)

1

0

2

1

Fig. 20. Le�: a user makes rough strokes to select regions of a 2D shape.
Top right: GWN produces the wrong result, since the influence of strokes
“leaks” across the domain boundary.Middle right: including the boundary
curve just shi�s GWN’s solution by +1. Bo�om right: SWN produces the
desired result, robustly handling gaps, misclicks, and intersecting strokes.

Fig. 21. Even for planar regions, one must think carefully about how curves
do (or do not) bound regions. Here, SWN correctly filters out the influence
of a nonbounding curve connecting two boundary components.

Fig. 22. Unlike previous methods, we can compute boolean operations on
regions defined by imperfect, broken curves on surfaces.

SWN

source image

projected curves

Fig. 23. A complicated shape is projected onto a ziggurat with sharp over-
hangs, creating broken curves; SWN nicely fills in the bounded regions.

Fig. 24. A recycling logo is projected onto a noisy 3D scan of a trash can
from [Choi et al. 2016], creating a highly broken curve. Despite large holes
in the scan, SWN produces a reasonable region labeling.

Fig. 25. A common frustration with screen-space selection is that distant
edges are o�en selected unintentionally. SWN filters out spurious parts of
the selection, and completes loops to yield the expected segmentation.

5.5 Region Selection
Selection of regions on geometrically or topologically complex 3D
models is a challenging user interface design problem. SWN is a
valuable component for building such tools. For instance, Figure 25
highlights a common frustration when selecting mesh edges in
screen space; here SWN automatically �lters out misselected edges,
capturing the user intent. Similarly, Figure 26 shows how SWN can
be used to repair loops that are not easily chosen via edge-based
selection tools common to 3Dmodelers. Other tools provide facilities

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



1:12 • Feng, Gillespie, Crane

incomplete edge 
loop selection

Fig. 26. Many 3D modeling tools provide edge loop selection tools, but are
easily tripped up by irregular connectivity such as this mixed quad-triangle
mesh (le�). By reasoning about functions rather than edges, we robustly
infer user intent (right), even on this topologically complex model.

Fig. 27. In some scenarios, directly contouring the function D can yield
useful results. Here for instance a user avoids the misery of selecting every
small loop in a complex model. We also obtain a similar segmentation
whether working with a solid (right) or shell-like model (le�).

for directly selecting regions rather than curves, e.g., using a lasso or
“fat” paintbrush. Here, however, one encounters the same problem: a
region selected in screen spacemight inadvertently highlight distant,
unintentional pieces of the surface. One could likewise use SWN
to �lter the boundary of such a selection. Finally, Figure 27 shows
an example where one might not want to �lter out nonbounding
loops. Here, rather than process the function D, we simply apply
the contouring procedure from Section 3.5.1, yielding loops that
did not belong to the input, yet automatically complete the implied
segmentation.

6 LIMITATIONS & FUTURE WORK
Our method shares the same basic limitations as GWN: input curves
must be (mostly) consistently oriented, and we make no e�ort to
classify curves as open vs. closed. Any open segments in the input
are interpreted as subsets of (unknown) closed loops. As with GWN,
a signi�cant challenge is dealing with ambiguity in the input, and
one must acknowledge that for many inputs (e.g., a random subset
of edges) there is no objectively “correct” solution. However, as
long as � comes from some collection of closed loops, we recover a
meaningful decomposition as the size of gaps goes to zero.

Fig. 28. Because we use a shortest completion, E jumps across the thinnest
part of the front leg rather than across the input curve, but SWN still
accurately corrects for loops around the other two handles (right).

Performance and Discretization. In contrast to GWN, which can
independently evaluate the solution at any point without discretiz-
ing the domain, our method must triangulate the surface and solve
a global PDE. Notably, however, GWN considers exclusively �at,
Euclidean domains; the use of discretization seems inevitable to
account for the geometry of general curved surfaces. An obvious
performance bottleneck is the need to solve an LP for surfaces with
nontrivial topology (Section 5.2). We made no attempt to optimize
this step, and there are some obvious strategies to try. For instance,
we could apply a change of variableseE89 := E:89 � E 9:8 to transform
our LP into a simpler bounds-constrained ✓1 minimization problem.
Alternatively, rather than rely on a sparsity-inducing norm for curve
completion, we could use a much simpler shortest path heuristic
(via Dijkstra), and compute only one shift f per edge-connected set
of faces in Equation 11—dramatically reducing the size of our LP.

Curve Completion. Some inputs are inherently ambiguous—e.g.,
our method may not yield the expected result if large pieces of
the input are missing. Consider, for example, an input loop � with
large gaps on a surface with a strongly tapered handle (like a Dupin
cyclide). If the circumference of this handle is less than the total gap
length, SWNmay prefer to place jumps around the handle (Figure 28
shows a similar example). Importantly, however, our method will
still yield the correct result as gaps become smaller (Figure 14).

Contouring. The question of how to best contour fractional wind-
ing numbers is unclear, even for GWN and PSR. For instance, Jacob-
son et al. [2013, Section 5] suggest a graph cut algorithm, though this
heuristic is not used in the reference implementation for GWN [Ja-
cobson et al. 2018]. Likewise, for PSR Kazhdan et al. [2020] show that
better contouring can be achieved by adding envelope constraints
based on visibility, though this approach is not meaningful in the
surface case.We likewise �nd that the heuristic given in Section 3.5.1
sometimes fails to detect contours that are “obvious” to the eye—see
for example Figure 29. Better contouring strategies for GWN, PSR,
and SWN is hence an interesting question for future work.

Nonmanifold and Nonorientable Surfaces. Our algorithm runs on
nonorientable surfaces so long as � is consistently oriented (Sec-
tion 3.7); dealing with nonorientable components of � requires
further thought. Likewise, our method empirically works well for
nonmanifold meshes, but several steps (such as Helmholtz-Hodge
decomposition) are not given a rigorous justi�cation. However, non-
manifold treatments of fundamental objects like the Laplacian have
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PSR/GWN SWN

Fig. 29. Although SWN generally does be�er than naïvely rounding D (le�),
there are still cases where it may not agree with human intuition about
the bounded regions (right). In such cases the real-valued function F still
appears to capture the right information—suggesting that more work is
needed on contouring strategies.

recently been explored [Sharp and Crane 2020a], and might be
extended to the objects needed for our algorithm.

Uncertainty. For broken curves, non-integer values in the winding
number functionF give qualitative information about con�dence: a
small value of |rF | on a point of the reconstructed curve indicates
uncertainty about the exact position of this curve. However, as
discussed by Sellán and Jacobson [2022], such values do not provide
quantitative probabilities—extending their framework to surfaces is
an interesting future direction.

Higher Dimensional Winding Numbers. Region identi�cation in
nontrivial three-manifolds also arise naturally in some scenarios—
e.g., noisy periodic surfaces acquired from X-ray crystallography of
material structures [Yuan et al. 2022]. Moreover, just as one might
need to segment �at 2D regions with boundary (Figure 20), a 3D
extension of SWN might prove useful for cutting up solid models
with complex geometry and topology. Our “cohomology processing”
approach should in principle extend to tetrahedral meshes, where
the duality between 1-forms and curves becomes an analogous
duality between 1-forms and surfaces.
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A HODGE DECOMPOSITION FOR BROKEN CURVES

Fig. 30. At endpoints of �, the harmonic function D locally behaves like the
angle function \ (G ) (le�). Intuitively, the derivative l := DD is divergence-
free, but has singular curl, analogous to 3\ (right). More precisely, Xl = 0,
but 3l < 0.

Consider the Hodge decomposition l = 3U + XV + W , where l is
the Darboux derivative of the harmonic function D from Section 3.2.
In this appendix we will show that if � is broken, then 3U is still zero
everywhere, but XV is nonzero due to the endpoints of �—motivating
our need to perform a Hodge decomposition.

Recall that in Section 2.4.2 we de�ne l89 :=
0 for all edges 8 9 incident on an interior end-
point 8 2 + \ + ⇤ (see inset). Hence, for any
singular vertex 8 , we have (Xl)8 = 0, since the
operator X uses only edges 8 9 incident on 8 . For
all other vertices 8 2 + ⇤, one can easily verify
that Xl = 0 by comparing the expressions
for (Xl)8 and the jump Laplacian (!�D)8 (noting again that l = 0
for edges connected to interior endpoints). In turn, since Xl = 0
everywhere, 3U must also be zero (Equation 9). However, 3l is not
zero everywhere—in particular, for any triangle 8 9: incident on an
interior endpoint 8 we have (3l)89: =��*

0l89 + l 9: +��* 0
l:8 . Moreover,

at least one of the l 9: around 8 must be nonzero, since (due to the
jump) the value of D has to increase by a total value (m�)8 < 0.
Hence, again due to Equation 9, we know XV cannot be zero—and
must be solved for in order to carry out the Hodge decomposition.
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