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Fig. 1. Whereas traditional extrinsic simplification (bottom row) must simultaneously juggle element quality and approximation error, triangles produced by
our intrinsic scheme (top row) can wrap around the original surface—nicely approximating the underlying function space without changing the geometry.
Coarse meshes or hierarchies produced by this scheme can be used in “black box” fashion to accelerate solvers without changing user inputs/outputs.

This paper describes a method for fast simplification of surface meshes.
Whereas past methods focus on visual appearance, our goal is to solve
equations on the surface. Hence, rather than approximate the extrinsic
geometry, we construct a coarse intrinsic triangulation of the input domain.
In the spirit of the quadric error metric (QEM), we perform greedy decimation
while agglomerating global information about approximation error. In lieu of
extrinsic quadrics, however, we store intrinsic tangent vectors that track how
far curvature “drifts” during simplification. This process also yields a bijective
map between the fine and coarse mesh, and prolongation operators for both
scalar- and vector-valued data. Moreover, we obtain hard guarantees on
element quality via intrinsic retriangulation—a feature unique to the intrinsic
setting. The overall payoff is a “black box” approach to geometry processing,
which decouples mesh resolution from the size of matrices used to solve
equations. We show how our method benefits several fundamental tasks,
including geometric multigrid, all-pairs geodesic distance, mean curvature
flow, geodesic Voronoi diagrams, and the discrete exponential map.
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1 INTRODUCTION

Algorithms for mesh simplification were originally motivated by the
need to maintain visual fidelity for rendering and display [Hoppe
1996]. Since image generation fundamentally depends on extrin-
sic quantities like vertex positions and surface normals, extrinsic
metrics (like the distance to the original surface) were a natural
choice [Garland and Heckbert 1997]. However, in a wide variety
of problems throughout computer graphics, geometry processing,
and scientific computing, the goal is to solve equations on surface
meshes, rather than display them on screen. Since functions on
surfaces have derivatives only in tangential directions, differential
operators appearing in these equations (such as the Laplacian) are
almost always intrinsic—even in cases where one solves for extrinsic
quantities [Finnendahl et al. 2023]. Hence, to develop fast, accurate
solvers for equations on surfaces, it is natural to seek error metrics
that focus on intrinsic geometry, i.e., quantities that depend only on
distances along the surface, rather than coordinates in space.
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Fig. 2. In contrast to standard extrinsic meshes (left), where edges are
straight line segments in R, intrinsic triangulations connect vertices along
arbitrary geodesic paths between vertices (right).

extrinsic

A principled approach to this problem is enabled by recent work
on flexible data structures for intrinsic triangulations [Fisher et al.
2006; Gillespie et al. 2021a; Sharp et al. 2019a]. Roughly speaking,
an intrinsic triangulation is one where edges need not be straight
line segments in space, but can instead be any geodesic arc along
the surface (Fig. 2). More generally, an intrinsic triangulation is an
assignment of positive lengths to edges—with no requirement that
there be vertex positions that realize these lengths. Not surprisingly,
this construction provides a vastly larger space of possibilities for
mesh processing, by de-coupling the elements used to approximate
the geometry from those used to approximate functions on the
surface. Moreover, standard objects like the Laplacian can still be
built directly from edge lengths, allowing many existing algorithms
to be run as-is. However, past work has not provided any mechanism
for coarsening intrinsic triangulations—as proposed in this paper.

1.1 Method Overview

In the extrinsic case, greedy iterative decimation has proven re-
markably effective, with a notable example being the quadric error
metric (QEM) of Garland and Heckbert [1997]. Despite being over a
quarter-century old, QEM remains the method of choice in many
modern systems [Karis et al. 2021]. The key insight of QEM is that
one obtains useful information about global approximation error
by aggregating the distortion induced by each local operation into
a constant-size record at each vertex. Our method, which we dub
the intrinsic curvature error (ICE) metric, adopts the same basic strat-
egy, but tracks intrinsic rather than extrinsic data. There are two
geometric perspectives on this metric, developed further in Sec. 5:

e Local Picture. Whereas extrinsic methods penalize deviation of
positions in space, we penalize changes in the intrinsic metric.
The local cost of removing a vertex is determined by the optimal
transport cost of redistributing its curvature to neighboring ver-
tices. More precisely, we compute an approximate 1-Wasserstein
distance between Gaussian curvature distributions before and
after flattening the removed vertex (Fig. 3, top left).

o Global Picture. One can also aggregate information about where
error comes from in order to make better greedy decisions. In
QEM, aggregation is achieved by summing quadrics, which ap-
proximate the squared distance to the ancestors of each vertex.
In contrast, the ICE metric tracks an approximate curvature-
weighted center of mass. More precisely, at each vertex i we
track (i) the total accumulated curvature and (ii) a tangent vec-
tor t; such that the exponential map exp; (t;) approximates the
curvature-weighted Karcher mean of all ancestors (Fig. 3, bottom).
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Fig. 3. Our method constructs a coarse triangulation over a fixed geometric
domain. In each local step we redistribute curvature or other quantities from
a removed vertex to its neighbors. From step to step we also agglomerate
global information about error via tangent vectors that point toward the
approximate center of mass of the decimated vertices.

By greedily applying decimation operations that keep these tangent
vectors small, we maintain a good approximation of the original
intrinsic geometry—for instance, curvature does not “drift” from
one place to another. Moreover, unlike the extrinsic setting, we can
freely change mesh connectivity without incurring any additional
geometric error—making it trivial to improve element quality via
tools like intrinsic Delaunay triangulation (Sec. 3.3.2).

2 RELATED WORK

Numerous tasks in geometry processing and simulation use coars-
ened or hierarchical representations of geometry [Garland 1999;
Guskov et al. 1999], including compression (e.g. using wavelets
[Peyré and Mallat 2005; Schréder 1996] or Laplacian bases [Karni
and Gotsman 2000]), surface modeling [Botsch and Kobbelt 2004;
Kobbelt et al. 1998; Zorin et al. 1997], physical simulation [Grin-
spun et al. 2002; Zhang et al. 2022], parameterization [Ray and Lévy
2003], and eigendecomposition [Nasikun et al. 2018; Nasikun and
Hildebrandt 2022]. Though the core computation in many of these
tasks is inherently intrinsic, the coarsening process itself has so far
been performed in the extrinsic domain. We briefly review work on
surface simplification and remeshing relevant to our approach; see
Botsch et al. [2010, Chapter 7] for a more detailed discussion.

2.1 Intrinsic Triangulations

As noted in Sec. 1, the machinery of intrinsic triangulations is cen-
tral to our approach Sharp et al. [2021]. Early work on intrinsic
triangulations explored the basic formulation [Regge 1961] and its
deep connection to Delaunay triangulations [Bobenko and Spring-
born 2007; Indermitte et al. 2001; Rivin 1994]. Subsequent work
on discrete uniformization [Gu et al. 2018; Luo 2004a; Springborn
et al. 2008] and an intrinsic Laplace operator [Bobenko and Spring-
born 2007] has recently stimulated broader applications in geometry



processing [Finnendahl et al. 2023; Gillespie et al. 2021a,b; Sharp
and Crane 2020a,b; Sharp et al. 2019a; Takayama 2022]. Several
general-purpose data structures have been developed for intrin-
sic triangulations [Fisher et al. 2006], including those that support
refinement operations [Gillespie et al. 2021a; Sharp et al. 2019a].
However none support operations needed for intrinsic coarsening,
as proposed here.

2.2 Surface Simplification

2.2.1 Local Decimation. A large class of coarsening methods apply
incremental local decimation via vertex removal [Schroeder et al.
1992], vertex redistribution [Turk 1992], vertex clustering [Alexa
and Kyprianidis 2015; Low and Tan 1997; Rossignac and Borrel 1993],
face collapse [Gieng et al. 1997], and edge collapse strategies [Hoppe
1996], including QEM [Garland and Heckbert 1997]. Although meth-
ods based on global energy minimization can produce impressive
results [Cohen-Steiner et al. 2004; Hoppe et al. 1993], local deci-
mation schemes remain popular since they are easy to implement,
typically exhibit near-linear scaling (each decimation operation is
essentially O(1)), and can easily meet an exact target vertex budget
(by stopping when the budget is reached). QEM-based simplification
in particular has endured because its cheap local heuristic yields
excellent global approximation when aggregated over many decima-
tion operations. Moreover, QEM is easily adapted to other attributes
such as color or texture [Garland and Heckbert 1998; Hoppe 1999].
In the intrinsic setting, we likewise favor a local decimation
approach because it yields fast execution times and near-linear
scaling (Sec. 8.2), and easily incorporates rich geometric criteria
(Sec. 8.6); as in QEM, aggregating information across local oper-
ations leads to high-quality global approximation (Sec. 5). Unlike
extrinsic, visualization-focused methods, the intrinsic setting also
furnishes quality guarantees valuable for simulation (Sec. 6.3).

2.2.2 Global Remeshing. In contrast to local decimation, which
incrementally mutates the given triangulation, global remeshing
methods seek only to approximate the given geometry, using an en-
tirely new triangulation (possibly a coarser one). Global remeshing
can be performed via, e.g., streamline tracing [Alliez et al. 2003] or
global parameterization [Alliez et al. 2005, 2002], with significant
emphasis in recent years on field-aligned methods [Bommes et al.
2013b]. However a high-quality global parameterization is notori-
ously difficult to compute—especially if a seamless grid is needed
for mesh generation [Bommes et al. 2013a]. Unlike our ICE met-
ric (which is based on transport cost), error metrics based on local
parametric distortion [Schmidt et al. 2019] or pointwise changes
in curvature [Ebke et al. 2016] can fail to account for global tan-
gential “drift” across the surface. Moreover, parameterization-based
methods do not take advantage of the flexibility of intrinsic trian-
gulations, requiring at all times an explicit embedding into the 2D
plane. A key exception are methods based on modification of edge
lengths [Capouellez and Zorin 2022], most notably the conformal
equivalence of triangle meshes (CETM) algorithm of Springborn et al.
[2008], which we apply locally to define our vertex removal oper-
ation (Sec. 4.1). A more global intrinsic coarsening strategy might
be to conformally map the whole surface to a high-quality cone
metric [Fang et al. 2021; Li et al. 2022; Soliman et al. 2018] then
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Fig. 4. Just as extrinsic simplification pays no cost for removing vertices
from an initially flat region (left), our intrinsic method pays no cost for
removing vertices from an initially developable region (right).

remove all flat vertices; however, even just computing a good cone
configuration is already more expensive than our entire algorithm.
between coarse and fine meshes [Kharevych A

etal. 2009; Li et al. 2015; Liu et al. 2019]. Early ‘VA
methods compose local 2D mappings (inset)

to obtain a so-called successive mapping [Co-

hen et al. 1997; Khodakovsky et al. 2003; Lee ’

2.2.3 Tracking Correspondence. Many ap-
plications require not only a coarse mesh,
but also a way of mapping various attributes

et al. 1998], as more recently discussed by

Liu et al. [2020, 2021]. Alternatively, corre-

spondence can be defined via normal offsets

[Guskov et al. 2000], texture domain chart

boundaries [Sander et al. 2001], or bijective projection [Jiang et al.
2020, 2021], though methods based on extrinsic correspondence can
struggle in the presence of, e.g., mesh self-intersections (Fig. 20).
Since our method performs both simplification and mapping via
intrinsic triangulations, we can achieve lower-distortion mappings
than methods restricted to the smaller space of extrinsic mesh se-
quences (Figs. 18 and 19), in turn improving the numerical behavior
of many algorithms (Sec. 8).

2.3 Mesh Hierarchies

Coarsening and correspondence tracking are also key components of
multi-resolution methods. Whereas extrinsic coarsening is essential
for, e.g., adaptive visualization [Hoppe 1996], intrinsic coarsening
is well-suited to multiresolution solvers such as geometric multi-
grid [Liu et al. 2021]. Here, coarse-to-fine schemes, e.g. based on
subdivision surfaces [Zorin et al. 2000], yield regular connectivity
and principled prolongation operators based on subdivision basis
functions [de Goes et al. 2016; Shoham et al. 2019]. However, without
careful preprocessing [Eck et al. 1995; Hu et al. 2022] subdivision be-
haves poorly on coarse, low-quality meshes encountered in the wild
[Zhou and Jacobson 2016]. We instead adopt a robust fine-to-coarse
strategy, via repeated decimation (Sec. 8.7). Though extensively stud-
ied for extrinsic meshes, both for adaptive rendering [Hoppe 1996,
1997; Popovic and Hoppe 1997] and modeling/simulation [Aksoylu
et al. 2005; Liu et al. 2021; Manson and Schaefer 2011], a fine-to-
coarse hierarchy based on intrinsic triangulations enables geometric
multigrid to succeed on extremely low-quality meshes where past
methods fail (Sec. 8.7).
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Fig. 5. Gaussian curvature K and geodesic curvature x depend only on
corner angles 6, which in turn depend only on edge lengths ¢. Hence, surfaces
that appear bent in R® may in fact have zero intrinsic curvature (right).

geodesic curvature
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3 BACKGROUND

An intrinsic mesh encodes geometry via edge lengths rather than
vertex positions; this data is in turn sufficient to support a wide
variety of surface processing and simulation tasks. Here we give a
brief review—see Sharp et al. [2021] for an in-depth introduction.

3.1 Connectivity

We consider a manifold, orientable triangle mesh t
M = (V,E,F) with vertices i € V, edges i erlor

1] € E, and faces ijk € F. Likewise, we write

= (V,E,F) for any modification of M. We \boundary ear
use degree(l) to denote the (face) degree, i.e., the
number of faces containing i. A degree-1 boundary vertex is called
an ear; otherwise it is a regular boundary vertex. We use u;, ujj,
u;jk to denote a value at a vertex, edge, and face, respectively, and
u .. for a quantity at corner i of triangle ijk. Sometimes we also
consider values u;; on oriented edges, where u;; # uji.

i To represent the full space of intrinsic triangula-
tions (which furnishes important algorithmic guar-
antees [Bobenko and Springborn 2007]), we assume
that M is a A-complex [Hatcher 2002, §2.1]. Unlike

j i a simplicial complex, elements in a A-complex are
not uniquely determined by their vertices. For in-
stance, two edges of the same face may be glued
together to form a cone (see inset). Hence, we write
ijk € F we refer to only one of possibly several
faces with vertices i, j, and k—which themselves
need not be distinct. Likewise, an edge ij may connect a vertex to
itself (i = j); we refer to such edges as self-edges. Throughout we let
N; :={j € V|ij € E} be the neighbors of vertex i, excluding i itself
in the case of a self-edge ii. The connectivity of a A-complex can be
encoded via an edge gluing matrix [Sharp and Crane 2020a, §4.1] or
a halfedge mesh [Botsch et al. 2010, Chapter 2].

J

3.2 Geometry

Any set of positive edge lengths £ : E — Ry that satisfy the
triangle inequality £;; + £;5 > £; at each triangle corner determines
a valid intrinsic metric, i.e., a Euclidean geometry for each triangle.
We typically obtain initial edge lengths ¢;; = [|p; — pj| from input
vertex positions p : V — R3, but in principle could start with any
abstract metric (e.g., coming from a cone flattening [Soliman et al.
2018]). Interior angles 9;. © € (0, ) at corners can be determined

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

DA

giw 270/0;

Fig. 6. Notation and conventions for tangent vectors (left), parallel transport
(center), and the logarithmic/exponential maps (right).

from the edge lengths, via the law of cosines. We use ||v|| to denote
the Euclidean norm of any vector v € R™.

3.2.1 Curvature. Intrinsically, the curvature of a surface is com-
pletely described by its Gaussian and geodesic curvature—though
an intrinsically flat surface can still be extrinsically bent like a crum-
pled sheet of paper (Fig. 5). On a triangle mesh, let ©; = X ke N, ij
be the angle sum around vertex i. The discrete Gaussian curvature
at interior vertex i is then given by the angle defect

Ki =21 - ©;, )

measuring deviation from the angle sum 27 of the flat plane. Like-
wise, the discrete geodesic curvature at boundary vertex i is

Kj =1 —0j, (2)
measuring deviation from a straight line.

3.2.2 Tangent Vectors. In a small neighborhood of any vertex i,
the intrinsic metric looks like a cone of total angle ©;; we use M
to denote the set of tangent vectors at i (Fig. 6, left). Following
Knoppel et al. [2013, §6], we express the direction of any tangent
vector t € ;M as a normalized angle ¢ := 2760/0 € [0, 2r), where 0
is the angle of t relative to an arbitrary but fixed reference edge ijo.
The vector itself is then encoded as a complex number It]le' e C,
where 1 is the imaginary unit. In particular, the angular coordinate
¢ij € [0,2m) encodes the outgoing direction of an oriented edge
ij; we use ej; € 7;M to denote the vector with direction ¢;; and
magnitude ¢;;. The corresponding direction at vertex j is given by
¢ji + . Hence, we can parallel transport vectors from 7;M to T;M
(Fig. 6, center) via a rotation by R;; := e!((2i+7)=$3) (encoded by
a unit complex number). See Sharp et al. [2019b, §3.3 and §5.2] for
further discussion.

3.2.3  Exponential and Logarithmic Map. The exponential map exp;(t)
of a tangent vector t at vertex i computes the point p reached by
starting at vertex i and walking straight (i.e., along a geodesic) with
initial direction t for a distance ||t|| (Fig. 6, right). In particular, for
any oriented edge ij we have exp;(e;;) = j. For a given point p € M,
the logarithmic map log;(p) gives the smallest tangent vector t at i
such that exp;(t) = p. Note that, in general, log;(j) may not yield
the edge vector e;}, since there may be a shorter path from i to j.

3.3 Retriangulation

3.3.1 Intrinsic Edge Flip. Consider an edge ij contained in triangles
ijk, jil. An intrinsic edge flip replaces ij with a geodesic arc along
the opposite diagonal ki, where the length of the new edge k! is
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Fig. 7. Anintrinsic flip of edge ij measures the length #; of the opposite
diagonal in a 2D layout, then updates connectivity. Greedily flipping until
95. + Hjl,i < m at all edges ij yields an intrinsic Delaunay triangulation.

determined via a planar unfolding (Fig. 7). Hence, an intrinsic flip
exactly preserves the original geometry—in particular, the discrete
curvature is unchanged. An edge ij is flippable if and only if (i)
degree(i), degree(j) > 2 and (ii) triangles ijk, jil form a convex
quadrilateral, i.e., if both 9;'. et Q;j and Hlja. + 0{ , are less than 7 [Sharp
and Crane 2020b, §3.1.3]. Note that these conditions are considerably
easier to check than in the extrinsic case [Liu et al. 2020, App. C].

3.3.2 Intrinsic Delaunay Triangulation. A triangulation is intrinsic
Delaunay if it satisfies the angle sum condition 95. + 65‘1‘ < matall
interior edges ij € E (Fig. 7). Such triangulations extend many useful
properties of 2D Delaunay triangulations to surface meshes—[Sharp
et al. 2021, §4.1.1] gives a detailed list. A triangulation can be made
intrinsic Delaunay via a simple greedy algorithm: flip non-Delaunay
edges until none remain [Bobenko and Springborn 2007].

4 VERTEX REMOVAL

Extrinsic simplification methods reduce vertex count by extrinsic
making local changes to connectivity [Garland and Heck-
bert 1997; Hoppe 1996; Schroeder et al. 1992]. We extend \
local simplification to the setting of intrinsic triangu-
lations, using vertex removal as our atomic operation. @
Intrinsic simplification provides strictly more possibil- /
ities than its extrinsic counterpart (see inset), since any
extrinsic operation can be represented intrinsically.

Our method removes a vertex i in three steps, illus- intrinsic
trated in Fig. 8:

(1) Intrinsically flatten i (Sec. 4.1).
(2) Remove i from the triangulation (Sec. 4.2).
(3) Flip to an intrinsic Delaunay triangulation (Sec. 3.3.2).

The vertex removal step extends the scheme from [Gillespie et al.
2021a, §3.5] to boundary vertices. Note that all changes to the ge-
ometry occur in the first step, redistributing the curvature at i to
neighboring vertices j € N;. The second step merely retriangulates
a flat region, and the third step performs only intrinsic edge flips.
Hence, our error metric in Sec. 5 will need only consider the first
(flattening) step to prioritize vertex removals. Maintaining a Delau-
nay triangulation at each step helps ensure numerical robustness
throughout simplification.

Special cases. To remove an ear vertex i,
it is tempting to simply remove the triangle
ijk containing i. However, doing so leaves
points on the fine mesh that do not map to k

Surface Simplification using Intrinsic Error Metrics « 5

Fig. 8. We decimate an interior vertex by intrinsically flattening it, flipping
to degree 3, removing it from the mesh, then flipping back to an intrinsic
Delaunay triangulation. (For boundary vertices, we instead flip to degree 2.)

any point on the coarse mesh. Instead, we transform any ear into a
regular boundary vertex by first flipping the opposite edge jk.

We cannot remove vertices i incident
on a boundary self-edge, since every
boundary loop must contain at least
one vertex. Likewise, vertices i of self-
faces (i.e., triangles with only a single
distinct vertex) can cause trouble for
flipping, and are skipped.

boundary
self-edge

self-face

4.1 Vertex Flattening

We first eliminate all curvature at vertex i. For this operation to
remain local and valid we must bijectively flatten the neighborhood
Ni, while keeping edge lengths along the boundary of this region
fixed. Extrinsic flattening schemes can fix boundary vertices [Floater
1997; Weber and Zorin 2014], but it is unclear how to construct the
least-distorting boundary polygon with prescribed lengths. In con-
trast, the CETM algorithm of Springborn et al. [2008] supports edge
length constraints, and operates directly on an intrinsic triangula-
tion. Moreover, using a conformal map will simplify the tangent
vector prolongation scheme in Sec. 7.3.

Following Luo [2004b], two sets of edge lengths £ and ¢ are con-
formally equivalent if there exist values u : V. — R such that

By = Wit 20, vij e E. 3)
Given initial lengths ¢, CETM finds conformally equivalent edge
lengths £ with prescribed angle sums 0; by minimizing a convex
energy &(u).

In our case, we need only determine a single scale factor u; at the
removed vertex i. We let © ; = 27 for interior vertices (zero Gaussian
curvature), and ©; = 7 at regular boundary vertices (zero geodesic
curvature). Setting u; = 0 for all other vertices j € N; ensures
that the boundary lengths are unchanged—in fact, Springborn et al.
[2008, Appendix E] show that these boundary conditions also induce
minimal area distortion. Using the expressions for the gradient and
Hessian of & from [Springborn et al. 2008, Equations 9 and 10], we
solve the 1D root finding problem V&(u;) = 0 via Newton’s method:

i = XijkeN; H;k
Uj < uj —

1 k Jj )
7 ZijkeN; cot Qij +cot by,

Notice that we express this formula as a sum over faces, so that
it applies to both interior and boundary vertices. In practice, this
scheme converges in about five iterations. Occasionally, the new
edge lengths ¢ (computed via Eq. (3)) fail to satisfy the triangle
inequality. In this case we try performing edge flips, d la Springborn
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et al. [2008, §3.2]. If these flips still fail to resolve the issue, we skip
this vertex and revisit it in future coarsening iterations.

4.2  Flat Vertex Removal

To remove a flattened vertex i, we
flip it to a degree-3 vertex and re-
place the three triangles iab, ibc, ica
incident on i with the single trian-
gle abc (inset, left). Since the vertex

neighborhood is already flat, these &
operations preserve the geometry.
Gillespie et al. [2021a, Appendix D.1]
show that iteratively flipping any re-
maining flippable edge ij incident on

interior boundary

2,

200U

i will yield a degree-3 vertex, so long
as the neighborhood N; remains sim-
plicial. Hence, at each step we first
flip any self-edges (i = j); if there are
none, we flip the edge ij with largest

P

angle sum 95 + 95.1. (since only convex triangle pairs can be flipped).

In the rare case where degree(i) > 3 and no flippable edges remain,
we skip this vertex removal and revert the mesh to its previous state.
If i is a boundary vertex, we perform edge flips until degree(i) = 2
and replace the two resulting triangles iab, ica with the single trian-
gle abc (inset, right). Here again the geometry is unchanged, since i
has no geodesic curvature. When i is an ear vertex we need only
flip the opposite edge to give i degree-2, while for regular boundary
vertices we use the same procedure as for interior vertices.

After removal, we must also update the angles ¢, and corre-
sponding edge vectors e ;. for each edge jk with endpoints in N;
(Sec. 3.2.2). We then flip the mesh to an intrinsic Delaunay triangu-
lation, d la Sec. 3.3.2.

5 ERROR METRIC

To prioritize vertex removals, we must define a notion of cost. Stan-
dard extrinsic metrics, such as QEM, are not appropriate: even if
they could somehow be evaluated using intrinsic data, they would
attempt to preserve aspects of the geometry that are not relevant
for intrinsic problems (as discussed in Sec. 1). Our method is how-
ever inspired by the remarkable effectiveness of greedy local error
accumulation in QEM. Likewise, metrics that focus on finite ele-
ment equality (a la [Shewchuk 2002]) are not appropriate, since at
intermediate steps of coarsening the triangulation used to encode
the intrinsic geometry is transient and subject to change. Standard
considerations from finite element theory do however provide good
justification for flipping the final triangulation to Delaunay.

Our ICE metric is instead based on two intrinsic and triangulation-
independent concepts: optimal transport [Peyré et al. 2019], and the
Karcher mean [Karcher 2014]. Optimal transport helps quantify
the effort of redistributing mass, providing the local cost for our
“memoryless” metric (Sec. 5.1). Karcher means encode the center of
mass of all fine vertices contributing to a coarse vertex i, providing
the basis for our “memory-based” metric (Sec. 5.2). These two pieces
fit together in a natural way: after a single vertex removal, the
mass-weighted norm of all error vectors t; encoding Karcher means
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is exactly equal to the optimal transport cost. Hence, after many
vertex removals this norm approximates the cost of transporting
the initial fine mass distribution to the coarsened vertices. Vertex
removals that keep cost small should hence be prioritized, since
they better preserve the initial mass distribution. Just as in QEM,
this information is captured by a fixed-size representation (masses
and tangent vectors at each vertex) that is easily agglomerated
during coarsening. To get a good geometric approximation, we use
curvature as our basic notion of “mass”, but can also use other
attributes such as area (Sec. 5.4).

For clarity of exposition we first memoryless memory-based
define error metrics in 2D, before A A
generalizing to surfaces (Sec. 5.3),
and incorporating data like curva-
ture or other attributes (Sec. 5.4).
Note that we view the memoryless ; -
error metric only as an intermediate step to explaln the memory-
based version, and use the memory-based metric for all results
and experiments. As suggested by the inset example, the memory-
less metric tends to keep vertices at highly-curved points, whereas
the memory-based version better distributes vertices proportional
to nearby curvature. However, there may be application contexts
where the memoryless version is preferable (e.g., [Hoppe 1999]).

£/

5.1 2D Error Metric (Memoryless)

Consider a mass distribution m : V. — Ry at mesh vertices, repre-
senting any nonnegative user-defined quantity (signed quantities
will be addressed in Sec. 5.4). Suppose we remove vertex i, redis-
tributing its mass m; to its immediate neighbors j € N;. In partic-
ular, let a;; € [0, 1] be the fraction of m; sent to vertex j (hence
2jeN; @ij = 1), so that the new mass at j is

rﬁj:mj+a,-jmi. (5)

5.1.1  Error Vectors. Suppose we want to track not only the mass

distribution, but also where mass came from. Then at each vertex i

we can store an error vector t; (initially set to zero) pointing to the

center of mass c; of all vertices that contributed to the current value

of m;. Explicitly, after removing i, the center of mass at vertex j is
- ajjmiX; + mjXx;

Cj—
ajjmi + mj

mass before removal mass after removal error vectors

o8 @ a «

o3 o] ovd

Fig. 9. The local cost of removing any vertex i is the optimal transport cost
of transporting its mass m; to its neighbors j € Nj. We can also calculate
this cost as the sum of new masses rle times the length of error vectors ?]
which point to the new centers of mass ¢;.



where x; € R? denotes the location of vertex i. Hence, the vector
pointing from x; toc; is

~ - ajjm;i€jij
tj =Cj—Xj = ———),
ajjm; + m;j

where ej; = X; — X; is the vector along edge ji. The total cost of
removing i can then be measured by summing up the mass-weighted

norms of these vectors. Noting that ||ej;|| = £;;, we get a cost

Ci = Z mj|lt;ll = Z ajjmitij. 6)
JEN; JEN;
This cost also coincides with the so-called 1-Wasserstein distance be-
tween the old and new mass distribution [Peyré et al. 2019, Chapter
2]. Intuitively, this distance measures the total “effort” of moving
mass from i to neighbors j, penalizing not only the amount of mass
moved, but also the distance traveled.

5.2 2D Error Metric (Memory-Based)

Rather than assign a cost to each vertex removal in isolation, we
can accumulate information about how mass has been redistributed
across all prior removals. At each step, we still update the mass
distribution via Eq. (5), but now update vectors encoding the centers
of mass via

’Fj _ aijmi(ti + eﬁ) +mjt;j

@)

ajjm; + mj
In other words, we re-express t; rela-
tive to x; by adding the edge vector e;,
then take the mass-weighted average
of the old error vector t; with this new
vector. The overall cost is still evalu-
ated via Eq. (6), but now approximates
the effort of moving the initial mass distribution to the current
one—rather than just penalizing the most recent change. This cost
is only approximate since the 1-Wasserstein distance to the center
of mass is not in general equal to the distance to the original fine
distribution—but it is usually quite close. Thus, our error metric
favors decimation sequences which keep each coarse vertex close
to the center of all fine vertices that contribute to its mass.

5.3  Surface Error Metric (Memory-Based)

To extend this scheme to surfaces,
we must address the fact that tan-
gent vectors from different tangent
spaces cannot be added directly. In
particular, we cannot re-express the
error vector t; at a neighboring ver-
tex j by simply adding the edge vec-
tor ej;. If ¢ := exp; (t;) is the center
of mass encoded by t;, then ideally
we would just compute the vector
log;(c) pointing from j to c (see in-
set). Although there are algorithms for computing the log map (e.g.,
[Sharp et al. 2019b, §8.2] and [Sharp and Crane 2020b, §6.5]), they
are far too expensive to apply for each vertex removal. Instead, we
approximate this vector by parallel transporting t; from i to j (a
la Sec. 3.2.2) and offsetting by ej; as in 2D, yielding a new vector
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i curvature i i
i Jj curvature
before removal * 3 after removal

flatten vertex i

Fig. 10. Flattening a vertex i changes the angle sums © at neighboring
vertices j, effectively redistributing the discrete curvature K = 27 — ©. We
use the change in curvature from K to K to guide simplification.

?j := Rjjt; + ej;. The final error Vectorﬂ stored at j is then given
by a weighted average, just as in Sec. 5.2:
T (Zijm[(Rijti + ejl-) +mjt;
= .

ajjm; + mj (8)
The mass is updated as in Eq. (5), and the overall cost is again
given by Eq. (6). Note, then, that on curved surfaces the vector t;
merely approximates the center of mass of the fine mass distribution
corresponding to coarse vertex i. Yet since this approximation is
reasonably accurate and cheap to compute, it provides an efficient
error metric akin to QEM.

5.4 Intrinsic Curvature Error Metric

Due to the Gauss-Bonnet theorem, flattening a vertex i (a la Sec. 4.1)
conservatively redistributes curvature to neighboring vertices j,
making curvature a natural “mass” distribution to guide simplifica-
tion. A challenge here is that the old and new curvatures K and K
are not in general positive quantities. One possibility might be to
use a transport cost for signed measures such as [Mainini 2012], but
doing so would require us to solve a small optimal transport problem
for each vertex removal. We instead adopt a cheap alternative. In
particular, we define convex weights

_ K -Kjl
2ien; IKp =Kl

For boundary vertices we use the same formula, but replace Gaussian
curvature K with geodesic curvature k. If vertex i is already flat
prior to removal, then there is no change in curvature and we simply
distribute mass equally to all neighbors. We then split the initial
fine curvature function K (or k) into two positive mass functions
K := max(K;,0) and K]~ := — min(Kj;, 0). Each of these quantities
is tracked throughout simplification exactly like m; in Sec. 5.3, using
two separate vectors t and t (resp.), and weights « from Eq. (9).
The overall error, which defines the ICE metric, is then the sum of
the errors in the two curvature functions (a la Eq. (6)). Note that if a
vertex i cannot be flattened or removed, we assign it an infinite cost
(which may later get updated to a finite value when its neighbors
are removed—see Alg. 1).

©)

aijj *

5.4.1 Auxiliary Data. Similar to [Garland and Heckbert 1998], other
quantities at vertices (areas, colors, etc.) can be used to drive simpli-
fication in an analogous fashion: each signed quantity is split into
two positive mass functions, and a list of all “channels” mo,..., mk
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is tracked along with associated tangent vectors ..., t*. The cost
is then given by

k
Ci= ). > wnl|d],

JEN;: p=0

where a choice of weights w1, ..., wk € Ry puts an emphasis on
different features. For instance, Fig. 11 shows the impact of different
weightings on curvature versus area.

6 SIMPLIFICATION

We now have all the ingredients to perform intrinsic simplification.
Just as in QEM, we first initialize a priority queue by evaluating
the ICE metric at all vertices (Sec. 6.1), then greedily remove the
lowest-cost vertex from this queue until we reach a target vertex
count n (Sec. 6.2), or until no more vertices can be removed. Alg. 1
provides pseudocode; a full reference implementation can be found
at https://github.com/HTDerekLiu/intrinsic-simplification.

6.1 Initialization

For each vertex i € V we compute the initial masses m; (e.g., the
curvature functions K* and K~ from Sec. 5.4) and an initial error
vector t; = 0. To compute the cost of removing i we perform a
tentative flattening a la Sec. 4.1 and use the resulting weights a;;
from Eq. (9) to evaluate the cost C; via the second sum in Eq. (6). If
flattening yields invalid edge lengths, or vertex i cannot be flipped
to degree 3 (or 2 on the boundary), we let C; = co. After evaluating
the cost function, we “undo” the tentative removal, i.e., we restore
the previous connectivity and revert any changes to edge lengths.

6.2 Coarsening

At each iteration, we pick the vertex i with the minimum cost C;
from our priority queue. If C; = oo, then no more vertices can
be removed and we terminate. Otherwise, we apply the removal
procedure from Sec. 4. The resulting weights a;; (Eq. (9)) are used
to compute new masses m; (Eq. (5)) and updated transport vectors
Tj (Eq. (8)) for each neighbor j € N. We then flip the mesh back to
intrinsic Delaunay d la Sec. 3.3.2—note that to initialize the greedy
flipping algorithm we need only enqueue edges in N;, since the
mesh was already Delaunay prior to removing vertex i. Finally, we
must also update the priority queue with new costs C; by tentatively
flattening each neighbor j, and evaluating the first sum in Eq. (6)
(this time over neighbors k € Nj). Here, finite costs may become
infinite (or vice versa), since vertices that were previously removable
may no longer be removable.

6.3 Intrinsic Retriangulation

Though our overall goal is to coarsen the input, carefully adding
vertices to the mesh via intrinsic Delaunay refinement [Sharp et al.
2019a, Section 4.2] can be quite valuable in two distinct ways. On
typical models, this pre- or post-processing adds only a fraction of
a second to overall execution time [Sharp et al. 2019a, Section 6].

Pre-refinement. As stated, our coarsening algorithm (Alg. 1) can
produce only meshes whose vertices V are a subset of the input
vertices V. However, we can often obtain a smaller or more accurate
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Algorithm 1: Intrinsic Coarsening
Input : M,¢,n
Output: M,f
1. > initialization

> mesh, edge lengths, target vertex count
> coarsened mesh & edge lengths

2. Q « EMPTYPRIORITYQUEUE()
3. M, t « FLiPTODELAUNAY(M, £)
s. foreach vertexi € V do

5. (mi, ti) « ((K], Kl+), 0) > initial mass & error
¢ < INTRINSICCURVATUREERROR(M, £,i) » Sec. 5.4
6. ENQUEUE(Q, i, ¢)

> Sec. 3.3

7. > coarsening
8. while VERTEXCOUNT(M) > n and 'EmpPTY(Q) do

9. i « Por(Q) > extract minimum-cost vertex

10. ¢ « FLATTEN(M, £, i) > Sec. 4.1
11 M, €, m,t < REMOVEVERTEX(M, ¢, i) > Sec. 4.2, 5.3
12. M, ¢ « FLIPTODELAUNAY(M, ¢, i)

13. foreach vertex j € N do

14. ¢ « INTRINSICCURVATUREERROR(M, ¢, j)

15. L Q « UppATEPRIORITY(Q, j, ¢)

-
o

return (M, ¢)

representation of the original metric by first inserting a larger set
of candidate vertices, prior to simplification. For instance, in Fig. 12
we run Delaunay refinement on the input until all corner angles
0i are no smaller than 25°. As a result, it becomes much easier to
construct high-quality coarse triangles in regions with few input
vertices (e.g., on the rocket model). Fig. 13 shows how this strategy
can even improve quality on coarse input models, where we do not
seek to reduce the vertex count.

Post-refinement. Since coarsening maintains an intrinsic Delau-
nay triangulation, the final mesh is already guaranteed to exhibit
properties valuable for applications—such as positive edge weights
for the discrete Laplacian [Bobenko and Springborn 2007]. As an
optional post-process, we can also provide hard guarantees on ele-
ment quality: as recently proven by Gillespie et al. [2021a], intrinsic
Delaunay refinement yields a triangulation where the smallest cor-
ner angle 9{ ¥ is no smaller than 30° (hence no greater than 120°), so
long as (i) M is closed and (ii) ©; > 60° for all input vertices i € V.
In practical terms, this guarantee ensures that even very low-quality
input meshes can be used successfully in numerical algorithms such
as those explored in Sec. 8. This feature is unique to the intrinsic set-
ting: extrinsic surface meshing algorithms like restricted Delaunay
refinement provide guarantees on global geometry and topology,
but not on element quality [Cheng et al. 2012, Chapter 13], nor even
positive weights for the Laplacian. The only danger is that the final
triangulation is no longer guaranteed to be coarser than the input
mesh, though in practice this situation is unlikely to occur unless
the input is already quite coarse.

6.4 Numerics

As in any mesh processing algorithm, near-degenerate triangles
(whether in the input or constructed during simplification) can


https://github.com/HTDerekLiu/intrinsic-simplification
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% curvature/% area
60/4

Fig. 11. We can mix and match different quantities to guide coarsening. Here, for instance, strongly weighting Gaussian curvature emphasizes preservation of

intrinsic geometry, whereas strongly weighting area prioritizes uniform triangle size.

Fig. 12. Adding vertices to the mesh prior to coarsening provides more
options for simplification and remeshing, since coarse vertices V no longer
need be a subset of fine vertices V.

input ours
(same vertex count)

# corners

r

0 60° 120° 0° 60° 120°
corner angle corner angle

Fig. 13. Even for an identical vertex count, refining then coarsening yields
. . Py . i
higher quality elements, as quantified by histograms of corner angles ij.

cause numerical issues due to floating point error. We hence follow
best practices wherever possible [Shewchuk 1999], e.g., to determine
if a point p is inside a triangle during pointwise mapping (Sec. 7.1)
we compute the sign of det(p — x;, p — x;) for each triangle edge
ij, rather than directly computing barycentric coordinates (thereby
avoiding division by area).

7  MAPPING AND PROLONGATION

For some tasks (say, computing Laplacian eigenvalues) the coarsened
triangulation can be used directly; more broadly we need some way

of evaluating correspondence between the coarse and fine mesh.

Here we consider two basic viewpoints: correspondence of points
(Sec. 7.1) and correspondence of functions (Sec. 7.2).

7.1 Pointwise Mapping

To map any point p on the fine mesh to a point7 on the coarse mesh,
we track its barycentric coordinates through local coarsening oper-
ations (namely: edge flips, vertex flattenings, and vertex removals).
This map is trivially bijective, since at each step we simply re-write
the given barycentric coordinates with respect to a different triangu-
lation of the same planar region. The only way to violate bijectivity
would be to perform a non-bijective vertex flattening—which we ex-
plicitly forbid (see Sec. 4.1). In the applications we consider (Sec. 8),
all points p that must be tracked are known ahead of time, and can
be tracked during simplification. To evaluate this map on demand,
one could record the list of local operations, and “re-play” these
operations for each new query point, as in [Liu et al. 2020].

Edge flips. To track a point p through an
intrinsic flip of edge i j, we unfold the two tri-
angles ijk, jil into the plane (e.g., using for-
mulas from Sharp et al. [2021, Section 2.3.7]), L 7
and compute the barycentric coordinates of
p in the new triangle (see inset). f\lz‘;)

Vertex flattening. We must also compute new barycentric coor-
dinates b after each vertex flattening (Sec. 4.1). Here we use the
projective interpolation scheme of Springborn et al. [2008, §3.4].
Since edge lengths satisfy Eq. (3), this scheme defines a continuous

(C% bijective map. Let by, b 7, by be barycentric coordinates for a
point in face ijk, and let u; be the scale factor at i. Then

(e"ib;, bj, br)

_ 1
e"ibi+bj+bk’ (10)

(bi,bj, by) =

where the denominator ensures our updated values still sum to 1.

Vertex removal. Once vertex i is flattened and
flipped to degree three, its neighborhood can B
be laid out in the plane without distortion (see { ,
inset). Here we apply standard formulas to com-
pute barycentric coordinates for vertex i in the
new triangle, along with coordinates for any ~v
points located in the three removed triangles. remove

7.2 Prolongation

Algorithms such as multigrid (Sec. 8.7) often require not only point-
wise correspondences, but also prolongation operators which transfer
functions from a coarse mesh to a finer one. We define a prolon-
gation operator via an approach similar to Lee et al. [1998] and
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vector field
on coarse mesh
<)o

prolongation

fine mesh to fine mesh

KB
2
Vsl

Fig. 14. We significantly reduce the cost of computing smooth vector fields
on a fine mesh (left) by solving on a coarse mesh (center) and applying vector
prolongation (right).

Liu et al. [2021]. In particular, we track the barycentric coordinates
of all fine vertices d la Sec. 7.1. A function on the coarse mesh is
then mapped to the fine mesh via barycentric linear interpolation.
Explicitly, suppose each fine vertex i € V has barycentric coordi-
nates b1, by, bz in coarse triangle ninans € F. We then build a sparse
matrix P € RIVI*XIV] where row i has three nonzeros Pin, = bnj, for
Jj = 1,2,3. Prolongation then amounts to a matrix-vector product

f= Pﬁ where fe RVl is a function on the coarse mesh.

7.3 Vector Field Prolongation

We can also transfer vector fields from coarse to fine (Fig. 14). This
process has two steps (detailed below): first interpolate vectors over
the coarse mesh, then sample the interpolated vector field onto the
vertices of the fine mesh. Both steps are again represented by a
single prolongation matrix PY¢¢ € clVIXIVl  this time with com-
plex entries. However, since we store tangent vectors in a different
normalized coordinate system at each vertex (Sec. 3.2.2), we must
compute unnormalized vectors before performing interpolation. In
particular, let u? € C be the angle-normalized vectors stored at
vertices, and let ¢; := arg(u?) be the corresponding angles. Then
u; = ||u?||e’@i¢’i/2” are the corresponding unnormalized vectors,
and prolongation amounts to a matrix-vector multiply PV*u. Note
that this same prolongation scheme can be applied as-is to sym-
metric direction fields (line fields, cross fields, etc.), via the complex
encoding introduced by Knéppel et al. [2013].

7.3.1  Coarse Interpolation. In each tri-
angle ijk, we adopt a coordinate system
where oriented edge ij points in the ¢ = 0
direction. Let wj; := (eij/t’ij)@i/z’r be the
unit vectors along each oriented edge ij,
in unnormalized coordinates at i, and let

Pij =0, B = (r—0), and fr; = (x—0] )+ (x—05)

be the angles of these unit vectors with respect to the coordinate
system of the triangle. Then z; := ' / wjj is a rotation taking u; to
the corresponding vector in the triangle’s coordinate system, and we
can express the interpolated vector at any point p with barycentric

i
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coordinates b(p) as
u(p) = bi(p)ziu; + bj(p)zju; + bi (p)zuy.

Note that the resulting field is not continuous across edges, but is
sufficiently regular for prolongation; if desired, better continuity
can be achieved via the scheme of Liu et al. [2016, Section 4.3].

7.3.2  Fine Sampling. Consider a fine ver-
tex i € V mapped to a point x; in coarse
triangle ningn3 € F (expressed in a 2D
layout, via the tracked barycentric coor-
dinates). To map the interpolated vector
u(x;) back to the vertex coordinate sys- 13
tem, we must then compute a change of
coordinates from triangle ninzn3 to the 3
tangent space 7;M. Since we change the geometry via conformal
flattening (Sec. 4.1), this change of coordinates is well-described by
measuring the rotation and scaling of a single tangent vector. In par-
ticular, for any j € N; such that x; is contained in the same triangle,
we let w;; := e;j/|lejj|| be the unit vector along the fine edge, and
compute the corresponding unit vector w;; := (pj — pi)/llpj — pill
on the coarse triangle (approximating the tangent map). The rota-
tion and scaling between coordinate systems is then captured by
the complex number ¢/; := w;;/W;;, and the final interpolated value
in the normalized coordinate system at i is given by ¥;u;(x;). In
the rare case where no neighboring x; sits in the same triangle,
we simply take the average of known interpolated values. Overall,
then, row i of the vector prolongation matrix PV¢ has three nonzero
entries b;1;z;, corresponding to the three columns nj, j = 1,2, 3.

8 EVALUATION & RESULTS

Here we evaluate the performance, robustness, and quality of our
method (Sec. 8.2 and 8.3), compare it to extrinsic alternatives (Sec. 8.4),
and explore its effectiveness in the context of several fundamental
algorithms (Sec. 8.5, 8.6, and 8.7). We also describe the strategy used
to visualize results throughout the paper (Sec. 8.1). Note that all
experiments were run on a 4.1GHz Intel i7-8750H with 16GB RAM.

8.1 Visualization

Traditionally, intrinsic triangulations are visualized via a common
subdivision [Fisher et al. 2006; Gillespie et al. 2021a; Sharp et al.
2019a], i.e., the input mesh is split along geodesic arcs correspond-
ing to intrinsic edges. However, since coarsening does not exactly
preserve intrinsic geometry, edges may no longer be geodesics. We
instead use a texture mapping approach (Fig. 15). Given initial tex-
ture coordinates (computed via [Sawhney and Crane 2018]), we
compute barycentric coordinates for each texel covered by a fine
triangle. These coordinates are then tracked through the coarsening
process, a la Sec. 7.1. Following Sharp et al. [2019a] we assign a
greedy coloring to the coarse triangles; texels adopt the color of
their associated triangle. This visualization may not exactly depict
coarse lengths or areas, but faithfully represents the bijective map.
A possible alternative is to construct an explicit topological sub-
division, where edges need not be geodesics [Schmidt et al. 2020;
Takayama 2022], but which may enable more sophisticated attribute
transfer [Gillespie et al. 2021a, §4.3].
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Fig. 15. To visualize a coarse intrinsic triangulation on a mesh with texture
coordinates (left), we track the barycentric coordinates of each texel (center
left) through the simplification process (center right), and use coarse triangle
IDs to color the final texels (right).

8.2 Benchmark

We evaluated our method on about 6k manifold meshes from the
Thingi10k dataset [Zhou and Jacobson 2016]. For robustness exper-
iments we preprocess meshes via intrinsic Delaunay refinement
[Sharp et al. 2019a, §4.2] with a lower angle bound of 25°, pro-
viding more candidate locations for coarse vertices. Since some
meshes contain thousands of connected components, we normalize
input/output vertex counts by the number of components.

Performance. Fig. 16 plots the total cost of our method, includ-
ing decimation, maintaining a bijective map, and constructing the
prolongation operator P. Since each vertex removal is an O(1) op-
eration, we achieve near-linear scaling with respect to input size,
though for very large meshes the O(nlogn) cost of maintaining
a priority queue will ultimately dominate. In absolute terms, our
method decimates about 10,000 vertices per second.

Robustness. Our method fails only if no remaining vertex can be
removed, i.e., if (i) flattening would violate the triangle inequality or
(ii) flipping to degree-3 is not possible (Sec. 4). We hence quantify
robustness by coarsening as much as possible, then measuring the
ratio |V|/|V]. In Fig. 17 we successfully reduce 98% and 84% of
models down to 10% and 1% (resp.) of the input resolution, prior
to Delaunay refinement. Large ratios occur only for high-genus
models that cannot be significantly coarsened without modifying
global topology. On about 0.1% of meshes vertex removal failed due
to floating-point error; integer coordinates [Gillespie et al. 2021a]
may help to further improve robustness.

8.3 Measuring Distortion

To evaluate our method, we measure the para-
metric distortion of the bijective map ¢ : M —
M between the fine and coarse mesh—which
is distinct from the ICE metric used for coars-
ening. For each fine edge ij we first find an ap-
proximation fij of its length under ¢. Since all
fine edges are minimal geodesics in the extrin-
sic mesh, we assume this property is preserved
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Fig. 16. Since we use only greedy local operations, total cost is roughly
linear in both mesh size and percent reduction (including the cost to build
P). Left: increasingly fine subdivisions are coarsened to 1% of their initial size.
Right: a subdivision with 750k vertices is coarsened to various resolutions.
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Fig. 17. Our method can coarsen even difficult meshes down to a small
number of vertices. Here, 98% of Thingi10k meshes are coarsened to less
than 10% of their input size (left). The exception are very high-genus meshes,
which cannot be coarsened without changing the global topology (right).

under ¢ and compute the minimal geodesic distance between p;
and p; If both endpoints sit in the same coarse triangle abc, we
can simply measure the distance between image points p; := ¢ (i)
and p; := ¢(j) in a local layout of abc, computed via barycentric
coordinates. Otherwise, we compute geodesic distance using the
method of Mitchell et al. [1987]. Finally, for each fine triangle ijk we
use lengths lA,-j, fjk, £; to construct representative vertex positions
Pi:Pj> Pk € R2, via Sharp et al. [2021, §2.3.7]. Distortion relative to
input vertices p‘i), p(}, pz can then be quantified using any standard
per-triangle measure—we use the anisotropic distortion and area
distortion as defined by Khodakovsky et al. [2003, §2].

8.4 Comparison with Extrinsic Methods

Relative to past methods, the flexibility gained by working in the
larger space of intrinsic triangulations leads to smaller geometric
distortion on meshes of equivalent size. For instance, in Fig. 18
we coarsen a 28k bunny mesh down to 200 vertices with both the
method of Liu et al. [2021] and our method. Even on this highly
regular geometry we observe a modest reduction of both area dis-
tortion and anisotropic distortion. For more difficult triangulations,
or surfaces with lower intrinsic curvature (e.g., Fig. 1), we observe
more significant gains. As an extreme case, Fig. 19 coarsens a devel-
opable surface from [Verhoeven et al. 2022] via both QEM and ICE.
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Fig. 18. Even on an extremely nice triangulation of a highly regular surface
we see a reduction in distortion relative to past methods—owing to the
much larger space of intrinsic triangulations.
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Fig. 19. On surfaces with small extrinsic curvature, such as this mesh from
cloth simulation, we achieve dramatically lower error in surface area com-
pared to extrinsic methods like QEM.

% error

ICE

50% reduction 99% reduction

(failed)

[13ys dA1393(1q

input

(sano) 301

Fig. 20. Methods that rely on extrinsic information to construct a mapping
during coarsening can fail in the presence of self-intersections. Here, the
bijective shell method, which relies on extrinsic ray casting [Jiang et al. 2020,
§3.2], fails to coarsen below 50% of the input size. In contrast, our intrinsic
approach easily obtains an extremely coarse decimation.

Since coarse extrinsic edges are shortest paths in R, they underes-
timate intrinsic distances (hence areas); in contrast, intrinsic edges
are essentially embedded in the original surface, providing better
approximation of the original geometry.
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ifference

Fig. 21. For the same vertex budget as extrinsic methods like QEM, ICE
provides more accurate solutions for basic problems like solving a Pois-
son equation—seen here via smoother isolines that better approximate the
ground truth.

ground truth

distance

error

Fig. 22. Since geodesic distance is an intrinsic quantity, it is more accurately
approximated via intrinsic coarsening—here providing a 4x reduction in
relative error.

8.5 Geometric Algorithms

8.5.1 Partial Differential Equations. Better domain approximation
in turn improves the quality of solutions computed on coarse meshes.
For example, in Fig. 21 we coarsen a cloth simulation mesh down to
500 vertices with an extrinsic method ([Liu et al. 2021] using QEM
simplification) and our intrinsic method. We then solve a Poisson
problem on the coarse meshes and apply prolongation, yielding
more accurate results in the intrinsic case.

8.5.2  Single-Source Geodesic Distance. Geodesic distance is an in-
trinsic quantity, making it a natural fit for intrinsic coarsening. In
Fig. 22 we compare ICE to the extrinsic method of Lee et al. [1998]
by measuring the difference between the exact distance on the fine
input, and prolongated distances from the coarse meshes (both com-
puted via [Mitchell et al. 1987]); here ICE achieves a roughly 4x



Fig. 23. Intrinsic coarsening offers an attractive approach to approximating
single-source geodesic distance, here providing a three orders of magnitude

speedup for a fraction of a percent relative error.
i i 660.2 5

04s
(1650x)

ground truth

coarsened

Fig. 24. For a mesh with 6k vertices we obtain an all-pairs geodesic distance
matrix 1650x faster, while incurring only 1.4% relative error.

reduction in relative error. Fig. 23 illustrates the speed-accuracy
trade off of using ICE, here reducing cost by three orders of magni-
tude while introducing only ~ 1% relative approximation error.

8.5.3 All-Pairs Geodesic Distance. The benefits of an accurate in-
trinsic approximation become even more pronounced when approx-
imating the dense matrix D € RIVIXIVI of all pairs of geodesic
distances—a shape descriptor often used in correspondence and
learning methods [Shamai and Kimmel 2017]. We can compute a
low-rank approximation of D via

D = PDP",
where D is the coarse all-pairs matrix (computed again via [Mitchell

et al. 1987]). See for instance Fig. 24—here again we achieve several
orders of magnitude speedup, with only 1.4% relative error.

8.5.4 Riemannian Computational
Geometry. More broadly, standard
geometric quantities computed on
the coarse mesh provide excellent
approximations of the fine solu-
tion. For instance, in Fig. 25 we use
Mitchell et al. [1987] to compute a LY

geodesic Voronoi diagram on the coarsened

coarse mesh, yielding a near-perfect approximation at a tiny fraction
of the cost—such diagrams in turn provide the starting point for
remeshing and other applications [Ye et al. 2019]. Likewise, we can
dramatically reduce the cost of evaluating the discrete exponential

reference
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ground truth

coarse approximation

Fig. 25. Fast computation of geodesic distance in turn yields fast compu-
tation of other quantities—here we compute geodesic Voronoi diagrams
three orders of magnitude faster (2252x) than on the original mesh, while
misclassifying only 1% of fine vertices.

input adaptive coarsening heat kernel

&\V\:%,OW

Fig. 26. By coarsening more aggressively away from the point x, we better
resolve the exponential falloff in a heat kernel centered at x.

map over long distances (d la [Sharp et al. 2021, §2.4.2]), replac-
ing many small steps through fine triangles with a small handful
of ray-edge intersections, while arriving at nearly identical points
(see inset). Other classic algorithms, such as Steiner tree approxi-
mation [Sharp et al. 2019a, §5.1] could likewise be accelerated by
simply swapping out our coarse intrinsic mesh for the fine one.

8.6 Adaptive Coarsening

The local nature of our scheme makes it easy to adaptively coarsen
(or preserve) the mesh according to various geometric criteria. Here
we expand on the basic weighting strategy from Sec. 5.4.1.

8.6.1 Spatial Adaptivity. We can emphasize a region of interest by
prescribing spatially-varying masses m; on the fine vertices i € V;
regions where m; is small are then coarsened less aggressively. For
instance, Fig. 26 uses masses m; := 1/d2(i) (where dy is the distance
to x) to adapt the coarse mesh to the heat kernel centered at x.

8.6.2  Anisotropic Coarsening. Alternatively, we can emphasize im-
portant directions by non-uniformly scaling the input edge lengths
along directions of interest—such meshes are better suited to, e.g.,
solving PDEs with anisotropic coefficients. More explicitly, given
vectors u; at vertices, we scale each length ¢; by a factor (1 -17) +
%((ui -Eij)z + (u; -Eji)z), where €;; := e;j/||e;j|| € 7iM is the unit
tangent vector along edge ij, and the parameter 7 € [0, 1] controls
the strength of anisotropy. For instance, in Fig. 27 the vectors u; are
the (max or min) principal curvature directions, computed via the
method of Panozzo et al. [2010]. A challenge here, noted by Campen
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anisotropic coarsening
(max principal direction)

anisotropic coarsening

input (min principal direction)

Fig. 27. Anisotropic coarsening can be achieved by applying nonuniform
scaling to input edge lengths, here using principal curvature directions.

input constrained coarsening Poisson solve

/NV
constraints

Fig. 28. Fixing vertices during coarsening enables us to exactly preserve
boundary conditions and constraint curves when solving PDEs on surfaces.

et al. [2013, Section 4.1], is that a simple rescaling can violate the tri-
angle inequality, which in practice limits the strength of anisotropy.
How to robustly express anisotropic changes to the discrete metric
is an interesting question for future work.

8.6.3 Boundary Preservation. Finally, we can fix a user-specified set
of vertices in order to, e.g., exactly preserve boundary conditions for
a PDE. For instance, in Fig. 28 we fix vertices that encode Dirichlet
boundary conditions for a Poisson problem, accurately preserving
both the boundary data and the constraint curve.

8.7 Intrinsic Mesh Hierarchies

Mesh hierarchies are used throughout visual, geometric, and scien-
tific computing to accelerate solvers via, e.g., Cholesky precondi-
tioners [Chen et al. 2021], multigrid methods [Aksoylu et al. 2005;
Liu et al. 2021], or GPU acceleration Mahmoud et al. [2021] further
demonstrate the possibility of parallelizing geometry processing
with mesh hierarchies. Despite the fact that many of these appli-
cations need only intrinsic operators, these methods do not take
full advantage of the intrinsic setting. Our method can be used to
construct an intrinsic mesh hierarchy by simplifying the input to a
sequence of progressively coarser meshes—Fig. 29 shows one such
example. Using the prolongation matrices P between consecutive
levels, we can then build a surface multigrid method a la Liu et al.
[2021]. This intrinsic multigrid method is well-suited to algorithms
expressed in terms of discrete differential operators—even if they
involve extrinsic data—such as the modified mean curvature flow of
Kazhdan et al. [2012] (Fig. 30). In general, the additional flexibility
of working with intrinsic triangulations yields greater robustness
than previous, extrinsic methods, especially on low-quality input.
For instance, in Fig. 31 the method of Liu et al. [2021] fails to build
a valid mesh hierarchy; extrinsically refining the input via [Cignoni
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|V]=1,009,118

Fig. 29. We can build an intrinsic multigrid mesh hierarchy via repeated
coarsening, here reducing the vertex count by a factor 1/4 at each level.

extrinsic curvature flow

Fig. 30. Here we use our intrinsic multigrid scheme to accelerate the extrin-
sic curvature flow of Kazhdan et al. [2012], achieving a 20x speedup.

et al. 2008] preserves the geometry, but the solver now fails due to
low-quality triangles; global extrinsic remeshing enables the solver
to succeed, but yields a solution on a different domain than the
input. Our intrinsic approach easily succeeds on this example, since
(as noted in Fig. 1) it does not have to simultaneously juggle mesh
quality and element quality, and can rely on hard guarantees about
triangulation quality, as discussed in Sec. 6.3.

9 LIMITATIONS & FUTURE WORK

In order to keep computation cheap and lo-
cal, the ICE metric makes three basic approx-
imations. First, we approximate the mass
distribution of all “ancestor” vertices by con-
centrating their sum at their center of mass
(Sec. 5.1). This approximation is very much in the spirit of QEM,
which approximates the extrinsic distribution of all ancestors via
a single quadratic function. Second, when re-assigning mass to a
neighboring vertex, we approximate computation of the logarithmic
map via parallel transport along an edge (Sec. 5.3). This approxima-
tion has no analogue in QEM, and in the future it may be worth
considering other approximations—or at least performing an abla-
tion (relative to the exact log map) to better understand the impact of
this approximation on overall performance. Third, we approximate
the cost of redistributing curvature from a removed vertex i to its
neighbors j via the change in curvature at each vertex j (Eq. (9)). As
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Fig. 31. Obtaining a reliable surface mesh hierarchy for geometric multigrid
can be surprisingly challenging—often requiring global remeshing of the
geometry to obtain acceptable results. Our intrinsic scheme builds on estab-
lished guarantees, ensuring success even on extremely low-quality inputs.

noted in Sec. 5.4 a more principled (but also more expensive) alter-
native might be to directly compute the transport cost for a signed
measure, which still involves only the local vertex neighborhood.

Other aspects of the method could also be improved or gener-
alized. One significant question, noted in Sec. 7.1, is how to more
easily compute point correspondences without replaying (or re-
versing) coarsening operations. Techniques such as integer coordi-
nates [Gillespie et al. 2021a] might improve floating point robustness
on extremely poor-quality inputs (inset). Likewise, Ptolemy edge
flips [Gillespie et al. 2021b] might further improve robustness to
rare violation of the triangle inequality during flattening. Extending
prolongation to discrete differential forms [Desbrun et al. 2006] could
help accelerate a wider variety of geometry processing tasks [Crane
et al. 2013]. Similarly, it may prove valuable to consider how to
best perform simplification in a dynamic context—especially since
many natural deformations are near-isometric. Finally, a more care-
ful treatment of memory management and parallel data structures
might help bring performance closer to highly-optimized libraries
for extrinsic simplification [Kapoulkine 2019].
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