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A B S T R A C T   

Increasing soil organic carbon (SOC) content can promote soil health and crop yield. Organic amendment 
application is a common practice to accelerate soil carbon sequestration in cropland. The effects of different 
organic amendments (e.g., compost, slurry) on SOC are uncertain. Previous studies have investigated SOC 
response to environmental factors but not well addressed the effect of organic amendment characteristics (e.g., 
source, liquid/solid form, pH). Depending on 1,972 comparisons from 424 articles, we undertook a meta-analysis 
approach to explore organic amendment effects on SOC content and the related influence factors. The results 
show that organic amendment addition increased SOC by an average of 26.9% (or 5.1 Mg C ha−1). Specifically, 
organic amendments can enhance SOC over the long term (>20 years) or within 1.0 m depth. Organic-residue 
inputs increased more SOC in regions with an arid climate, alkaline soils, or no-mineral nitrogen application 
soils than the humid climate regions, acidic soils, and nitrogen application soils, respectively. Sewage sludge and 
municipal solid waste as organic amendments led to high SOC. The organic amendments’ pH and liquid/solid 
form caused significant differences in SOC accumulation. Amendments with a relatively low carbon content or 
rich nitrogen content have great potential to increase SOC storage. Our results illustrate the importance of 
amendment characteristics when estimating the potential of organic amendment addition to soil carbon accu
mulation. This study highlights that amendment application might be a sustainable strategy to increase soil 
carbon storage while promoting organic waste utilization.   

1. Introduction 

Increasing soil organic carbon (SOC) content improves soil quality, 
reduces carbon dioxide emissions (Lee et al., 2009; Pan et al., 2009), and 
promotes agricultural productivity (Lal, 2006). Average SOC values are 
relatively lower in cropland than in natural ecosystems due to the high 
turnover rate and agricultural management such as residue removal and 
tillage measures (Fujisaki et al., 2015; Tian et al., 2018; Ren et al., 
2020). When primary forests and pasture are converted to cropland, the 
corresponding SOC stocks on average are estimated to lose by 25–30% 
(Don et al., 2011) and 50% (Lal, 2018). Although many agricultural 
practices have been adopted to increase SOC in cropland, it is still far 

from saturation (Vaccari et al., 2011). Therefore, cropland has a sig
nificant potential to sequester carbon from the atmosphere and mitigate 
the warming climate (Liu et al., 2014; Prestele and Verburg, 2020). To 
achieve this potential, it is necessary to explore methods such as organic 
material input and estimate their effects on soil carbon accumulation 
(Bai et al., 2019). 

The organic amendment has been widely used to enhance soil 
fertility (Diacono and Montemurro, 2011; Zhao et al., 2021). Applying 
organic amendment could also increase crop yield and product quality 
and decrease environmental impacts (Watson et al., 2002). For example, 
manure addition helps increase crop productivity by an average of 7.6% 
and soil carbon sequestration by 17.7%; meanwhile, it can reduce 
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chemical fertilizer input and mitigate the environmental risks associated 
with agrochemicals (Du et al., 2020). Furthermore, adding organic 
material improves soil physicochemical and biological properties 
(Blanchet et al., 2016; Dai et al., 2019), including bulk density, aggre
gation (Bandyopadhyay et al., 2010), microbial compositions and ac
tivities, as well as macro-nutrients (nitrogen (N), phosphorus (P), and 
potassium (K)) supply potential and availability (Ozlu and Kumar, 
2018). The improvement of soil properties further promotes carbon 
accumulation and stabilization in soil. For instance, Blanco-Canqui et al. 
(2013) revealed that soils with low bulk density and large size of water- 
stable aggregates are favorable to organic carbon accumulation. Soils 
with a high proportion of clay plus silt fractions and inorganic nitrogen 
contents have a great capacity to store SOC (Zhao et al., 2006; Tian et al., 
2018). 

The advantages of organic amendment on SOC have been reported 
globally. Compost addition increased SOC content by 2.9%, compared to 
2.4% in control in clay soils of Ethiopia (Agegnehu et al., 2016a). 
Farmyard manure increased SOC by 6.4% against mineral fertilizer 
alone in loam soils of Swiss (Blanchet et al., 2016). In loam soils of 
China, NPK plus cow or pig manure increased SOC to 20.3 or 12.9 g C 
kg−1, respectively, while NPK alone increased to only 8.3 g C kg−1 (Zhou 
et al., 2020). Manure application is positively related to SOC over deep 
layers (Gami et al., 2009; Abrar et al., 2020) and for long periods (Hati 
et al., 2008; Wang et al., 2019). In contrast, some studies show that 
organic amendments also have adverse or no significant effects on SOC. 
For example, Maltas et al. (2018) showed that cattle slurry had no sig
nificant effect on SOC in the loam soils of Swiss. During the maize 
growing season, 40 Mg DM ha−1 biogas residue application decreased 
SOC compared to unadded control in top 30 cm clay loam soils (Kocyigit 
et al., 2017). In sandy loam soils of Denmark, various organic fertilizer 
input rates caused insignificant changes in SOC (Chirinda et al., 2010). 
Mineral fertilizer plus farmyard manure either increased or did not 
significantly change the SOC content in a 30-year study in Burkina Faso 
(Manna et al., 2005). These studies illustrate that organic amendment 
effects on SOC storage vary greatly with local management and envi
ronmental conditions. These various effects would cause uncertainties in 
estimating soil carbon dynamics at large scales. Accordingly, more 
studies are essential to investigating the responses of global soil carbon 
to organic input. 

The different effects of organic amendment on SOC are due to the 
following reasons. First, organic amendments directly promote SOC 
accumulation by increasing carbon inputs. Second, materials like straw 
left on the soil surface or incorporated into the soil can intensify soil 
fertility, which in turn stimulates SOC sequestration through strength
ened crop rhizodeposition (Liu et al., 2014). Third, organic amendments 
provide nutrients and energy for microorganisms and then facilitate 
their activities, which boost organic matter humification and decom
position (Fontaine et al., 2003), making carbon dynamics complicated. 
Finally, organic amendment effects on SOC are regulated by climate (e. 
g., precipitation and temperature), soil properties (texture, pH, etc.), 
characteristics of organic materials (carbon and nitrogen content, pH, 
etc.), and agricultural management (irrigation and cropping system, 
etc.) (e.g., Du et al., 2020; Emde et al., 2021). SOC stocks depend on the 
balance between the amounts of carbon sequestration and decomposi
tion. Organic amendment characteristics impact the magnitude and 
potential of material mineralization and related soil carbon dynamics. 
To the best of our knowledge, the effects of organic amendment char
acteristics on SOC have not been well addressed and need additional 
investigations. 

Estimating global SOC dynamics as influenced by organic amend
ments is challenging through in-situ or local-scale experiments. A meta- 
analysis is a robust tool to synthesize abundant observations from 
multiple studies and draw reliable conclusions about SOC responses to 
organic amendment at regional or global scales. A meta-analysis esti
mated a 17.7% carbon increment caused by manure application in China 
(Du et al., 2020). Combined manure and mineral fertilizer increased 

SOC by 9–39% compared with mineral fertilizer alone, according to a 
meta-analysis focused on cropland in China (Jiang et al., 2018). Chen 
et al. (2018) estimated the long-term (≥10 a) effects of manure and 
compost application on SOC at the global scale and found a 29% in
crease; however, the authors acknowledged that their results were not 
completely independent. A recent global synthesis reported that animal 
manure increased SOC stocks by 7.41 or 8.96 Mg C ha−1 compared to 
mineral fertilizer or unfertilized control, respectively (Li et al., 2021). 
Based on 27 comparisons, a meta-analysis concluded a 7.89 Mg CO2-eq 
ha−1 yr−1 increase in SOC after applying organic amendments to vine
yard agroecosystems (Payen et al., 2021). 

Studies are relatively scarce when comparing the effects of different 
organic materials on SOC. A global meta-study showed that organic 
amendments increased depth-weighted SOC amount by 24% (Crystal- 
Ornelas et al., 2021), whereas the types of amendments were unknown, 
and the amendment properties were not analyzed. A meta-analysis 
indicated that organic amendments significantly increased SOC con
tent by 23.5% in the Mediterranean, while the slurry effect was not 
significant (Aguilera et al., 2013). This result is obtained based on 
limited observations, with thirty-seven and three in organic amend
ments and slurry, respectively. Previous data syntheses have examined 
the influence of environmental conditions on SOC responses to organic 
amendments (e.g., Du et al., 2020). Nonetheless, few studies have paid 
attention to the impacts of organic amendment characteristics (e.g., 
liquid/solid form, carbon content, and pH) on soil carbon sequestration. 
For example, Maillard and Angers (2014) estimated the manure effect 
on SOC but had not shown the effect of liquid organic waste. Therefore, 
a comprehensive evaluation is necessary to refine the contribution of 
organic amendment addition to SOC and analyze the influence of other 
factors on carbon accumulation. 

This study aims to examine the SOC responses to organic amendment 
addition. The objectives were to: (1) quantify the influence of organic 
amendments on SOC and evaluate the impact of amendment charac
teristics, environmental conditions, and other agricultural managements 
on SOC sequestration; and (2) estimate the potential of SOC storage 
response to organic amendment inputs. 

2. Materials and methodology 

2.1. Data collection 

We searched peer-reviewed articles from the Web of Science pub
lished before August 2020. The search keywords were “organic waste” 
(“biogas digestate” or “biogas residue” or “compost” or “manure” or 
“organic waste” or “slurry”) and “soil organic carbon” (or SOC). Totally 
> 2000 articles were found, and 859 papers were left after filtering 
according to the abstract. We then selected studies by the following 
criteria: (a) experiments were carried out in the agronomic field or pot if 
placed in the field, but incubation and modeling results were excluded; 
(b) organic amendments were applied annually rather than one-time 
input; (c) experimental design had replications; (d) ancillary informa
tion such as soil types, climate, and other agronomic management 
practices, was provided besides treatments and related controls; and (e) 
observations were focused on cultivated grassland, horticultural land, 
and other cropland but not orchards because tree root and root- 
associated microbiota in the orchard are spatially heterogeneous, 
causing high heterogeneity of SOC content. Green manure was excluded 
because we explored the potential of organic waste utilization in this 
study. We ultimately extracted 1,972 comparisons from 424 articles 
conducted in 42 countries (Appendix A, Fig. 1). The experimental du
rations of these articles were from 1 to 105 years, with a median of 10 
years. Sampling depths were from the 0–5 cm to the 90–120 cm layers, 
while 64% of total comparisons were in the top 20 cm soil. Among all 
articles, 150 papers were conducted in China, 126 in India, 23 in the 
United States, and 12 in Canada. 

From the selected studies, SOC data were extracted from tables or 
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figures by GetData Graph Digitizer software (https://getdata-graph-dig 
itizer.com/download.php). SOC stock data were selected if both con
centration and stock were reported in articles. Other factors were also 
recorded to estimate their influences on SOC responses to organic ma
terials. These factors include organic amendment characteristics (type, 
carbon and nitrogen content, carbon/nitrogen (C/N) ratio, pH, liquid/ 
solid form, and material composition), experimental location (longitude 
and latitude), duration, climate conditions (mean annual temperature 
and precipitation), soil properties (pH, initial organic carbon content, 
total nitrogen content, C/N ratio, texture, and sampling depth), and 
other agronomic management practices (land type, land use, irrigation, 
crop residue, crop rotation, and chemical nitrogen input). The applica
tion rate of organic amendments was converted to net carbon input in 
Mg C ha−1 by multiplying organic amendment doses (Mg DM ha−1) with 
the carbon content (%). We did not transfer the rate of organic 
amendments into net SOC increase because it has not been mentioned in 
most studies. The material composition (e.g, lignin, polyphenol) of 
organic residues was unanalyzed due to limited data. Because precipi
tation can not represent the drought severity for lack of evapotranspi
ration, the aridity index (UNEP, 1997) was incorporated into the study 
and grouped as arid or humid. Missing data on the aridity index were 
filled in according to the location reported in the articles. All sites were 
grouped into cold, cool, warm, and hot zones based on mean annual air 
temperature. Soil texture was grouped depending on the USDA soil 
texture triangle. The land type was classified into cultivated grassland, 
horticulture land (vegetables and flowers), and other cropland (i.e., for 
grain, cotton, tuber, etc.). Land-use type was grouped into upland, rice 
paddy, and upland paddy. Single crop-fallow was regarded as a 
continuous cropping system. The rainfed condition was further divided 
into cropland with annual precipitation ≤ 800 mm and > 800 mm. The 
detailed classification of the influence factors is shown in Table 1. 

As an indispensable variable for the meta-analysis, the standard 
deviation was calculated based on the average coefficient of variation 
for the known data if either standard deviation or the standard error was 
not given (Bai et al., 2019). If available, the standard error was trans
formed into standard deviation. 

2.2. Statistical analyses 

2.2.1. Meta-analysis 
A random-effect model was used to evaluate variables that may 

explain the organic amendment effect on SOC. The logarithm of 
response ratio (lnRR) comparing organic amendment and the control 
was computed as equation (1) (Hedges et al., 1999): 

lnRR = ln(
Xt

Xc
) (1) 

where Xt and Xc are mean SOC values (mixed concentration and 
stock) in the treatment and control groups, respectively. The variance 
(v) of lnRR was calculated as: 

v =
SD2

t

ntX2
t

+
SD2

c

ncX2
c

(2) 

where SD and n are the standard deviations and sample sizes, 
respectively, either in treatment (t) or control (c) groups. 

The weighting factor (w’) was used to calculate the mean effect size 
(RR++), as the equations following: 

w’ =
1
v

n
=

1
vn

(3)  

RR++ =
ΣilnRR’

i

Σiw’
i

(4) 

where lnRR’ = w’lnRR, and i is the ith observation. 
The 95% confidence interval of RR++ was calculated to show sig

nificance. The effect size was significantly different between treatment 
and control if the 95% confidence interval did not overlap zero. The 
percent change was transformed by (eRR++ −1) × 100%. The fail-safe 
number was computed to evaluate the publication bias. Results were 
robust if the fail-safe number was > 5 × k + 10 (k—the number of 
comparisons) (Rothstein et al., 2006). The data analysis and graphs were 
performed with “metafor” package (https://metafor-project.org/doku. 
php/) in R (R Core Team, 2021). 

2.2.2. Structural equation model 
A structural equation model was used to evaluate how the factors 

influence SOC stocks. The conceptual model was estimated by the ratio 
of chi-square to degrees of freedom < 3, comparative fit index (CFI >
0.9), standardized root mean square residual (SRMR < 0.1), and root 
mean square error of approximation (RMSEA < 0.05). The standardized 
total effects were calculated by adding up all direct and indirect path
ways between each factor and SOC stocks. The tests were performed 
using Amos (version 23.0, Chicago: IBM SPSS). 

Fig. 1. Location of the study sites included in this meta-analysis (n = 247).  
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3. Results 

3.1. Organic amendment effects on SOC and associated environmental 
influence 

Organic amendment input significantly increased SOC storage by 
26.9 ± 0.7% (95% confidence interval, Fig. 2) or enhanced SOC stocks 
by an average of 5.1 ± 0.4 (95% confidence interval) Mg C ha−1. Manure 
and compost, the two main types used globally, increased SOC stocks by 
4.8 ± 0.5 and 5.6 ± 0.9 (95% confidence interval) Mg C ha−1, 
respectively. 

Results suggest that organic amendment increased SOC by 40.2% in 
warm regions, compared with 23%–25.6% in other zones (Fig. 2). The 
effect size was positively related to mean annual precipitation when 
increasing from < 400 mm to 800–1200 mm, whereas it was signifi
cantly low in areas with precipitation > 1200 mm. Aridity strongly 
influenced organic amendment effects on SOC. Organic input increased 
SOC by 32.4% in dry regions and 23.6% in humid areas (Fig. 2). 

Organic material input increased SOC by 27.4% in very acidic soil 
(Fig. 3). SOC increment was positively related to pH when ranging from 
acidic to alkaline soil, while the differences were statistically significant. 

Soils with a lower initial carbon content had a higher SOC seques
tration potential. SOC increment in the level of initial carbon < 6 g C 
kg−1 (34.2%) was twice as much as in the level of 12–20 g C kg−1 or >
20 g C kg−1 (Fig. 3). When initial carbon was 6–12 g C kg−1, organic 
amendments increased SOC by 30%. The maximum effect size (46.1%) 
was at the lowest level of soil total nitrogen (<0.75 g N kg−1, Fig. 3). 
However, the differences in SOC increment were not significant when 
total nitrogen varied from 0.75 to > 2 g N kg−1. Organic amendment 
addition increased SOC by 50.5% in soils with a C/N ratio > 20, fol
lowed by 31.1% and 30.6% in soils with a C/N ratio of 10–20 and < 10, 
respectively. 

Soil texture regulated the effect of organic amendments on SOC. 
Organic amendments increased SOC by 33.2% in coarse-textured soils, 
compared to 24.5% and 20.2% in fine- and medium-textured soils, 
respectively (Fig. 3). 

Organic amendments enhanced SOC over the different soil depths, as 
shown in Fig. 3. SOC derived by organic input was 40.7% in the 0–20 cm 
and 27.1% in the topsoil within 10 cm (Fig. 3). The effect size was 18.7% 
in the 0–30 cm and 12.9% in the upper 40 cm depth, and reached 21.2% 
in the 1.0 m depth. The greatest increment in SOC was in the upper 70 
cm depth (81%), which should be carefully interpreted considering the 
limited observations and insignificant effect. 

3.2. Amendment properties influencing organic input effects on SOC 

Our results showed that all types of organic amendments signifi
cantly increased SOC, while their differences were significant (Table 2). 
Sewage sludge, a by-product of the waste-water treatment, greatly 
increased SOC by 81% (Fig. 4). Municipal and household solid waste 
increased SOC by 52.9%. Manure and compost had similar contributions 
to SOC (26.4% vs. 28.7%), whereas the combined use of manure and 
compost can increase SOC by 37.1% (Fig. 4). We estimated the influence 
of manures from different animal species on SOC. Results showed that 
sheep manure had the best performance and increased SOC by 32.7%, 
followed by manure from pigs, cattle, poultry, and horses, with the effect 
size of 29.1%, 27.2%, 23.1%, and 17.5%, respectively (Fig. B.1). Press 
cake such as oilseed filter cake caused a 24% increment in SOC. Diges
tate, slurry, and poultry litter enhanced SOC between 11.9% and 14.8%. 

Table 1 
Categories are grouped to describe the environmental conditions, organic 
amendment (OA) characteristics, and management practices. SOC, soil organic 
carbon; MSW: municipal and household solid waste; N, nitrogen. Soil depths, 
except 0–100 cm, were not accumulated additionally and exactly categorized 
according to the depth given by the articles. For example, neither 0–10 cm nor 
0–20 cm was added to 0–30 cm, etc. The layer of 0–100 cm included 0–80, 0–90, 
and 0–100 cm due to limited observations. MAAT: mean annual air temperature; 
MAP: mean annual precipitation.  

Factors Categories    

Climate 
conditions     

MAAT (◦C) Cold (<5) Cool (5–10) Warm (10–20) Hot (>20) 
MAP (mm) <400 400–800 800–1200 >1200 
Aridity index Arid 

(≤0.65) 
Humid 
(>0.65)   

Soil properties     
pH Very acid 

(<5) 
Acid (5.1–6) Neutral 

(6.1–7.9) 
Alkaline 
(>8) 

Initial SOC (g/ 
kg) 

< 6 6–12 12–20 > 20 

Initial total N (g/ 
kg) 

< 0.75 0.75–1.5 1.5–2 > 2 

Carbon/nitrogen < 10 10–20 > 20  
Texture Coarse Medium Fine  
Depth (cm) 0–10 0–20 0–30 ~ 0–70 0–100 
OA 

characteristics     
Types Cake Compost Manure Digestate  

Litter MSW Sewage sludge Slurry 
Carbon content 

(g/kg) 
< 100 100–200 200–500 > 500 

N content (g/kg) <10 10–20 20–50 > 50 
Carbon/nitrogen < 10 10–20 20–50 > 50 
pH Very acid 

(<5) 
Acid (5.1–6) Neutral 

(6.1–7.9) 
Alkaline 
(>8) 

Input rate (Mg 
C/ha) 

0–1 1–2 2–5 5–10  

10–20 > 20   
Liquid/solid 

form 
Solid Liquid   

Management 
practices     

Land types Cropland Grassland Horticulture 
land  

Land use Upland Paddy Upland-paddy  
N fertilizer (kg 

N/ha) 
No N (0) Low (<100) Medium 

(100–200) 
High 
(>200) 

Crop rotation Rotation Monoculture   
Crop residue Returned Removed   
Irrigation Yes No (<800 

mm) 
No (>800 mm)  

Duration (year) Short (1–5) Medium 
(6–20) 

Long (>20)   

Fig. 2. Responses of soil organic carbon (SOC) to organic amendments input, 
shown as the whole dataset of SOC observations and the effects of climate on 
SOC response ratio. Numbers in the second column show the sample sizes. Error 
bars represent 95% confidence intervals. Different lowercase letters indicate the 
significant level of p < 0.05 in each category. MAAT: mean annual air tem
perature; MAP: mean annual precipitation. 
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Soil carbon sequestration was generally regulated by organic carbon 
and total nitrogen content in organic amendments. The differences in 
SOC increment were not significant regarding the different carbon 
content levels in organic amendments (Table 2). The effect size varied 
between 25.5% and 28% when carbon content in organic amendments 
was < 500 g C kg−1 (Fig. 4). However, SOC increased by only 18.7% if 
carbon content was > 500 g C kg−1. Total nitrogen content in organic 
amendments caused significant differences in the effect size (p < 0.001, 
Table 2). Organic materials with rich nitrogen content (>50 g N kg−1) 
significantly increased SOC by 39.7% (Fig. 4). The effect size varied 
from 29.2% to 22% when nitrogen content was < 50 g N kg−1. Organic 
amendment application may increase SOC by 30.3% if its C/N ratio was 
20–50. SOC increment was almost equal when the C/N ratio of the 
organic amendment was between 10 and 20 and > 50. 

Organic amendment pH significantly influenced SOC storage. Very 
acid and acid amendments increased SOC by 73.4% and 74.1%, 
respectively, which were two times larger than SOC increased by neutral 
or alkaline amendments (Fig. 4). 

Soil organic carbon generally increased with the increasing input 
rate of the organic amendments. The largest input rates (>20 Mg C ha−1) 
caused the strongest SOC accumulation (74.4%, Fig. 4). The effect size 
was nearly equal when organic waste was applied at < 1 and 1–2 Mg C 
ha−1. Both liquid and solid organic amendments noticeably increased 

SOC, and the promotion range displayed a certain difference. More SOC 
was accumulated by solid (27.9%) than liquid organic amendments 
(18.5%) (Fig. 4). 

3.3. Effects of agricultural managements and duration on SOC 

Organic amendments significantly promoted SOC uptake by 27.2% 
in cropland for grain, cotton, tuber etc., followed by 21% in horticulture 
land and 18.4% in cultivated grassland (Fig. 5). The effect size was 27% 
in upland soil, 20.9% in paddy soil, and 27.2% in upland-paddy soil; 
however, the difference was not significant (p = 0.0862). Mineral ni
trogen addition limited SOC increment compared to zero nitrogen input 
(Fig. 5). Organic input increased SOC by 35.6% in no-mineral nitrogen 
input soils, approximately two times larger than the increment with low- 
level nitrogen addition (17.2%). The effect sizes had no significant dif
ference between medium-level and high-level nitrogen addition (23.7% 
vs. 25.7%). 

Organic amendments increased SOC in rotational cropping systems 
more than in monoculture systems, with 28.1% and 24.6%, respectively 
(Fig. 5). Residue removal stimulated carbon accumulation, with a 32.7% 
increment against 18.9% in residue retention conditions (Fig. 5). The 
difference in SOC response to organic amendments between irrigation 
and rainfed was not significant (p = 0.3584). The effect size was 29.8% 
in irrigated areas, compared to 33% and 25.5% in rainfed regions with 
mean annual precipitation > 800 mm and < 800 mm, respectively 
(Fig. 5). 

Organic amendment effect on SOC sequestration varied with exper
imental durations. The effect size was 32.8% in the long-term experi
ments, followed by 25.8% in short-term studies and 23.6% in medium- 
term observations (Fig. 5). Specifically, manure, compost, and slurry 
addition increased SOC by 43.1%, 22.3%, and 14.4% over the long term 
duration (>20 years), respectively (Fig. 6). 

4. Discussions 

4.1. Overall effects of organic amendments on SOC 

Many studies have certified that organic manure promotes SOC 
accumulation, but the results vary greatly. Globally, SOC content 
increased by 36.2% with manure plus chemical fertilizer and 15.4% 

Fig. 3. Effects of soil properties (pH, initial organic carbon content, total ni
trogen content (TN), ratio of carbon to nitrogen (C/N), texture, and depth) on 
the responses of soil organic carbon (SOC) to organic amendments input. 
Numbers in the second column show the sample sizes. Error bars represent 95% 
confidence intervals. Data in 0–100 cm includes observations in 0–80 cm, 0–90 
cm, and 0–100 cm. Different lowercase letters indicate the significant level of p 
< 0.05 in each category. 

Table 2 
Between-group variability (QM) of the variables controlling the effects of organic 
amendments (OA) on soil organic carbon (SOC). MAAT: mean annual air tem
perature; MAP: mean annual precipitation.   

Variables df QM p 

Climate Aridity 1  35.85 <0.0001  
MAAT 3  54.96 <0.0001  
MAP 3  13.6 0.0035 

Soil properties pH 3  59.83 <0.0001  
Initial SOC 3  53.76 <0.0001  
Total nitrogen 3  71.74 <0.0001  
Carbon/nitrogen 2  5.39 0.0675  
Texture 2  54.85 <0.0001  
Depth 7  77.79 <0.0001 

OA characteristics Types 8  68.59 <0.0001  
Carbon content 3  6.07 0.1082  
Nitrogen content 3  20.55 0.0001  
Carbon/nitrogen 3  7.76 0.0512  
pH 3  13.45 0.0038  
Application rate 5  39.31 <0.0001  
Liquid/solid form 1  10.9 0.001 

Management practices Land types 2  11.2 0.0037  
Land use 2  4.9 0.0862  
Nitrogen addition 3  82.2 <0.0001  
Crop rotation 1  5.3 0.0214  
Crop residue 1  33.77 <0.0001  
Irrigation 2  2.05 0.3584  
Duration 2  28.09 <0.0001  
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with chemical fertilizer alone (Han et al., 2016). A synthesis study by 
Luo et al. (2018) found that the amount of SOC in organically amended 
soils was 38% higher than in mineral-fertilized soils. Our result (26.9%) 
supports the meta-analysis of Chen et al. (2018), who suggested that 
organic amendments increased SOC by 29%. Similarly, Aguilera et al. 
(2013) found a 23.5% increase in SOC induced by compost, manure, and 
agro-industrial wastes in Mediterranean cropping systems. Li et al. 
(2021) conducted a global synthesis and determined that manure input 
increased SOC stocks by 7.41 Mg C ha−1 or 8.96 Mg C ha−1 (vs. mineral 
fertilized or unfertilized reference, respectively). Accordingly, Maillard 
and Angers (2014) concluded that manure addition increased average 
SOC stock by 5.6 or 9.4 Mg C ha−1. These published results are higher 
than ours (4.8 Mg C ha−1). The discrepancy in the outcomes may be due 
to the organic amendment differences in various studies and the 
magnitude of dataset size since the results were calculated by the same 
method. Our results spotlight organic amendment potential for SOC 
accumulation and emphasize the possibility of mitigating climate 
change via cropland management. 

4.2. Climate conditions and soil properties 

4.2.1. Climate conditions 
Climate conditions alter the size and composition of the soil carbon 

pool, resulting in either negative or positive effects on carbon stocks 
(Luo et al., 2017). Precipitation has a positive relationship with soil 
carbon, while the temperature is negatively related to SOC in Europe 
(Rusco et al., 2001). Our results agree with Luo et al. (2017), who 
identified that precipitation was more important than temperature in 
influencing SOC dynamics. Drought can inhibit the loss of soluble 
organic carbon and reduce substrate availability to microorganisms 
(Davidson and Janssens, 2006), leading to a relatively high carbon 
accumulation. Moreover, aridity indirectly affects SOC stock by nega
tively affecting soil bulk density (Fig. 7) and causing low production. 
Precipitation promotes crop growth and biomass accumulation (espe
cially in semi-arid and arid land), thus representing a large amount of 
residue retention and carbon input (Luo et al., 2017). However, humid 
conditions would accelerate organic matter mineralization and SOC loss 
by stimulating microbial activity (Dong et al., 2015; David et al., 2018). 
A lower increment in carbon over humid areas than in arid areas (Fig. 2), 
in addition to some periods of anaerobiosis, may be due to the fast 
mineralization of organic amendments. 

Temperature impacts soil carbon dynamics by adjusting microbial 
community compositions and activities, which regulate the tradeoff 
between carbon accumulation and mineralization. Organic amendment 
decomposition and carbon mineralization are slow in cool areas due to 

Fig. 4. Effects of amendment type, carbon content, nitrogen content, ratio of 
carbon to nitrogen (C/N), input rate, pH, and liquid/solid form on the responses 
of soil organic carbon (SOC) to organic amendments. Numbers in the second 
column show the sample sizes. Error bars represent 95% confidence intervals. 
Different lowercase letters indicate the significant level of p < 0.05 in 
each category. 

Fig. 5. Effects of agronomic management practices (land type, land use, min
eral nitrogen input, crop rotation, residue, and irrigation) and experimental 
duration on the responses of soil organic carbon (SOC) to organic amendments 
input. Grassland only includes cultivated grassland for feeding livestock; hor
ticulture land is the land for flowers and vegetables; and cropland represents 
land for other crops, including cereal, tuber, cotton, etc. Rainfed < 800 and >
800 are the annual precipitation lower and higher than 800 mm under rainfed 
condition, respectively. Numbers in the second column show the sample sizes. 
Error bars represent 95% confidence intervals. Different lowercase letters 
indicate the significant level of p < 0.05 in each category. 
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reduced microbial activity. Conversely, although organic substrate 
addition increases crop residue and carbon accumulation in temperate 
and tropical regions, the elevated temperature would stimulate micro
bial metabolic processes and accelerate carbon mineralization (Bååth, 
2018). In this study, the effect size was largest in warm areas (10–20 ◦C) 
and had no significant differences over cold, cool, and hot areas, 
implying that mean annual air temperature is not a key factor for carbon 
storage. This finding is similar to Koven et al. (2017), who revealed no 
clear relationship between mean annual air temperature and soil carbon 
in the 1.0 m soil depth at the global scale. 

4.2.2. Soil properties 
Compared with acidic soils, very acidic soils favor carbon accumu

lation once the organic amendment is applied (Fig. 3). The similar effect 
size between very acidic soils and neutral soils (27.4% vs. 25.6%) sug
gests that the regulation mechanisms of soil pH effect on SOC increment 
are complicated. First, soil pH alters SOC decomposition by influencing 

biotic and abiotic factors, such as microbial activity and carbon avail
ability (Bai et al., 2019). Soil acidification drives SOC sequestration by 
increasing mineral particle adsorption (Zhang et al., 2020b) and 
depressing microbial mineralization (Chen et al., 2016). Second, 
increasing soil pH enhances bacterial biomass and declines fungi 
biomass (Wan et al., 2015), resulting in uncertainties in SOC dynamics. 
Third, organic inputs may alter soil pH, which in turn causes differences 
in SOC decomposition between treated and untreated soils (Li et al., 
2021). Finally, soil pH influences SOC stock indirectly through an effect 
on initial organic carbon (Fig. 7). Our study confirmed that the potential 
for carbon storage is great in alkaline soils but relatively tiny in acidic 
soils. The reason is probably that elevated pH restricts microbial activity 
and carbon turnover rate, while low pH stimulates the decomposition of 
organic amendments and native soil carbon. However, microbial 
mineralization of SOC may also be limited by lower soil pH (e.g., < 5). 

Initial SOC concentration directly and positively impacts SOC stocks 
derived by organic input (Fig. 7). According to meta-analyses conducted 

Fig. 6. Changes of organic amendments on soil organic carbon (SOC) under different experimental durations. The changes are quantified as the percent changes in 
organic amendments treatments compared to the unamended control. Lines and shaded areas represented overall mean ± 95% confidence intervals that were 
predicted based on regression against experimental duration. 

Fig. 7. Structural equation modelling for the impact 
of significant variables on soil organic carbon (SOC) 
stocks. Chi-square/degrees of freedom = 0.98, p =

0.42, comparative fit index (CFI) = 1, root mean 
square error of approximation (RMSEA) = 0, and 
standardized root mean square residual (SRMR) =

0.03. The black and red lines represent positive and 
negative effects, respectively. The line width is pro
portional to the strength of the standardized path 
coefficient. *p < 0.05, **p < 0.01, ***p < 0.001.   
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in China, the largest and lowest manure-increased SOC content has been 
reported when initial soil carbon is 6–12 g C kg−1 and > 20 g C kg−1, 
respectively (Ren et al., 2018; Du et al., 2020). Soils with higher initial 
carbon content have a relatively lower capacity to adopt exogenous 
carbon input (Gulde et al., 2008). Moreover, excessive carbon input 
cannot further promote accumulation if the soil has a low soil organic 
carbon saturation deficit (Ren et al., 2018). Greater carbon increase in 
soils with lower initial carbon content (Fig. 3) suggests that massive 
organic amendment inputs are required to improve and supplement 
carbon-poor cropland. Nitrogen enrichment may be in favor of soil 
carbon accumulation. A meta-analysis found that manure greatly 
increased SOC when initial soil nitrogen was > 2 g N kg−1 (Du et al., 
2020). Conversely, the effect size was significantly high in soils with 
poor initial nitrogen content (<0.75 g N kg−1) in our study. This result 
suggests that soil with poor nitrogen would limit SOC accumulation and 
has great potential to store carbon if organic amendments are applied. 

Soil carbon capacity is correlated with soil fine fraction (Emde et al., 
2021). For instance, increasing clay content is beneficial to store more 
soil carbon (Dal Ferro et al., 2020). Organic addition can either increase 
or decrease silt and clay content (Sleutel et al., 2006), making the 
changes in soil carbon complicated. Carbon is easily degraded in coarse- 
textured soils due to lacking microaggregate protection. Thus, coarse 
soils have a relatively high potential for carbon sequestration. Our study 
found the highest SOC accumulation in coarse-textured soils (33.2%) 
instead of in medium or fine-textured soils. Moreover, Sleutel et al. 
(2006) identified that manure increased coarse free particulate organic 
carbon but declined carbon in silt plus clay-associated soil fractions. 
Although carbon increment is high in coarse soils, its degradation is 
rapid. Future studies are necessary to estimate whether there is a net 
increase in carbon stocks in coarse-textured soils after the long-term 
addition of organic amendments. 

Added organic amendments are usually incorporated into soils by 
tillage. This mixed depth is within the plow layer (~30 cm). Organic 
amendments thus increase SOC content in the upper layers. Our results 
indicate that organic amendments could also enhance SOC in deeper 
soils (Fig. 3). Besides direct input, organic substrate addition promotes 
biomass yield, leading to great carbon accumulation. Root litter and 
exudates and dissolved carbon are the sources of subsoil carbon 
(Michalzik et al., 2001). Root carbon is stable due to the recalcitrance of 
tissues (Rumpel and Kögel-Knabner, 2011). In addition, Abrar et al. 
(2020) found higher microbial-derived carbon compounds in subsoils 
than in topsoil. We highlight that 1.0 m depth should be considered 
when estimating SOC storage dynamics response to organic material 
input and climate warming. 

4.3. Organic amendment properties 

Carbon accumulation varied with organic amendment types, as we 
supposed. Sewage sludge and municipal solid waste performed better in 
increasing SOC than others. With the same application rate, sewage 
sludge increased more SOC than municipal solid waste compost or 
farmyard manure (Hemmat et al., 2010). Sewage sludge can reduce soil 
bulk density and increase water-stable aggregate content (Zuo et al., 
2019), both of which help store SOC. The combined use of manure and 
compost should be extended to greatly accumulate carbon in cropland 
due to the better performance than each alone (Fig. 4). The effect size of 
the slurry was relatively low (14.4%). Slurry addition cannot signifi
cantly change SOC over 8–15 years (Yaguee et al., 2012; Balota et al., 
2014; Domingo-Olive et al., 2016). One possible explanation is that 
slurry is easily decomposed and promotes microbial biomass and 
enzyme activities (Murugan et al., 2013; Balota et al., 2014), which in 
turn accelerates soil carbon mineralization. 

Manure-caused SOC accumulation depends on livestock species. 
Cattle manure increased more SOC stock than pig manure, but the dif
ference was not significant (Maillard and Angers, 2014; Li et al., 2021). 
Cattle manure can enlarge the macro-aggregate fractions, which hold 

more SOC content than micro-aggregates (Triberti et al., 2016). 
Conversely, SOC enhanced by pig manure was slightly larger than that 
by cattle manure in our study, although the difference was not signifi
cant (Fig. B.1). The difference between the two studies (i.e., Maillard 
and Angers, 2014; Li et al., 2021) and ours could be attributed to the 
different analysis methods and data sources, considering that the C/N 
ratio is not significantly different (p = 0.36 in our database) between 
cattle manure and pig manure. Organic carbon content in sheep manure 
could be as high as 27.9% (Hu et al., 2019) or 35.7% (Tokarski et al., 
2018). This probably explains the highest SOC increased by sheep 
manure. 

Carbon and nitrogen content should be considered if enlarging the 
SOC pool by organic amendment input. Organic amendments with a rich 
carbon content (>500 g C kg−1) caused a low effect size (Fig. 4). The 
effect size was high when carbon content in organic materials was <

500 g C kg−1. This probably shows that 500 g C kg−1 is a threshold that 
determines the ability of organic amendment to increase SOC storage. 
One possibility is that part of the materials derived from animal excre
ment has been decomposed before addition and a large proportion of 
recalcitrant organic compounds retain in manure (Thelen et al., 2010). 
The effect size decreased when the levels of nitrogen content in the 
amendments increased from < 1 to 2–5 g N kg−1 (Fig. 4). Nitrogen is 
easily degraded during organic amendment storage. Yang et al. (2011) 
reported a 26% nitrogen loss during manure storage and land applica
tion. This loss reduces fertility availability to crop growth and residue 
returned in soil. Nitrogen input by organic manure can increase soil 
microbial abundance and activities (Xu et al., 2019; Tang et al., 2020), 
which may boost soil carbon mineralization. It is necessary to investi
gate why rich carbon content in organic amendment reduces SOC 
accumulation, but great nitrogen content stimulates SOC storage. 

Solid amendments showed better performance in SOC sequestration 
than the liquid (Fig. 4). First, compared with solid materials, slurry 
easily spreads over the soil surface due to its fluid nature, increasing the 
contact area between soil particles and liquid organic waste (Entry et al., 
2004). This spread area may accelerate slurry decomposition because of 
slurry surface-air interaction, then decreasing slurry contribution to soil 
carbon storage. Second, most SOC is fixed or stocked in aggregates, but 
binding agents play a crucial role in soil aggregation. Transient or 
temporary binding agents, mainly from the slurry, are in favor of 
cementing from micro-aggregates to macro-aggregates. Still, persistent 
binding agents, such as humic substances and polyvalent metal cationic 
complexes, make clay, silt, and some free soil particles into micro- 
aggregates (Six et al., 2004). More liable and less highly processed 
SOC is contained in the macro-aggregates than micro-aggregates, 
increasing the probability of SOC losses. Third, if applied with an 
inappropriate method or time, especially after crop harvest, no vegeta
tion cover would accelerate slurry resource loss. Therefore, considerable 
ammonia and nitrous oxide are released into the atmosphere, and nitrate 
leaches into groundwater accompanied by liquid slurry (Maris et al., 
2021). Nitrogen loss is unfavorable to soil carbon sequestration. Finally, 
breeding species (cattle, pig, sheep), scales (small, medium, or large), 
methods (free or intensive), manure and slurry cleaning technology (dry 
collection or water housing), and livestock excrement processing 
methods (anaerobic digestion or aerobic aeration) all determine the 
composition and properties of experimental slurry, resulting in different 
outcomes to soil carbon accumulation. 

4.4. Other agronomic management practices 

Soil carbon accumulation is limited by nitrogen supply. Nitrogen 
addition accelerates biomass production, implying more residue reten
tion. Nitrogen application also stimulates microbial metabolism 
(Börjesson et al., 2012), promoting soil respiration and carbon miner
alization and declining SOC storage. On the contrary, high-level nitro
gen input may also limit soil microbial and enzyme activities (Sommer 
and Møller, 2000), resulting in low organic matter decomposition and 
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then relatively high soil carbon accumulation. It can be speculated that 
the highest increment in SOC without nitrogen fertilizer addition (Fig. 5) 
is due to weak microbial activities. When comparing the effect of ni
trogen addition rate on carbon, organic amendments increased more soil 
carbon with the increasing mineral nitrogen input (Fig. B.2), suggesting 
that mixing mineral nitrogen with the organic amendment is superior to 
carbon increment than amendment alone. 

Rotational cropping systems help sequestrate carbon (Fig. 5). Unlike 
monoculture, rotational cropping systems can provide substantial car
bon input because of the greater belowground allocation of biomass 
(Van Eerd et al., 2014). Legume crops, which are widely planted in 
rotational systems, increase soil nitrogen and biomass accumulation, 
resulting in massive carbon storage. SOC derived from manure is higher 
in legume-grain rotations than in continuous winter wheat, regardless of 
mineral nitrogen fertilizer input or not (Hao et al., 2017). Farmers are 
accustomed to adding organic manure as base fertilizer before the 
sowing time of each crop. This management presents better conditions 
for carbon accumulation through enhancing nutrient utilization effi
ciency and producing residue compared to the application of only once a 
year. Besides, crop residue with a high C/N ratio is beneficial to SOC 
storage. The positive effect is noticeable in rotational systems because of 
the strong probability of crop residues with a high C/N ratio. 

Crop residue retention increases soil carbon through direct input. 
Residue return helps form soil macroaggregates (Benbi and Senapati, 
2010), which provide physical protection of SOC from mineralization. 
Saikia et al. (2015) observed that farmyard manure increased more SOC 
when residue was returned than removed. Similarly, manure plus 
chemical nitrogen increased SOC to 18.9 g C kg−1 with straw incorpo
ration and 18 g C kg−1 without addition (Shen et al., 2007). However, 
residue removal rather than retention was superior to SOC accumulation 
in this study (Fig. 5). Soils with residue removal have relatively low 
carbon storage and would rapidly accumulate carbon once the organic 
amendment is added. The residue decomposition process is complicated 
and controlled by biogeochemical and biophysical conditions (Bai et al., 
2019). For example, residue decomposition consumes nitrogen, which 
may impact crop growth and following carbon accumulation. The 
grinding degree and applying rate or time also influence residue 
decomposition, bringing uncertainties in soil carbon variation. 

Irrigation did not noticeably alter the effect of organic amendments 
on SOC (Table 2). Furthermore, different levels of precipitation caused a 
certain but not significant difference in the effect size in rainfed areas 
(Fig. 5). With the same cattle manure input, results from Caron et al. 
(2012) showed a negligible difference in SOC between irrigated (51.2 g 
C kg−1) and non-irrigated (50.9 g C kg−1) clay loam soils. The insig
nificant change in SOC between rainfed and irrigated fields is due to the 
following reasons. First, irrigation increases SOC stocks by promoting 
litter and root production and inhibits carbon decomposition by 
increasing soil moisture (Entry et al., 2004). Second, irrigation methods, 
which were not discussed in our study because of no detailed informa
tion, strongly influence SOC sequestration. SOC increased when sprin
kler irrigated and declined when drip irrigated, while had no variation 
when flood/furrow irrigated over the full 30 + cm profile (Emde et al., 
2021). Third, SOC increment in rainfed land can be owed to extra annual 
carbon input than required to maintain organic carbon balance (Kundu 
et al., 2007). Finally, SOC mineralization is slow in rainfed croplands 
because of limited microbial activities (Yemadje et al., 2017). Further 
analysis indicated that in contrast to rainfed, irrigation restricted carbon 
accumulation in humid areas but increased carbon in arid regions 
(Fig. B.3). 

4.5. Limitations and implications 

Organic amendment application increased SOC under various con
ditions as we mentioned above. All results were robust when identifying 
publication bias (Table B.1). The material composition of organic 
amendments, which determines their decomposition process to some 

extent, has not been discussed because of the short dataset. For example, 
lignin content was given by only 22 comparisons from 5 articles, and 
thus can not be further classified to clarify its influence on SOC incre
ment. Besides, the effect size of very acidic and acidic amendments 
should be carefully elucidated due to the limited observations. 

Organic amendment decomposition releases more greenhouse gases 
than chemical fertilizer (Agegnehu et al., 2016b; Afreh et al., 2018). 
Greenhouse gas emissions may offset the advantages of organic 
amendments to soil carbon sequestration. Meta studies showed that 
manure application significantly increased N2O emission by 32.7% 
against synthetic nitrogen fertilizer alone (Zhou et al., 2017) and 
insignificantly increased global warming potential by 118% (Shakoor 
et al., 2021). Another meta-analysis revealed that fully substituting 
fertilizer with manure did not alter CH4 and N2O emissions in upland, 
whereas it significantly increased CH4 (48–82%) and decreased N2O 
(34%) in paddy rice soils (Zhang et al., 2020a). Xia et al. (2017) con
ducted a global analysis to estimate the net global warming potential 
(showing as CO2 unit) after substituting manure for fertilizer, finding 
that net global warming potential was –0.9 and 0.15 kg CO2 ha−1 yr−1 

per kg manure-C ha−1 yr−1 in the upland and paddy field, respectively. 
Their result indicates that substituting manure for chemical fertilizer 
makes upland a carbon sink and paddy field a carbon source. We 
calculated the difference in SOC between organic amendment treatment 
and corresponding control in each comparison. Results were negative in 
124 comparisons and zero in 25 comparisons, indicating a negative ef
fect and no effect of organic amendments on SOC, respectively. How
ever, 92% of total comparisons showed a carbon accumulation since 
organic residues were applied. Additional field studies are required to 
analyze the effect of organic input on the balance between carbon 
accumulation and greenhouse gas emissions, especially in paddy soils. 
Furthermore, animal manure mixed with chemical NPK increased crop 
yield by 3.3–6.6%, whereas fully substituting NPK decreased yield by 
4.1–9.6% (Zhang et al., 2020a). To enhance soil carbon storage without 
compromising yield, we suggest that organic input should partially 
rather than fully replace chemical fertilizer. 

Rapid decomposition of organic amendment may weaken its effect 
on SOC increment. The percentage of carbon decomposed was 
43.5–46.3% and 32.7–33.7% for pig manure and chicken manure over a 
year, respectively (Chen et al., 2019). Carbon in cattle and sheep manure 
was mineralized by 70.8% and 18.3% over 378 days, respectively (Zhu 
et al., 2020). A long-term application of organic amendments is neces
sary to increase soil carbon, especially in carbon-poor cropland. We then 
assessed the production of organic amendments and their potential for 
SOC storage. Annual production of manure is ~ 551 Tg in China and ~ 
335 Tg in America (Linville et al., 2015; Jia et al., 2018), respectively, 
which could increase soil carbon by 25.9 Tg and 16.9 Tg (Fig. B.4) ac
cording to the average fraction of manure applied to cropland (Zhang 
et al., 2017). Annual compost production of 13 Tg (Gianico et al., 2021), 
if totally input, may increase carbon by 3.4 Tg in cropland in the Eu
ropean Union. Approximately 10, 8, and 4 Tg sewage sludge is generated 
annually in the European Union, America, and China, respectively (Yesil 
and Tugtas, 2019). These may increase SOC by 8.2 Tg in the European 
Union, 6.8 Tg in America, and 2.7 Tg in China if fully applied. Applying 
organic amendment to cropland improves soil quality and enhances 
resilience to climate change while providing a sustainable way to reuse 
organic waste. 

5. Conclusions 

This study quantified SOC responses to organic amendment appli
cation and associated influence factors, including environmental con
ditions, organic amendment properties, and agronomic management 
practices. Organic amendment application significantly increased SOC 
by 26.9% or 5.1 Mg C ha−1. Organic amendment greatly increased SOC 
in areas with arid and warm climates and in soils with coarse texture, 
alkalinity, and low initial carbon or nitrogen content. Sewage sludge and 
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household solid waste are the most efficient organic materials to in
crease SOC storage. Amendments with a relatively low carbon content or 
rich nitrogen content have great potential to accumulate SOC. Upland 
and cropland without nitrogen fertilizer addition are more suitable for 
increasing SOC via organic residue application. Long-term application of 
organic amendments can continuously increase SOC storage. 
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Rumpel, C., Kögel-Knabner, I., 2011. Deep soil organic matter—a key but poorly 
understood component of terrestrial C cycle. Plant Soil 338, 143–158. 

Rusco, E., Jones, R., Bidoglio, G., 2001. Organic matter in the soils of Europe: Present 
status and future trends. European Soil Bureau, Soil and Waste Unit, Institute for 
Environment and Sustainability, JRC Ispra Institute, Joint Research Centre European 
Commission, Italy. 

Saikia, P., Bhattacharya, S.S., Baruah, K.K., 2015. Organic substitution in fertilizer 
schedule: Impacts on soil health, photosynthetic efficiency, yield and assimilation in 
wheat grown in alluvial soil. Agr. Ecosyst. Environ. 203, 102–109. 

Shakoor, A., Shakoor, S., Rehman, A., Ashraf, F., Abdullah, M., Shahzad, S.M., Farooq, T. 
H., Ashraf, M., Manzoor, M.A., Altaf, M.M., Altaf, M.A., 2021. Effect of animal 
manure, crop type, climate zone, and soil attributes on greenhouse gas emissions 
from agricultural soils—A global meta-analysis. J. Clean. Prod. 278, 124019. 

Shen, M., Yang, L., Yao, Y., Wu, D., Wang, J., Guo, R., Yin, S., 2007. Long-term effects of 
fertilizer managements on crop yields and organic carbon storage of a typical rice- 
wheat agroecosystem of China. Biol. Fert. Soils 44, 187–200. 

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link 
between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil 
Tillage Res. 79, 7–31. 

Sleutel, S., De Neve, S., Nemeth, T., Toth, T., Hofman, G., 2006. Effect of manure and 
fertilizer application on the distribution of organic carbon in different soil fractions 
in long-term field experiments. Eur. J. Agron. 25, 280–288. 

Sommer, S., Møller, H., 2000. Emission of greenhouse gases during composting of deep 
litter from pig production–effect of straw content. J. Agric. Sci. 134, 327–335. 

Tang, H., Li, C., Xiao, X., Shi, L., Cheng, K., Wen, L., Li, W., 2020. Effects of short-term 
manure nitrogen input on soil microbial community structure and diversity in a 
double-cropping paddy field of southern China. Sci. Rep. 10, 13540. 

Thelen, K., Fronning, B., Kravchenko, A., Min, D., Robertson, G., 2010. Integrating 
livestock manure with a corn–soybean bioenergy cropping system improves short- 
term carbon sequestration rates and net global warming potential. Biomass 
Bioenergy 34, 960–966. 

Tian, D., Xiang, Y., Wang, B., Li, M., Liu, Y., Wang, J., Li, Z., Niu, S., 2018. Cropland 
abandonment enhances soil inorganic nitrogen retention and carbon stock in China: 
A meta-analysis. Land Degrad. Dev. 29, 3898–3906. 

Tokarski, D., Kucerik, J., Kalbitz, K., Demyan, M.S., Merbach, I., Barkusky, D., 
Ruehlmann, J., Siewert, C., 2018. Contribution of organic amendments to soil 
organic matter detected by thermogravimetry. J. Plant. Nutr. Soil Sci. 181, 664–674. 

Triberti, L., Nastri, A., Baldoni, G., 2016. Long-term effects of crop rotation, manure and 
mineral fertilisation on carbon sequestration and soil fertility. Eur. J. Agron. 74, 
47–55. 

Unep, 1997. World Atlas of Desertification, 2nd edn. Edward Arnold, London.  
Vaccari, F., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., Miglietta, F., 

2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. 
Eur. J. Agron. 34, 231–238. 

Van Eerd, L.L., Congreves, K.A., Hayes, A., Verhallen, A., Hooker, D.C., 2014. Long-term 
tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. 
Can. J. Soil Sci. 94, 303–315. 

Wan, X., Huang, Z., He, Z., Yu, Z., Wang, M., Davis, M.R., Yang, Y., 2015. Soil C: N ratio 
is the major determinant of soil microbial community structure in subtropical 
coniferous and broadleaf forest plantations. Plant Soil 387, 103–116. 

Wang, H., Xu, J., Liu, X., Zhang, D., Li, L., Li, W., Sheng, L., 2019. Effects of long-term 
application of organic fertilizer on improving organic matter content and retarding 
acidity in red soil from China. Soil Tillage Res. 195, 104382. 

Watson, C.A., Atkinson, D., Gosling, P., Jackson, L.R., Rayns, F., 2002. Managing soil 
fertility in organic farming systems. Soil Use Manag. 18, 239–247. 

Xia, L., Lam, S.K., Yan, X., Chen, D., 2017. How does recycling of livestock manure in 
agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon 
balance? Environ. Sci. Technol. 51, 7450–7457. 

Xu, H., Shao, H., Lu, Y., 2019. Arbuscular mycorrhiza fungi and related soil microbial 
activity drive carbon mineralization in the maize rhizosphere. Ecotoxicol. Environ. 
Saf. 182, 109476. 

Yaguee, M.R., Bosch-Serra, A.D., Antunez, M., Boixadera, J., 2012. Pig slurry and mineral 
fertilization strategies’ effects on soil quality: Macroaggregate stability and organic 
matter fractions. Sci. Total Environ. 438, 218–224. 

Yang, J., Huffman, E., Drury, C., Yang, X., De Jong, R., 2011. Estimating the impact of 
manure nitrogen losses on total nitrogen application on agricultural land in Canada. 
Can. J. Soil Sci. 91, 107–122. 

Yemadje, P.L., Chevallier, T., Guibert, H., Bertrand, I., Bernoux, M., 2017. Wetting- 
drying cycles do not increase organic carbon and nitrogen mineralization in soils 
with straw amendment. Geoderma 304, 68–75. 

Yesil, H., Tugtas, A.E., 2019. Removal of heavy metals from leaching effluents of sewage 
sludge via supported liquid membranes. Sci. Total Environ. 693, 133608. 

Zhang, X., Fang, Q., Zhang, T., Ma, W., Velthof, G.L., Hou, Y., Oenema, O., Zhang, F., 
2020a. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in 
crop production in China: A meta-analysis. Glob. Change Biol. 26, 888–900. 

Zhang, X., Guo, J., Vogt, R.D., Mulder, J., Wang, Y., Qian, C., Wang, J., Zhang, X., 2020b. 
Soil acidification as an additional driver to organic carbon accumulation in major 
Chinese croplands. Geoderma 366, 114234. 

Zhang, B., Tian, H., Lu, C., Dangal, S.R., Yang, J., Pan, S., 2017. Global manure nitrogen 
production and application in cropland during 1860–2014: A 5 arcmin gridded 
global dataset for Earth system modeling. Earth Syst. Sci. Data 9, 667–678. 

Zhao, Y., Chen, Y., Dai, H., Cui, J., Wang, L., Sui, P., 2021. Effects of organic amendments 
on the improvement of soil nutrients and crop yield in sandy soils during a 4-year 
field experiment in Huang-Huai-Hai plain, northern China. Agronomy 11, 157. 

Zhao, L., Sun, Y., Zhang, X., Yang, X., Drury, C., 2006. Soil organic carbon in clay and silt 
sized particles in Chinese mollisols: relationship to the predicted capacity. Geoderma 
132, 315–323. 

X. Bai et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0341-8162(23)00434-4/h0200
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0200
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0205
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0205
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0205
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0210
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0210
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0210
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0215
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0215
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0215
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0215
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0220
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0220
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0220
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0225
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0225
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0225
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0230
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0230
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0230
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0230
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0235
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0235
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0240
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0240
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0245
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0245
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0245
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0250
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0250
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0250
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0250
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0255
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0255
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0255
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0260
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0260
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0265
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0265
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0265
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0270
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0270
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0270
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0275
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0275
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0280
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0280
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0280
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0280
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0285
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0285
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0285
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0285
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0290
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0290
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0290
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0290
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0295
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0295
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0295
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0300
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0300
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0300
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0305
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0305
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0305
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0310
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0310
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0310
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0310
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0315
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0315
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0315
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0320
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0320
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0325
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0325
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0325
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0330
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0330
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0330
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0335
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0335
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0340
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0340
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0350
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0350
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0350
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0355
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0355
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0355
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0355
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0360
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0360
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0360
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0365
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0365
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0365
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0370
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0370
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0370
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0375
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0375
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0380
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0380
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0380
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0385
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0385
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0385
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0385
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0390
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0390
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0390
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0395
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0395
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0395
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0400
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0400
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0400
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0405
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0410
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0410
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0410
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0415
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0415
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0415
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0420
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0420
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0420
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0425
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0425
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0425
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0430
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0430
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0435
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0435
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0435
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0440
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0440
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0440
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0445
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0445
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0445
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0450
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0450
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0450
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0455
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0455
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0455
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0460
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0460
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0465
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0465
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0465
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0470
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0470
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0470
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0475
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0475
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0475
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0480
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0480
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0480
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0485
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0485
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0485


Catena 231 (2023) 107343

12

Zhou, H., Chen, C., Wang, D., Arthur, E., Zhang, Z., Guo, Z., Peng, X., Mooney, S.J., 2020. 
Effect of long-term organic amendments on the full-range soil water retention 
characteristics of a Vertisol. Soil Tillage Res. 202, 104663. 

Zhou, M., Zhu, B., Wang, S., Zhu, X., Vereecken, H., Brueggemann, N., 2017. Stimulation 
of N2O emission by manure application to agricultural soils may largely offset carbon 
benefits: A global meta-analysis. Glob. Change Biol. 23, 4068–4083. 

Zhu, Y., Merbold, L., Leitner, S., Pelster, D.E., Okoma, S.A., Ngetich, F., Onyango, A.A., 
Pellikka, P., Butterbach-Bahl, K., 2020. The effects of climate on decomposition of 
cattle, sheep and goat manure in Kenyan tropical pastures. Plant Soil 451, 325–343. 

Zuo, W., Xu, K., Zhang, W., Wang, Y., Gu, C., Bai, Y., Shan, Y., Dai, Q., 2019. Heavy metal 
distribution and uptake by maize in a mudflat soil amended by vermicompost 
derived from sewage sludge. Environ. Sci. Pollut. 26, 30154–30166. 

X. Bai et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0341-8162(23)00434-4/h0490
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0490
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0490
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0495
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0495
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0495
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0500
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0500
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0500
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0505
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0505
http://refhub.elsevier.com/S0341-8162(23)00434-4/h0505


Organic amendment effects on SOC in cropland and its implications: a global 

synthesis 

Xiongxiong Baia, b, Jiao Tangc, d, Wei Wangc, Jianmin Maa, Jian Shie, Wei Renf, * 

aCollege of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China 

bPuyang Field Scientific Observation and Research Station for Yellow River Wetland 

Ecosystem, Henan, China 

cCollege of Resources and Environment Sciences, Henan Institute of Science and 

Technology, Xinxiang 453003, China 

dPostdoctoral Research and Development Base, Henan Institute of Science and 

Technology, Xinxiang 453003, China 

eDepartment of Biosystems and Agricultural Engineering, University of Kentucky, 

Lexington, KY 40546, USA 

fDepartment of Natural Resources and the Environment, University of Connecticut, 

Storrs, CT, 06269, USA 

Xiongxiong Bai and Jiao Tang should be considered joint first author 

 

*Correspondence: Wei Ren, Department of Natural Resources and the Environment, 

University of Connecticut, Storrs, CT, USA. 

E-mail: wei.ren@uconn.edu

mailto:wei.ren@uconn.edu


Table B.1 Publication bias of the soil organic carbon (SOC) responses to organic amendments (OA) application. All results were robust (fail-safe 
number > 5 data number +10). n: number of observations; FSN: false-safe number. 

Group Variables n  FSN Group Variables n  FSN Group Variables n  FSN 

Climate 

Arid 310 49471472 OA 
state 

Liquid 122 37798 OA total 
nitrogen 
content 
(g/kg) 

0-10 521 2793536 
Humid 1106 8850040 Solid 1800 126869208 10-20 462 21028814 
Cool 604 31417801 

OA 
type 

Cake 17 831 20-50 262 663717 
Warm 310 515337 Compost 397 1466845 >50 66 217238 

Initial 
SOC 
(g/kg) 

< 6 565 4576317 Digestate 18 293 
Land 
type 

Cropland 1584 95900730 
6-12 446 23288941 Litter 39 1286 Grassland 97 19927 

12-20 170 1953599 Manure 1282 84034042 Horticulture 84 173989 
> 20 51 4882 Organic waste 17 2320 

Land use 
Upland 1593 98391411 

Soil 
depth 
(cm) 

0-10 234 286177 Sewage sludge 18 3420 Paddy 129 63058 
0-20 450 4487225 Slurry 52 8840 Upland-paddy 196 203447 
0-30 124 5431043 Manure+Compost 19 2908 

Nitrogen 
addition 
(kg/ha) 

No 512 24189212 
0-40 24 573 

OA 
addition 

(Mg 
C/ha) 

0-1 200 178567 Low level 342 719742 
0-50 6 140 1-2 253 739480 Medium level 328 946571 
0-60 19 322 2-5 364 16986389 High level 152 1009261 
0-70 3 105 5-10 212 437968 Crop 

system 
Rotation 1065 17061069 

0-100 17 2070 10-20 83 100227 Monoculture 378 31951709 

Soil pH 
Acidic 608 1845944 >20 37 53554 

Residue 
Return 234 2273664 

Neutral 284 674061 OA 
carbon 
content 
(g/kg) 

0-100 102 119290 Removal 381 16333855 
Alkaline 556 30429276 100-200 211 9360087 

Irrigation 
Yes 693 38605772 

Soil 
texture 

Coarse 600 28365085 200-500 705 5446726 No 202 1533891 
Medium 567 2900145 >500 74 60621 

Duration 
(year) 

Long 571 12108176 
Fine 593 8019321 

OA pH 
pH <=7 92 1651925 Medium  625 30009019 

        pH >7 226 359617 Short 733 3224009 



Fig. B.1 Soil organic carbon (SOC) responses to different types of manure inputs. 
Numbers in second column represent the number of observations. Error bars show 95% 
confidence intervals. Farmyard manure was given by the articles and cannot be further 
classified due to limited information. The differences of effect size among manure types 
were not statistically significant. The difference was not significant among all types. 
 

 

 

  



Fig. B.2 Relationship between mineral nitrogen fertilizer input rate and SOC ratio (SOC 
treatment/SOC control). Blue line and shadow area represent the regression line and 95% 
confidential interval, respectively. SOC ratio data were removed in this figure if the 
values were > Q3+3* IQR (interquartile range).  
 

  



Fig. B.3 Irrigation and rainfed effect on soil organic carbon (SOC) increased by organic 
amendments in arid and humid regions, respectively. Numbers in second column are 
observations; p value shows between-group heterogeneity.  
 

 
 

  



Fig. B.4 Global manure application (Tg N year-1) in cropland and rangeland. The 
numbers were the total potential of soil carbon sequestration (Tg C year-1) in several 
countries or regions (see inserted table). Carbon (C) sequestration potential = manure 
production × application rate × C sequestration rate. Application rate was offered by 
Zhang et al. (2017) and C sequestration rate was in our study. Manure production was 
offered by references shown in inserted table. N is nitrogen. 
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