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ARTICLE INFO ABSTRACT

Keywords: Increasing soil organic carbon (SOC) content can promote soil health and crop yield. Organic amendment
Organic waste application is a common practice to accelerate soil carbon sequestration in cropland. The effects of different
Manure organic amendments (e.g., compost, slurry) on SOC are uncertain. Previous studies have investigated SOC
21(1)1 III;I;OSt response to environmental factors but not well addressed the effect of organic amendment characteristics (e.g.,
Farmland source, liquid/solid form, pH). Depending on 1,972 comparisons from 424 articles, we undertook a meta-analysis

approach to explore organic amendment effects on SOC content and the related influence factors. The results
show that organic amendment addition increased SOC by an average of 26.9% (or 5.1 Mg C ha™1). Specifically,
organic amendments can enhance SOC over the long term (>20 years) or within 1.0 m depth. Organic-residue
inputs increased more SOC in regions with an arid climate, alkaline soils, or no-mineral nitrogen application
soils than the humid climate regions, acidic soils, and nitrogen application soils, respectively. Sewage sludge and
municipal solid waste as organic amendments led to high SOC. The organic amendments’ pH and liquid/solid
form caused significant differences in SOC accumulation. Amendments with a relatively low carbon content or
rich nitrogen content have great potential to increase SOC storage. Our results illustrate the importance of
amendment characteristics when estimating the potential of organic amendment addition to soil carbon accu-
mulation. This study highlights that amendment application might be a sustainable strategy to increase soil
carbon storage while promoting organic waste utilization.

Sewage sludge
Meta-analysis

1. Introduction

Increasing soil organic carbon (SOC) content improves soil quality,
reduces carbon dioxide emissions (Lee et al., 2009; Pan et al., 2009), and
promotes agricultural productivity (Lal, 2006). Average SOC values are
relatively lower in cropland than in natural ecosystems due to the high
turnover rate and agricultural management such as residue removal and
tillage measures (Fujisaki et al., 2015; Tian et al., 2018; Ren et al.,
2020). When primary forests and pasture are converted to cropland, the
corresponding SOC stocks on average are estimated to lose by 25-30%
(Don et al., 2011) and 50% (Lal, 2018). Although many agricultural
practices have been adopted to increase SOC in cropland, it is still far

from saturation (Vaccari et al., 2011). Therefore, cropland has a sig-
nificant potential to sequester carbon from the atmosphere and mitigate
the warming climate (Liu et al., 2014; Prestele and Verburg, 2020). To
achieve this potential, it is necessary to explore methods such as organic
material input and estimate their effects on soil carbon accumulation
(Bai et al., 2019).

The organic amendment has been widely used to enhance soil
fertility (Diacono and Montemurro, 2011; Zhao et al., 2021). Applying
organic amendment could also increase crop yield and product quality
and decrease environmental impacts (Watson et al., 2002). For example,
manure addition helps increase crop productivity by an average of 7.6%
and soil carbon sequestration by 17.7%; meanwhile, it can reduce
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chemical fertilizer input and mitigate the environmental risks associated
with agrochemicals (Du et al., 2020). Furthermore, adding organic
material improves soil physicochemical and biological properties
(Blanchet et al., 2016; Dai et al., 2019), including bulk density, aggre-
gation (Bandyopadhyay et al., 2010), microbial compositions and ac-
tivities, as well as macro-nutrients (nitrogen (N), phosphorus (P), and
potassium (K)) supply potential and availability (Ozlu and Kumar,
2018). The improvement of soil properties further promotes carbon
accumulation and stabilization in soil. For instance, Blanco-Canqui et al.
(2013) revealed that soils with low bulk density and large size of water-
stable aggregates are favorable to organic carbon accumulation. Soils
with a high proportion of clay plus silt fractions and inorganic nitrogen
contents have a great capacity to store SOC (Zhao et al., 2006; Tian et al.,
2018).

The advantages of organic amendment on SOC have been reported
globally. Compost addition increased SOC content by 2.9%, compared to
2.4% in control in clay soils of Ethiopia (Agegnehu et al.,, 2016a).
Farmyard manure increased SOC by 6.4% against mineral fertilizer
alone in loam soils of Swiss (Blanchet et al., 2016). In loam soils of
China, NPK plus cow or pig manure increased SOC to 20.3 or 12.9 g C
kg ™!, respectively, while NPK alone increased to only 8.3 g Ckg ™! (Zhou
et al., 2020). Manure application is positively related to SOC over deep
layers (Gami et al., 2009; Abrar et al., 2020) and for long periods (Hati
et al., 2008; Wang et al., 2019). In contrast, some studies show that
organic amendments also have adverse or no significant effects on SOC.
For example, Maltas et al. (2018) showed that cattle slurry had no sig-
nificant effect on SOC in the loam soils of Swiss. During the maize
growing season, 40 Mg DM ha ! biogas residue application decreased
SOC compared to unadded control in top 30 cm clay loam soils (Kocyigit
et al., 2017). In sandy loam soils of Denmark, various organic fertilizer
input rates caused insignificant changes in SOC (Chirinda et al., 2010).
Mineral fertilizer plus farmyard manure either increased or did not
significantly change the SOC content in a 30-year study in Burkina Faso
(Manna et al., 2005). These studies illustrate that organic amendment
effects on SOC storage vary greatly with local management and envi-
ronmental conditions. These various effects would cause uncertainties in
estimating soil carbon dynamics at large scales. Accordingly, more
studies are essential to investigating the responses of global soil carbon
to organic input.

The different effects of organic amendment on SOC are due to the
following reasons. First, organic amendments directly promote SOC
accumulation by increasing carbon inputs. Second, materials like straw
left on the soil surface or incorporated into the soil can intensify soil
fertility, which in turn stimulates SOC sequestration through strength-
ened crop rhizodeposition (Liu et al., 2014). Third, organic amendments
provide nutrients and energy for microorganisms and then facilitate
their activities, which boost organic matter humification and decom-
position (Fontaine et al., 2003), making carbon dynamics complicated.
Finally, organic amendment effects on SOC are regulated by climate (e.
g., precipitation and temperature), soil properties (texture, pH, etc.),
characteristics of organic materials (carbon and nitrogen content, pH,
etc.), and agricultural management (irrigation and cropping system,
etc.) (e.g., Du et al., 2020; Emde et al., 2021). SOC stocks depend on the
balance between the amounts of carbon sequestration and decomposi-
tion. Organic amendment characteristics impact the magnitude and
potential of material mineralization and related soil carbon dynamics.
To the best of our knowledge, the effects of organic amendment char-
acteristics on SOC have not been well addressed and need additional
investigations.

Estimating global SOC dynamics as influenced by organic amend-
ments is challenging through in-situ or local-scale experiments. A meta-
analysis is a robust tool to synthesize abundant observations from
multiple studies and draw reliable conclusions about SOC responses to
organic amendment at regional or global scales. A meta-analysis esti-
mated a 17.7% carbon increment caused by manure application in China
(Du et al., 2020). Combined manure and mineral fertilizer increased
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SOC by 9-39% compared with mineral fertilizer alone, according to a
meta-analysis focused on cropland in China (Jiang et al., 2018). Chen
et al. (2018) estimated the long-term (>10 a) effects of manure and
compost application on SOC at the global scale and found a 29% in-
crease; however, the authors acknowledged that their results were not
completely independent. A recent global synthesis reported that animal
manure increased SOC stocks by 7.41 or 8.96 Mg C ha™! compared to
mineral fertilizer or unfertilized control, respectively (Li et al., 2021).
Based on 27 comparisons, a meta-analysis concluded a 7.89 Mg CO3.¢q
ha! yr ! increase in SOC after applying organic amendments to vine-
yard agroecosystems (Payen et al., 2021).

Studies are relatively scarce when comparing the effects of different
organic materials on SOC. A global meta-study showed that organic
amendments increased depth-weighted SOC amount by 24% (Crystal-
Ornelas et al., 2021), whereas the types of amendments were unknown,
and the amendment properties were not analyzed. A meta-analysis
indicated that organic amendments significantly increased SOC con-
tent by 23.5% in the Mediterranean, while the slurry effect was not
significant (Aguilera et al., 2013). This result is obtained based on
limited observations, with thirty-seven and three in organic amend-
ments and slurry, respectively. Previous data syntheses have examined
the influence of environmental conditions on SOC responses to organic
amendments (e.g., Du et al., 2020). Nonetheless, few studies have paid
attention to the impacts of organic amendment characteristics (e.g.,
liquid/solid form, carbon content, and pH) on soil carbon sequestration.
For example, Maillard and Angers (2014) estimated the manure effect
on SOC but had not shown the effect of liquid organic waste. Therefore,
a comprehensive evaluation is necessary to refine the contribution of
organic amendment addition to SOC and analyze the influence of other
factors on carbon accumulation.

This study aims to examine the SOC responses to organic amendment
addition. The objectives were to: (1) quantify the influence of organic
amendments on SOC and evaluate the impact of amendment charac-
teristics, environmental conditions, and other agricultural managements
on SOC sequestration; and (2) estimate the potential of SOC storage
response to organic amendment inputs.

2. Materials and methodology
2.1. Data collection

We searched peer-reviewed articles from the Web of Science pub-
lished before August 2020. The search keywords were “organic waste”
(“biogas digestate” or “biogas residue” or “compost” or “manure” or
“organic waste” or “slurry”) and “soil organic carbon” (or SOC). Totally
> 2000 articles were found, and 859 papers were left after filtering
according to the abstract. We then selected studies by the following
criteria: (a) experiments were carried out in the agronomic field or pot if
placed in the field, but incubation and modeling results were excluded;
(b) organic amendments were applied annually rather than one-time
input; (c) experimental design had replications; (d) ancillary informa-
tion such as soil types, climate, and other agronomic management
practices, was provided besides treatments and related controls; and (e)
observations were focused on cultivated grassland, horticultural land,
and other cropland but not orchards because tree root and root-
associated microbiota in the orchard are spatially heterogeneous,
causing high heterogeneity of SOC content. Green manure was excluded
because we explored the potential of organic waste utilization in this
study. We ultimately extracted 1,972 comparisons from 424 articles
conducted in 42 countries (Appendix A, Fig. 1). The experimental du-
rations of these articles were from 1 to 105 years, with a median of 10
years. Sampling depths were from the 0-5 cm to the 90-120 cm layers,
while 64% of total comparisons were in the top 20 cm soil. Among all
articles, 150 papers were conducted in China, 126 in India, 23 in the
United States, and 12 in Canada.

From the selected studies, SOC data were extracted from tables or
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Fig. 1. Location of the study sites included in this meta-analysis (n = 247).

figures by GetData Graph Digitizer software (https://getdata-graph-dig
itizer.com/download.php). SOC stock data were selected if both con-
centration and stock were reported in articles. Other factors were also
recorded to estimate their influences on SOC responses to organic ma-
terials. These factors include organic amendment characteristics (type,
carbon and nitrogen content, carbon/nitrogen (C/N) ratio, pH, liquid/
solid form, and material composition), experimental location (longitude
and latitude), duration, climate conditions (mean annual temperature
and precipitation), soil properties (pH, initial organic carbon content,
total nitrogen content, C/N ratio, texture, and sampling depth), and
other agronomic management practices (land type, land use, irrigation,
crop residue, crop rotation, and chemical nitrogen input). The applica-
tion rate of organic amendments was converted to net carbon input in
Mg C ha~! by multiplying organic amendment doses (Mg DM ha ') with
the carbon content (%). We did not transfer the rate of organic
amendments into net SOC increase because it has not been mentioned in
most studies. The material composition (e.g, lignin, polyphenol) of
organic residues was unanalyzed due to limited data. Because precipi-
tation can not represent the drought severity for lack of evapotranspi-
ration, the aridity index (UNEP, 1997) was incorporated into the study
and grouped as arid or humid. Missing data on the aridity index were
filled in according to the location reported in the articles. All sites were
grouped into cold, cool, warm, and hot zones based on mean annual air
temperature. Soil texture was grouped depending on the USDA soil
texture triangle. The land type was classified into cultivated grassland,
horticulture land (vegetables and flowers), and other cropland (i.e., for
grain, cotton, tuber, etc.). Land-use type was grouped into upland, rice
paddy, and upland paddy. Single crop-fallow was regarded as a
continuous cropping system. The rainfed condition was further divided
into cropland with annual precipitation < 800 mm and > 800 mm. The
detailed classification of the influence factors is shown in Table 1.

As an indispensable variable for the meta-analysis, the standard
deviation was calculated based on the average coefficient of variation
for the known data if either standard deviation or the standard error was
not given (Bai et al., 2019). If available, the standard error was trans-
formed into standard deviation.

2.2. Statistical analyses

2.2.1. Meta-analysis

A random-effect model was used to evaluate variables that may
explain the organic amendment effect on SOC. The logarithm of
response ratio (InRR) comparing organic amendment and the control
was computed as equation (1) (Hedges et al., 1999):

X:
InRR = In(— 1
n n(XC) (@)

where X; and X, are mean SOC values (mixed concentration and
stock) in the treatment and control groups, respectively. The variance
(v) of InRR was calculated as:

_SD}  SD?
X onX?

(2

where SD and n are the standard deviations and sample sizes,
respectively, either in treatment (t) or control (c) groups.

The weighting factor (w’) was used to calculate the mean effect size
(RR ), as the equations following:

1
w=r=— 3
novn
RR,, — Z,»lnR?{- @
Zw;

where InRR' = w'InRR, and i is the ith observation.

The 95% confidence interval of RR,; was calculated to show sig-
nificance. The effect size was significantly different between treatment
and control if the 95% confidence interval did not overlap zero. The
percent change was transformed by (e®**" —1) x 100%. The fail-safe
number was computed to evaluate the publication bias. Results were
robust if the fail-safe number was > 5 x k + 10 (k—the number of
comparisons) (Rothstein et al., 2006). The data analysis and graphs were
performed with “metafor” package (https://metafor-project.org/doku.
php/) in R (R Core Team, 2021).

2.2.2. Structural equation model

A structural equation model was used to evaluate how the factors
influence SOC stocks. The conceptual model was estimated by the ratio
of chi-square to degrees of freedom < 3, comparative fit index (CFI >
0.9), standardized root mean square residual (SRMR < 0.1), and root
mean square error of approximation (RMSEA < 0.05). The standardized
total effects were calculated by adding up all direct and indirect path-
ways between each factor and SOC stocks. The tests were performed
using Amos (version 23.0, Chicago: IBM SPSS).
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Table 1

Categories are grouped to describe the environmental conditions, organic
amendment (OA) characteristics, and management practices. SOC, soil organic
carbon; MSW: municipal and household solid waste; N, nitrogen. Soil depths,
except 0-100 cm, were not accumulated additionally and exactly categorized
according to the depth given by the articles. For example, neither 0-10 cm nor
0-20 cm was added to 0-30 cm, etc. The layer of 0-100 cm included 0-80, 0-90,
and 0-100 cm due to limited observations. MAAT: mean annual air temperature;
MAP: mean annual precipitation.

Factors Categories
Climate
conditions
MAAT (°C) Cold (<5) Cool (5-10) Warm (10-20) Hot (>20)
MAP (mm) <400 400-800 800-1200 >1200
Aridity index Arid Humid
(<0.65) (>0.65)
Soil properties
pH Very acid Acid (5.1-6) Neutral Alkaline
(<5) (6.1-7.9) >8)
Initial SOC (g/ <6 6-12 12-20 > 20
kg)
Initial total N (g/ < 0.75 0.75-1.5 1.5-2 > 2
kg)
Carbon/nitrogen <10 10-20 > 20
Texture Coarse Medium Fine
Depth (cm) 0-10 0-20 0-30 ~ 0-70 0-100
OA
characteristics
Types Cake Compost Manure Digestate
Litter MSW Sewage sludge Slurry
Carbon content < 100 100-200 200-500 > 500
(g/kg)
N content (g/kg) <10 10-20 20-50 > 50
Carbon/nitrogen <10 10-20 20-50 > 50
pH Very acid Acid (5.1-6) Neutral Alkaline
(<5) (6.1-7.9) (>8)
Input rate (Mg 0-1 1-2 2-5 5-10
C/ha)
10-20 > 20
Liquid/solid Solid Liquid
form
Management
practices
Land types Cropland Grassland Horticulture
land
Land use Upland Paddy Upland-paddy
N fertilizer (kg No N (0) Low (<100) Medium High
N/ha) (100-200) (>200)
Crop rotation Rotation Monoculture
Crop residue Returned Removed
Irrigation Yes No (<800 No (>800 mm)
mm)
Duration (year) Short (1-5) Medium Long (>20)
(6-20)

3. Results

3.1. Organic amendment effects on SOC and associated environmental
influence

Organic amendment input significantly increased SOC storage by
26.9 £ 0.7% (95% confidence interval, Fig. 2) or enhanced SOC stocks
by an average of 5.1 + 0.4 (95% confidence interval) Mg C ha~'. Manure
and compost, the two main types used globally, increased SOC stocks by
4.8 £ 0.5 and 5.6 + 0.9 (95% confidence interval) Mg C ha™l,
respectively.

Results suggest that organic amendment increased SOC by 40.2% in
warm regions, compared with 23%-25.6% in other zones (Fig. 2). The
effect size was positively related to mean annual precipitation when
increasing from < 400 mm to 800-1200 mm, whereas it was signifi-
cantly low in areas with precipitation > 1200 mm. Aridity strongly
influenced organic amendment effects on SOC. Organic input increased
SOC by 32.4% in dry regions and 23.6% in humid areas (Fig. 2).
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Fig. 2. Responses of soil organic carbon (SOC) to organic amendments input,
shown as the whole dataset of SOC observations and the effects of climate on
SOC response ratio. Numbers in the second column show the sample sizes. Error
bars represent 95% confidence intervals. Different lowercase letters indicate the
significant level of p < 0.05 in each category. MAAT: mean annual air tem-
perature; MAP: mean annual precipitation.

Organic material input increased SOC by 27.4% in very acidic soil
(Fig. 3). SOC increment was positively related to pH when ranging from
acidic to alkaline soil, while the differences were statistically significant.

Soils with a lower initial carbon content had a higher SOC seques-
tration potential. SOC increment in the level of initial carbon < 6 g C
kg~ ! (34.2%) was twice as much as in the level of 12-20 g C kg ™! or >
20 g C kg™! (Fig. 3). When initial carbon was 6-12 g C kg™!, organic
amendments increased SOC by 30%. The maximum effect size (46.1%)
was at the lowest level of soil total nitrogen (<0.75 g N kg™, Fig. 3).
However, the differences in SOC increment were not significant when
total nitrogen varied from 0.75 to > 2 g N kg~!. Organic amendment
addition increased SOC by 50.5% in soils with a C/N ratio > 20, fol-
lowed by 31.1% and 30.6% in soils with a C/N ratio of 10-20 and < 10,
respectively.

Soil texture regulated the effect of organic amendments on SOC.
Organic amendments increased SOC by 33.2% in coarse-textured soils,
compared to 24.5% and 20.2% in fine- and medium-textured soils,
respectively (Fig. 3).

Organic amendments enhanced SOC over the different soil depths, as
shown in Fig. 3. SOC derived by organic input was 40.7% in the 0-20 cm
and 27.1% in the topsoil within 10 cm (Fig. 3). The effect size was 18.7%
in the 0-30 cm and 12.9% in the upper 40 cm depth, and reached 21.2%
in the 1.0 m depth. The greatest increment in SOC was in the upper 70
cm depth (81%), which should be carefully interpreted considering the
limited observations and insignificant effect.

3.2. Amendment properties influencing organic input effects on SOC

Our results showed that all types of organic amendments signifi-
cantly increased SOC, while their differences were significant (Table 2).
Sewage sludge, a by-product of the waste-water treatment, greatly
increased SOC by 81% (Fig. 4). Municipal and household solid waste
increased SOC by 52.9%. Manure and compost had similar contributions
to SOC (26.4% vs. 28.7%), whereas the combined use of manure and
compost can increase SOC by 37.1% (Fig. 4). We estimated the influence
of manures from different animal species on SOC. Results showed that
sheep manure had the best performance and increased SOC by 32.7%,
followed by manure from pigs, cattle, poultry, and horses, with the effect
size of 29.1%, 27.2%, 23.1%, and 17.5%, respectively (Fig. B.1). Press
cake such as oilseed filter cake caused a 24% increment in SOC. Diges-
tate, slurry, and poultry litter enhanced SOC between 11.9% and 14.8%.
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Fig. 3. Effects of soil properties (pH, initial organic carbon content, total ni-
trogen content (TN), ratio of carbon to nitrogen (C/N), texture, and depth) on
the responses of soil organic carbon (SOC) to organic amendments input.
Numbers in the second column show the sample sizes. Error bars represent 95%
confidence intervals. Data in 0-100 cm includes observations in 0-80 cm, 0-90
cm, and 0-100 cm. Different lowercase letters indicate the significant level of p
< 0.05 in each category.

Soil carbon sequestration was generally regulated by organic carbon
and total nitrogen content in organic amendments. The differences in
SOC increment were not significant regarding the different carbon
content levels in organic amendments (Table 2). The effect size varied
between 25.5% and 28% when carbon content in organic amendments
was < 500 g C kg’1 (Fig. 4). However, SOC increased by only 18.7% if
carbon content was > 500 g C kg~ . Total nitrogen content in organic
amendments caused significant differences in the effect size (p < 0.001,
Table 2). Organic materials with rich nitrogen content (>50 g N kg™ 1)
significantly increased SOC by 39.7% (Fig. 4). The effect size varied
from 29.2% to 22% when nitrogen content was < 50 g N kg_l. Organic
amendment application may increase SOC by 30.3% if its C/N ratio was
20-50. SOC increment was almost equal when the C/N ratio of the
organic amendment was between 10 and 20 and > 50.

Organic amendment pH significantly influenced SOC storage. Very
acid and acid amendments increased SOC by 73.4% and 74.1%,
respectively, which were two times larger than SOC increased by neutral
or alkaline amendments (Fig. 4).

Soil organic carbon generally increased with the increasing input
rate of the organic amendments. The largest input rates (>20 Mg C ha™1)
caused the strongest SOC accumulation (74.4%, Fig. 4). The effect size
was nearly equal when organic waste was applied at < 1 and 1-2 Mg C
ha~!. Both liquid and solid organic amendments noticeably increased
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Table 2

Between-group variability (Qu) of the variables controlling the effects of organic
amendments (OA) on soil organic carbon (SOC). MAAT: mean annual air tem-
perature; MAP: mean annual precipitation.

Variables df Qm P
Climate Aridity 1 35.85 <0.0001
MAAT 3 54.96 <0.0001
MAP 3 13.6 0.0035
Soil properties pH 3 59.83 <0.0001
Initial SOC 3 53.76 <0.0001
Total nitrogen 3 71.74 <0.0001
Carbon/nitrogen 2 5.39 0.0675
Texture 2 54.85 <0.0001
Depth 7 77.79 <0.0001
OA characteristics Types 8 68.59 <0.0001
Carbon content 3 6.07 0.1082
Nitrogen content 3 20.55 0.0001
Carbon/nitrogen 3 7.76 0.0512
pH 3 13.45 0.0038
Application rate 5 39.31 <0.0001
Liquid/solid form 1 10.9 0.001
Management practices Land types 2 11.2 0.0037
Land use 2 4.9 0.0862
Nitrogen addition 3 82.2 <0.0001
Crop rotation 1 5.3 0.0214
Crop residue 1 33.77 <0.0001
Irrigation 2 2.05 0.3584
Duration 2 28.09 <0.0001

SOC, and the promotion range displayed a certain difference. More SOC
was accumulated by solid (27.9%) than liquid organic amendments
(18.5%) (Fig. 4).

3.3. Effects of agricultural managements and duration on SOC

Organic amendments significantly promoted SOC uptake by 27.2%
in cropland for grain, cotton, tuber etc., followed by 21% in horticulture
land and 18.4% in cultivated grassland (Fig. 5). The effect size was 27%
in upland soil, 20.9% in paddy soil, and 27.2% in upland-paddy soil;
however, the difference was not significant (p = 0.0862). Mineral ni-
trogen addition limited SOC increment compared to zero nitrogen input
(Fig. 5). Organic input increased SOC by 35.6% in no-mineral nitrogen
input soils, approximately two times larger than the increment with low-
level nitrogen addition (17.2%). The effect sizes had no significant dif-
ference between medium-level and high-level nitrogen addition (23.7%
vs. 25.7%).

Organic amendments increased SOC in rotational cropping systems
more than in monoculture systems, with 28.1% and 24.6%, respectively
(Fig. 5). Residue removal stimulated carbon accumulation, with a 32.7%
increment against 18.9% in residue retention conditions (Fig. 5). The
difference in SOC response to organic amendments between irrigation
and rainfed was not significant (p = 0.3584). The effect size was 29.8%
in irrigated areas, compared to 33% and 25.5% in rainfed regions with
mean annual precipitation > 800 mm and < 800 mm, respectively
(Fig. 5).

Organic amendment effect on SOC sequestration varied with exper-
imental durations. The effect size was 32.8% in the long-term experi-
ments, followed by 25.8% in short-term studies and 23.6% in medium-
term observations (Fig. 5). Specifically, manure, compost, and slurry
addition increased SOC by 43.1%, 22.3%, and 14.4% over the long term
duration (>20 years), respectively (Fig. 6).

4. Discussions
4.1. Overall effects of organic amendments on SOC
Many studies have certified that organic manure promotes SOC

accumulation, but the results vary greatly. Globally, SOC content
increased by 36.2% with manure plus chemical fertilizer and 15.4%
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Fig. 4. Effects of amendment type, carbon content, nitrogen content, ratio of
carbon to nitrogen (C/N), input rate, pH, and liquid/solid form on the responses
of soil organic carbon (SOC) to organic amendments. Numbers in the second
column show the sample sizes. Error bars represent 95% confidence intervals.
Different lowercase letters indicate the significant level of p < 0.05 in
each category.

with chemical fertilizer alone (Han et al., 2016). A synthesis study by
Luo et al. (2018) found that the amount of SOC in organically amended
soils was 38% higher than in mineral-fertilized soils. Our result (26.9%)
supports the meta-analysis of Chen et al. (2018), who suggested that
organic amendments increased SOC by 29%. Similarly, Aguilera et al.
(2013) found a 23.5% increase in SOC induced by compost, manure, and
agro-industrial wastes in Mediterranean cropping systems. Li et al.
(2021) conducted a global synthesis and determined that manure input
increased SOC stocks by 7.41 Mg C ha™! or 8.96 Mg C ha™! (vs. mineral
fertilized or unfertilized reference, respectively). Accordingly, Maillard
and Angers (2014) concluded that manure addition increased average
SOC stock by 5.6 or 9.4 Mg C ha™!. These published results are higher
than ours (4.8 Mg C ha™?!). The discrepancy in the outcomes may be due
to the organic amendment differences in various studies and the
magnitude of dataset size since the results were calculated by the same
method. Our results spotlight organic amendment potential for SOC
accumulation and emphasize the possibility of mitigating climate
change via cropland management.
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Fig. 5. Effects of agronomic management practices (land type, land use, min-
eral nitrogen input, crop rotation, residue, and irrigation) and experimental
duration on the responses of soil organic carbon (SOC) to organic amendments
input. Grassland only includes cultivated grassland for feeding livestock; hor-
ticulture land is the land for flowers and vegetables; and cropland represents
land for other crops, including cereal, tuber, cotton, etc. Rainfed < 800 and >
800 are the annual precipitation lower and higher than 800 mm under rainfed
condition, respectively. Numbers in the second column show the sample sizes.
Error bars represent 95% confidence intervals. Different lowercase letters
indicate the significant level of p < 0.05 in each category.

4.2. Climate conditions and soil properties

4.2.1. Climate conditions

Climate conditions alter the size and composition of the soil carbon
pool, resulting in either negative or positive effects on carbon stocks
(Luo et al., 2017). Precipitation has a positive relationship with soil
carbon, while the temperature is negatively related to SOC in Europe
(Rusco et al., 2001). Our results agree with Luo et al. (2017), who
identified that precipitation was more important than temperature in
influencing SOC dynamics. Drought can inhibit the loss of soluble
organic carbon and reduce substrate availability to microorganisms
(Davidson and Janssens, 2006), leading to a relatively high carbon
accumulation. Moreover, aridity indirectly affects SOC stock by nega-
tively affecting soil bulk density (Fig. 7) and causing low production.
Precipitation promotes crop growth and biomass accumulation (espe-
cially in semi-arid and arid land), thus representing a large amount of
residue retention and carbon input (Luo et al., 2017). However, humid
conditions would accelerate organic matter mineralization and SOC loss
by stimulating microbial activity (Dong et al., 2015; David et al., 2018).
A lower increment in carbon over humid areas than in arid areas (Fig. 2),
in addition to some periods of anaerobiosis, may be due to the fast
mineralization of organic amendments.

Temperature impacts soil carbon dynamics by adjusting microbial
community compositions and activities, which regulate the tradeoff
between carbon accumulation and mineralization. Organic amendment
decomposition and carbon mineralization are slow in cool areas due to
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reduced microbial activity. Conversely, although organic substrate
addition increases crop residue and carbon accumulation in temperate
and tropical regions, the elevated temperature would stimulate micro-
bial metabolic processes and accelerate carbon mineralization (Baath,
2018). In this study, the effect size was largest in warm areas (10-20 °C)
and had no significant differences over cold, cool, and hot areas,
implying that mean annual air temperature is not a key factor for carbon
storage. This finding is similar to Koven et al. (2017), who revealed no
clear relationship between mean annual air temperature and soil carbon
in the 1.0 m soil depth at the global scale.

4.2.2. Soil properties

Compared with acidic soils, very acidic soils favor carbon accumu-
lation once the organic amendment is applied (Fig. 3). The similar effect
size between very acidic soils and neutral soils (27.4% vs. 25.6%) sug-
gests that the regulation mechanisms of soil pH effect on SOC increment
are complicated. First, soil pH alters SOC decomposition by influencing

Fig. 7. Structural equation modelling for the impact
of significant variables on soil organic carbon (SOC)
stocks. Chi-square/degrees of freedom = 0.98, p =
0.42, comparative fit index (CFI) = 1, root mean
square error of approximation (RMSEA) = 0, and
standardized root mean square residual (SRMR) =

Initial SOC 0.03. .The black and red- lines repre'sent p'ositiYe and
negative effects, respectively. The line width is pro-
portional to the strength of the standardized path
coefficient. *p < 0.05, **p < 0.01, ***p < 0.001.

0.19"

Soil depth

biotic and abiotic factors, such as microbial activity and carbon avail-
ability (Bai et al., 2019). Soil acidification drives SOC sequestration by
increasing mineral particle adsorption (Zhang et al., 2020b) and
depressing microbial mineralization (Chen et al., 2016). Second,
increasing soil pH enhances bacterial biomass and declines fungi
biomass (Wan et al., 2015), resulting in uncertainties in SOC dynamics.
Third, organic inputs may alter soil pH, which in turn causes differences
in SOC decomposition between treated and untreated soils (Li et al.,
2021). Finally, soil pH influences SOC stock indirectly through an effect
on initial organic carbon (Fig. 7). Our study confirmed that the potential
for carbon storage is great in alkaline soils but relatively tiny in acidic
soils. The reason is probably that elevated pH restricts microbial activity
and carbon turnover rate, while low pH stimulates the decomposition of
organic amendments and native soil carbon. However, microbial
mineralization of SOC may also be limited by lower soil pH (e.g., < 5).

Initial SOC concentration directly and positively impacts SOC stocks
derived by organic input (Fig. 7). According to meta-analyses conducted
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in China, the largest and lowest manure-increased SOC content has been
reported when initial soil carbon is 6-12 g C kg ™! and > 20 g C kg~},
respectively (Ren et al., 2018; Du et al., 2020). Soils with higher initial
carbon content have a relatively lower capacity to adopt exogenous
carbon input (Gulde et al., 2008). Moreover, excessive carbon input
cannot further promote accumulation if the soil has a low soil organic
carbon saturation deficit (Ren et al., 2018). Greater carbon increase in
soils with lower initial carbon content (Fig. 3) suggests that massive
organic amendment inputs are required to improve and supplement
carbon-poor cropland. Nitrogen enrichment may be in favor of soil
carbon accumulation. A meta-analysis found that manure greatly
increased SOC when initial soil nitrogen was > 2 g N kg™! (Du et al.,
2020). Conversely, the effect size was significantly high in soils with
poor initial nitrogen content (<0.75 g N kg™?) in our study. This result
suggests that soil with poor nitrogen would limit SOC accumulation and
has great potential to store carbon if organic amendments are applied.

Soil carbon capacity is correlated with soil fine fraction (Emde et al.,
2021). For instance, increasing clay content is beneficial to store more
soil carbon (Dal Ferro et al., 2020). Organic addition can either increase
or decrease silt and clay content (Sleutel et al., 2006), making the
changes in soil carbon complicated. Carbon is easily degraded in coarse-
textured soils due to lacking microaggregate protection. Thus, coarse
soils have a relatively high potential for carbon sequestration. Our study
found the highest SOC accumulation in coarse-textured soils (33.2%)
instead of in medium or fine-textured soils. Moreover, Sleutel et al.
(2006) identified that manure increased coarse free particulate organic
carbon but declined carbon in silt plus clay-associated soil fractions.
Although carbon increment is high in coarse soils, its degradation is
rapid. Future studies are necessary to estimate whether there is a net
increase in carbon stocks in coarse-textured soils after the long-term
addition of organic amendments.

Added organic amendments are usually incorporated into soils by
tillage. This mixed depth is within the plow layer (~30 cm). Organic
amendments thus increase SOC content in the upper layers. Our results
indicate that organic amendments could also enhance SOC in deeper
soils (Fig. 3). Besides direct input, organic substrate addition promotes
biomass yield, leading to great carbon accumulation. Root litter and
exudates and dissolved carbon are the sources of subsoil carbon
(Michalzik et al., 2001). Root carbon is stable due to the recalcitrance of
tissues (Rumpel and Kogel-Knabner, 2011). In addition, Abrar et al.
(2020) found higher microbial-derived carbon compounds in subsoils
than in topsoil. We highlight that 1.0 m depth should be considered
when estimating SOC storage dynamics response to organic material
input and climate warming.

4.3. Organic amendment properties

Carbon accumulation varied with organic amendment types, as we
supposed. Sewage sludge and municipal solid waste performed better in
increasing SOC than others. With the same application rate, sewage
sludge increased more SOC than municipal solid waste compost or
farmyard manure (Hemmat et al., 2010). Sewage sludge can reduce soil
bulk density and increase water-stable aggregate content (Zuo et al.,
2019), both of which help store SOC. The combined use of manure and
compost should be extended to greatly accumulate carbon in cropland
due to the better performance than each alone (Fig. 4). The effect size of
the slurry was relatively low (14.4%). Slurry addition cannot signifi-
cantly change SOC over 8-15 years (Yaguee et al., 2012; Balota et al.,
2014; Domingo-Olive et al., 2016). One possible explanation is that
slurry is easily decomposed and promotes microbial biomass and
enzyme activities (Murugan et al., 2013; Balota et al., 2014), which in
turn accelerates soil carbon mineralization.

Manure-caused SOC accumulation depends on livestock species.
Cattle manure increased more SOC stock than pig manure, but the dif-
ference was not significant (Maillard and Angers, 2014; Li et al., 2021).
Cattle manure can enlarge the macro-aggregate fractions, which hold
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more SOC content than micro-aggregates (Triberti et al., 2016).
Conversely, SOC enhanced by pig manure was slightly larger than that
by cattle manure in our study, although the difference was not signifi-
cant (Fig. B.1). The difference between the two studies (i.e., Maillard
and Angers, 2014; Li et al., 2021) and ours could be attributed to the
different analysis methods and data sources, considering that the C/N
ratio is not significantly different (p = 0.36 in our database) between
cattle manure and pig manure. Organic carbon content in sheep manure
could be as high as 27.9% (Hu et al., 2019) or 35.7% (Tokarski et al.,
2018). This probably explains the highest SOC increased by sheep
manure.

Carbon and nitrogen content should be considered if enlarging the
SOC pool by organic amendment input. Organic amendments with a rich
carbon content (>500 g C kg™ 1) caused a low effect size (Fig. 4). The
effect size was high when carbon content in organic materials was <
500 g C kg~ . This probably shows that 500 g C kg~ " is a threshold that
determines the ability of organic amendment to increase SOC storage.
One possibility is that part of the materials derived from animal excre-
ment has been decomposed before addition and a large proportion of
recalcitrant organic compounds retain in manure (Thelen et al., 2010).
The effect size decreased when the levels of nitrogen content in the
amendments increased from < 1 to 2-5 g N kg™! (Fig. 4). Nitrogen is
easily degraded during organic amendment storage. Yang et al. (2011)
reported a 26% nitrogen loss during manure storage and land applica-
tion. This loss reduces fertility availability to crop growth and residue
returned in soil. Nitrogen input by organic manure can increase soil
microbial abundance and activities (Xu et al., 2019; Tang et al., 2020),
which may boost soil carbon mineralization. It is necessary to investi-
gate why rich carbon content in organic amendment reduces SOC
accumulation, but great nitrogen content stimulates SOC storage.

Solid amendments showed better performance in SOC sequestration
than the liquid (Fig. 4). First, compared with solid materials, slurry
easily spreads over the soil surface due to its fluid nature, increasing the
contact area between soil particles and liquid organic waste (Entry et al.,
2004). This spread area may accelerate slurry decomposition because of
slurry surface-air interaction, then decreasing slurry contribution to soil
carbon storage. Second, most SOC is fixed or stocked in aggregates, but
binding agents play a crucial role in soil aggregation. Transient or
temporary binding agents, mainly from the slurry, are in favor of
cementing from micro-aggregates to macro-aggregates. Still, persistent
binding agents, such as humic substances and polyvalent metal cationic
complexes, make clay, silt, and some free soil particles into micro-
aggregates (Six et al., 2004). More liable and less highly processed
SOC is contained in the macro-aggregates than micro-aggregates,
increasing the probability of SOC losses. Third, if applied with an
inappropriate method or time, especially after crop harvest, no vegeta-
tion cover would accelerate slurry resource loss. Therefore, considerable
ammonia and nitrous oxide are released into the atmosphere, and nitrate
leaches into groundwater accompanied by liquid slurry (Maris et al.,
2021). Nitrogen loss is unfavorable to soil carbon sequestration. Finally,
breeding species (cattle, pig, sheep), scales (small, medium, or large),
methods (free or intensive), manure and slurry cleaning technology (dry
collection or water housing), and livestock excrement processing
methods (anaerobic digestion or aerobic aeration) all determine the
composition and properties of experimental slurry, resulting in different
outcomes to soil carbon accumulation.

4.4. Other agronomic management practices

Soil carbon accumulation is limited by nitrogen supply. Nitrogen
addition accelerates biomass production, implying more residue reten-
tion. Nitrogen application also stimulates microbial metabolism
(Borjesson et al., 2012), promoting soil respiration and carbon miner-
alization and declining SOC storage. On the contrary, high-level nitro-
gen input may also limit soil microbial and enzyme activities (Sommer
and Mgller, 2000), resulting in low organic matter decomposition and



X. Bai et al.

then relatively high soil carbon accumulation. It can be speculated that
the highest increment in SOC without nitrogen fertilizer addition (Fig. 5)
is due to weak microbial activities. When comparing the effect of ni-
trogen addition rate on carbon, organic amendments increased more soil
carbon with the increasing mineral nitrogen input (Fig. B.2), suggesting
that mixing mineral nitrogen with the organic amendment is superior to
carbon increment than amendment alone.

Rotational cropping systems help sequestrate carbon (Fig. 5). Unlike
monoculture, rotational cropping systems can provide substantial car-
bon input because of the greater belowground allocation of biomass
(Van Eerd et al., 2014). Legume crops, which are widely planted in
rotational systems, increase soil nitrogen and biomass accumulation,
resulting in massive carbon storage. SOC derived from manure is higher
in legume-grain rotations than in continuous winter wheat, regardless of
mineral nitrogen fertilizer input or not (Hao et al., 2017). Farmers are
accustomed to adding organic manure as base fertilizer before the
sowing time of each crop. This management presents better conditions
for carbon accumulation through enhancing nutrient utilization effi-
ciency and producing residue compared to the application of only once a
year. Besides, crop residue with a high C/N ratio is beneficial to SOC
storage. The positive effect is noticeable in rotational systems because of
the strong probability of crop residues with a high C/N ratio.

Crop residue retention increases soil carbon through direct input.
Residue return helps form soil macroaggregates (Benbi and Senapati,
2010), which provide physical protection of SOC from mineralization.
Saikia et al. (2015) observed that farmyard manure increased more SOC
when residue was returned than removed. Similarly, manure plus
chemical nitrogen increased SOC to 18.9 g C kg™! with straw incorpo-
ration and 18 g C kg’1 without addition (Shen et al., 2007). However,
residue removal rather than retention was superior to SOC accumulation
in this study (Fig. 5). Soils with residue removal have relatively low
carbon storage and would rapidly accumulate carbon once the organic
amendment is added. The residue decomposition process is complicated
and controlled by biogeochemical and biophysical conditions (Bai et al.,
2019). For example, residue decomposition consumes nitrogen, which
may impact crop growth and following carbon accumulation. The
grinding degree and applying rate or time also influence residue
decomposition, bringing uncertainties in soil carbon variation.

Irrigation did not noticeably alter the effect of organic amendments
on SOC (Table 2). Furthermore, different levels of precipitation caused a
certain but not significant difference in the effect size in rainfed areas
(Fig. 5). With the same cattle manure input, results from Caron et al.
(2012) showed a negligible difference in SOC between irrigated (51.2 g
C kg™!) and non-irrigated (50.9 g C kg™ 1) clay loam soils. The insig-
nificant change in SOC between rainfed and irrigated fields is due to the
following reasons. First, irrigation increases SOC stocks by promoting
litter and root production and inhibits carbon decomposition by
increasing soil moisture (Entry et al., 2004). Second, irrigation methods,
which were not discussed in our study because of no detailed informa-
tion, strongly influence SOC sequestration. SOC increased when sprin-
kler irrigated and declined when drip irrigated, while had no variation
when flood/furrow irrigated over the full 30 + cm profile (Emde et al.,
2021). Third, SOC increment in rainfed land can be owed to extra annual
carbon input than required to maintain organic carbon balance (Kundu
et al., 2007). Finally, SOC mineralization is slow in rainfed croplands
because of limited microbial activities (Yemadje et al., 2017). Further
analysis indicated that in contrast to rainfed, irrigation restricted carbon
accumulation in humid areas but increased carbon in arid regions
(Fig. B.3).

4.5. Limitations and implications

Organic amendment application increased SOC under various con-
ditions as we mentioned above. All results were robust when identifying
publication bias (Table B.1). The material composition of organic
amendments, which determines their decomposition process to some
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extent, has not been discussed because of the short dataset. For example,
lignin content was given by only 22 comparisons from 5 articles, and
thus can not be further classified to clarify its influence on SOC incre-
ment. Besides, the effect size of very acidic and acidic amendments
should be carefully elucidated due to the limited observations.

Organic amendment decomposition releases more greenhouse gases
than chemical fertilizer (Agegnehu et al., 2016b; Afreh et al., 2018).
Greenhouse gas emissions may offset the advantages of organic
amendments to soil carbon sequestration. Meta studies showed that
manure application significantly increased N»O emission by 32.7%
against synthetic nitrogen fertilizer alone (Zhou et al.,, 2017) and
insignificantly increased global warming potential by 118% (Shakoor
et al., 2021). Another meta-analysis revealed that fully substituting
fertilizer with manure did not alter CH4 and N3O emissions in upland,
whereas it significantly increased CH4 (48-82%) and decreased N5O
(34%) in paddy rice soils (Zhang et al., 2020a). Xia et al. (2017) con-
ducted a global analysis to estimate the net global warming potential
(showing as CO; unit) after substituting manure for fertilizer, finding
that net global warming potential was —0.9 and 0.15 kg COy ha™! yr~!
per kg manure-C ha™! yr! in the upland and paddy field, respectively.
Their result indicates that substituting manure for chemical fertilizer
makes upland a carbon sink and paddy field a carbon source. We
calculated the difference in SOC between organic amendment treatment
and corresponding control in each comparison. Results were negative in
124 comparisons and zero in 25 comparisons, indicating a negative ef-
fect and no effect of organic amendments on SOC, respectively. How-
ever, 92% of total comparisons showed a carbon accumulation since
organic residues were applied. Additional field studies are required to
analyze the effect of organic input on the balance between carbon
accumulation and greenhouse gas emissions, especially in paddy soils.
Furthermore, animal manure mixed with chemical NPK increased crop
yield by 3.3-6.6%, whereas fully substituting NPK decreased yield by
4.1-9.6% (Zhang et al., 2020a). To enhance soil carbon storage without
compromising yield, we suggest that organic input should partially
rather than fully replace chemical fertilizer.

Rapid decomposition of organic amendment may weaken its effect
on SOC increment. The percentage of carbon decomposed was
43.5-46.3% and 32.7-33.7% for pig manure and chicken manure over a
year, respectively (Chen et al., 2019). Carbon in cattle and sheep manure
was mineralized by 70.8% and 18.3% over 378 days, respectively (Zhu
et al., 2020). A long-term application of organic amendments is neces-
sary to increase soil carbon, especially in carbon-poor cropland. We then
assessed the production of organic amendments and their potential for
SOC storage. Annual production of manure is ~ 551 Tg in China and ~
335 Tg in America (Linville et al., 2015; Jia et al., 2018), respectively,
which could increase soil carbon by 25.9 Tg and 16.9 Tg (Fig. B.4) ac-
cording to the average fraction of manure applied to cropland (Zhang
etal., 2017). Annual compost production of 13 Tg (Gianico et al., 2021),
if totally input, may increase carbon by 3.4 Tg in cropland in the Eu-
ropean Union. Approximately 10, 8, and 4 Tg sewage sludge is generated
annually in the European Union, America, and China, respectively (Yesil
and Tugtas, 2019). These may increase SOC by 8.2 Tg in the European
Union, 6.8 Tg in America, and 2.7 Tg in China if fully applied. Applying
organic amendment to cropland improves soil quality and enhances
resilience to climate change while providing a sustainable way to reuse
organic waste.

5. Conclusions

This study quantified SOC responses to organic amendment appli-
cation and associated influence factors, including environmental con-
ditions, organic amendment properties, and agronomic management
practices. Organic amendment application significantly increased SOC
by 26.9% or 5.1 Mg C ha™!. Organic amendment greatly increased SOC
in areas with arid and warm climates and in soils with coarse texture,
alkalinity, and low initial carbon or nitrogen content. Sewage sludge and
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household solid waste are the most efficient organic materials to in-
crease SOC storage. Amendments with a relatively low carbon content or
rich nitrogen content have great potential to accumulate SOC. Upland
and cropland without nitrogen fertilizer addition are more suitable for
increasing SOC via organic residue application. Long-term application of
organic amendments can continuously increase SOC storage.
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Table B.1 Publication bias of the soil organic carbon (SOC) responses to organic amendments (OA) application. All results were robust (fail-safe

number > 5 X data number +10). n: number of observations; FSN: false-safe number.

Group Variables n FSN Group Variables n FSN Group Variables n FSN
Arid 310 49471472 OA Liquid 122 37798 OA total 0-10 521 2793536
Climat Humid 1106 8850040 state Solid 1800 126869208 nitrogen 10-20 462 21028814
ima
© Cool 604 31417801 Cake 17 831 content 20-50 262 663717
Warm 310 515337 Compost 397 1466845 (g/kg) >50 66 217238
. <6 565 4576317 Digestate 18 293 Cropland 1584 95900730
Initial . Land
6-12 446 23288941 Litter 39 1286 Grassland 97 19927
SOC OA type .
(e/ke) 12-20 170 1953599 . Manure 1282 84034042 Horticulture 84 173989
e
BB 500 51 4882 b Organic waste 17 2320 Upland 1593 98391411
0-10 234 286177 Sewage sludge 18 3420 Land use Paddy 129 63058
0-20 450 4487225 Slurry 52 8840 Upland-paddy 196 203447
, 0-30 124 5431043 Manure+Compost 19 2908 i No 512 24189212
Soil Nitrogen
deoth 0-40 24 573 0-1 200 178567 ddii Low level 342 719742
addition
(ep , 080 6 140 OA 12 253 T4 /ho) Medium level 328 946571
cm a
0-60 19 322 addition 2-5 364 16986389 2 High level 152 1009261
0-70 3 105 (Mg 5-10 212 437968 Crop Rotation 1065 17061069
0-100 17 2070 C/ha) 10-20 83 100227 system  Monoculture 378 31951709
Acidic 608 1845944 >20 37 53554 Resid Return 234 2273664
esidue
Soil pH  Neutral 284 674061 OA 0-100 102 119290 Removal 381 16333855
Alkaline 556 30429276 carbon 100-200 211 9360087 Irricati Yes 693 38605772
rrigation
Soil Coarse 600 28365085 content 200-500 705 5446726 gato No 202 1533891
ol Medium 567 2900145  (g/kg) >500 74 60621 i Long 571 12108176
texture ) Duration .
Fine 593 8019321 e pH <=7 92 1651925 (year) Medium 625 30009019
ear
P pH >7 226 359617 Y Short 733 3224009




Fig. B.1 Soil organic carbon (SOC) responses to different types of manure inputs.
Numbers in second column represent the number of observations. Error bars show 95%
confidence intervals. Farmyard manure was given by the articles and cannot be further
classified due to limited information. The differences of effect size among manure types
were not statistically significant. The difference was not significant among all types.
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Fig. B.2 Relationship between mineral nitrogen fertilizer input rate and SOC ratio (SOC
treatment/ SOC control). Blue line and shadow area represent the regression line and 95%
confidential interval, respectively. SOC ratio data were removed in this figure if the
values were > Q3+3* IQR (interquartile range).
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Fig. B.3 Irrigation and rainfed effect on soil organic carbon (SOC) increased by organic
amendments in arid and humid regions, respectively. Numbers in second column are
observations; p value shows between-group heterogeneity.
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Fig. B.4 Global manure application (Tg N year) in cropland and rangeland. The
numbers were the total potential of soil carbon sequestration (Tg C year!) in several
countries or regions (see inserted table). Carbon (C) sequestration potential = manure
production X application rate x C sequestration rate. Application rate was offered by
Zhang et al. (2017) and C sequestration rate was in our study. Manure production was
offered by references shown in inserted table. N is nitrogen.

Manure N : y
Tg/year >
- N T S T
1.56 Tg Canada Zhang (2018) China Jia et al. (2018)
— United States Bian et al. (2021) Iran Shirzad et al. (2019)
i Brazil de Oliveira etal. (2020)  India Agricultural Statistics (2011)
_ the EU Flotats et al. (2013) South Africa Okorogbona & Adebisi (2012)
0 Australia Shirzad et al. (2019) Others Zhang et al. (2017)

References for data sources of Figure S6
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