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Abstract—Device models show GeSn lasers are limited by weak
electron and photon confinement. Adding carbon offers strong
conduction band offsets, freeing SiGeSn layers for separate
confinement heterostructures, reducing thresholds.
Photoluminescence from recent growths of GeC and GeSnC
quantum wells will be presented.
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I. INTRODUCTION

Direct bandgap Group IV materials compatible with CMOS
fabrication and CPU temperatures would enable lasers,
amplifiers, and compact modulators intimately integrated for
optical interconnects, as well as vector multiplication in a single
clock cycle for dramatically faster image processing and
machine learning. However, Group IV lasers operate with high
thresholds even at cryogenic temperatures and/or optically
pumped, curtailing their utility for integrated photonics.

In this work, we show that the high thresholds of Ge and
GeSn lasers are due to three dimensions of weak confinement:
electrons in k-space, electrons in real space, and photons. On the
other hand, the addition of dilute amounts of carbon promises
strong electron and photon confinement for a 2D density of
states and separate confinement heterostructures, leading to low
thresholds even at CPU temperatures. Unlike diamond or SiC
alloys, the bandgap of Ge1-xCx decreases with x.

II. BACKGROUND AND METHODS

Population and laser gain and loss models used strained
GeSn data from [1] and [2], and GeC(Sn) data from VASP [3].
Optical mode and confinement factor were calculated using a
finite element solver. Finite quantum well (QW) energies and
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populations assumed isotropic, parabolic bands and Fermi-Dirac
statistics. Only electrically pumped lasing is considered.

III. CONFINEMENT CALCULATION RESULTS

A. k-space: Heavy L Conduction Band Remains Populated

Adding Sn to Ge can make it weakly direct: EL-Er <80 meV
in bulk material. However, because GeSn has a very small
electron effective mass at I' (mer” < 0.02 mo), quantum
confinement pushes the direct I" valley back above or near the L
valley. Even in “direct” material, the discrepancy between L and
I' masses means even in an ideal QW (Fig. 1, red arrow), almost
half the electrons will still occupy the heavy, indirect L valley
and higher I” states instead. This greatly reduces differential gain
and increases free carrier absorption (FCA).

Adding carbon as GeC or GeCSn provides strong directness
due to a band anticrossing at I' [4]. For 5-9 nm QWs, all
electrons are in the I'1 state and can contribute to gain.
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Fig. 1. Fraction of electrons in each confined state for (a) GeSn QW in SiGeSn
barriers, and (b) GeC QW in Ge barriers, as a function of QW width. Blue
regions represent fraction of electrons in I'; state; pink is fraction in L states.
Maximum differential gain dg/On when 100% of electrons are in I' state.
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B. Real Space: Escape from Quantum Wells (OW)

For maximum laser gain, QWs should be narrow enough that
only a single state is confined, so all electrons contribute to gain.
However, confinement in real space is reduced by narrowing the
well; the raised QW ground state is closer to the height of the
energy barriers, allowing escape out of the QW. This makes a
2D density of states (DOS) for low threshold GeSn/Ge lasers
impractical, and direct gap quantum dots impossible.

In contrast, GeC(Sn) QWs not only start deeper, but mir ~
0.45-0.7 mo is >10x larger than GeSn and comparable with mitL.
Thus, the lowest direct CB state is preserved even in a 5 nm QW.
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Fig. 2. Confined states in typical GeSn laser QW (left) and GeC QW (right).
Red arrow shows 4ksT at room temperature. Deeper GeC QW precludes both
carrier escape to barrier and thermal population of higher QW states.

C. Optical Confinement: Low Refractive Index Cladding

GeSn QWs typically require relaxed, high-Sn buffer layers
to reduce strain, but high Sn means high refractive index, pulling
the optical mode away from the QWs [5,6], as shown in Fig. 3.
Furthermore, because SiGeSn is needed for the barriers in GeSn
QWs, its low index is unavailable for cladding layers.

Adding C to the QW frees SiGeSn for cladding layers and
separate confinement heterostructures. This increases the optical
confinement factor, which further reduces laser thresholds.
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Fig. 3. Calculated optical mode and refractive index (n) profiles. (a)
GeSn/SiGeSn (recalculated from Margetis). Large n in GeSn buffer pulls mode
from QWs. (b) GeCSn/Ge 3QW with SiGeSn optical cladding layers for a
confinement factor of up to 5% per QW.

IV. GAIN, L0OSS, AND THRESHOLD

Using the standard laser relationships,
LCopigh = <>+ om + arca and Jin = qLABNuw? + CNw?)/mi, we
calculated threshold current density, Ju, for a double
heterostructure (DH) GeSn laser with and without thermal
dilution of electrons to higher QW states, and internal and FCA
losses (o, 0Fca), using geometries similar to recent lasers [1].
The results suggest room temperature GeSn lasing might be
possible, but at very high threshold current densities (Fig. 4). In
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contrast, adding C reduces thresholds below the lowest, ideal “T’
CB only” values shown in the figure.
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Fig. 4. Contributions to threshold current for DH GeSn laser. Populated L
valleys add free carrier absorption, amplifying the effects of other losses.
GeC(Sn) thresholds (not shown) remain entirely below the green bottom line.

We will discuss the influence of C on C and Sn incorporation
into the GeCSn alloy films [7] and present photoluminescence
(PL) and other characterization results from recent growth of
GeCSn QWs showing high crystallinity and no Sn segregation.
C and Sn each appear to improve the quality of growth of the
other in Ge alloys.

V. SUMMARY

The addition of dilute amounts of C directly addresses the
greatest weaknesses in GeSn lasers: the lack of confinement in
narrow QWs, the barely direct bandgap, a low optical
confinement factor, and difficult growth. FCA losses compound
the already-high thresholds. Room temperature electrically
pumped lasers are unlikely with GeSn alone but appear to be
achievable with the addition of dilute carbon.
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