

1 **Virus-Like Particles for Drug Delivery: A Review of Methods and Applications**

2 Bon Ikwuagwu^{a,1}, Danielle Tullman-Ercek^{a, b, c}

3 ^aDepartment of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan

4 Road, Technological Institute E136, Evanston, IL, 60208, USA

5 ^bCenter for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological

6 Institute B486, Evanston, IL, 60208, USA

7 ^cCorresponding Author: ercek@northwestern.edu

8 **Reviewed and Approved**

Name	Initials	Date
Bon Ikwuagwu		
Danielle Tullman-Ercek		

9

10

11

12 **HIGHLIGHTS**

13 • VLPs are highly versatile structures, adaptable for many drug delivery applications
14 • Mutations to VLP structural proteins can improve VLP drug delivery
15 • VLP cargo loading, release and activation are key traits for drug delivery

16 **ABSTRACT**

17 Virus-like Particles (VLPs) are self-assembling protein nanoparticles that have great promise as
18 vectors for drug delivery. VLPs are derived from viruses but retain none of their infection or
19 replication capabilities. These protein particles have defined surface chemistries, uniform sizes,
20 and stability properties that make them attractive starting points for drug delivery scaffolds. Here,
21 we review recent advances in tailoring VLPs for drug delivery applications, including VLP platform
22 engineering approaches as well as methods for cargo loading, activation, and release. Finally,
23 we highlight several successes using VLPs for drug delivery in model systems.

24 **KEYWORDS:** Virus-like Particles; Drug delivery; stimuli-responsive; protein library; genetic
25 engineering; protein fusion

26 **ABBREVIATIONS:** VLP, virus-like particle; MS2, Male Specific Bacteriophage 2; TMV, Tobacco
27 Mosaic Virus; Dox, doxorubicin; EPR, enhanced permeability and retention; SyMAPS, Systematic
28 Mutagenesis and Assembled Particle Selection; PEG, Polyethylene Glycol; HBV, Hepatitis B
29 Virus; CCMV, Cowpea Chlorotic Mosaic Virus; PhMV, Physalis Mottle Virus; MLV, Murine
30 Leukemia Virus; Magnetic Resonance Imaging, MRI; Polydopamine, PDA

31

32

33 **INTRODUCTION**

34 Virus-like particles (VLPs) are self-assembling protein nanoparticles, typically derived
35 from the capsid protein of non-enveloped viruses that infect bacterial, insect, plant, and
36 mammalian cells as seen in Figure 1. VLPs are empty viruses without any infection, maturation,
37 or replication components, an important feature for their biotechnological applications [1].
38 Engineers are repurposing VLPs for a variety of applications from imaging agents [2] to vaccine
39 scaffolds [3–5], but we devote this review to exploring advances in engineering VLPs as drug
40 delivery vehicles.

41 VLPs have multiple properties that make them desirable for drug delivery applications.
42 VLPs are safe and biocompatible delivery vehicles. These particles are uniform in size when
43 compared to other inorganic core nanoparticles such as gold core nanoparticles, which is valuable
44 for drug delivery studies where the uniform size will increase the consistency of the accumulation
45 of the nanoparticles in the tissues of interest. VLPs can be expressed in large quantities with ease
46 in bacterial, plant, or mammalian systems through recombinant expression. The defined
47 chemistry of these particles enables chemical modification of the interior and exterior by taking
48 advantage of reactive amino acid residues such as lysine (N-hydroxysuccinimide ester
49 modification) or cysteine residues (thiol-maleimide chemistry) [6]. Specifically, VLPs can be
50 engineered with exterior targeting groups, enhancing the specificity of these delivery vehicles
51 [7,8]. Many VLPs can also disassemble into coat protein monomers and dimers and then
52 reassemble around cargo to easily load imaging agents, enzymes, and therapeutics into their
53 interior [9]. This review highlights the recent developments towards engineering and using VLPs
54 for drug delivery applications as shown in Figure 2, focusing on the VLP platform, VLP cargo
55 loading, and cargo release or activation from VLPs.

56 **VLP Platform Physical Property Engineering**

57 VLPs are versatile drug delivery platforms due to the ease with which their physical
58 properties can be modified to suit specific application needs via genetic manipulation of the
59 sequences encoding coat proteins. For example, VLP pH and temperature stability can be altered
60 to create particles that remain stable in the bloodstream and preferentially disassemble in the low
61 pH endosomes of cells to release their therapeutic cargo. This platform tuneability is a unique
62 aspect of the technology, creating the potential to use model VLP drug delivery systems for new
63 targets. Some notable studies have shown that novel viruses can be identified with unique
64 properties, such as increased thermal [10] and pH [11] stabilities, which can be adapted into new
65 VLP scaffolds. A second approach, which is commonly employed, is to use rational or directed
66 evolution strategies to create variants of existing VLPs that have optimal size, shape, thermal
67 stability, pH stability, or surface charge properties.

68 VLP size and/or shape can be shifted via genetic-level point mutations to improve their
69 utility as a drug delivery vehicle. Single amino acid changes to the protein sequence that can
70 create large changes in protein function. For example, a smaller variant of the Male specific
71 Bacteriophage 2 (MS2) VLP (17 nm vs. 27 nm for wild type) was identified with a mutation at
72 position 37 from serine to proline (S37P) [12]. A second study identified a nanodisk assembly of
73 the Tobacco Mosaic Virus (TMV) VLP conferred by two mutations from lysine to arginine
74 (K53R/K68R) [13]. In both cases, point mutations conferred the formation of uniquely sized and
75 shaped particles [12,13] compared to their wild-type counterparts. For VLP drug delivery to
76 tumors, point mutations that shift the size and/or shape can lead to particles with enhanced
77 permeability and retention (EPR) effect [7,8], the effect that defines the ability of nanoparticles to
78 enter tumors via the leaky vasculature that forms as a tumor grows. A key result of this effect is
79 that engineers must optimize the balance of drug carrying capacity and tumor penetration. While
80 larger diameter or aspect ratio particles can carry a larger therapeutic payload, the engineered
81 VLPs accumulate less into tumor environments in accordance with the EPR effect. For example,

82 performed biodistribution studies were performed with novel 18 nm diameter TMV nanodisk VLPs,
83 27 nm MS2 icosahedral VLPs, and 50 nm nanophages in a U87-Luc tumor bearing mice
84 model[14]. The results demonstrated that mice survival improved the most with TMV nanodisk
85 VLPs modified on the interior with chemotherapeutic doxorubicin (Dox) and on the exterior with
86 polyethylene glycol (PEG). The delivery vehicles were each loaded with the same amount of Dox
87 and compared to delivery of free Dox at the same concentration. Drug delivery with TMV nanodisk
88 VLPs produced an advantageous result that would not be discovered without the use of the
89 smaller-sized, disk-shaped TMV VLP variant. Importantly, VLP size and shape can be adjusted
90 while retaining specific disassembly and chemical modification properties, making these
91 nanoparticles attractive because a VLP can be tailored to match a specific drug delivery
92 application without compromising its other preferred features.

93 VLPs with non-standard surface charge, thermal stability, or pH stability can also be
94 identified through directed evolution. In this approach, researchers create a collection of variants
95 of the coat protein, termed a protein library, and then screen or select for the particles in the library
96 that have the physical properties of interest. The library can consist of a few variants or millions
97 of variants, depending on the expected likelihood of finding a beneficial change. Protein libraries
98 composed of point mutations have proven useful in tuning the properties of VLP drug delivery
99 vehicles. For example, a 2,688 member library was generated for all single amino acid mutations
100 of the MS2 VLP and selected for assembled particles [15]. High-throughput sequencing was used
101 to quantify each VLP mutant's "fitness", which in this case was assessed by enrichment during
102 the purification of MS2 VLP assembled particles. The entire process was named Systematic
103 Mutagenesis and Assembled Particle Selection (SyMAPS). Following this seminal work, the
104 SyMAPS process was applied to design a library of proteins with two point mutations targeted to
105 a loop region of MS2 and uncovered VLPs with different pH and thermal stability properties than
106 wild-type MS2 [16]. Three double mutants were discovered that were competent for assembly,

107 disassembled around the early endosome pH of 4.6, and were thermally stable at temperatures
108 greater than 50 °C. These VLPs are candidates for commercial drug delivery applications
109 because they are shelf stable and designed to disassemble under conditions that mimic those of
110 endosomes. Researchers also have created smaller targeted libraries to test hypotheses about
111 the importance of specific residues. For example, the Finn group created a library of 14 Q β
112 variants in which exterior lysines were mutated to other residues [17]. They hypothesized that one
113 or more of these lysines played a role in mammalian cell binding. After selecting for the ability to
114 bind cell membranes, the researchers identified a Q β variant with a native lysine at position 46
115 mutated to glutamine (Q β K46Q), which increased the positive charge of the particle and
116 decreased binding of VLP to the cell membrane when compared to the wild-type particle. Creating
117 VLP libraries, whether for pre-identified residues of interest or in a broad search for impactful
118 mutants, is a powerful way to genetically modify the protein particle to improve drug delivery
119 capabilities.

120 **Engineering the Cargo Loading of VLPs**

121 The ideal drug delivery scaffold should have flexibility in loading cargo into the interior or
122 onto the exterior [18,19] in order to easily create scaffolds for a variety of use cases. This remains
123 true for VLPs. Cargo in this review is defined as any therapeutic agent that the VLP is delivering
124 to target cells. Targeting ligands are attached to nanoparticles in order to increase the likelihood
125 that particles are delivered to the specific targeted cell, and the targeting groups are designed to
126 bind specific cell receptors. Passive targeting experiments often incorporate a non-reactive
127 spacer on the exterior such as PEG [20], while active targeting experiments incorporate cell-
128 specific targeting ligands such as antibodies on their exterior [21,22]. These additions, while
129 necessary to facilitate delivery, are not defined as cargo in this review. Cargo can be chemically
130 conjugated to, loaded onto the exterior or interior of, or encapsulated within VLPs.

131 Inserting domains into VLP-encoding coat protein genes can give rise to new VLPs with
132 novel handles to attach cargo to the interior or exterior. Protein domains are commonly added to
133 the N-terminus[23], C-terminus[24], or both [25] because altering these regions typically does not
134 compromise the structures of either the protein or VLP. VLPs with robust tolerance to domain
135 insertions, whether at the termini or within the polypeptide, are particularly desirable because
136 these particles can serve as models for inserting chemically reactive handles, adjuvants, or
137 binding moieties into the VLP. These insertions can be rationally designed with specific peptide
138 sequences or be discovered through a library-based approach. The SyMAPS approach was used
139 to create a loop insertion library in which all possible three-amino-acid peptides were encoded for
140 insertion within the MS2 VLP at the FG loop [26], a location known to tolerate alterations. This
141 approach yielded novel assembly-competent MS2 VLP variants and informed some design rules
142 for the inserted peptide sequences. Additionally, a modified SyMAPS approach was implemented
143 to genetically modify the N-terminus of MS2 VLPs to create particles with new chemically reactive
144 handles [27]. To do so, they created a library of every possible three-amino-acid peptide preceded
145 by a proline and inserted at the N-terminus to take advantage of N-terminal proline conjugation
146 chemistry [28]. After the selections for assembly and chemical reactivity, PNYR-MS2 and PYQR-
147 MS2 mutant VLPs were identified as promising variants that permitted the desired modification at
148 high yield. This study demonstrates that domain insertions in the VLP gene offer a viable method
149 for cargo attachment on the assembled particle.

150 Engineered protein-protein interactions offer an additional method, often in tandem with a
151 domain insertion, to associate cargo with a VLP. For example, the SpyCatcher/SpyTag system
152 creates isopeptide bonds between their appended proteins and has been explored in cargo
153 attachment studies with VLPs [29]. Using this system, researchers demonstrated cargo
154 attachment to both the interior and exterior of VLPs [21,30]. In a recent study, the SpyCatcher
155 domain was inserted into an exterior loop region of the Hepatitis B Virus (HBV) VLP and the

156 SpyTag domain to the cargo protein, yeast cytosine deaminase [30]. The researchers also
157 simultaneously appended targeting peptides to the exterior of their cargo-loaded VLP via the
158 same SpyCatcher/SpyTag, and performed cellular delivery experiments that demonstrated the
159 effectiveness of these modified HBV VLPs at killing cancer cells. Additionally, the P22 scaffolding
160 protein was engineered to create a protein-protein interaction with therapeutic enzyme cargo that
161 catalyze important steps in the GSH pathway [31]. These enzymes were genetically fused to the
162 N-terminus of the scaffolding protein that is used to form the P22 VLP and were encapsulated by
163 co-expression of the capsid protein and the enzyme scaffold fusion. The resulting enzyme-
164 encapsulating P22 VLPs were effective in the treatment for GSH-deficient cancer cells in *in vitro*
165 studies. These examples illustrate the utility of protein-protein interactions in loading VLPs with
166 relevant cargo or targeting groups.

167 In addition to engineered protein-protein interactions, researchers can leverage a VLP's
168 natural affinity for negatively charged molecules to encapsulate and deliver nucleic acids [32].
169 VLPs are derived from viruses that use a protein exterior to encase their nucleic acid genomes,
170 so there is an inherent affinity for negatively charged nucleic acids within every VLP. Taking
171 advantage of this affinity typically requires incubating disassembled capsid proteins with
172 therapeutic nucleic acids and stimulating re-assembly of the VLPs with encapsulated nucleic acid
173 cargo. Cowpea Chlorotic Mosaic Virus (CCMV) VLPs were designed to encapsulate silencing
174 RNA and anti-sense oligonucleotides in this way [33,34]. Cellular delivery experiments with CCMV
175 VLPs loaded with RNA showed that treatment efficacy improved when using a VLP as compared
176 to free RNA. Electrostatic interactions were leveraged to form theranostic, therapeutic and
177 diagnostic Q β VLPs in which the therapeutic cargo included RNA and the imaging components
178 were fluorescent proteins [35,36]. These VLPs conferred delivery of RNAi downregulating
179 expression of DNA repair mechanisms that made treatment with a chemotherapeutic more
180 effective in mice brain tumor xenograft models. As these examples show, leveraging electrostatic

181 interactions of the VLP interior is an efficient way to load nucleic acids into VLPs, and can be used
182 in conjunction with other methods to alter VLP disassembly and cargo delivery.

183 **Engineering Cargo Release and Activation from VLPs**

184 A key feature of VLPs is the programmability of their cargo release or activation. Cargo is
185 sometimes modified to become compatible with other nanoparticle delivery vehicles, but these
186 modifications can adversely affect the cargo's therapeutic function after entering the diseased
187 cells. Additionally, cargo can be effective in killing cells, but are too dangerous for widespread
188 delivery into the body. Due to the options for cargo association, VLPs overcome both challenges,
189 offering a method to deliver toxic cargo specifically to cells while retaining therapeutic efficacy.

190 VLP-cargo interactions can be engineered so that drug payloads are released in response
191 to certain stimuli (e.g., pH, proteolytic enzyme presence) in a local environment of interest. For
192 example, plant-derived Physalis Mottle Virus (PhMV) VLPs were investigated for pH mediated
193 release of chemotherapeutic drugs [37,38]. A recent study focused on chemically conjugating a
194 prodrug derivative of doxorubicin to the interior of PhMV VLPs, forming a pH responsive
195 hydrazone bond to the VLP [37]. In a separate experiment, the same research group conjugated
196 the drug cisplatin to the VLP [38]. Both experiments showed cargo release after incubation at pH
197 5.2 for multiple hours. Tumor xenograft mice injected with loaded PhMV VLPs had significantly
198 improved survival when compared to free doxorubicin or cisplatin. VLPs can also be used to
199 deliver cargo that is activated upon enzyme-mediated release. For example, VLPs that deliver
200 Cas9-sgRNA ribonucleoproteins include a protease-cleavable linker between the Cas9 cargo and
201 Gag structural protein [39,40]. Cleaving the Cas9 from the structural protein used to anchor Cas9
202 to the VLP interior enables the Cas9-sgRNA ribonucleoprotein to edit DNA. Murine Leukemia
203 Virus (MLV) VLPs were shown to effectively deliver Cas9 proteins N-terminally fused to an MLV
204 protease site on the C-terminus of a Gag protein and that these Cas9 fusions still effectively
205 modify genomic DNA in primary cells, embryo cells, and in mice upon proteolysis [39]. In a

206 similarly novel way, human immunodeficiency virus (HIV) VLPs were able to deliver Cas9 cargo
207 proteins N-terminally fused to an HIV protease site on the C-terminus of a Gag protein to localize
208 the Cas9 into the VLP interior. The loaded HIV VLPs successfully transport Cas9 to edit the
209 genomes of human T-cells effectively without the need for electroporation [40].

210 VLPs are also compatible with light activatable drug delivery systems. These cargo are
211 most effective at facilitating photodynamic or photothermal therapy [41]. The therapies use small
212 molecule photosensitizers that react to light in the 600-800 nm wavelengths to generate reactive
213 oxygen species which then kill tumor cells. Q β VLPs were engineered for photothermal therapy
214 by chemically conjugating the near infrared (NIR) dye Croc (thiophene-croconaine dye) to the
215 exterior of the particle [42]. Injecting these loaded VLPs into mice with 4T1 murine breast cancer
216 tumor xenografts led to suppression of 70% of the tumors in mice 4T1 tumor xenograft models
217 compared to free photosensitizer dye alone. Furthermore, Q β VLP photothermal therapy
218 prolonged survival time and reduced lung metastasis by 85% in mice compared to the control. In
219 another example, TMV theranostic VLPs were engineered by chemically conjugating a Gd-
220 dodecane tetraacetic acid contrast agent to the interior of the VLP for magnetic resonance
221 imaging (MRI), photoacoustic imaging, and photothermal therapy [43]. These VLPs were
222 appended with the photothermal agent polydopamine (PDA), and the Gd-TMV-PDA VLPs showed
223 improved MRI imaging capabilities and killed prostate cancer cells after irradiation at 808 nm for
224 as little as 3 minutes. Collectively, these studies show how VLPs loaded with cargo can be
225 delivered to areas of interest and activated with light.

226 **CONCLUSION**

227 There have been several exciting advances in VLP engineering for drug delivery
228 applications over the past five years. Researchers demonstrated how to modify VLPs with both
229 genetic and chemical methods to tune platform and cargo parameters for specific delivery goals,
230 and established platforms for engineering VLPs to have favorable size, shape, surface charge,

231 pH and thermal stability properties. By taking advantage of the inherent genotype-to-phenotype
232 link associated with viruses, recent progress has demonstrated the power of generating libraries
233 of VLPs to identify VLP properties with improved drug delivery properties. Moreover, whether
234 through genetic, chemical, or electrostatic methods, VLPs can be loaded with therapeutic cargo,
235 and the VLP–cargo interactions can be modified for responsive release or therapeutic activation
236 Recent advances in genome editing are giving rise to a promising new application for VLPs: the
237 delivery of Cas9 proteins for gene and cell therapy. With ever-expanding toolkits for the
238 engineering of VLPs, we expect to see a continued shift of the field of nanoparticle drug delivery
239 towards a more functional and effective future.

240 **ACKNOWLEDGMENTS**

241 In addition, we would like to thank Carolyn Mills and Nolan Kennedy for helpful discussions.

242 **DECLARATION OF INTEREST**

243 The authors declare no conflicts of interest.

244

245 **REFERENCES**

- 246 1. Hyman P, Trubl G, Abedon ST: **Virus-Like Particle: Evolving Meanings in Different**
247 **Disciplines.** *PHAGE* 2021, **2**:11–15.
- 248 2. Jeevanandam J, Pal K, Danquah MK: **Virus-like nanoparticles as a novel delivery tool**
249 **in gene therapy.** *Biochimie* 2019, **157**:38–47.
- 250 3. van Riel D, de Wit E: **Next-generation vaccine platforms for COVID-19.** *Nat Mater* 2020,
251 **19**:810–812.
- 252 4. Venkataraman S, Reddy VS, Khurana SMP: **Biomedical Applications of Viral**
253 **Nanoparticles in Vaccine Therapy.** In *NanoBioMedicine*. Edited by Saxena SK, Khurana
254 SMP. Springer; 2020:213–236.
- 255 5. Wang C, Ávila BEF de, Mundaca-Uribe R, Lopez-Ramirez MA, Ramírez-Herrera DE,
256 Shukla S, Steinmetz NF, Wang J: **Active Delivery of VLPs Promotes Anti-Tumor**
257 **Activity in a Mouse Ovarian Tumor Model.** *Small* 2020, **16**:1907150.
- 258 6. Chen MY, Butler SS, Chen W, Suh J: **Physical, chemical, and synthetic virology:**
259 **Reprogramming viruses as controllable nanodevices.** *WIREs Nanomedicine*
260 *Nanobiotechnology* 2019, **11**:e1545.

261 7. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW: **Analysis of**
262 **nanoparticle delivery to tumours.** *Nat Rev Mater* 2016, **1**:16014.

263 8. Dai Q, Bertleff-Zieschang N, Braunger JA, Björnalm M, Cortez-Jugo C, Caruso F:
264 **Particle Targeting in Complex Biological Media.** *Adv Healthc Mater* 2017,
265 doi:10.1002/adhm.201700575.

266 9. Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B,
267 Carter MB, Willman CL, et al.: **Cell-Specific Delivery of Diverse Cargos by**
268 **Bacteriophage MS2 Virus-like Particles.** *ACS Nano* 2011, **5**:5729–5745.

269 10. Thong QX, Biabanikhankahdani R, Ho KL, Alitheen NB, Tan WS: **Thermally-responsive**
270 **Virus-like Particle for Targeted Delivery of Cancer Drug.** *Sci Rep* 2019, **9**:3945.

271 11. Ghosh S, Banerjee M: **A smart viral vector for targeted delivery of hydrophobic drugs.**
272 *Sci Rep* 2021, **11**:7030.

273 12. Asensio MA, Morella NM, Jakobson CM, Hartman EC, Glasgow JE, Sankaran B, Zwart
274 PH, Tullman-Ercek D: **A Selection for Assembly Reveals That a Single Amino Acid**
275 **Mutant of the Bacteriophage MS2 Coat Protein Forms a Smaller Virus-like Particle.**
276 *Nano Lett* 2016, **16**:5944–5950.

277 13. Finbloom JA, Han K, Aanei IL, Hartman EC, Finley DT, Dedeo MT, Fishman M, Downing
278 KH, Francis MB: **Stable Disk Assemblies of a Tobacco Mosaic Virus Mutant as**
279 **Nanoscale Scaffolds for Applications in Drug Delivery.** *Bioconjug Chem* 2016,
280 **27**:2480–2485.

281 14. Finbloom JA, Aanei IL, Bernard JM, Klass SH, Elledge SK, Han K, Ozawa T, Nicolaides
282 TP, Berger MS, Francis MB: **Evaluation of Three Morphologically Distinct Virus-Like**
283 **Particles as Nanocarriers for Convection-Enhanced Drug Delivery to Glioblastoma.**
284 *Nanomaterials* 2018, **8**:1007.

285 15. Hartman EC, Jakobson CM, Favor AH, Lobba MJ, Álvarez-Benedicto E, Francis MB,
286 Tullman-Ercek D: **Quantitative characterization of all single amino acid variants of a**
287 **viral capsid-based drug delivery vehicle.** *Nat Commun* 2018, **9**:1385.

288 16. Hartman EC, Lobba MJ, Favor AH, Robinson SA, Francis MB, Tullman-Ercek D:
289 **Experimental Evaluation of Coevolution in a Self-Assembling Particle.** *Biochemistry*
290 2019, **58**:1527–1538.

291 17. Martino ML, Crooke SN, Manchester M, Finn MG: **Single-Point Mutations in Q β Virus-**
292 **like Particles Change Binding to Cells.** *Biomacromolecules* 2021, **22**:3332–3341.

293 18. Le DHT, Commandeur U, Steinmetz NF: **Presentation and Delivery of Tumor Necrosis**
294 **Factor-Related Apoptosis-Inducing Ligand via Elongated Plant Viral Nanoparticle**
295 **Enhances Antitumor Efficacy.** *ACS Nano* 2019, **13**:2501–2510.

296 19. Crooke SN, Schimer J, Raji I, Wu B, Oyelere AK, Finn MG: **Lung Tissue Delivery of**
297 **Virus-Like Particles Mediated by Macrolide Antibiotics.** *Mol Pharm* 2019, **16**:2947–
298 2955.

299 20. Le DHT, Méndez-López E, Wang C, Commandeur U, Aranda MA, Steinmetz NF:
300 **Biodistribution of Filamentous Plant Virus Nanoparticles: Pepino Mosaic Virus**
301 **versus Potato Virus X.** *Biomacromolecules* 2019, **20**:469–477.

302 21. Kim H, Choi H, Bae Y, Kang S: **Development of target-tunable P22 VLP-based delivery**
303 **nanoplatforms using bacterial superglue.** *Biotechnol Bioeng* 2019, **116**:2843–2851.

304 22. Aanei IL, ElSohly AM, Farkas ME, Netirojjanakul C, Regan M, Taylor Murphy S, O’Neil JP,
305 Seo Y, Francis MB: **Biodistribution of Antibody-MS2 Viral Capsid Conjugates in**
306 **Breast Cancer Models.** *Mol Pharm* 2016, **13**:3764–3772.

307 23. Vervoort DFM, Heiringhoff R, Timmermans SBPE, van Stevendaal MHME, van Hest JCM:
308 **Dual Site-Selective Presentation of Functional Handles on Protein-Engineered**
309 **Cowpea Chlorotic Mottle Virus-Like Particles.** *Bioconjug Chem* 2021, **32**:958–963.

310 24. Tan FH, Kong JC, Ng JF, Alitheen NB, Wong CL, Yong CY, Lee KW: **Recombinant turnip**
311 **yellow mosaic virus coat protein as a potential nanocarrier.** *J Appl Microbiol* 2021,
312 doi:10.1111/jam.15048.

313 25. Zhao L, Kopylov M, Potter CS, Carragher B, Finn MG: **Engineering the PP7 Virus**
314 **Capsid as a Peptide Display Platform.** *ACS Nano* 2019, **13**:4443–4454.

315 26. Robinson SA, Hartman EC, Ikwuagwu BC, Francis MB, Tullman-Ercek D: **Engineering a**
316 **Virus-like Particle to Display Peptide Insertions Using an Apparent Fitness**
317 **Landscape.** *Biomacromolecules* 2020, **21**:4194–4204.

318 27. Brauer DD, Hartman EC, Bader DLV, Merz ZN, Tullman-Ercek D, Francis MB: **Systematic**
319 **Engineering of a Protein Nanocage for High-Yield, Site-Specific Modification.** *J Am*
320 *Chem Soc* 2019, **141**:3875–3884.

321 28. ElSohly AM, Francis MB: **Development of Oxidative Coupling Strategies for Site-**
322 **Selective Protein Modification.** *Acc Chem Res* 2015, **48**:1971–1978.

323 29. Brune KD, Leneghan DB, Brian IJ, Ishizuka AS, Bachmann MF, Draper SJ, Biswas S,
324 Howarth M: **Plug-and-Display: decoration of Virus-Like Particles via isopeptide**
325 **bonds for modular immunization.** *Sci Rep* 2016, **6**:19234.

326 30. Hartzell EJ, Lieser RM, Sullivan MO, Chen W: **Modular Hepatitis B Virus-like Particle**
327 **Platform for Biosensing and Drug Delivery.** *ACS Nano* 2020, **14**:12642–12651.

328 31. Wang Y, Uchida M, Waghani HK, Douglas T: **Synthetic Virus-like Particles for**
329 **Glutathione Biosynthesis.** *ACS Synth Biol* 2020, **9**:3298–3310.

330 32. Zilberzwige-Tal S, Alon DM, Gazit D, Zachariah S, Hollander A, Gazit E, Elbaz J:
331 **Genetically Encoding Ultrastable Virus-like Particles Encapsulating Functional DNA**
332 **Nanostructures in Living Bacteria.** *ACS Synth Biol* 2021,
333 doi:10.1021/acssynbio.0c00586.

334 33. Lam P, Steinmetz NF: **Delivery of siRNA therapeutics using cowpea chlorotic mottle**
335 **virus-like particles.** *Biomater Sci* 2019, **7**:3138–3142.

336 34. Pretto C, Tang M, Chen M, Xu H, Subrizi A, Urtti A, van Hest JCM: **Cowpea Chlorotic
337 Mottle Virus-Like Particles as Potential Platform for Antisense Oligonucleotide
338 Delivery in Posterior Segment Ocular Diseases.** *Macromol Biosci* 2021, **21**:2100095.

339 35. Pang H-H, Huang C-Y, Chou Y-W, Lin C-J, Zhou Z-L, Shiue Y-L, Wei K-C, Yang H-W: **Bioengineering fluorescent virus-like particle/RNAi nanocomplexes act
340 synergistically with temozolomide to eradicate brain tumors.** *Nanoscale* 2019,
341 11:8102–8109.

343 36. Pang H-H, Chen P-Y, Wei K-C, Huang C-W, Shiue Y-L, Huang C-Y, Yang H-W: **Convection-Enhanced Delivery of a Virus-Like Nanotherapeutic Agent with Dual-
344 Modal Imaging for Besiegement and Eradication of Brain Tumors.** *Theranostics* 2019,
345 9:1752–1763.

347 37. Hu H, Steinmetz NF: **Doxorubicin-Loaded Physalis Mottle Virus Particles Function as
348 a pH-Responsive Prodrug Enabling Cancer Therapy.** *Biotechnol J* 2020, **15**:2000077.

349 38. Hu H, Steinmetz NF: **Cisplatin Prodrug-Loaded Nanoparticles Based on Physalis
350 Mottle Virus for Cancer Therapy.** *Mol Pharm* 2020, **17**:4629–4636.

351 39. Mangeot PE, Risson V, Fusil F, Marnef A, Laurent E, Blin J, Mournetas V, Massouridès E,
352 Sohier TJM, Corbin A, et al.: **Genome editing in primary cells and in vivo using viral-
353 derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins.** *Nat Commun* 2019,
354 **10**:45.

355 40. Hamilton JR, Tsuchida CA, Nguyen DN, Shy BR, McGarrigle ER, Sandoval Espinoza CR,
356 Carr D, Blaeschke F, Marson A, Doudna JA: **Targeted delivery of CRISPR-Cas9 and
357 transgenes enables complex immune cell engineering.** *Cell Rep* 2021, **35**:109207.

358 41. Lin S, Liu C, Han X, Zhong H, Cheng C: **Viral Nanoparticle System: An Effective
359 Platform for Photodynamic Therapy.** *Int J Mol Sci* 2021, **22**:1728.

360 42. Shahrivarkevishahi A, Luzuriaga MA, Herbert FC, Tumac AC, Brohlin OR, Wijesundara
361 YH, Adlooru AV, Benjamin C, Lee H, Parsamian P, et al.: **PhotothermalPhage: A Virus-
362 Based Photothermal Therapeutic Agent.** *J Am Chem Soc* 2021, **143**:16428–16438.

363 43. Hu H, Yang Q, Baroni S, Yang H, Aime S, Steinmetz NF: **Polydopamine-decorated
364 tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and
365 photothermal cancer therapy.** *Nanoscale* 2019, **11**:9760–9768.

366