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A FAST PROXIMAL GRADIENT METHOD AND

CONVERGENCE ANALYSIS FOR DYNAMIC MEAN FIELD

PLANNING

JIAJIA YU, RONGJIE LAI, WUCHEN LI, AND STANLEY OSHER

Abstract. In this paper, we propose an efficient and flexible algorithm to
solve dynamic mean-field planning problems based on an accelerated proxi-
mal gradient method. Besides an easy-to-implement gradient descent step in
this algorithm, a crucial projection step becomes solving an elliptic equation

whose solution can be obtained by conventional methods efficiently. By in-
duction on iterations used in the algorithm, we theoretically show that the
proposed discrete solution converges to the underlying continuous solution as
the grid becomes finer. Furthermore, we generalize our algorithm to mean-
field game problems and accelerate it using multilevel and multigrid strategies.
We conduct comprehensive numerical experiments to confirm the convergence
analysis of the proposed algorithm, to show its efficiency and mass preserva-
tion property by comparing it with state-of-the-art methods, and to illustrate
its flexibility for handling various mean-field variational problems.

1. Introduction

Mean field planning (MFP) problems study how a large number of similar ra-
tional agents make strategic movements to minimize their cost in a process satis-
fying given initial and terminal density distributions [2, 20, 27–29, 40, 44, 45]. On
the one hand, MFP can be viewed as a generalization of optimal transport (OT)
[11, 12, 43, 48] where no interaction cost is considered in the process. On the other
hand, MFP is also a special case of mean field game (MFG) problems where the
terminal density is often provided implicitly [19, 21, 22, 29, 30, 32, 33, 35]. MFP,
MFG and OT have wide applications in economics [1,5,25], engineering [24,26,50],
quantum chemistry [18, 23], image processing [31, 41] as well as machine learning
[8, 47, 49, 51].

More specifically, the dynamic MFP problem has the following optimization
formulation:

(1.1)
min
ρ,m

∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt+

∫ 1

0

F(ρ(t, ·))dt

s.t. ∂tρ+ divx m = 0,m · n = 0 for x ∈ ∂Ω, ρ(0, ·) = ρ0, ρ(1, ·) = ρ1,
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where ρ(t,x)≥ 0 is the densities of agents, m := ρv with v representing the strat-
egy(control) of this agent, and any pair of feasible (ρ,m) satisfies mass conservation
and zero boundary flux conditions with initial and terminal densities of ρ being
provided ρ0, ρ1. In this variational problem, L(ρ,m) denotes the dynamic cost, F
models the interaction cost. L is convex in ρ,m, F is convex in ρ and δF

δρ exists.

Especially, with F = 0 and a specific choice of L, variational problem (1.1) reduces
to the dynamic formulation of optimal transport (OT) proposed in [11, 12]. By
relaxing the given terminal density as an implicit condition regularized by a convex
functional G with δG

δρ existing, one can retrieve a class of MFG as the following

formulation [16, 30, 35]:

(1.2)
min
ρ,m

∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt+

∫ 1

0

F(ρ(t, ·))dt+ G(ρ(1, ·))

s.t. ∂tρ+ divx m = 0,m · n = 0 for x ∈ ∂Ω, ρ(0, ·) = ρ0.

The goal is to find the local minimizers and therefore solve the KKT system of
(1.1) (or (1.2)).

Several numerical methods have been established to solve dynamic MFP, MFG
and OT problems. One class of methods is based on solving partial differential
equations (PDEs) corresponding to the KKT system of the variational problem [2–4,
17], where conventional numerical methods in nonlinear PDEs can be applied. This
class of methods can also be applied to handle general MFP and MFG problems
that may not come from variational formulas. However, the nonlinearity of the
PDE system limits the solvers to handle broader choices of the dynamic cost L and
interaction cost F .

Another class of methods focuses on the variational formulas of dynamic MFP,
MFG and OT problems. By naturally combining with recent advances from op-
timization, existing methods include several first-order optimization algorithms to
solve dynamic OT problems such as augmented Lagrangian [14,15,42], primal-dual
[36] and G-prox [34], etc. These methods work on either the Lagrangian or the
dual problem of the original optimization problem, particularly for dynamic OT
where F ≡ 0. These algorithms work very well since the involved sub-optimization
problems have closed-form solutions.

We would like to propose a method that can efficiently compute the mean-field
type of problems with mass preservation property and flexibility on a broad range
of objective functions. Note that the mass conservation constraint in MFP is lin-
ear. A straightforward calculation shows that projection to the constraint set can
be obtained from solving a linear equation, the standard Poisson equation. This
motivates us to propose another algorithm to solve MFP problems based on the
proximal gradient descent method [9, 46]. This method is composed of a gradient
descent step and a projection step. For MFP problems with a smooth objective
function, the gradient values can be evaluated in an element-wise manner. It also
enjoys the flexibility to handle a broader range of L and F . More importantly, the
projection step leads to mass preservation in each iteration. The crucial part in the
projection step is a fixed linear solver which can be computed efficiently by conven-
tional fast algorithms. In this work, we use an accelerated version of the proximal
gradient descent method, referred to as the fast iterative soft threshold algorithm
(FISTA) [10], to solve the MFP problems. After that, we further generalize our
algorithm to handle MFG problems. In addition, inspired by [7, 38, 39], we also
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(a) Proof in [2] (b) Our proof

Figure 1. Sketch of two approaches of convergence proof

apply multigrid and multilevel methods to speed up the proposed algorithm. Our
numerical experiments illustrate the efficiency, mass preservation and flexibility of
the proposed algorithm for different MFP problems as well as MFG problems. The
vanilla version of our algorithm performs comparably with state-of-the-art meth-
ods, while the multigrid and multilevel accelerated versions are more efficient than
state-of-the-art methods.

Besides proposing a new algorithm for MFP problems, we analyze errors be-
tween the discrete solution and the continuous solution. Since MFP is a functional
optimization problem, all numerical methods on a given mesh grid only provide
approximated solutions to the continuous problem. It is important to understand
how close the discrete numerical solution is to the continuous solution on a given
mesh grid. Our analysis is from the algorithm perspective. We first derive an algo-
rithm to optimize the variational problem and discretize each step of our algorithm.
Our main effort is to prove that at each iteration, the discrete values are not far
from the underlying continuous function values on grid points. Therefore we can
show that the discrete algorithm converges to the continuous optimizer on grid
points under certain smoothness conditions. Similar types of analysis may not be
conveniently conducted in the existing methods including augmented Lagrangian,
primal-dual and G-Prox since it could be difficult to have desired perturbation anal-
ysis of solving cubic equations involved in these three methods. We remark that
[13,14] show the Γ-convergence for static problems by finite element methods, while
they acknowledge that their assumptions for convergence to hold are more involved
to check for dynamic problems. And we also notice that the convergence analysis
for dynamic problems has been studied in [2,3,6] from the PDE perspective, where
the authors argue solution of discrete KKT converges to the continuous solution
based on the equivalence of continuous systems and discrete systems. To the best
of our knowledge, this work is for the first time to examine the discretization error
based on variational MFP and its optimization algorithm. We indicate the major
difference between our error analysis based on optimization perspective and error
analysis based on PDEs perspective in Figure 1.

Contributions. We summarize our contributions as follows:

(1) We propose to use an accelerated proximal gradient method to solve the
MFP problem (1.1).

Licensed to Purdue Univ. Prepared on Thu Oct 12 15:06:58 EDT 2023 for download from IP 128.210.107.131.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4 J. YU, R. LAI, W. LI, AND S. OSHER

(2) We analyze the error between each iteration of discrete optimization and
its continuous counterpart. We prove that the discrete solution converges
to the continuous optimizer on grid points as the mesh size increases.

(3) We apply multilevel and multigrid strategies to accelerate our algorithm.
We also generalize our algorithm to solve MFG problems (1.2).

(4) We conduct comprehensive numerical experiments to illustrate the effi-
ciency and flexibility of our algorithms.

Organization. Our paper is organized as follows. In Section 2, we give a brief re-
view of the MFP problem and provide several MFP examples and a MFG example.
After that, we describe our algorithm and the implementation details in Section 3.
In Section 4, we analyze the discretization error in our algorithm and prove the
main theoretical result on the convergence of discrete solutions to the continuous
solution as the grid size goes to zero. Furthermore, we generalize our algorithm
to solve variational MFG problems and accelerate our algorithm by multilevel and
multigrid methods in Section 5. Numerical experiments are provided in Section 6
to demonstrate the convergence order and to illustrate the efficiency and flexibility
of our algorithm. At last we conclude this paper in Section 7.

2. Review

In this section, we briefly review MFP problem and provide several examples
which will be computed in the experiment section.

Consider the model on time interval [0, 1] and space region Ω ∈ R
D. Let ρ be

the density of agents through t ∈ [0, 1], m be the flux of the density which models
strategies (control) of the agents, and (ρ,m) ∈ C:
(2.1)

C :=

⎧⎨⎩(ρ,m) :ρ : [0, 1]× Ω → R
+, ‖ρ‖L1 < +∞,

∫
Ω

ρ(t,x)dx = 1, ∀t ∈ [0, 1],

m : [0, 1]× Ω → R
D is Lebesgue measurable.

⎫⎬⎭
We are interested in ρ with given initial and terminal density ρ0, ρ1 and (ρ,m)
satisfying zero boundary flux and mass conservation law, which gives the constraint
set C(ρ0, ρ1):

(2.2) C(ρ0, ρ1) := C ∩
{
(ρ,m) :∂tρ+ divx m = 0,

m · n = 0 for x ∈ ∂Ω, ρ(0, ·) = ρ0, ρ(1, ·) = ρ1,

}
where equations hold in the sense of distribution.

We denote L : R+ × R
D → R := R ∪ {∞} as the dynamic cost function (e.g.

(2.5) in this paper) and F : P(Ω) → R as a functional modeling interaction cost.
The goal of MFP is to minimize the total cost among all feasible (ρ,m) ∈ C(ρ0, ρ1).
Therefore the problem can be formulated as

(2.3) min
(ρ,m)∈C(ρ0,ρ1)

∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt+

∫ 1

0

F(ρ(t, ·))dt.

It is clear to see C(ρ0, ρ1) is convex and compact. In addition, the mass conser-
vation law ∂tρ + divx m = 0 and zero flux boundary condition m · n = 0,x ∈ ∂Ω
imply that C(ρ0, ρ1) �= ∅ if and only if

∫
Ω
ρ0 =
∫
Ω
ρ1. Once C(ρ0, ρ1) is nonempty,

the existence and uniqueness of the optimizer depend on L and F .
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There are many different choices of F . In this paper, we consider

(2.4) F(ρ(t, ·)) := λE

∫
Ω

FE(ρ(t,x))dx+ λQ

∫
Ω

ρ(t,x)Q(x)dx,

where λE , λQ ≥ 0 are two parameters, FE : R+ → R serves as a function to regu-

larize ρ, and Q(x) : Ω → R provides a moving preference for density ρ. Consider an

illustrative example by choosing Ω0 ⊂ Ω and assuming Q(x) =

{
0, x ∈ Ω0

+∞, x �∈ Ω0

,

then the mass has to move within Ω0 in order to keep the cost finite. In a more
general choice of Q, ρ(t,x) tends to be smaller at the place where Q(x) is larger
and vice versa.

We then briefly discuss several concrete examples which will be considered in
our numerical experiments.

Example 2.1 (Optimal transport [11]). In this paper, we consider a typical dy-
namic cost function L by

(2.5) L(β0,β) :=

⎧⎪⎪⎨⎪⎪⎩
‖β‖2
2β0

if β0 > 0

0 if β0 = 0,β = 0

+∞ if β0 = 0,β �= 0

.

If λE = λQ = 0, the MFP becomes the dynamic formulation of optimal transport
problem:

(2.6) (OT) min
ρ,m∈C(ρ0,ρ1)

∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt.

Since m = ρv, this definition of L makes sure that m = 0 wherever ρ = 0. Because
λE = λQ = 0, OT can be viewed as a special case of MFP where masses move
freely in Ω through t ∈ [0, 1].

Example 2.2 (Crowd motion [47]). Consider FE : R+→R, ρ �→
{
ρ log(ρ), ρ > 0

0, ρ = 0
,

and write Ω+ := Ω ∩ {x ∈ Ω : ρ(t,x) > 0}, we have the crowd motion model
(2.7)

min
ρ,m∈C(ρ0,ρ1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt

+λE

∫ 1

0

∫
Ω+

ρ(t,x) log(ρ(t,x))dxdt+ λQ

∫ 1

0

∫
Ω

ρ(t,x)Q(x)dxdt

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

With FE decreasing on [0, e−1] and increasing on [e−1,+∞), ρ(t,x) tends to be
close to e−1 everywhere. So we expect to have the density ρ(t,x) to be not sparse
and not very large everywhere.
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Example 2.3. If FE : R+ → R, ρ �→
{

1
|p|ρ

p, ρ > 0

0, ρ = 0
, where p = 2 or −1, then

we have the following two models.

min
ρ,m∈C(ρ0,ρ1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt

+λE

∫ 1

0

∫
Ω

ρ2(t,x)

2
dxdt+ λQ

∫ 1

0

∫
Ω

ρ(t,x)Q(x)dxdt

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,(2.8)

min
ρ,m∈C(ρ0,ρ1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt

+λE

∫ 1

0

∫
Ω+

1

ρ(t,x)
dxdt+ λQ

∫ 1

0

∫
Ω

ρ(t,x)Q(x)dxdt

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .(2.9)

In (2.8), by Cauchy-Schwarz inequality, we have

(2.10)

(∫
Ω

ρ(t,x)dx

)2
≤
∫
Ω

ρ2(t,x)dx

∫
Ω

1dx,

therefore
∫
Ω
ρ2(t,x)dx has a lower bound and achieves the lower bound when ρ(t, ·)

is a constant over Ω. Therefore, model (2.8) guides the solution density uniformly

distributed over Ω. In (2.9), since the total mass
∫
Ω
ρ(t,x)dx is fixed and

1

ρ
is larger

when ρ is smaller, the value of regularization term λE

∫
Ω+

1

ρ(t,x)
dx is smaller if

ρ(t,x) accumulates at several sites and vanishes at other regions. Therefore model
(2.9) pursues a sparse optimizer ρ(t,x).

Example 2.4 (A MFG model [16, 30, 35]). We provide an example of the MFG
model (1.2) to complete this section. In the cases, the terminal density ρ1 is not
explicitly provided but it satisfies a given preference. This preference can be im-
posed by regularizing ρ(1, ·) in the same spirit as

∫
Ω
ρ(t,x)Q(x)dx and obtain the

following MFG model,
(2.11)

min
(ρ,m)∈C(ρ0)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt

+λE

∫ 1

0

∫
Ω

ρ(t,x) log(ρ(t,x))dxdt+ λQ

∫ 1

0

∫
Ω

ρ(t,x)Q(x)dxdt

+λG

∫
Ω

ρ(1,x)G(x)dx.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Here λG > 0 is a parameter, G : Ω → R gives a preference of the distribution of
ρ(1,x) and the constraint set C(ρ0) is similar to C(ρ0, ρ1) :

(2.12) C(ρ0) := C ∩
{
(ρ,m) :∂tρ+ divx m = 0,

m · n = 0 for x ∈ ∂Ω, ρ(0, ·) = ρ0.

}
3. Algorithm

In this section, we first briefly review the FISTA algorithm proposed in [10].
Using a first-optimize-then-discretize approach, we describe the FISTA algorithm
on variational problem (1.1). After that, we provide the details of our discretization
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and implementation for the MFP. At the end of this section, we discuss a different
approach based on a first-discretize-then-optimize strategy which turns out to lead
to the same discrete algorithm.

To solve a general nonsmooth convex model

min
z

u(z) + v(z),

where u is a smooth convex function and v is convex but possibly nonsmooth, one
can apply the proximal gradient method [9, 46]

z(k+1) := Proxη(k)v

(
z(k) − η(k)∇u

(
z(k)
))

.

Here η(k) > 0 is the step-size and the proximal operator is defined as:

(3.1) Proxηv(z) := argmin
y

{
v(y) +

1

2η
‖y − z‖22

}
.

In particular, for an indicator function χC(z) =

{
0, z ∈ C,
+∞, z �∈ C

of a convex set C,

its proximal operator is exactly the projection operator to C, i.e.

ProxηχC (z) = ProjC(z) = argmin
y∈C

1

2
‖y − z‖22, ∀η > 0.

FISTA is essentially an accelerated proximal gradient algorithm [10]. It introduces
ẑ(k) as a linear combination of z(k) and z(k−1) in each iteration, and conducts
proximal gradient on ẑ(k) to obtain z(k+1). The algorithm is summarized in (3.2),
where the step-sizes η(k) can either be a constant or be obtained by a backtracking
line search.

(3.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z(k+1) = Proxη(k)v

(
ẑ(k) − η(k)∇u(ẑ(k))

)
;

τ (k+1) = 1
2

(
1 +

√
1 + 4
(
τ (k)
)2)

;

ẑ(k+1) = z(k+1) + τ(k)−1
τ(k+1)

(
z(k+1) − z(k)

)
.

As proved in [10], if z∗ = argminz u(z)+v(z), and
{
z(k)
}
is generated by FISTA,

then [
u
(
z(k)
)
+ v
(
z(k)
)]

− [u(z∗) + v(z∗)] = O
(

1

(k + 1)2

)
.

3.1. FISTA for MFP. To apply the above FISTA method to problem (1.1), let
us write

(3.3) min
ρ,m∈C(ρ0,ρ1)

Y(ρ,m) :=

∫ 1

0

∫
Ω

Y (ρ(t,x),m(t,x),x)dxdt,

where

(3.4) Y (β0,β,x) = L(β0,β) + λEFE(β0) + λQβ0Q(x).
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For convenience, we write F ′
E =

d

dβ0
FE , Y0 =

∂

∂β0
Y , ∇βY =

(
∂

∂βd
Y

)
d=1,··· ,D

and L0 =
∂

∂β0
L,∇βL =

(
∂

∂βd
L

)
d=1,··· ,D

. This yields

(3.5){
Y0(ρ(t,x),m(t,x),x) = L0(ρ(t,x),m(t,x)) + λEF

′
E(ρ(t,x)) + λQQ(x),

∇βY (ρ(t,x),m(t,x),x) = ∇βL(ρ(t,x),m(t,x)), d = 1, · · ·D.

To apply FISTA to this problem, we need to compute the gradients δρY(ρ,m),
δmY(ρ,m) and the projection ProjC(ρ0,ρ1)(ρ,m).

Gradient descent. Let the boundary values ρ(0, ·) = ρ0, ρ(1, ·) = ρ1 and m(t,x) ·
n = 0 for x ∈ ∂Ω being fixed. By variational calculus, we have

(3.6)
δρY(ρ,m)(t,x) = Y0(ρ(t,x),m(t,x),x),

δmY(ρ,m)(t,x) = ∇βY (ρ(t,x),m(t,x),x).

Then with step-size η(k), the descent step can be written as
(3.7)(

ρ(k+
1
2 ),m(k+ 1

2 )
)
=
(
ρ̂(k) − η(k)δρY(ρ̂(k), m̂(k)), m̂(k) − η(k)δmY(ρ̂(k), m̂(k))

)
.

Projection. The projection step solves the following minimization problem

(3.8)
(
ρ(k+1),m(k+1)

)
= argmin

ρ,m∈C(ρ0,ρ1)

1

2

∥∥∥ρ− ρ(k+
1
2 )
∥∥∥2
L2

+
1

2

∥∥∥m−m(k+ 1
2 )
∥∥∥2
L2

.

Since the boundary values are fixed and boundary conditions are always satisfied,
we only need to introduce dual variable φ(k+1)(t,x), which is C1 on [0, 1]× Ω, for
mass conservation equation ∂tρ+ divx m = 0. Consider a Lagrangian function
(3.9)

L(ρ,m, φ) : =
1

2

∥∥∥ρ− ρ(k+
1
2 )
∥∥∥2
L2

+
1

2

∥∥∥m−m(k+ 1
2 )
∥∥∥2
L2

+ 〈φ, ∂tρ+ divx m〉

=
1

2

∥∥∥ρ− ρ(k+
1
2 )
∥∥∥2
L2

+
1

2

∥∥∥m−m(k+ 1
2 )
∥∥∥2
L2

− 〈∂tφ, ρ〉 − 〈∇xφ,m〉

+ 〈φ(1, ·), ρ1〉 − 〈φ(0, ·), ρ0〉 .(
ρ(k+1),m(k+1), φ(k+1)

)
is the saddle point of L(ρ,m, φ) if and only if

(3.10)

⎧⎪⎨⎪⎩
δρL
(
ρ(k+1),m(k+1), φ(k+1)

)
= 0,

δmL
(
ρ(k+1),m(k+1), φ(k+1)

)
= 0,

δφL
(
ρ(k+1),m(k+1), φ(k+1)

)
= 0.

This yields

(3.11)

{
ρ(k+1) = ρ(k+

1
2 ) + ∂tφ

(k+1),

m(k+1) = m(k+ 1
2 ) +∇xφ

(k+1),

and

(3.12) ∂tρ
(k+1) + divx m(k+1) = 0.

Licensed to Purdue Univ. Prepared on Thu Oct 12 15:06:58 EDT 2023 for download from IP 128.210.107.131.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST ALG. AND CONV. ANALYSIS FOR DYNAMIC MFP 9

Algorithm 1 FISTA for MFP

Parameters ρ0, ρ1
Initialization τ (1) = 1,

ρ(0)(0, ·) = ρ̂(0)(0, ·) = ρ0, ρ(0)(1, ·) = ρ̂(0)(1, ·) = ρ1,
ρ(0)(t, ·) = ρ̂(0)(t, ·) = 1 for 0 < t < 1,
m(0)(·,x) · n = m̂(0)(·,x) · n = 0 for x ∈ ∂Ω,
m(0)(·,x) = m̂(0)(·,x) = 1 for x ∈ Ω\∂Ω.

for k = 0, 1, 2, . . . do
gradient descent

(3.14)⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ(k+

1
2 )(t,x) = ρ̂(k)(t,x)− η(k)Y0

(
ρ̂(k)(t,x), m̂(k)(t,x),x

)
,

0 < t < 1, x ∈ Ω.

m(k+ 1
2 )(t,x) = m̂(k)(t,x)− η(k)∇mY

(
ρ̂(k)(t,x), m̂(k)(t,x),x

)
,

0 ≤ t ≤ 1, x ∈ Ω\∂Ω.

projection solve φ(k+1) for
(3.15)⎧⎪⎨⎪⎩

−Δt,xφ
(k+1)(t,x) = ∂tρ

(k+ 1
2 )(t,x) + divx m(k+ 1

2 )(t,x), 0 ≤ t ≤ 1,x ∈ Ω

∂tφ
(k+1)(t,x) = 0, t = 0, 1,x ∈ Ω

∇xφ
(k+1)(t,x) · n = 0, 0 ≤ t ≤ 1,x ∈ ∂Ω,

and conduct

(3.16)

{
ρ(k+1) = ρ(k+

1
2 ) + ∂tφ

(k+1),

m(k+1) = m(k+ 1
2 ) +∇xφ

(k+1).

update

τ (k+1) =
1 +

√
1 + 4
(
τ (k)
)2

2
,

ω(k) =
τ (k) − 1

τ (k+1)
,(

ρ̂(k+1), m̂(k+1)
)
=
(
1 + ω(k)

)(
ρ(k+1),m(k+1)

)
− ω(k)

(
ρ(k),m(k)

)
.(3.17)

end for

Combining (3.11) and (3.12), it is clear that the dual variable φ(k+1) solves the
Poisson equation
(3.13)⎧⎪⎨⎪⎩

−Δt,xφ
(k+1)(t,x) = ∂tρ

(k+ 1
2 )(t,x) + divx m(k+ 1

2 )(t,x), 0 ≤ t ≤ 1,x ∈ Ω,

∂tφ
(k+1)(t,x) = 0, t = 0, 1,x ∈ Ω,

∇xφ
(k+1)(t,x) · n = 0, 0 ≤ t ≤ 1,x ∈ ∂Ω,

Therefore, we can obtain the projection (3.8) in two steps: solving the Poisson
equation (3.13) and updating ρ,m by (3.11).

The FISTA algorithm for MFP problem (3.3) is summarized in Algorithm 1.

Remark 3.1. To compute the projection, we need to solve a Poisson equation
with Neumann boundary conditions (3.13). Since for any x ∈ Ω, ρ(k+

1
2 )(0,x) =
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10 J. YU, R. LAI, W. LI, AND S. OSHER

ρ0(x), ρ
(k+ 1

2 )(1,x) = ρ1(x) and for any t ∈ [0, 1],x ∈ ∂Ω, m(k+ 1
2 )(t,x) · n = 0, we

have ∫
[0,1]×Ω

∂tρ
(k+ 1

2 )(t,x) + divx m(k+ 1
2 )(t,x)dxdt

=

∫
Ω

(
ρ(k+

1
2 )(1,x)− ρ(k+

1
2 )(0,x)

)
dx+

∫ 1

0

∫
∂Ω

m(k+ 1
2 )(t,x) · dsdt

=

∫
Ω

(
ρ
(k+ 1

2 )
1 (x)− ρ

(k+ 1
2 )

0 (x)
)
dx

=0.

This means (3.13) is solvable and the solution is unique up to a constant. In
addition, the constant does not count in the projection step because in (3.11), we
only need ∂tφ

(k+1) and ∇xφ
(k+1). Therefore the projection step is well-defined.

3.2. Discretization and implementation. For convenience, we here assume Ω =
[0, 1]D. Then the boundary condition of m = (m1, · · · ,mD) is provided as:

md(t,x) = 0, if xd = 0, or 1, for d = 1, · · · , D.

Consider a uniform grid with n0 segments on time interval [0, 1] and nd segments on
the d-th space dimension. Namely, the mesh size on each dimension is Δd = 1

nd
, d =

0, · · · , D, and the staggered grid points are tj = (j − 1
2 )Δ0, (xd)j = (j − 1

2 )Δd. We
use a multidimensional index vector j = (j0, j1, · · · , jD) to indicate a grid point
(tj0 ,xj), where xj := ((x1)j1 , · · · , (xD)jD ). We further write uj := u (tj0 ,xj) the
value of function u on the grid point and Uj the proposed numerical approximation
of uj . Our discretization of ρ and m is defined on different staggered grids. For
convenience, we list the following index sets:

Jd :=

{
3

2
,
5

2
, · · · , nd −

1

2

}
,

Jd := {1, 2, · · · , nd},
Jd := J0 × J1 × · · · × Jd−1 × Jd × Jd+1 × · · · JD,

J := J0 × J1 × · · · × JD.

Figure 2 illustrates a 1D example, where n0 = 4, n1 = 5 and grid points related
to J0, J1 and J are annotated as red solid diamonds, blue solid squares and green
solid dots, respectively.

We use P,M and Φ to denote the discretization of ρ,m and φ, respectively.
They are defined as:

P := {Pj}j∈J0
∈ V0 := R

(n0−1)×n1×···×nD ,

Md := {(Md)j}j∈Jd
∈ Vd := R

n0×n1×···×nd−1×(nd−1)×nd+1×···×nD ,

M := {Md}d=1,2,··· ,D ∈ V1 × · · · × VD,

Φ := {Φj}j∈J ∈ V := R
n0×n1×···×nD .

Moreover, we also define:

P := {P j}j∈J ∈ V := R
n0×n1×···×nD ,

Md := {(Md)j}j∈J ∈ V,

M := {Md}d=1,2,··· ,D ∈ V
D
.
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FAST ALG. AND CONV. ANALYSIS FOR DYNAMIC MFP 11

Figure 2. Illustration of staggered grids for the case d = 1

Based on the above settings, we next discuss details of computing the objective
value, implementing gradient descent and conducting the projection step.

Objective value. To compute the objective function, we need the value of ρ(t,x)
and m(t,x) on the same point (t,x). While P,Md are defined on different grids, a
natural idea is to transform them to the same central grid J first. For convenience,
let M0 ≡ P . We can define the average operators as:

Ad : Vd → V, Md �→ Md = Ad(Md), for d = 0, 1, · · · , D,

(Md)j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2
(Md)j+ ed

2
, jd = 1,

1

2

(
(Md)j+ ed

2
+ (Md)j− ed

2

)
, jd = 2, 3, · · · , nd − 1,

1

2
(Md)j− ed

2
, jd = nd.

∀j ∈ J ,

A : V1 × · · ·VD → V
D
, M �→ {Ad(Md)}d=1,··· ,D,

where ed ∈ R
D+1 has 1 in the (d + 1)-th entry and 0 elsewhere, d = 0, · · · , D.

The boundary conditions of M are implicitly included in the average operator. We
further define PA ∈ V to indicate density boundary conditions,

(PA)j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2
ρ0 (xj) , j0 = 1,

0, j0 = 2, 3, · · · , n0 − 1,
1

2
ρ1 (xj) , j0 = n0.

∀j ∈ J ,
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12 J. YU, R. LAI, W. LI, AND S. OSHER

As an example, in Figure 2, A0 maps P to P . A1 maps M to M , and the hollow
diamonds on t = 0, 1 contribute to the nonzero entries of PA.

Now, we are ready to evaluate the objective function by averaging P and M
from their staggered grids to the central grid. Namely, we define P ,M ∈ V as

(3.18) P := A0(P ) + PA, M := A(M ),

then we approximate the objective value by(
D∏

d=0

Δd

)
Y(P,M ),

where

(3.19) Y(P,M ) := Y(P,M ) :=
∑
j∈J

Y
(
P j ,M j ,xj

)
.

Gradient descent. To fulfil gradient descent, we first average (P,M ) from dif-
ferent grids Jd to grid J by (3.18) and pointwisely compute gradient values

(3.20)

∂PY(P,M) :=
{
Y0

(
P j ,M j ,xj

)}
j∈J

,

∂Md
Y(P,M ) :=

{
Yd

(
P j ,M j ,xj

)}
j∈J

, d = 1, · · · , D,

∂MY(P ,M) :=
{
∂Md

Y(P,M)
}
d=1,··· ,D .

Then we average gradient values back to different grids Jd. Defining another set of
average operators as

A∗
d : V → Vd,Md �→ Md, (Md)j :=

1

2

(
(Md)j+ ed

2
+ (Md)j− ed

2

)
,

A∗ : V
D → V1 × · · ·VD,M �→ {A∗

d(Md)}d=1,··· ,D,

we obtain desired gradient values:

(3.21)
∂PY(P,M ) = A∗

0

(
∂PY(P,M)

)
,

∂MY(P,M ) = A∗ (∂MY(P,M )
)
.

Combining (3.20),(3.21), we can implement gradient descent step (3.14) on discrete
meshes by:
(3.22)(
P (k+ 1

2 ),M (k+ 1
2 )
)
=
(
P̂ (k),M̂ (k)

)
− η(k)
(
∂PY(P̂ (k),M̂ (k)), ∂MY(P̂ (k),M̂ (k))

)
.

Projection. To compute the projection, we use a finite difference method to dis-
cretize the corresponding differential operators in the PDE constraint. We first
define discrete partial derivative:

Dd :Vd → V, Md �→ Dd(Md), for d = 0, · · · , D.

(Dd(Md))j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

Δd
(Md)j+ ed

2
, jd = 1,

1

Δd

(
(Md)j+ ed

2
− (Md)j− ed

2

)
, jd = 2, 3, · · · , nd − 1,

− 1

Δd
(Md)j− ed

2
, jd = nd,
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FAST ALG. AND CONV. ANALYSIS FOR DYNAMIC MFP 13

discrete divergence:

Div : V0 × V1 × · · ·VD → V, (P,M ) �→ D0(P ) +

D∑
d=1

Dd(Md),

and the term PD ∈ V to impose boundary conditions:

(PD)j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

Δ0
ρ0 (xj) , j0 = 1,

0, j0 = 2, 3, · · · , n0 − 1,
1

Δ0
ρ1 (xj) , j0 = n0.

Then the RHS of first equation in (3.15) can be approximated by

Div
(
P (k+ 1

2 ),M (k+ 1
2 )
)
+ PD.

We approximate ∂d with a central difference and ∂dd with a three-point stencil
finite difference. By homogeneous Neumann boundary condition, we have discrete
second-order derivative operators

Ddd :V → V, Φ �→ Ddd(Φ),

(
Ddd(Φ)

)
j
:=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

Δ2
d

(
−Φj +Φj+ed

)
, jd = 1,

1

Δ2
d

(
Φj−ed

− 2Φj +Φj+ed

)
, jd = 2, 3, · · · , nd − 1,

1

Δ2
d

(
Φj−ed

− Φj

)
, jd = nd,

Lap :V → V, Φ �→ D00(Φ) +
D∑

d=1

Ddd(Φ).

The Poisson equation (3.15) on grids is therefore

(3.23) −Lap
(
Φ

(k+1)
)
= Div
(
P (k+ 1

2 ),M (k+ 1
2 )
)
+ PD.

Defining another set of derivative operators

D∗
d : V → Vd,Φ �→ D∗

d(Φ), (D∗
d(Φ))j :=

1

Δd

(
(Φ)j+ ed

2
− Φj− ed

2

)
,

Grad : V → V0 × V1 × · · ·VD,Φ �→
{
D∗

d(Φ)
}
d=0,1,··· ,D ,

we discretize the second step of projection (3.16) as

(3.24)
(
P (k+1),M (k+1)

)
=
(
P (k+ 1

2 ),M (k+ 1
2 )
)
+Grad

(
Φ

(k+1)
)
.

Combining the above ingredients, we summarize FISTA for MFP on discrete
mesh in Algorithm 2.
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14 J. YU, R. LAI, W. LI, AND S. OSHER

Algorithm 2 FISTA for MFP on discrete mesh

Parameters ρ0, ρ1

Initialization τ (1) = 1, P (0) = P̂ (0) = 1, and M
(0)
d = M̂d

(0)
= 1.

for k = 0, 1, 2, . . . do
gradient descent

(3.25)

{
P (k+ 1

2 ) = P̂ (k) − η(k)∂PY(P̂ (k),M̂ (k)),

M (k+ 1
2 ) = M̂ (k) − η(k)∂MY(P̂ (k),M̂ (k)),

projection solve Φ
(k+1)

for

(3.26) −Lap
(
Φ

(k+1)
)
= Div
(
P (k+ 1

2 ),M (k+ 1
2 )
)
+ PD,

and conduct

(3.27)
(
P (k+1),M (k+1)

)
=
(
P (k+ 1

2 ),M (k+ 1
2 )
)
+Grad

(
Φ

(k+1)
)
.

update

τ (k+1) =
1 +
√
1 + 4(τ (k))2

2
,

ω(k) =
τ (k) − 1

τ (k+1)
,(

P̂ (k+1),M̂ (k+1)
)
=
(
1 + ω(k)

)(
P (k+1),M (k+1)

)
− ω(k)

(
P (k),M (k)

)
.(3.28)

end for

Remark 3.2. The discrete operators Div,Grad and Lap are consistent in the fol-
lowing sense. For space V and V0 × V1 × · · · × VD, if we view the elements Φ and
(P,M ) as long vectors, we can define the inner product as

(3.29)

〈
Φ

1
,Φ

2
〉
:=
∑
j∈J

Φ
1

jΦ
2

j ,

〈
(P 1,M1), (P 2,M2)

〉
:=
∑
j∈J0

P 1
j P

2
j +

D∑
d=1

∑
j∈Jd

(M1
d )j(M

2
d )j ,

and define the induced norm as ‖ · ‖F . Then simple calculation shows that for any
Φ ∈ V and (P,M ) ∈ V0 × V1 × · · · × VD, the following equation holds

(3.30)
Lap
(
Φ
)
= Div ◦Grad

(
Φ
)
,〈

−Grad(Φ), (P,M )
〉
=
〈
Φ,Div(P,M )

〉
.

These match the relations between divt,x,∇t,x and Δt,x on continuous spaces.

Remark 3.3. Directly solving the large linear system (3.26) could be very expensive.
Thanks to the special structure of the operator Lap, there exist λ1 = 0, λi < 0, i ∈
J\{1} and an orthonormal basis

{
Ψi
}
i∈J

of (V, ‖ · ‖F ) such that

(3.31) Lap(Φ) :=
∑
i∈J

λi

〈
Φ,Ψi
〉
Ψi.
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discrete optimiza-
tion problem (3.34)

continuous varia-
tional problem (3.3)

discrete algo-
rithm: Algorithm 2

continuous algo-
rithm: Algorithm 1

discretizediscretize

optimize

optimize

Figure 3. Equivalent approaches to obtain the discrete Algorithm 2

Therefore one way to define the inverse of Lap is

(3.32) Lap−1(Φ) :=
∑

i∈J\{1}

1

λi

〈
Φ,Ψi
〉
Ψi.

This leads to a discrete cosine transform method to solve (3.26).

Remark 3.4. The Lipschitz smoothness of the objective function is important to
the convergence of the algorithm. Recall that the dynamic cost L(β0,β) defined

in (2.5) has a form of
‖β‖2

2

2β0
when β0 > 0, the objective function Y is not Lipschitz

smooth if Pj is only restricted to be nonnegative. However, if there exists ρ > 0,
such that Pj > ρ holds for all j, then the objective function is Lipschitz smooth,
and the Lipschitz constant is smaller with larger ρ. In practice, when minj Pj is
close to 0, we need to pick the step-size η very carefully to avoid divergence. To
improve the numerical stability of the algorithm and preserve the positivity of the
density, one can add a small value ε uniformly to the initial and terminal densities
ρ0, ρ1 to obtain an approximated solution to the original problem and/or add a
safeguard step

(3.33) P̂ (k+1) = max
(
P̂ (k+1), ε′

)
,

after the extrapolation step (3.28).

To derive the discrete Algorithm 2, we optimize the continuous problem (3.3) by
Algorithm 1, then discretize the algorithm. This is a first-optimize-then-discretize
approach. We can also consider a first-discretize-then-optimize approach. In fact,
using our proposed discretization for MFP, the two approaches lead to the same
algorithm, as illustrated in Figure 3. This is mainly because of the consistent
relation of discrete operators discussed in Remark 3.2.

Based on previous notations, we discretize the original problem (3.3) to

(3.34) min
(P,M)∈C(PD)

Y(P,M ) :=
∑
j∈J

Y
(
(A0(P ) + PA)j ,A(M )j,xj

)
,

where the constraints are linear and the constraint set is convex:

(3.35) C(PD) :=
{
(P,M ) : D0(P ) + PD +Div(M ) = 0

}
.

To optimize the problem with FISTA, we first compute the gradient. For any P,M ,
we define the corresponding values on J by P := A0(P ) + PA,M := A(M ), then

(3.36) Y(P,M ) =
∑
j∈J

Y
(
P j ,M j ,xj

)
.
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16 J. YU, R. LAI, W. LI, AND S. OSHER

We will have (3.20) by taking partial derivatives w.r.t. P ,M , and then (3.21) by
the chain rule. Therefore the gradient descent step is exactly (3.25). For projection,
based on the inner product defined as (3.29) and induced norm, we can formulate
the Lagrangian as
(3.37)

L(P,M,Φ) :=
1

2

∥∥∥(P,M)−
(
P (k+ 1

2 ),M (k+ 1
2 )
)∥∥∥2

F
+
〈
Φ

(k+1)
,Div(P,M ) + PD

〉
.

Because of the consistency of the discrete operators (3.30), we know that (3.26),
(3.27) compute the projection to C(PD). Therefore the FISTA algorithm to the
discrete MFP problem (3.34) is exactly Algorithm 2.

4. Convergence

One major difference between Algorithm 1 and Algorithm 2 is that the former
is for the continuous setup while the latter one is for a given discretized mesh
grid, although both algorithms provide convergence sequences according to the
FISTA theory. It is natural to ask if the discretized solution converges to the
continuous solution when the mesh grid size Δd goes to zero. Specifically, with a
given step-size sequence

{
η(k)
}
k
, let the sequences

{(
ρ̂(k), m̂(k)

)}
k
,
{(

ρ(k),m(k)
)
,(

ρ(k+
1
2 ),m(k+ 1

2 )
)}

k
be obtained from Algorithm 1, and

{(
P̂ (k),M̂ (k)

)}
k
,{(

P (k),M (k)
)
,
(
P (k+ 1

2 ),M (k+ 1
2 )
)}

k
from Algorithm 2. If

(
ρ(k),m(k)

)
→ (ρ∗,m∗)

and
(
P (k),M (k)

)
→ (P ∗,M∗) as k → ∞, we would like to study whether (P ∗,M∗)

converge to (ρ∗,m∗) as the mesh grid size converges to zero. In this section, we
theoretically analyze and provide a positive answer to this question under certain
conditions.

We first introduce some notations. With given step-size sequence {η(k)}k, let{(
ρ̂(k), m̂(k)

)}
k
,
{(

ρ(k),m(k)
)
,
(
ρ(k+

1
2 ),m(k+ 1

2 )
)}

k
be obtained from Algorithm 1.

With the same step-size sequence and initialization P (0) = P̂ (0) = ρ
(0)
J0

, M (0) =

M̂ (0) = m
(0)
J , let

{(
P̂ (k),M̂ (k)

)}
k
,
{(

P (k),M (k)
)
,
(
P (k+ 1

2 ),M (k+ 1
2 )
)}

k
be ob-

tained from Algorithm 2. For any index set Jd,J , we write the continuous functions
ρ and m evaluating on corresponding discrete grids as

ρJ0
:= {ρj}j∈J0

, (md)Jd
:= {(md)j}j∈Jd

, mJ := {(md)Jd
}d=1,2,··· ,D ,

ρJ := {ρj}j∈J , (md)J := {(md)j}j∈J , mJ :=
{
(md)J
}
d=1,2,··· ,D .

Let m0 ≡ ρ,M0 ≡ P . For any k = 0, 1
2 , 1, 1 + 1

2 , · · · , we define the error on grid
points Jd by

E
(k)
d := M

(k)
d −
(
m

(k)
d

)
Jd

, d = 0, · · · , D,

E(k)
m :=
{
E

(k)
d

}
d=1,··· ,D

,

E(k) :=
{
E

(k)
0 ,E(k)

m

}
.
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Similarly, for k = 0, 1, 2, · · · , we define

Ê
(k)
d := M̂

(k)
d −
(
m̂d

(k)
)
Jd

, d = 0, · · · , D,

Ê(k)
m :=
{
Ê

(k)
d

}
d=1,··· ,D

,

Ê(k) :=
{
Ê

(k)
0 , Ê(k)

m

}
,

E
(k)
φ := Φ

(k) − φ
(k)

J
.

Recall that in Remark 3.2, we introduce induced norm ‖ · ‖F on space V0 × V1 ×
· · · × VD and V as

‖E‖F :=

⎛⎝ D∑
d=0

∑
j∈Jd

(Ed)
2
j

⎞⎠ 1
2

, ‖Eφ‖F :=

⎛⎝∑
j∈J

(Eφ)
2
j

⎞⎠ 1
2

.

We here define 2-norm ‖ · ‖2 as

‖ · ‖2 :=

(
D∏

d=0

Δd

) 1
2

‖ · ‖F .

Next, we propose several assumptions before stating the main theorem.

Assumption 1. Let ρ0, ρ1 be given initial and terminal densities. With the above
notations, we assume the following conditions hold for any k = 0, 1, · · · ,

(1) ρ0, ρ1, ρ
(k),m(k), ρ(k+

1
2 ),m(k+ 1

2 ), ρ̂(k), m̂(k), are C2, and φ(k) are C3,

(2) There exist ρ ≤ ρ, such that ρ̂(k)(t,x), P̂
(k)
j ∈ [ρ, ρ],

(3) m̂(k)(t,x), M̂
(k)
j ∈ Ωm ⊂ R

D,

(4) Yd’s are CY -Lipschitz continuous on [ρ, ρ] × Ωm × [0, 1]D, i.e. for d =

0, · · · , D and any (β1
0 ,β

1,x1), (β2
0 ,β

2,x2) ∈ [ρ, ρ]× Ωm × [0, 1]D,

(4.1)
∣∣Yd(β

1
0 ,β

1,x1)− Yd(β
2
0 ,β

2,x2)
∣∣ ≤ CY

∥∥(β1
0 ,β

1,x1)− (β2
0 ,β

2,x2)
∥∥
1
.

Remark 4.1. Assumption 1 is accessible for very general cases. In fact, when
ρ0, ρ1, ρ

(0),m(0) are C2 and Y is C1, one can show that Assumption 1 holds by
induction on k. And Assumption 1(2) and (3) are true as long as

{
ρ(k),m(k)

}
and{

P (k),M (k)
}
converges. With a typical choice Y (β0,β,x) = L(β0,β) where L is

defined in (2.5), we retrieve the optimal transport problem. Both (3.3) and (3.34)
have unique minimizers {ρ∗,m∗} and {P ∗,M∗} and both algorithms converge. If
in addition ρ0, ρ1 are C

2 and minx{ρ0(x), ρ1(x)} ≥ ρ > 0, then Assumption 1 holds
with continuous initialization and carefully chosen step-sizes. We also would like to
point out that the current analysis is based on smoothness assumptions. We admit
that for ρ0, ρ1 that are only Lebesgue measurable, our proof is not applicable. The
convergence under weaker assumptions and more general spaces is an interesting
topic to be explored in the future.

We now state our main theorem which characterizes the error bound with respect
to the grid size.
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18 J. YU, R. LAI, W. LI, AND S. OSHER

Theorem 4.2. If Assumption 1 holds for k = 0, 1, · · · , then

(4.2)
∥∥∥E(k)
∥∥∥
2
≤ C

(
D∑

d=0

Δd

)
= O
(

D∑
d=0

Δd

)
.

Here C is a constant depending on dimension D, Lipschitz constant CY , step-sizes
{η(s)}s=1,··· ,k and sequences {ρ̂(s), m̂(s)}s=1,··· ,k but it is independent of
{Δd}d=0,··· ,D.

Remark 4.3. This theoretical bound is not sharp as the constant C in the worst
case is not bounded in terms of k. This suggests that we may have to choose
an extremely fine grid to accommodate the size of C. However, our numerical
results will show that a reasonably fine mesh is good enough to achieve satisfactory
accuracy.

Note that Theorem 4.2 analyzes error bounds at each iteration along optimiza-
tion paths from the continuous setup and its discretized counterpart. Consequently,
we can have the following convergence analysis if both sequences from the contin-
uous and discretized optimization converge (i.e. choice of the step-size satisfies
convergence conditions used in FISTA [10]).

Corollary 4.4. Suppose that
{(

P (k),M (k)
)}

k
and
{(

ρ(k),m(k)
)}

k
satisfy all con-

ditions in Theorem 4.2. If in addition, there exist (P ∗,M∗), (ρ∗,m∗) such that
ρ∗ ∈ C1,m∗

d ∈ C1 and

(4.3)
lim
k→∞

∥∥∥(P (k),M (k)
)
− (P ∗,M∗)

∥∥∥
2
= 0,

lim
k→∞

∥∥∥(ρ(k),m(k)
)
− (ρ∗,m∗)

∥∥∥
L2

= 0,

where ‖ · ‖L2
denotes the standard L2-norm in the function space. Let Δ =

max
d=0,··· ,D

Δd, then

(4.4) lim
Δ→0

‖E∗‖2 := lim
Δ→0

∥∥(P ∗,M∗)−
(
ρ∗J0

,m∗
J

)∥∥
2
= 0.

Proof. By triangular inequality,∥∥(P ∗,M∗)− (ρ∗J0
,m∗

J )
∥∥
2

≤
∥∥∥(P (k),M (k)

)
− (P ∗,M∗)

∥∥∥
2
+
∥∥∥E(k)
∥∥∥
2
+
∥∥∥(ρ(k)J0

,m
(k)
J

)
− (ρ∗J0

,m∗
J )
∥∥∥
2
.

For any ε > 0, there exists kε such that

(4.5)

∥∥∥(P (kε),M (kε)
)
− (P ∗,M∗)

∥∥∥
2
≤ ε

4
,∥∥∥(ρ(kε),m(kε)

)
− (ρ∗,m∗)

∥∥∥
L2

≤ ε

4
.

By numerical integration, there exists a constant C1 depending on d, ρ(kε),m(kε),
ρ∗,m∗ and independent of Δd such that

(4.6)

∥∥∥(ρ(kε)
J0

,m
(kε)
J

)
−
(
ρ∗J0

,m∗
J

)∥∥∥2
2

≤
∫ 1

0

∫
Ω

∥∥∥(ρ(kε),m(kε)
)
− (ρ∗,m∗)

∥∥∥2
2
dxdt+ C1

D∑
d=0

Δd.
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By Theorem 4.2, there exists a constant C2 independent of Δd such that

∥∥∥E(kε)
∥∥∥
2
≤ C2

D∑
d=0

Δd.

Let δ =
ε

(D + 1)(|C1|+ |C2|)
.Then for any Δd satisfying maxd=0,··· ,D Δd ≤ δ, we

have

(4.7)

∣∣∣∣∣C1

D∑
d=0

Δd

∣∣∣∣∣+
∣∣∣∣∣C2

D∑
d=0

Δd

∣∣∣∣∣ ≤ ε

2
.

Combining (4.5), (4.6) and (4.7), we conclude that for any ε > 0, there exists δ
with all {Δd}d satisfying Δ ≤ δ such that ‖E∗‖2 ≤ ε. �

To prove Theorem 4.2, we need to establish three lemmas to analyze the error
introduced in each main step of the algorithm. After that, the proof of Theorem 4.2
can be obtained by induction.

Lemma 4.5. If Assumption 1 holds for k = 0, 1, · · · , then
(4.8)∥∥∥E(k+ 1

2 )
∥∥∥
2
≤ C(D,CY , η

(k))
∥∥∥Ê(k)
∥∥∥
2
+ C
(
ρ̂(k), m̂(k)

)( D∑
d=0

Δd

)
+O
(

D∑
d=0

Δ2
d

)
.

Proof. By definition of E
(k+ 1

2 )

d , we substitute discrete variables in (3.25) by the
sum of error and continuous variables. This leads to(

E
(k+ 1

2 )

d

)
j
+
(
m

(k+ 1
2 )

d

)
j
=
(
Ê

(k)
d

)
j
+
(
m̂

(k)
d

)
j
− η(k)
(
∂Md

Y(P̂ (k),M̂ (k))
)
j
.

From (3.14), we have(
m

(k+ 1
2 )

d

)
j
=
(
m̂

(k)
d

)
j
− η(k)Yd

(
ρ̂
(k)
j , m̂

(k)
j ,xj

)
.

Combining the above gives us(
E

(k+ 1
2 )

d

)
j
=
(
Ê

(k)
d

)
j
− η(k)
[(

∂Md
Y(P̂ (k),M̂ (k))

)
j
− Yd

(
ρ̂
(k)
j , m̂

(k)
j ,xj

)]
.

Therefore we have the norm estimation
(4.9)∥∥∥E(k+ 1

2 )
∥∥∥
F
≤
∥∥∥Ê(k)
∥∥∥
F

+ η(k)

⎡⎣ D∑
d=0

∑
j∈Jd

∣∣∣∣(∂Md
Y(P̂ (k),M̂ (k))

)
j
− Yd

(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∣∣∣∣2
⎤⎦ 1

2

.
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For any j ∈ Jd, the definition of
(
∂Md

Y(P̂ (k),M̂ (k))
)
j
in (3.21) yield,

(4.10)

∣∣∣∣(∂Md
Y
(
P̂ (k),M̂ (k)

))
j
− Yd

(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∣∣∣∣
≤1

2

∣∣∣∣∣
(
∂Md

Y
(
P̂

(k)

,M̂
(k)
))

j+
ed
2

− Yd

(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∣∣∣∣∣
+

1

2

∣∣∣∣∣
(
∂Md

Y
(
P̂

(k)

,M̂
(k)
))

j− ed
2

− Yd

(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∣∣∣∣∣
=
1

2

∣∣∣∣Yd

(
P̂

(k)

j+
ed
2
,M̂

(k)

j+
ed
2
,xj+

ed
2

)
− Yd

(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∣∣∣∣
+

1

2

∣∣∣∣Yd

(
P̂

(k)

j− ed
2
,M̂

(k)

j− ed
2
,xj− ed

2

)
− Yd

(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∣∣∣∣
≤CY

2

∥∥∥∥(P̂ (k)

j+
ed
2
,M̂

(k)

j+
ed
2
,xj+

ed
2

)
−
(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∥∥∥∥
1

+
CY

2

∥∥∥∥(P̂ (k)

j− ed
2
,M̂

(k)

j− ed
2
,xj− ed

2

)
−
(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∥∥∥∥
1

.

Note that P̂
(k)

j ,

(
M̂

(k)

d

)
j

can be written as the sum of errors and continuous values:

P̂
(k)

j =
(
A0

(
Ê

(k)
0 + ρ̂

(k)
J0

)
+ PA
)
j

=
(
A0

(
Ê

(k)
0

))
j
+
(
A0

(
ρ̂
(k)
J0

)
+ PA

)
j

=
(
A0

(
Ê

(k)
0

))
j
+ ρ̂

(k)
j +O(Δ2

0),(
M̂

(k)

d

)
j

=
(
Ad

(
Ê

(k)
d

))
j
+
(
m̂

(k)
d

)
j
+O(Δ2

d),

where the last equality in the above two equations is obtained from using Taylor

expansion to ρ̂(k) and m̂
(k)
d . We further have:

(4.11)

∥∥∥∥(P̂ (k)

j± ed
2
,M̂

(k)

j± ed
2
,xj± ed

2

)
−
(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∥∥∥∥
1

≤
∥∥∥∥((A0

(
Ê

(k)
0

))
j± ed

2

,
(
A
(
Ê(k)

m

))
j± ed

2

,0

)∥∥∥∥
1

+
∥∥∥(ρ̂(k)

j± ed
2

, m̂
(k)

j± ed
2

,xj± ed
2

)
−
(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∥∥∥
1
+O
(
Δ2

d

)
≤1

2

D∑
d′=0

∣∣∣∣(Ê(k)
d′

)
j
+
(
Ê

(k)
d′

)
j+ed

∣∣∣∣+ 1

2

D∑
d′=0

∣∣∣∣(Ê(k)
d′

)
j
+
(
Ê

(k)
d′

)
j−ed

∣∣∣∣
+ C
(
ρ̂(k), m̂(k)

)
Δd +O

(
Δ2

d

)
,
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where C
(
ρ̂(k), m̂(k)

)
=max

{
∂

∂xd
m̂

(k)
d′ (t,x) : d′= 0, · · · , D

}
. Combining (4.10) and

(4.11) provides:∣∣∣∣(∂Md
Y
(
P̂ (k),M̂ (k)

))
j
− Yd

(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∣∣∣∣
≤CY

4

D∑
d′=0

∣∣∣∣(Ê(k)
d′

)
j
+
(
Ê

(k)
d′

)
j+ed

∣∣∣∣+ CY

4

D∑
d′=0

∣∣∣∣(Ê(k)
d′

)
j
+
(
Ê

(k)
d′

)
j−ed

∣∣∣∣
+ C
(
ρ̂(k), m̂(k)

)
Δd +O

(
Δ2

d

)
,

and applying the triangle inequality yields:⎡⎣ D∑
d=0

∑
j∈Jd

∣∣∣∣(∂Md
Y(P̂ (k),M̂ (k))

)
j
− Yd

(
ρ̂
(k)
j , m̂

(k)
j ,xj

)∣∣∣∣2
⎤⎦ 1

2

≤

⎡⎣ D∑
d=0

∑
j∈Jd

D∑
d′=0

C2
Y

8

((
Ê

(k)
d′

)2
j−ed

+ 2
(
Ê

(k)
d′

)2
j
+
(
Ê

(k)
d′

)2
j+ed

)⎤⎦ 1
2

+

⎡⎣ D∑
d=0

∑
j∈Jd

C2
(
ρ̂(k), m̂(k)

)
Δ2

d

⎤⎦ 1
2

+

(
D∏

d=0

nd

) 1
2

O
(

D∑
d=0

Δ2
d

)

≤C(D,CY )
∥∥∥Ê(k)
∥∥∥
F

+

(
D∏

d=0

nd

) 1
2

C
(
ρ̂(k), m̂(k)

)( D∑
d=0

Δd

)
+

(
D∏

d=0

nd

) 1
2

O
(

D∑
d=0

Δ2
d

)
.

Together with estimation (4.9), we have

(4.12)

∥∥∥E(k+ 1
2 )
∥∥∥
2
≤
(
1 + C(D,CY , η

(k))
)∥∥∥Ê(k)

∥∥∥
2

+ C
(
ρ̂(k), m̂(k)

)( D∑
d=0

Δd

)
+O
(

D∑
d=0

Δ2
d

)
.

Therefore we prove the lemma. �

Next, we examine the error introduced in the projection step.

Lemma 4.6. Suppose that ρ0, ρ1, ρ
(k+ 1

2 ),m(k+ 1
2 ) are C2, and φ(k+1) is C3, then∥∥∥E(k+1)

∥∥∥
2
≤ 2
∥∥∥E(k+ 1

2 )
∥∥∥
2
+ C
(
ρ(k+

1
2 ),m(k+ 1

2 ), φ(k+1)
)( D∑

d=0

Δd

)
.

Proof. By definition of error terms and (3.26), we have

(4.13) −Lap
(
E

(k+1)
φ + φ

(k+1)

J

)
= Div
(
E(k+ 1

2 ) +
(
ρ
(k+ 1

2 )

J0
,m

(k+ 1
2 )

J

))
+ PD.
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Since
(
φ(k+1), ρ(k+

1
2 ),m(k+ 1

2 )
)
satisfies (3.15), and ρ(k+

1
2 ),m(k+ 1

2 ) are C2, by Tay-

lor expansions, we have

(4.14) −Lap
(
φ
(k+1)

J

)
= Div
(
ρ
(k+ 1

2 )

J0
,m

(k+ 1
2 )

J

)
+ PD +C1

(
D∑

d=0

Δd

)
.

Here C1 = C1

(
ρ(k+

1
2 ),m(k+ 1

2 ), φ(k+1)
)

∈ V indicates its entries are constants

depending on ρ(k+
1
2 ),m(k+ 1

2 ), φ(k+1). Combining (4.13) and (4.14) gives us

(4.15) −Lap
(
E

(k+1)
φ

)
= Div
(
E(k+ 1

2 )
)
+C1

(
D∑

d=0

Δd

)
.

Similarly, the second step on discrete mesh (3.27) gives

(4.16)
E(k+1) +

(
ρ
(k+1)
J0

,m
(k+1)
J

)
=E(k+ 1

2 ) +Grad
(
E

(k+1)
φ

)
+
(
ρ
(k+ 1

2 )

J0
,m

(k+ 1
2 )

J

)
+Grad

(
φ
(k+1)

J

)
,

and on continuous setting (3.16) gives

(4.17)
(
ρ
(k+1)
J0

,m
(k+1)
J

)
=
(
ρ
(k+ 1

2 )

J0
,m

(k+ 1
2 )

J

)
+Grad

(
φ
(k+1)

J

)
+C2

(
D∑

d=0

Δd

)
.

Thus we have:

(4.18) E(k+1) = E(k+ 1
2 ) +Grad

(
E

(k+1)
φ

)
+C2

(
D∑

d=0

Δd

)
,

where C2 = C2

(
φ(k+1)
)
∈ V.

Combining (4.15) and (4.18), we obtain

(4.19)

E(k+1) =
(
Id−Grad ◦Lap−1 ◦Div

)
E(k+ 1

2 )

−Grad ◦Lap−1 C1

(
D∑

d=0

Δd

)
+C2

(
D∑

d=0

Δd

)
.

Claim. ‖Grad ◦Lap−1 ◦Div ‖2 ≤ 1, ‖Grad ◦Lap−1 ‖2 ≤ 1

4
.

Therefore∥∥∥E(k+1)
∥∥∥
2
≤ 2
∥∥∥E(k+ 1

2 )
∥∥∥
2
+

1

4

∥∥∥∥∥C1

(
D∑

d=0

Δd

)∥∥∥∥∥
2

+

∥∥∥∥∥C2

(
D∑

d=0

Δd

)∥∥∥∥∥
2

≤ 2
∥∥∥E(k+ 1

2 )
∥∥∥
2
+ C

(
D∑

d=0

Δd

)
,

and C depends on ρ(k+
1
2 ),m(k+ 1

2 ), φ(k+1).
Proof of claim. It is easy to check that with

λi = −4

D∑
d=0

n2
d sin

2

(
(id − 1)π

2nd

)
,

Ψi
j =

D∏
d=0

√
1 + δ1id

nd
cos

((
jd −

1

2

)
(id − 1)π

nd

)
,
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Ψi
}
i∈J

forms an orthonormal basis of (V, ‖ · ‖F ), and for any Φ ∈ V,

(4.20) Lap(Φ) :=
∑
i∈J

λi

〈
Φ,Ψi
〉
Ψi.

For d = 0, 1, · · · , D, and i ∈ J , id �= 1, let σd,i ∈ R and Ψd,i ∈ V0×V1×· · ·×Vd

be:

σd,i = −2nd sin

(
(id − 1)π

2nd

)
,

Ψd,i =
{
Ψd,i

d′

}
d′=0,1,··· ,D

,

where Ψd,i
d =

1

σd,i
D∗

d

(
Ψi
)
, Ψd,i

d′ = 0, d′ �= d,

then
{
Ψd,i
}
forms an orthonormal basis of (V0 × V1 × · · · × VD, ‖ · ‖F ).

Since ‖ · ‖2 =

(
D∏

d=0

Δd

) 1
2

‖ · ‖F , we next compute the
∥∥Grad ◦Lap−1 ◦Div

∥∥
2
,∥∥Grad ◦Lap−1

∥∥
2
with basis of (V, ‖ · ‖F ) and (V0 ×V1 × · · · ×VD, ‖ · ‖F ). For any

basis Ψi ∈ V,
Grad ◦Lap−1

(
Ψ1
)
= 0,

Grad ◦Lap−1
(
Ψi
)
=

D∑
d=0,
id �=1

σd,i

λi
Ψd,i, i �= 1,

thus when nd > 1 for d = 0, · · · , D, we have

∥∥Grad ◦Lap−1
∥∥
2
≤ max

i∈J\{1}

⎛⎜⎜⎝ 1

(λi)
2

D∑
d=0,
id �=1

(
σd,i
)2
⎞⎟⎟⎠

1
2

= max
i∈J\{1}

1

|λi| ≤
1

4
.

And for any basis Ψd,i ∈ V0 × V1 × · · · × VD,

Grad ◦Lap−1 ◦Div
(
Ψd,i
)

=Grad ◦Lap−1

(
1

σd,i
Dd ◦ D∗

d

(
Ψi
))

= Grad ◦Lap−1
(
−σd,iΨi

)
=Grad

(
−σd,i

λi
Ψi

)
= −

D∑
d′=0,
id′ �=1

σd,iσd′,i

λi
Ψd′,i,

therefore

∥∥Grad ◦Lap−1 ◦Div
∥∥
2
≤ max

d=0,1,··· ,D
max

i∈J ,id �=1

⎛⎜⎜⎝(σd,i

λi

)2 D∑
d′=0,
id′ �=1

(
σd′,i
)2⎞⎟⎟⎠

1
2

= max
d=0,1,··· ,D

max
i∈J ,id �=1

((
σd,i
)2

|λi|

) 1
2

≤ 1.

The claim and thus the lemma is proved. �
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The last step is to estimate the error introduced in linear interpolation step
(3.17), (3.28).

Lemma 4.7. ∥∥∥Ê(k+1)
∥∥∥
2
≤
∣∣∣1 + ω(k)

∣∣∣ ∥∥∥E(k+1)
∥∥∥
2
+
∣∣∣ω(k)
∣∣∣ ∥∥∥E(k)

∥∥∥
2
.

Proof. By definition of error terms and (3.28)

Ê
(k+1)
d +

(
m̂

(k+1)
d

)
Jd

=
(
1 + ω(k)

)(
E

(k+1)
d +

(
m

(k+1)
d

)
Jd

)
− ω(k)

(
E

(k)
d +
(
m

(k)
d

)
Jd

)
,

and by (3.17)(
m̂

(k+1)
d

)
Jd

=
(
1 + ω(k)

)(
m

(k+1)
d

)
Jd

− ω(k)
(
m

(k)
d

)
Jd

.

Therefore we have

Ê(k+1) =
(
1 + ω(k)

)
E(k+1) − ω(k)E(k).

By triangular inequality, the lemma is proved. �

With Lemma 4.5-Lemma 4.7, we can show Theorem 4.2 by induction.

Proof of Theorem 4.2.

Proof. We first restate results from Lemma 4.5-Lemma 4.7:∥∥∥E(k+1)
∥∥∥
2
≤ 2
∥∥∥E(k+ 1

2 )
∥∥∥
2
+ C
(
ρ(k+

1
2 ),m(k+ 1

2 ), φ(k+1)
)( D∑

d=0

Δd

)
,

∥∥∥E(k+ 1
2 )
∥∥∥
2
≤ C(D,CY , η

(k))
∥∥∥Ê(k)
∥∥∥
2
+ C
(
ρ̂(k), m̂(k)

)( D∑
d=0

Δd

)
+O
(

D∑
d=0

Δ2
d

)
,∥∥∥Ê(k)

∥∥∥
2
≤
∣∣∣1 + ω(k−1)

∣∣∣ ∥∥∥E(k)
∥∥∥
2
+
∣∣∣ω(k−1)

∣∣∣ ∥∥∥E(k−1)
∥∥∥
2
.

From these, we obtain

∥∥∥E(1)
∥∥∥
2
≤ C
∥∥∥Ê(0)
∥∥∥
2
+ C

D∑
d=0

Δd +O
(

D∑
d=0

Δ2
d

)
,

(4.21)

∥∥∥E(k+1)
∥∥∥
2
≤ C
∥∥∥E(k)
∥∥∥
2
+ C
∥∥∥E(k−1)

∥∥∥
2
+ C

D∑
d=0

Δd +O
(

D∑
d=0

Δ2
d

)
, k ≥ 1,

(4.22)

where C depends on D,CY , η
(k), ρ(k+

1
2 ),m(k+ 1

2 ), ρ̂(k), m̂(k), φ(k+1).
The initialization gives us∥∥∥E(0)

∥∥∥
2
= 0,
∥∥∥Ê(0)
∥∥∥
2
= 0.

Then based on (4.22), it is straightforward to show (4.2) by applying induction on
k directly. �
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Figure 4. Illustration of discretization (MFG)

5. Generalization and acceleration

In this section, we generalize the proposed algorithm to solve potential MFG
problems. Moreover, we also discuss how to use multilevel and multigrid strategies
to speed up our algorithm.

5.1. Generalization to potential MFG. To apply FISTA to the MFG problem
(1.2), we follow a first-discretize-then-optimize approach. One crucial difference
between MFG and MFP is whether ρ(1, ·) is provided explicitly. For MFG, we
consider a discretization in Figure 4 and modify our previous notations related to
ρ.

The index set and discrete variable are now

J0 :=

{
3

2
,
5

2
, · · · , n0 +

1

2

}
, P := {Pj}j∈J0

∈ V0 := R
n0×n1×···×nD ,

and the discrete operators are

A0 : V0 → V,P �→ P,

P j :=

⎧⎪⎨⎪⎩
1

2
Pj+

e0
2
, j0 = 1,

1

2

(
Pj+

e0
2
+ Pj− e0

2

)
, j0 = 2, 3, · · · , n0,

D0 : V0 → V,P �→ D0(P ),

(D0(P ))j :=

⎧⎪⎨⎪⎩
1

Δ0
Pj+

e0
2
, j0 = 1,

1

Δ0

(
Pj+

e0
2
− Pj− e0

2

)
, j0 = 2, 3, · · · , n0.
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Since the boundary condition is only at t = 0, we modify PA, PD ∈ V to

(PA)j :=

⎧⎨⎩
1

2
ρ0 (xj) , j0 = 1,

0, j0 = 2, 3, · · · , n0,

(PD)j :=

⎧⎨⎩−
1

Δ0
ρ0 (xj) , j0 = 1,

0, j0 = 2, 3, · · · , n0.

Take model (2.11) in Section 2 as an example, the discrete problem can be formu-
lated as
(5.1)

min
(P,M)∈CMFG(PD)

YMFG(P,M ) :=Δ0

D∑
d=0

nd∑
jd=1

JMFG

(
(A0(P ) + PA)j ,A(M )j ,xj

)
+ λG

∑
j∈J0,

j0=n0+
1
2

PjG(xj),

where

JMFG(β0,β,x) := L(β0,β) + λEβ0 log(β0) + λQβ0Q(x),(5.2)

CMFG(PD) :=
{
(P,M ) : D0(P ) + PD +Div(M ) = 0

}
.(5.3)

Since this is an optimization problem with linear constraints, we apply FISTA to
it as detailed in Algorithm 3. In the algorithm, A	

0 ,A	,D	
0 ,Div	 are conjugate

operators of A0,A,D0,Div in norm ‖ ·‖F . Similar to what we discussed before, one
can have:{

∂PYMFG(P,M ) :=
{
Δ0(JMFG)β0

(
(A0(P ) + PA)j ,A(M )j,xj

)}
j∈J

,

∂MYMFG(P,M ) :=
{
Δ0(JMFG)β

(
(A0(P ) + PA)j ,A(M )j ,xj

)}
j∈J

,

and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(∂PYMFG(P,M ))j :=

(
A	

0 (∂PYMFG(P,M ))
)
j
, j0 �= n0 +

1
2 ,

(∂PYMFG(P,M ))j :=
(
A	

0 (∂PYMFG(P,M ))
)
j
+ λGG(xj),

j0 = n0 +
1
2 ,

∂MYMFG(P,M ) := A	 (∂MYMFG(P,M )
)
.

Remark 5.1. In Algorithm 3, we also need to solve a discrete Poisson equation (5.4)
and the approach is similar as presented in Remark 3.3.

5.2. Multilevel and multigrid FISTA. Inspired by [37, 39], we borrow ideas
from multigrid and multilevel methods in numerical PDEs to our variational prob-
lem. We first restrict our initialization to coarser meshes and solve the optimization
problem to a certain accuracy. Then we successively refine the mesh and solve the
problem until we obtain the solution on a desired fine mesh. According to [37,39],
the solution on the coarse mesh approximates that on the finer mesh and gives a
better initialization when solving the problem on the finer mesh. Therefore, these
methods can reduce computational cost on the finest level and thus accelerate the
proposed algorithm. This section presents the implementation details.

For notation simplicity, we assume h = Δ0 = Δ1 = · · · = ΔD in this section. Let
hΩ be a grid with h = Δd,

hJd be the certain Jd on the grid. Then index hj ∈ hJd
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Algorithm 3 FISTA for MFG

Parameters ρ0, ρ1

Initialization τ (1) = 1, P (0) = P̂ (0) = 1, and M
(0)
d = M̂d

(0)
= 1.

for k = 0, 1, 2, . . . do
gradient descent:{

P (k+ 1
2 ) = P (k) − η(k)∂PYMFG(P

(k),M (k)),

M (k+ 1
2 ) = M (k) − η(k)∂MYMFG(P

(k),M (k))

projection: solve Φ
(k+1)

for

(5.4)
(
D0D	

0 +DivDiv	
)
Φ

(k+1)
= D0

(
P (k+ 1

2 )
)
+ PD +Div

(
M (k+ 1

2 )
)
,

and project
(
P (k+ 1

2 ),M (k+ 1
2 )
)
to CMFG(PD) by⎧⎨⎩ P (k+1) = P (k+ 1

2 ) −D	
0

(
Φ

(k+1)
)
,

M (k+1) = M (k+ 1
2 ) −Div	

(
Φ

(k+1)
)
.

update

τ (k+1) =
1 +

√
1 + 4
(
τ (k)
)2

2
,

ω(k) =
τ (k) − 1

τ (k+1)
,(

P̂ (k+1),M̂ (k+1)
)
=
(
1 + ω(k)

)(
P (k+1),M (k+1)

)
− ω(k)

(
P (k),M (k)

)
.

end for

stands for the point hj. If there is no ambiguity, we can omit the prescript of j.
For example, we define huj = u

(
h(j − 1

2 )
)
for any function u and approximate the

value by hUj .

Consider L levels of grids h1Ω, . . . , hLΩ where the finest level is h1Ω, and hl :=
2l−1h1. We first define how to prolongate values on a coarser grid into a finer grid.
Assume that hj ∈ hJd stands for point h

(
j − 1

2

)
on the finer grid hΩ, we define

its neighbourhood on the coarser grid 2hΩ as

(5.5)

2h
hN j :=

{
2hi ∈ 2hJd :

∥∥∥∥2h(2hi− 1

2

)
− h

(
hj − 1

2

)∥∥∥∥
2

= min
2hi′∈2hJd

∥∥∥∥2h(2hi′ − 1

2

)
− h

(
hj − 1

2

)∥∥∥∥
2

}
.
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Figure 5. Illustration of Prolongation (left) and Restriction
(right) for 1D case

Then with boundary values

2hPi =
2h(ρ0)i, i0 =

1

2
,

2hPi =
2h
(ρ1)i, i0 =

1

2h
+

1

2
,

2h(Md)i = 0, id =
1

2
,
1

2h
+

1

2
,

we define the prolongation (hP, hM ) = Pro(2hP, 2hM ) by averaging values in neigh-
bourhoods:

(5.6)

⎧⎨⎩
hP j := 1

|2hhN j|
∑

2hi∈2h
hN j

2hP i, ∀ hj ∈ hJ0,

h
(Md)j := 1

|2hhN j|
∑

2hi∈2h
hN j

2h
(Md)i, ∀ hj ∈ hJd.

An example of prolongation in 1D is shown in the left panel of Figure 5.
From a finer grid to a coarser grid, the neighbourhood is defined inversely. Sup-

pose 2hi ∈ 2hJd, its neighbourhood is the set of all hj ∈ hJd whose neighbourhood

includes 2hi:

(5.7) h
2hN i :=

{
hj ∈ hJd : 2hi ∈ 2h

hN j

}
,

and the restriction from finer level to coarser level (2hP, 2hM) = Res(hP, hM) is
defined by a weighted average over neighbourhoods:

(5.8)

⎧⎪⎪⎨⎪⎪⎩
2hP i :=

∑
j∈ h

2hN i

1

|2hhN j |
hP j

/∑
j∈ h

2hN i

1

|2hhN j | , ∀ 2hi ∈ 2hJ0,

2h(Md)i :=
∑

j∈ h
2hN i

1

|2hhN j |
h(Md)j

/∑
j∈ h

2hN i

1

|2hhN j | , ∀ 2hi ∈ 2hJd.

An example of the restriction is shown in the right panel of Figure 5.
We describe our multigrid FISTA in Algorithm 4, in which Algorithm 2K(·)

means to run Algorithm 2 for K iterations and Algorithm 2(·) means to run the
algorithm till convergence. The first two inputs of Algorithm 2(·) are initial and ter-

minal densities ρ0, ρ1, and the last two inputs are initialization P (0) = P̂ (0), M (0) =

M̂ (0).
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Algorithm 4 Multigrid FISTA for MFP

Parameters L, hl = 2l−1h,K, hlρ0,
hlρ1(l = 1, . . . , L)

Initialization
h1
P (0) = 1,

h1
M (0) = 1

pre-smoothing(
h1P, h1M

)
= Algorithm 2K

(
ρ0, ρ1,

h1
P (0),

h1
M (0)
)

for l = 2, 3, . . . , L do(
hlP, hlM

)
= Algorithm 2K

(
ρ0, ρ1,Res

(
hl−1P, hl−1M

))
end for

correction and post-smoothing(
hLP, hLM

)
= Algorithm 2

(
ρ0, ρ1,

hLP, hLM
)

for l = L− 1, L− 2, . . . , 1 do(
hlP, hlM

)
=
(
hlP, hlM

)
+Algorithm 2

(
ρ0, ρ1,Pro

(
hl+1P, hl+1M

))
− Pro
(
hl+1P, hl+1M

)
end for

Note that to keep the cost of Algorithm 4 low, we need to choose a K not very
large. Motivated by [39], we remove the pre-smoothing steps by setting K = 0 and
this leads to our Algorithm 5: multilevel FISTA.

Algorithm 5 Multilevel FISTA for MFP

Parameters L, hl = 2l−1h, hlρ0,
hlρ1(l = 1, . . . , L)

Initialization
hL

P (0) = 1,
hL

M (0) = 1(
hLP, hLM

)
= Algorithm 2

(
ρ0, ρ1,

hL
P (0),

hL
M (0)
)

for l = L− 1, L− 2, . . . , 1 do(
hlP, hlM

)
= Algorithm 2

(
ρ0, ρ1,Pro

(
hl+1P, hl+1M

))
end for

6. Numerical experiments

In this section, we conduct comprehensive experiments to show the efficiency
and effectiveness of the proposed numerical algorithms. We first numerically verify
the convergence of rate of the algorithm with respect to the mesh size. After that,
our computation efficiency tests demonstrate that the proposed Algorithm 2 has
comparable efficiency with the state-of-the-art methods. Interestingly, the proposed
multilevel method performs around 10 times faster than existing methods. We
further illustrate the flexibility of our algorithms on different MFP problems. In
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Table 1. Convergence rate of Algorithm 2 applied to 1D OT prob-
lem (k = 50000)

Δ0 Δ1

∥∥E(k,∗)∥∥
2

order
∥∥E(k,∗)∥∥

∞ order W 2
2 error order

1/16 1/64 3.19E-04 2.88E-03 4.88E-06
1/32 1/128 1.08E-04 1.56 1.47E-03 0.97 1.22E-06 2.00
1/64 1/256 3.76E-05 1.53 7.44E-04 0.98 3.05E-07 2.00
1/128 1/512 1.37E-05 1.46 3.62E-04 1.04 7.63E-08 2.00

all the numerical experiments, we use the dynamic cost function L defined in (2.5).
All of our numerical experiments are implemented in Matlab on a PC with an
Intel(R) i7-8550U 1.80GHz CPU and 16 GB memory. The codes to reproduce the
numerical results in this paper are available in https://github.com/Jiajia-Yu/

FISTA_MFP_euc.

6.1. Convergence rate. To numerically verify the theoretical convergence anal-
ysis discussed in Section 4, we first apply the proposed numerical algorithm to a
simple 1D OT example with the exact solution as follows.

Let Ω = [0, 1], ρ0(x) = x + 1
2 , ρ1(x) = 1. Then we can have the following

theoretical solution of the OT between ρ0 and ρ1.

ρ∗(t, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x+

1

2
, t = 0,√

2tx+
(
t
2 − 1
)2

+ t− 1

t

√
2tx+
(
t
2 − 1
)2 , 0 < t ≤ 1.

(6.1)

m∗(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

4
x(x− 1)(2x+ 1), t = 0,

x

t2
− 3− t

2t3

√
2tx+

(
t

2
− 1

)2
− (t−1)(t2−4)

8t3
1√

2tx+( t
2−1)2

− 3t−4
2t3 , 0 < t ≤ 1.

(6.2)

We also know W 2
2 (ρ0, ρ1) =

1

120
.

Note that it would be quite difficult to check E(k) as we do not have the evolution
path, ρ(k) and m(k), in the continuous Algorithm 1. Instead, we compute the
following values:

∥∥∥E(k,∗)
∥∥∥
2
:=
√
Δ0Δ1

⎡⎣∑
j∈J0

∣∣∣P (k)
j − ρ∗j

∣∣∣2 +∑
j∈J1

∣∣∣M (k)
j −m∗

j

∣∣∣2
⎤⎦

1
2

,

∥∥∥E(k,∗)
∥∥∥
∞

:= max

{
max
j∈J0

∣∣∣P (k)
j − ρ∗j

∣∣∣ ,max
j∈J1

∣∣∣M (k)
j −m∗

j

∣∣∣} ,
W 2

2 error:
∣∣∣Δ0Δ1Y

(
P (k),M (k)

)
−W 2

2 (ρ0, ρ1)
∣∣∣ .

Here
∥∥E(k,∗)∥∥

2
is related to

∥∥E(k)
∥∥
2
by:∥∥∥E(k,∗)

∥∥∥
2
≤
∥∥∥E(k)
∥∥∥
2
+
∥∥∥(ρ(k)J0

,m
(k)
J

)
−
(
ρ∗J0

,m∗
J

)∥∥∥
2
.
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Table 2. Time comparison of OT in 1D for different grid sizes
(n0 = 64, tol = 10−4, F=FISTA, A=ALG, G=G-prox) with the
best performance highlighted in red

Iter Time (s) Time(s)/Iter
n1 F A G F A G F A G

256 611 435 426 1.74 2.99 2.93 2.85E-03 6.86E-03 6.88E-03
512 611 435 429 3.06 5.91 6.92 5.00E-03 1.36E-02 1.61E-02
1024 611 435 430 7.60 12.93 12.85 1.24E-02 2.97E-02 2.99E-02
2048 611 435 431 24.84 36.15 32.72 4.07E-02 8.31E-02 7.59E-02
4096 611 435 431 51.79 69.99 68.09 8.48E-02 1.61E-01 1.58E-01

Table 3. Time comparison of OT in 2D for different grid sizes
(n0 = 64, F=FISTA, A=ALG, G=G-prox) with the best perfor-
mance highlighted in red

Iter Time (s) Time(s)/Iter
n1, n2 F A G F A G F A G

128 116 64 66 46.20 46.07 46.49 3.98E-01 7.20E-01 7.04E-01
256 116 64 66 212.31 201.52 190.31 1.83E+00 3.15E+00 2.88E+00
512 116 64 66 810.86 761.65 752.59 6.99E+00 1.19E+01 1.14E+01

For given Δ0,Δ1, we can choose very large k such that∥∥∥E(k,∗)
∥∥∥
2
≤
∥∥∥E(k)
∥∥∥
2
+ ε(k)

and ε(k) � Δ0 +Δ1. Fixing k, according to our theoretical analysis, we expect to
observe at least ∥∥∥E(k,∗)

∥∥∥
2
= O (Δ0 +Δ1) ,

and ∥∥∥E(k,∗)
∥∥∥
∞

≤
∥∥∥E(k,∗)

∥∥∥
F
= (Δ0Δ1)

− 1
2

∥∥∥E(k,∗)
∥∥∥
2
= O (1) .

Numerical results are shown in Table 1 where we observe∥∥∥E(k,∗)
∥∥∥
2
= O
(
Δ1.5

0 +Δ1.5
1

)
,
∥∥∥E(k,∗)

∥∥∥
∞

= O (Δ0 +Δ1) .

This indicates that the convergence rate of our numerical experiments performs
better than theoretical prediction. This is not surprising as our theoretical analysis
may not be sharp.

6.2. Computation efficiency. In this part, we demonstrate the efficiency of our
algorithms by comparing them with state-of-the-art methods for dynamic OT prob-
lems. We apply our algorithms to OT problems with ρ0, ρ1 being Gaussian dis-
tribution densities with mean 1

3 ,
2
3 for the 1D example and ( 13 ,

2
3 ), (

2
3 ,

1
3 ) for the

2D example, and compare the results and computation time with those using
ALG(augmented Lagrangian) [11, 12] and G-prox [34]. For all approaches, the
stopping criteria are∥∥∥(P (k+1),M (k+1)

)
−
(
P (k),M (k)

)∥∥∥
2
≤ tol.
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Table 4. Efficiency and accuracy comparisons of OT in 1D (n0 =
64, n1 = 256) with the best performance highlighted in red

Num
Iter

Time (s)
Stationarity
Residue

Feasibility
Residue

Mass
Residue

FISTA 611 1.723 3.27E-05 2.28E-13 1.33E-15
ALG 435 2.840 9.43E-05 2.41E-04 1.64E-08
G-prox 426 2.761 1.93E-04 1.88E-04 2.96E-08
MLFISTA 882 0.422 7.97E-05 2.28E-13 1.11E-15
MGFISTA (K = 5) 1448 1.195 4.79E-05 2.33E-13 1.77E-15
MGFISTA (K = 10) 1517 1.341 3.95E-05 2.28E-13 2.22E-15

Table 5. Efficiency and accuracy comparison of OT in 2D (n0 =
64, n1 = n2 = 256) with the best performance highlighted in red

Num
Iter

Time (s)
Stationarity
Residue

Feasibility
Residue

Mass
Residue

FISTA 116 232.560 9.22E-04 6.01E-13 1.42E-14
ALG 64 211.043 8.75E-04 4.99E-03 3.10E-03
G-prox 66 208.696 9.29E-04 6.88E-03 3.10E-03
MLFISTA 162 12.853 3.43E-03 2.95E-13 2.07E-14
MGFISTA (K = 5) 315 134.226 1.07E-03 5.99E-13 1.67E-14
MGFISTA (K = 10) 315 170.580 9.86E-04 6.00E-13 2.02E-14

To enhance the algorithm stability, we use ρ0 + 0.1, ρ1 + 0.1 as the initial and
terminal densities in the numerical experiment.

In Table 2 and Table 3, we report computation time and the number of itera-
tions for each algorithm on different grid sizes in 1D and 2D. From the tables, the
proposed Algorithm 2 outperforms ALG and G-prox in 1D and achieves similar
efficiency in 2D. Interestingly, CPU time per iteration in our algorithm is the least
among these three algorithms. This is because, at each iteration, solving a Poisson
equation is required for all three algorithms while our method does not need to

solve
∏D

d=0 nd cubic equations required in ALG and G-prox. Therefore our method
needs less time in the 1D experiment although it needs more iterations to achieve
the given stopping criteria. But this computation save is marginal compared with
the cost of solving the Poisson equation in 2D. Thus, our method spends comparable
time instead of less time in the 2D experiment.

Moreover, as shown in Table 4 and Table 5, we further accelerate the proposed
algorithm by at most 10 times with the help of multilevel and multigrid strategies.
We also compute the residue of being a stationary point, residue of feasibility
constraint (2.2), and residue of mass conservation to check the accuracy of the
solutions. From the residue comparisons listed in the tables, it is clear to see that
all of our algorithms provide solutions with far better mass preservation property
than results from ALG and G-prox methods due to the nature of the projection
step in our method. Qualitatively, Figure 6 also shows that all 6 algorithms in our
experiments provide satisfactory results in accuracy.
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Figure 6. Qualitative comparisons of ρ(t, ·) in 1D. Row 1 from
left to right: FISTA, ALG, G-Prox. Row 2 from left to right:
MLFISTA, MGFISTA(K = 5), MGFISTA(K = 10).

Remark 6.1. From Table 4 and Table 5, we observe that with multilevel and multi-
grid strategies, the algorithms take more iterations to converge. This is because
we need more iterations on the coarser mesh to obtain a good initialization on the
finer mesh. But since each iteration on the coarser mesh is less expensive, schemes
with multilevel and multigrid strategies take much less time to complete.

Remark 6.2. As we point out in Remark 3.4, adding a constant to initial and
terminal densities improves the numerical stability, but it also changes the original
problem and gives an approximation to the original problem. This example shows
that the approximation is good if the constant is not too large. In the 1D example
of this part, with initial and terminal densities being Gaussian, the exact W 2

2 value
is 1

9 ≈ 0.111111. Numerically, we truncate the domain to [0, 1] and add a shift of

0.1 to initial and terminal densities. And the approximated W 2
2 value is 0.104710

with a relative error of 0.057.

6.3. MFP with obstacles. Most numerical examples of MFP in the literature
consider Ω to be a regular region, i.e. Ω = [0, 1] × [0, 1]. However, in real appli-
cations, problems defined in irregular regions might make the implementation very
complicated. One potential way of handling irregular domain is to set Q to be an
indicator function of obstacles which leads to solutions staying in the irregular do-
main. In a different example, [42] provides an interesting optimal transport example
where the region is a maze with many “walls”. Here we consider several illustrative
cases where there are one or two pieces of obstacles in our square domain and show
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that our algorithm can deal with this case without modification of implementation.
More detailed studies in this direction will be explored in our future work.

To be precise, letting Ω =
[
− 1

2 ,
1
2

]
×
[
− 1

2 ,
1
2

]
, we consider MFP problem with

objective function

∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x)dxdt+ λQ

∫ 1

0

∫
Ω

ρ(t,x)Q(x)dx.

Different choices of ρ0, ρ1, Q are shown in the first row of Figure 7 and Q(x) ={
1, x ∈ Ω0,

0, x �∈ Ω0

where Ω0 is the white region. By setting λQ to be a very large

number (e.g. λQ = 8×104 in our implementation), we expect the set Ω0 to be viewed
as an obstacle and the density evolution to circumvent the region. The snapshots
of the evolution shown in Figure 7 demonstrate the success of our algorithm since
the mass circumvents the obstacles very well.

6.4. Flexibility. As one of the greatest advantages, our method enjoys the flexi-
bility to handle different types of objective functions in variational MFP problems.
To show the effectiveness of our algorithm, we apply Algorithm 2 to the five models
listed in Section 2. We can also observe how different objective functions affect
density evolutions.

Let Ω = [0, 1]× [0, 1], ρ0, ρ1 to be two images shown in Figure 8, G(x) = −ρ1(x)

and Q(x) =

{
0, ρ0(x) �= 0 or ρ1(x) �= 0,

1, otherwise
. We consider MFP problems of the

following form

min
(ρ,m)∈C(ρ0,ρ1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt

+λE

∫ 1

0

∫
Ω

FE(ρ(t,x))dxdt+ λQ

∫ 1

0

∫
Ω

ρ(t,x)Q(x)dxdt

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

We apply the proposed algorithm to the following four MFP models discussed in
Examples 2.1-2.3:

(OT) λE = λQ = 0,(6.3)

(Model 1) λE = 0.01, λQ = 0.1, FE : R+ → R, ρ �→
{
ρ log(ρ), ρ > 0,

0, ρ = 0,
(6.4)

(Model 2) λE = 0.01, λQ = 0.1, FE : R+ → R, ρ �→ ρ2

2
,(6.5)

(Model 3) λE = 0.01, λQ = 0.1, FE : R+ → R, ρ �→
{

1
ρ , ρ > 0,

0, ρ = 0,
(6.6)
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(a) Example 1 (b) Example 2 (c) Example 3

(d) Example 1

(e) Example 2

(f) Example 3

Figure 7. (a-c) Initial density ρ0, terminal density ρ1 and obstacle
region Ω0 highlighted as white regions. (d-f) Snapshots of ρ at
t = 0.1, 0.3, 0.5, 0.7, 0.9.

and a MFG model shown in Example 2.4
(6.7)

min
(ρ,m)∈C(ρ0)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt

+λE

∫ 1

0

∫
Ω

ρ(t,x) log(ρ(t,x))dxdt+ λQ

∫ 1

0

∫
Ω

ρ(t,x)Q(x)dxdt

+λG

∫
Ω

ρ(1,x)G(x)dx

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
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Figure 8. From left to right: Initial density ρ0, final ρ1, interac-
tion penalty Q(x) and terminal density regularizer G(x)
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(a) OT: FE(a) = F0(a) := 0
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(b) Model 1: FE(a) = a log a, a > 0
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(c) Model 2: FE(a) = a2
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(d) Model 3: FE(a) = 1
a
, a > 0

t=1

0.3

0.4

0.5

0.6

(e) MFG: FE(a) = a log a, a > 0

Figure 9. Snapshot of ρ at t = 0.2, 0.4, 0.6, 0.8, 1 (from left to right)
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with λE = 0.01, λQ = 0.1, λG = 1. It is worth mentioning that to solve model
(6.3)-(6.6), we must rescale ρ1, ρ1 such that

∫
Ω
ρ0 =
∫
Ω
ρ1 but we do not have to

rescale G(x) for ρ0 in (6.7).
Figure 9 shows the snapshots of the density evolutions. Since (6.5)-(6.7) set the

space preference to the evolution, the mass evolutions are within the dark region
and the optimal transport model (6.3) has a more free evolution style.

Comparing model (6.4), (6.5) with (6.6), we observe that the mass evolution of
model (6.4), (6.5) is dense, while that of (6.6) experiences a congest-flatten process
and tends to be sparse. This is compatible with our discussions in Section 2.

7. Conclusion

In this paper, we propose an efficient and flexible algorithm to solve potential
MFP problems based on an accelerated proximal gradient algorithm. In the optimal
transport setting, we can converge faster or nearly as fast as G-prox and approach
optimizer with the same accuracy. With multilevel and multigrid strategies, our
algorithm can be accelerated up to 10 times without sacrificing accuracy. In broader
settings of MFP and MFG, our method is more flexible than primal-dual or dual
algorithms as it enjoys the flexibility to handle differentiable objective functions.
Theoretically, we, for the first time, analyze the error introduced by discretizing
ρ,m based on an optimization point of view, and show that under some mild
assumptions, our algorithm converges to the optimizer. In the future, we expect
to extend the proposed algorithms for nonpotential mean field games, which have
vast applications in mathematical finance, communications, and data science.
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