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Abstract  
 

Recent advances pertaining to modeling of grain fragmentation during deformation and 
recrystallization of polycrystalline metals using viscoplastic self-consistent (VPSC) polycrystal 
plasticity are combined into a field fluctuations VPSC (FF-VPSC) model. The model is a higher-
order formulation calculating the second moments of lattice rotation rates based on the second 
moments of stress fields inside grains and resulting intragranular misorientation distributions. The 
misorientation distributions are used to define a grain fragmentation sub-model for improving 
predictions of deformation texture evolution and to formulate kinetics sub-models for nucleation 
as well as to influence the stored energy governing grain growth for the predictions of 
recrystallization texture evolution. Formation of a copper-like texture in a moderately high 
stacking fault energy (SFE) Cu and a brass-like texture in low SFE brass during rolling to very 
large strains are successfully predicted using the model. Remarkably, the model also predicts 
recrystallization textures from the deformation textures of the two metals after adjusting tradeoffs 
between transition-bands and grain boundary nucleation mechanisms. Additionally, rolling and 
recrystallization of an interstitial-free steel, tension and recrystallization of AA5182-O, and 
recrystallization of an additively manufacturing cobalt-based alloy MarM-509 are simulated to 
predict texture evolution. Through these case studies involving multiple alloys and thermo-
mechanical processes we show that, in addition to being predictive with good accuracy, the key 
advantage of the model lies in its versatility. The FF-VPSC model, simulation results, and insights 
from the results are presented and discussed in this paper.   
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1. Introduction 

Long-established viscoplastic self-consistent (VPSC) model is widely used for modeling 
mechanical behavior and texture evolution during plastic deformation of polycrystalline materials 
[1-4]. Each grain in the VPSC model is considered as an ellipsoidal inclusion embedded in a 
homogenous effective medium (HEM), which acts as a polycrystal having the mean properties 
over constituent grains. The HEM properties are calculated using the self-consistent (SC) 
homogenization scheme relying on the first moments i.e., the mean values of stress and strain per 
inclusion [5-7]. As the mean-field model, such standard VPSC model provides a favorable balance 
between computational efficiency and accuracy compared to more computationally expensive and 
more accurate full-field model formulations [8-11]. However, mean fields are insufficient for 
accurate modeling after constituent grains develop high intragranular orientation gradients at large 
strain levels [12-17]. For example, deformation textures at large plastic strains predicted using the 
mean field models are sharper than measured since intragranular orientation gradients and grain 
fragmentation are not modeled [18-21]. Accounting for higher order micromechanical fields and 
underlying intragranular misorientation spreads can substantially improve the predictive 
characteristics of VPSC [22].  

The second-order formulations begun from the works reported in [23, 24] for composites and in 
[25-27] for polycrystals. In particular, a finite-strain homogenization model for the macroscopic 
response of viscoplastic polycrystals in which the linearization not only depends on the first 
moments but also on the second moments of stress field was developed in [27]. The model relied 
on the fully optimized second-order (FOSO) variational homogenization method in conjunction 
with self-consistent estimates for the instantaneous response of a linear comparison composite 
(LCC) with optimally selected properties. These properties of the LCC depended not only from 
the first but also from the second moments of stress fields. Updating the lattice rotation rate 
fluctuations of grains based on the higher order statistical information obtained from the second 
moment of stress produces the accumulation of intragranular misorientations trends with plastic 
strain, as formulated in [28, 29]. Taking advantages of such intragranular misorientations trends, 
a grain fragmentation VPSC [30] and a recrystallization model [31] within VPSC both driven by 
intragranular fluctuations have been developed. In the former model, the grain fragmentations 
were not in physical space to create new grains but rather in the orientation space. In the latter 
model, the misorientation spreads as sources of transition bands and grain boundary bulges as 
recrystallization nuclei were used to formulate nucleation sub-models for modeling 
recrystallization [32-34]. Nucleated grains grow owing to the difference in stored energy between 
the given grain and HEM [35]. For completeness, we reflect that other grain fragmentation [36, 
37] and recrystallization [35, 38, 39] models not utilizing the micromechanical stress and strain 
rate field fluctuations but merely average values of grain quantities and HEM have also been 
presented in the prior literature. The present work combines these recent developments into a field 
fluctuations VPSC (FF-VPSC) model capable of fragmenting grains in the physical space for 
modeling thermo-mechanical response and texture evolution of polycrystalline metals.  
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This paper is concerned with predicting texture evolution during deformation and recrystallization 
of cubic polycrystalline metals while accounting for the second-order terms of mechanical fields. 
Given that recrystallization nuclei occur at deformation induced inhomogeneities such as bands of 
high orientation gradients and thus high stored energy or grain boundary sub-grain bulges into a 
neighboring grain [40-44], the recrystallization kinetics is highly dependent on the deformed state 
of the metal. Hence, a recrystallization model must be informed by an appropriate deformation 
state of the metal, which is input into the recrystallization model. Accuracy of the recrystallization 
model is driven by the accuracy of the deformation model. Unlike choosing orientations of the 
nuclei randomly as in many recrystallization models [45-47], the present work attempts to model 
nucleation based on the deformed state of the metal with underlying intragranular orientation 
gradients predicted using FF-VPSC.  

First, we attempt to predict rolling textures of face-centered cubic (FCC) metals that develop either 
a copper-type (Cu-type) texture or a brass-type texture as discussed in [48-50]. The former is 
favored in rolling of high stacking fault energy (SFE) metals, while the latter is favored in rolling 
of low SFE metals [51-54]. While the former texture development is well understood and 
successfully simulated using many crystal plasticity models, the latter is elusive [49, 55]. Since 
the low SFE metals deform by deformation twinning, the formation of brass-like texture was 
attributed to deformation twinning [56]. However, the volume fraction of deformation twins 
produced during deformation is not high enough to completely explain the different textures [49, 
55]. In general, predicting brass-like textures using mean-field models with deformation twinning 
was challenging, especially at high rolling reductions [57-61]. A modified Sachs-type model with 
random stress fluctuations has been proposed for predicting brass-like texture but the success was 
limited to low strain levels [62]. Similarly, a viscoplastic 𝜙 model was developed for simulating 
brass-like textures but again was not successful at high deformation levels [63]. Furthermore, full-
field simulations with strong latent hardening were able to capture some features of the brass-like 
texture formation in the early stages but not at the larger stages of deformations [64, 65], 
presumably due to not modeling the grain break-up behavior [66-68]. In summary, predicting 
brass-like texture and copper-like texture evolution at high rolling reductions using a single mean-
field model was not accomplished in the past. We evaluate predictive characteristics of the FF-
VPSC model in predicting both copper-type and brass-type textures at very high strain levels. In 
doing so, we elucidate the role of misorientation spreads developing in these simulations and 
resulting transition bands and grain fragmentations. We show that tracking the differences in the 
grain breakup explains the differences in the texture formation in FCC metals, given the proper 
selection of deformation mechanisms of slip and twinning.  

Next, we simulate recrystallization of the rolling Cu-type and brass-type textures to show utility 
of the FF-VPSC model in simulating texture evolution during recrystallization. A few additional 
simulation cases are performed to evaluate the effects of strain-path, stored energy, and crystal 
structure on the predictions using FF-VPSC. To evaluate the effects of strain path, we simulate 
texture evolution during simple tension (ST) followed by recrystallization of an aluminum alloy 
(AA) 5182-O. Developed misorientation trends after ST are compared with experimental 
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measurements. We then simulate texture evolution during partial recrystallization of a cobalt-
based alloy, MarM-509 after its additive manufacturing (AM). The alloy was pre-deformed to a 
sufficient strain level in compression to provide stored energy and misorientation trends for 
recrystallization kinetics. Finally, we simulate rolling and recrystallization texture evolution of an 
interstitial-free steel to evaluate the predictive characteristics for a body-centered cubic (BCC) 
crystal structure. The predictions of the FF-VPSC model are compared against experimental 
measurements for every simulation case. Good predictions demonstrate that the consideration of 
intragranular misorientation fluctuations and grain fragmentation is essential to accurately predict 
texture evolution during deformation and recrystallization. Predicted recrystallization textures can 
be adjusted using fractions of transition-bands versus grain boundary nucleation mechanisms.  

 

2. Modeling framework   
 

Following a short summary of the standard VPSC formulation [2, 69], the algorithms to calculate 
lattice rotation rate fluctuations using intragranular stress field fluctuations are reviewed for 
completeness of the paper [28]. Next, we describe the formulations to calculate intragranular 
misorientation spreads and grain fragmentation [29]. Finally, a recrystallization model is described 
to complete the integrated FF-VPSC framework [31].   

Our adopted notation is as follows: the inner products between two vectors or tensors are 

symbolized by “” (summation over one contracted index), “:” (summation over two contracted 
indices) and “::” (summation over four contracted indices). The outer product of two tensors is 
represented by “⨂”. The symmetric deviatoric second-rank tensors are represented by five-
dimensional vectors  and antisymmetric second-rank tensors are represented by three-dimensional 
dual vectors [2, 70].  

 

2.1 Formulation of standard VPSC 

At a single crystal material point 𝐱, deforming by dislocation glide (and twinning as a pseudo slip 
[71-73]), the viscoplastic strain rate, 𝛆ሶ ሺ𝐱ሻ, is given as [2]: 

𝛆ሶ ሺ𝐱ሻ ൌ ∑ 𝛾ሶ ௦ሺ𝐱ሻ𝐦௦ሺ𝐱ሻ௦ , (1) 

where 𝐦௦ሺ𝐱ሻ ൌ ଵ

ଶ
൫𝐛௦ሺ𝐱ሻ ⊗ 𝐧௦ሺ𝐱ሻ ൅ 𝐧௦ሺ𝐱ሻ ⊗ 𝐛௦ሺ𝐱ሻ൯ is the symmetric Schmid tensor of the 

associated slip system 𝑠. 𝐧௦ and 𝐛௦ are slip plane normal and Burgers vector of slip system 𝑠. 
Shear rate on slip system 𝑠 at a material point 𝐱, 𝛾ሶ ௦ሺ𝐱ሻ is given by: 

𝛾ሶ ௦ሺ𝐱ሻ ൌ 𝛾ሶ଴ ቀ
|ఛೞሺ𝐱ሻ|

ఛ೎
ೞሺ𝐱ሻ

ቁ
௡

sign൫𝜏௦ሺ𝐱ሻ൯,  (2) 
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where 𝛾ሶ଴ is the reference shear rate (assumed to be 1sିଵ in all our calculations), 𝜏௦ሺ𝐱ሻ ൌ
𝐦௦ሺ𝐱ሻ:𝛔ሺ𝐱ሻ is the resolved shear stress on slip system 𝑠,  𝑛 is the inverse of rate sensitivity (taken 
to be 20), and 𝜏௖௦ is the critical resolved shear stress on slip system 𝑠. Substituting Eq. (2) in Eq. 
(1), we get the nonlinear rate sensitive constitutive relationship between strain rate and stress at 
local level [74, 75]:  

𝛆ሶ ሺ𝐱ሻ ൌ 𝛾ሶ଴ ∑ ቀ
|𝛔ሺ𝐱ሻ∶𝐦ೞሺ𝐱ሻ|

ఛ೎
ೞሺ𝐱ሻ

ቁ
௡

sign൫𝛔ሺ𝐱ሻ:𝐦௦ሺ𝐱ሻ൯௦ 𝐦௦ሺ𝐱ሻ.  (3) 

More details pertaining to the kinematics of VPSC can be found in the literature, e.g. [76, 77]. The 
non-linear relationship of Eq. (2), at the slip system level can be linearized as: 

𝛾ሶ ௦ሺ𝐱ሻ ൌ 𝜂௦ሺ௥ሻ𝜏௦ሺ𝐱ሻ ൅ 𝑔ሶ଴௦ሺ௥ሻ,  (4) 

where 𝜂௦ሺ௥ሻ is the linearized compliance and 𝑔ሶ଴௦ሺ௥ሻ is the back-extrapolated shear rate of slip 
system 𝑠 in grain 𝑟. The nonlinear constitutive relationship (Eq. (3)) at the grain level can be 
linearized similarly as: 

𝛆ሶ ሺ𝐱ሻ ൌ 𝐌ሺ௥ሻ ∶  𝛔ሺ𝐱ሻ ൅ 𝛆ሶ ଴ሺ௥ሻ,  (5) 

where 𝐌ሺ௥ሻ and 𝛆ሶ ଴ሺ௥ሻ are the linearized compliance and back-extrapolated strain rate respectively 
for grain 𝑟. Based on the linearization scheme, the formulation of the above moduli can be chosen 
differently. For this paper, we adopt affine linearization scheme [5]. In the affine linearization, the 
moduli defined above are: 

𝜂௦ሺ௥ሻ ൌ 𝑛 ఊሶబ

ఛ೎
ೞሺೝሻ ൬

ఛೞሺೝሻ

ఛ೎
ೞሺೝሻ൰

௡ିଵ

,                                                                                                                (6) 

𝑔ሶ଴௦ሺ௥ሻ ൌ ሺ1 െ 𝑛ሻ𝛾ሶ଴ ൬
ఛೞሺೝሻ

ఛ೎
ೞሺೝሻ൰

௡

sign൫𝜏௦ሺ௥ሻ൯,                                                                                                                (7) 

𝐌ሺ௥ሻ ൌ 𝑛𝛾ሶ଴ ∑
𝐦ೞሺೝሻ⊗𝐦ೞሺೝሻ

ఛ೎
ೞሺೝሻ௦ ൬

𝐦ೞሺೝሻ∶𝛔ሺ𝒓ሻ

ఛ೎
ೞሺೝሻ ൰

௡ିଵ

,                                                                                      (8) 

𝛆ሶ ଴ሺ௥ሻ ൌ ሺ1 െ 𝑛ሻ𝛾ሶ଴ ∑ ൬
𝐦ೞሺೝሻ∶𝛔ሺ𝒓ሻ

ఛ೎
ೞሺೝሻ ൰

௡

௦ sign൫𝐦௦ሺ௥ሻ ∶ 𝛔ሺ𝒓ሻ൯.                                                                                      (9) 

After performing the standard self-consistent homogenization, we get the linear relationship 
analogous to Eq. 5 at the effective medium level as: 

𝐄ሶ ൌ 𝐌ഥ ∶ 𝚺 ൅ 𝐄ሶ ଴,  (10) 

where 𝚺 and 𝐄ሶ  are the macroscopic stress and strain rate; 𝐌ഥ  is the macroscopic viscoplastic 

compliance and 𝐄ሶ ଴ is the back-extrapolated strain rate. 

The macroscopic properties are given by the self-consistent equations as: 

𝐌ഥ ൌ 〈𝐌ሺ௥ሻ:𝐁ሺ௥ሻ〉 ∶ 〈𝐁ሺ௥ሻ〉ି𝟏, (11) 
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𝐄ሶ ଴ ൌ 〈𝐌ሺ௥ሻ:𝐛ሺ௥ሻ ൅ 𝛆ሶ ଴ሺ௥ሻ〉 െ 〈𝐌ሺ௥ሻ:𝐁ሺ௥ሻ〉: 〈𝐁ሺ௥ሻ〉ି𝟏: 〈𝐛ሺ௥ሻ〉 ,  (12) 

where 〈 〉 denotes volume average. 𝐁ሺ௥ሻ and 𝐛ሺ௥ሻ are the stress localization tensors which are 
expresses as the functions of microscopic and macroscopic moduli and can be formulated as: 

𝐁ሺ௥ሻ ൌ ൫𝐌ሺ௥ሻ ൅ 𝐌෩൯
ିଵ

: ൫𝐌ഥ ൅𝐌෩൯,  (13) 

𝐛ሺ௥ሻ ൌ ൫𝐌ሺ௥ሻ ൅ 𝐌෩൯
ିଵ

: ൫𝐄ሶ ଴ െ 𝛆ሶ ଴ሺ௥ሻ൯.  (14) 

The self-consistent equations are implicit in the macroscopic moduli, 𝐌ഥ  and 𝐄ሶ ଴, and are solved 

numerically by a fix-point method. 𝐌෩  is the interaction tensor and is given by: 

𝐌෩ ൌ ሺ𝐈 െ 𝐒ሻିଵ ∶  𝐒 ∶  𝐌ഥ ,  (15) 

where 𝐒 is the symmetric Eshelby tensor and is the solution of the problem of an inclusion 
embedded in an effective medium [78]. The interaction equation which relates the deviations in 

strain rate, 𝛆ሶ෨ሺ௥ሻ and in stress, 𝛔෥ሺ௥ሻ in the inclusion with respect to the macroscopic values is given 
by: 

𝛆ሶ෨ሺ௥ሻ ൌ െ𝐌෩ ∶ 𝛔෥ሺ௥ሻ,  (16) 

Total lattice rotation rate field at a material point 𝐱 for a grain r, in the absence of macroscopic 
rigid-body rotation is given as: 

𝛚ሶ ሺ௥ሻሺ𝐱ሻ ൌ 𝛚ሶ෩ ሺ௥ሻ െ 𝛚ሶ ௣ሺ𝐱ሻ,  (17) 

where 𝛚ሶ෩ ሺ௥ሻ ൌ 𝚷 ∶ 𝐒ିଵ ∶  𝛆ሶ෨ሺ௥ሻ is the rigid-body rotation rate of the ellipsoidal inclusion to maintain 
the compatibility with the effective medium and 𝚷 is the anti-symmetric Eshelby tensor. 𝛚ሶ ௣ሺ𝐱ሻ is 
the lattice rotation rate at material point 𝐱 for a grain 𝑟 which can be given by: 

𝛚ሶ ௣ሺ𝐱ሻ ൌ ∑ 𝛾ሶ ௦ሺ𝐱ሻ𝛂௦ሺ𝐱ሻ௦ ,  (18) 

where 𝛂௦ሺ𝐱ሻ ൌ ଵ

ଶ
൫𝐛௦ሺ𝐱ሻ ⊗ 𝐧௦ሺ𝐱ሻ െ 𝐧௦ሺ𝐱ሻ⊗ 𝐛௦ሺ𝐱ሻ൯ is the antisymmetric part of the Schmid 

tensor of an associated slip system s. 

 

2.2 Fluctuations of stress and lattice rotation rate 

The second moment of stress field (average stress fluctuations) in each grain can be calculated 
after convergence of the self-consistent iterations at a time 𝑡 [13]. In our formulation, two sources 
of intragranular stress fluctuations are considered: mean grain properties variation and spatial 
variation of orientation inside a grain [22, 29, 79]. The orientation at each grain 𝑟 at any time 𝑡 is 

denoted by active rotation quaternion 𝐪ഥ௧ሺ௥ሻ. The stress at a material point 𝐱, 𝛔௧ሺ𝐱ሻ is given by: 

𝛔௧ሺ𝐱ሻ ൌ 𝛔௧ሺ௥ሻ ൅ δ𝛔௧ሺ௤തሻሺ𝐱ሻ.  (19) 
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where 𝛔௧ሺ௥ሻ the mean stress in a grain 𝑟 and δ𝛔௧ሺ௤തሻሺ𝐱ሻ is a stress fluctuations term caused by spatial 
variations of mean grain properties. Adding the fluctuations term does not change the mean term. 
The second moments of stress in each grain 𝑟 is calculated as [29]: 

〈𝛔௧ ⊗ 𝛔௧〉ሺ௥ሻ ൌ 𝛔௧ሺ௥ሻ ⊗ 𝛔௧ሺ௥ሻ ൅ 〈δ𝛔௧ሺ௤തሻ ⊗ δ𝛔௧ሺ௤തሻ〉ሺ௥ሻ ൌ ଶ

௪೟ሺೝሻ
డ௎෩೅

೟

డ𝐌೟ሺೝሻ,  (20) 

where 𝑤௧ሺ௥ሻ is the volume fraction of the associated grain 𝑟. 𝑈෩்
௧  is the effective stress potential 

given as [28]: 

𝑈෩்
௧ ൌ ଵ

ଶ
𝐌ഥ ௧  ∷ ሺ𝚺௧⨂𝚺௧ሻ ൅ 𝐄ሶ ଴௧ ∶ 𝚺௧ ൅ ଵ

ଶ
𝐺̅௧.  (21) 

where 𝐺̅௧ is the energy under zero applied stress and is expressed using:  

𝐺̅௧ ൌ ∑ 𝑤௧ሺ௥ሻ𝛆ሶ ଴௧ሺ௥ሻ௥ ∶ 𝐛௧ሺ௥ሻ.                                                                                                            (22) 

After substituting Eq. (21), the term 
ଶ

௪೟ሺೝሻ
డ௎෩೅

೟

డ𝐌೟ሺೝሻ from Eq. (20) can be expanded as [13]: 

ଶ

௪೟ሺೝሻ
డ௎෩೅

೟

డ𝐌೟ሺೝሻ ൌ
ଵ

௪೟ሺೝሻ
డ𝐌ഥ ೟

డ𝐌೟ሺೝሻ ∶∶ ሺ𝚺
௧⨂𝚺௧ሻ ൅ ଶ

௪೟ሺೝሻ
డ𝐄ሶ బ೟

డ𝐌೟ሺೝሻ ∶ 𝚺
௧ ൅ ଵ

௪೟ሺೝሻ
డீ̅೟

డ𝐌೟ሺೝሻ.                                                     (23) 

Since the properties in Eq. (23) are calculated via the SC process, the spatial arrangement of the 
grains has no effect on the stress fluctuations. The second moment expression in Eq. (20) 
statistically describes the fluctuations of average stress in the absence of any intragranular 
misorientation.  While the second moments of stress can be calculated using the far-right term of 
Eq. (20), the calculation of the second moment of stress fluctuations caused by variation of mean 

stress, 〈δ𝛔௧ሺ௤തሻ ⊗ δ𝛔௧ሺ௤തሻ〉ሺ௥ሻ, need to be evaluated for second moments of spin and misorientation, 
as will be evident shortly. Details pertaining to the evaluation of the term is discussed in Appendix 
B. Next, we incorporate the second source of the fluctuations. If a misorientation quaternion filed, 
δ𝐪௧ሺ𝐱ሻ is introduced at time 𝑡 inside each grain, the orientation, 𝐪௧ሺ𝐱ሻ at any point 𝐱 is defined as 
[80] : 

𝐪௧ሺ𝐱ሻ ൌ δ𝐪௧ሺ𝐱ሻ𝐪ഥ௧ሺ௥ሻ.  (24) 

Any orientation or misorientation can be expressed by three independent variables. Therefore, we 

can express the misorientation quaternion, δ𝐪௧ሺ𝐱ሻ by its vector part δ𝐫௧ሺ𝐱ሻ [80]. An additional 

fluctuation of stress, δ𝛔௧ሺఋ௥ሻሺ𝐱ሻ at a point 𝐱, caused by the intragranular misorientation field is 

superimposed on the stress field defined by Eq. (19) as: 

𝛔௧ሺ𝐱ሻ ൌ 𝛔௧ሺ௥ሻ ൅ δ𝛔௧ሺ௤തሻሺ𝐱ሻ ൅ δ𝛔௧ሺఋ௥ሻሺ𝐱ሻ.  (25) 

Intragranular stress fluctuations due to misorientation, δ𝛔௧ሺఋ௥ሻሺ𝐱ሻ are considered to be linearly 
proportional to misorientation vector and is expressed by stress derivative taken with respect to 
misorientation vector as: 
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δ𝛔௧ሺఋ௥ሻሺ𝐱ሻ ൌ డ𝛔

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
δ𝐫௧ሺ𝐱ሻ,  (26) 

where 
డ𝛔

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
 is the rate of change of stress due to intragranular misorientation. The calculation 

of stress fluctuations due to misorientations, δ𝛔௧ሺఋ௥ሻሺ𝐱ሻ has no effect on the average grain stress, 
𝛔௧ሺ௥ሻ and fluctuations caused by spatial variations of mean properties, δ𝛔௧ሺ௤തሻሺ𝐱ሻ because the 

volume average of  misorientation vector is zero inside each grain, i.e., 〈δ𝐫௧〉ሺ௥ሻ ൌ 𝟎. 

The second moment of stress in grain 𝑟, after considering the intragranular misorientations is: 

〈𝛔௧ ⊗ 𝛔௧〉ሺ௥ሻ ൌ 𝛔௧ሺ௥ሻ ⊗ 𝛔௧ሺ௥ሻ ൅ 〈δ𝛔௧ሺ௤തሻ ⊗ δ𝛔௧ሺ௤തሻ〉ሺ௥ሻ ൅ 〈δ𝛔௧ሺఋ௥ሻ ⊗ δ𝛔௧ሺఋ௥ሻ〉ሺ௥ሻ ൅  

൅〈δ𝛔௧ሺ௤തሻ ⊗ δ𝛔௧ሺఋ௥ሻ〉ሺ௥ሻ ൅ 〈δ𝛔௧ሺఋ௥ሻ ⊗ δ𝛔௧ሺ௤തሻ〉ሺ௥ሻ.  (27) 

where 〈δ𝛔௧ሺఋ௥ሻ ⊗ δ𝛔௧ሺఋ௥ሻ〉ሺ௥ሻ ൌ డ𝛔

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
〈δ𝐫௧ ⊗ δ𝐫௧〉ሺ௥ሻ ൬

డ𝛔

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
൰
்

 represents the second 

moment of stress fluctuations due to intragranular misorientations, while the fourth and fifth terms 
of right-hand side of Eq. (27) are cross-covariances of two stress fluctuations field: fluctuations of 

mean grain properties and misorientation fluctuations inside a grain, 〈δ𝛔௧ሺ௤തሻ ⊗ δ𝛔௧ሺఋ௥ሻ〉ሺ௥ሻ ൌ

〈δ𝛔௧ሺ௤തሻ ⊗ δ𝐫௧〉ሺ௥ሻ ൬
డ𝛔

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
൰
்

 [30]. The terms are transpose of each other. More details in 

appendix C.  

Once the stress fluctuations are calculated, the lattice spin (or lattice rotation rate) at a point 𝐱 at 
time 𝑡 can be calculated using:  

𝛚ሶ ௧ሺ𝐱ሻ ൌ 𝛚ሶ ௧ሺ௥ሻ ൅ δ𝛚ሶ ௧ሺఋఙሻሺ𝐱ሻ ൅ δ𝛚ሶ ௧ሺఋ௥ሻሺ𝐱ሻ,  (28) 

where 𝛚ሶ ௧ሺ௥ሻ is the mean lattice rotation rate, δ𝛚ሶ ௧ሺఋఙሻሺ𝐱ሻ is the spin fluctuations due to stress 

fluctuations and δ𝛚ሶ ௧ሺఋ௥ሻሺ𝐱ሻ is the lattice fluctuations caused by the misorientation fluctuations. 
The fluctuation terms in Eq. (28) can be rewritten with the first order Taylor expansion 
approximation as [30] : 

𝛚ሶ ௧ሺ𝐱ሻ ൌ 𝛚ሶ ௧ሺ௥ሻ ൅ డ𝛚ሶ

డ𝛔
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
δ𝛔௧ሺ𝐱ሻ ൅ డ𝛚ሶ

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
δ𝐫௧ሺ𝐱ሻ,  (29) 

The second moment of lattice rotation rate is expressed by: 

〈𝛚ሶ ௧ ⊗ 𝛚ሶ ௧〉ሺ௥ሻ ൌ 𝛚ሶ ௧ሺ௥ሻ ⊗ 𝛚ሶ ௧ሺ௥ሻ ൅ 〈δ𝛚ሶ ௧ሺఋఙሻ ⊗ δ𝛚ሶ ௧ሺఋఙሻ〉ሺ௥ሻ ൅ 〈δ𝛚ሶ ௧ሺఋ௥ሻ ⊗ δ𝛚ሶ ௧ሺఋ௥ሻ〉ሺ௥ሻ ൅ 

൅〈δ𝛚ሶ ௧ሺఋఙሻ ⊗ δ𝛚ሶ ௧ሺఋ௥ሻ〉ሺ௥ሻ ൅ 〈δ𝛚ሶ ௧ሺఋ௥ሻ ⊗ δ𝛚ሶ ௧ሺఋఙሻ〉ሺ௥ሻ.  (30) 

The last two terms are transpose relative to each other and represent the cross-covariance of lattice 
spin fluctuations by stress and lattice spin fluctuations by misorientations. The terms are expressed 
as:  
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〈δ𝛚ሶ ௧ሺఋఙሻ ⊗ δ𝛚ሶ ௧ሺఋ௥ሻ〉ሺ௥ሻ ൌ డ𝛚ሶ

డ𝛔
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
〈δ𝛔௧ ⊗ δ𝐫௧〉ሺ௥ሻ ൬

డ𝛚ሶ

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
൰
்

,  (31) 

where 〈δ𝛔௧ ⊗ δ𝐫௧〉ሺ௥ሻ is given by: 

〈δ𝛔௧ ⊗ δ𝐫௧〉ሺ௥ሻ ൌ 〈δ𝛔௧ሺ௤തሻ ⊗ δ𝐫௧〉ሺ௥ሻ ൅ డ𝛔

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
〈δ𝐫௧ ⊗ δ𝐫௧〉ሺ௥ሻ .  (32) 

The second and third terms of Eq. (30) are the second moments of lattice rotation rate fluctuations 
caused by intragranular stress fluctuations and misorientation fluctuations respectively and can be 
expressed as: 

〈δ𝛚ሶ ௧ሺఋఙሻ ⊗ δ𝛚ሶ ௧ሺఋఙሻ〉ሺ௥ሻ ൌ డ𝛚ሶ

డ𝛔
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
〈δ𝛔௧ሺ௤തሻ ⊗ δ𝛔௧ሺ௤തሻ〉ሺ௥ሻ ൬

డ𝛚ሶ

డ𝛔
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
൰
்

  (33) 

〈δ𝛚ሶ ௧ሺఋ௥ሻ ⊗ δ𝛚ሶ ௧ሺఋ௥ሻ〉ሺ௥ሻ ൌ డ𝛚ሶ

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
〈δ𝐫௧ ⊗ δ𝐫௧〉ሺ௥ሻ ൬

డ𝛚ሶ

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
൰
்

.  (34) 

 

2.3 Misorientation fluctuations and grain fragmentation 

We can use the available information on the second moments of lattice spin to derive expression 
for integration of lattice rotation rate fluctuations from time 𝑡 to 𝑡 ൅ ∆𝑡 within grain 𝑟 by Taylor 
expansion approximation [30]. The orientation update from time 𝑡 to 𝑡 ൅ ∆𝑡 at point 𝐱 is given by: 

𝐪௧ା∆௧ሺ𝐱ሻ ൌ 𝐪௜௡௖
௧ ሺ𝐱ሻ𝐪௧ሺ𝐱ሻ,  (35) 

where 𝐪௧ሺ𝐱ሻ and 𝐪௧ା∆௧ሺ𝐱ሻ are the active rotations that rotate sample frame into local crystal frame 
at time 𝑡 and 𝑡 ൅ ∆𝑡 respectively. 𝐪௜௡௖

௧ ሺ𝐱ሻ is the active increment in rotation at time 𝑡.   

The orientations 𝐪௧ሺ𝐱ሻ and 𝐪௧ା∆௧ሺ𝐱ሻ can be expressed as follows: 

𝐪௧ሺ𝐱ሻ ൌ δ𝐪௧ሺ𝐱ሻ𝐪ഥ௧ሺ௥ሻ, (36A) 

𝐪௧ା∆௧ሺ𝐱ሻ ൌ δ𝐪௧ା∆௧ሺ𝐱ሻ𝐪ഥ௧ା∆௧ሺ௥ሻ, (36B) 

where the quantities with bar at top are the mean orientations and quantities having δ in front are 
the misorientations with respect to the mean orientations.  

The active increment in rotation term, 𝐪௜௡௖
௧ ሺ𝐱ሻ from Eq. (35) can also be written as the composition 

of mean rotation increment, 𝐪ഥ௜௡௖
௧ሺ௥ሻ and misorientation increment, δ𝐪௜௡௖

௧ ሺ𝐱ሻ with respect to mean 

rotation increment. 

𝐪௜௡௖
௧ ሺ𝐱ሻ ൌ δ𝐪௜௡௖

௧ ሺ𝐱ሻ𝐪ഥ௜௡௖
௧ሺ௥ሻ. (37) 

Substituting Eq. (37) into Eq. (35) we get the updated orientation at time 𝑡 ൅ ∆𝑡: 

𝐪௧ା∆௧ሺ𝐱ሻ ൌ δ𝐪௜௡௖
௧ ሺ𝐱ሻ𝐪ഥ௜௡௖

௧ሺ௥ሻ𝐪௧ሺ𝐱ሻ.                                                                                                  (38) 
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After substituting Eq. (36A) in Eq. (38), we get: 

𝐪௧ା∆௧ሺ𝐱ሻ ൌ ቀδ𝐪௜௡௖
௧ ሺ𝐱ሻ𝐪ഥ௜௡௖

௧ሺ௥ሻቁ൫δ𝐪௧ሺ𝐱ሻ𝐪ഥ௧ሺ௥ሻ൯.                                                                                                  (39) 

Equating Eq. (38) and Eq. (36B) we have: 

δ𝐪௧ା∆௧ሺ𝐱ሻ𝐪ഥ௧ା∆௧ሺ௥ሻ ൌ ቀδ𝐪௜௡௖
௧ ሺ𝐱ሻ𝐪ഥ௜௡௖

௧ሺ௥ሻቁ൫δ𝐪௧ሺ𝐱ሻ𝐪ഥ௧ሺ௥ሻ൯                                                                  (40) 

Multiplying both sides of Eq. (40) by 𝐪ഥ௧ା∆௧ሺ௥ሻ
ିଵ

 and considering 𝐪ഥ௧ା∆௧ሺ௥ሻ ൌ 𝐪ഥ௜௡௖
௧ሺ௥ሻ𝐪ഥ௧ሺ௥ሻ we get: 

δ𝐪௧ା∆௧ሺ𝐱ሻ ൌ δ𝐪௜௡௖
௧ ሺ𝐱ሻ𝐪ഥ௜௡௖

௧ሺ௥ሻδ𝐪௧ሺ𝐱ሻ𝐪ഥ௜௡௖
௧ሺ௥ሻିଵ ൌ δ𝐪௜௡௖

௧ ሺ𝐱ሻδ𝐪௧,௥௢௧ሺ𝐱ሻ,                                               (41) 

where δ𝐪௧,௥௢௧ሺ𝐱ሻ is rotated misorientation at time 𝑡 given by δ𝐪௧,௥௢௧ሺ𝐱ሻ ൌ 𝐪ഥ௜௡௖
௧ሺ௥ሻδ𝐪௧ሺ𝐱ሻ𝐪ഥ௜௡௖

௧ሺ௥ሻିଵ. 

Now, performing a first order Taylor expansion, the misorientation update of Eq.41 can be 
linearized as [29]: 

δ𝐪௧ା∆௧ሺ𝐱ሻ ൎ δ𝐪௜௡௖
௧ ሺ𝐱ሻ ൅ δ𝐪௧,௥௢௧ሺ𝐱ሻ െ 𝐈௤,  (42) 

where 𝐈௤ is the identity rotation quaternion. Eq. (42) can be expressed by vector parts as: 

δ𝐫௧ା∆௧ሺ𝐱ሻ ൌ δ𝐫௧,௥௢௧ሺ𝐱ሻ ൅ δ𝐫௜௡௖
௧ ሺ𝐱ሻ.  (43) 

The second moment of misorientation at time 𝑡 ൅ ∆𝑡 is given as: 

〈δ𝐫௧ା∆௧ ⊗ δ𝐫௧ା∆௧〉ሺ௥ሻ ൌ 〈δ𝐫௜௡௖
௧ ⊗ δ𝐫௜௡௖

௧ 〉ሺ௥ሻ ൅ 〈δ𝐫௧,௥௢௧ ⊗ δ𝐫௜௡௖
௧ 〉ሺ௥ሻ ൅ 〈δ𝐫௜௡௖

௧ ⊗ δ𝐫௧,௥௢௧〉ሺ௥ሻ 

൅〈δ𝐫௧,௥௢௧ ⊗ δ𝐫௧,௥௢௧〉ሺ௥ሻ.  (44) 

The terms on the right hand side are given as [30]: 

〈δ𝐫௜௡௖
௧ ⊗ δ𝐫௜௡௖

௧ 〉ሺ𝒓ሻ ൌ ∆௧మ

ସ
〈δ𝛚ሶ ௧ሺఋఙሻ ⊗ δ𝛚ሶ ௧ሺఋఙሻ〉ሺ௥ሻ (45) 

〈δ𝐫௧,௥௢௧ ⊗ δ𝐫௧,௥௢௧〉ሺ௥ሻ ൌ 𝐑ഥ௜௡௖
௧ሺ௥ሻ〈δ𝐫௧ ⊗ δ𝐫௧〉ሺ௥ሻ𝐑ഥ௜௡௖

௧ሺ௥ሻ் (46) 

〈δ𝐫௧,௥௢௧ ⊗ δ𝐫௜௡௖
௧ 〉ሺ௥ሻ ൌ 𝐑ഥ௜௡௖

௧ሺ௥ሻ〈δ𝐫௧ ⊗ δ𝛔௧〉ሺ௥ሻ ൬
డ𝛚ሶ

డ𝛔
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
൰
்
∆௧

ଶ
൅  

𝐑ഥ௜௡௖
௧,ሺ௥ሻ〈δ𝐫௧ ⊗ δ𝐫௧〉ሺ௥ሻ ൬

డ𝛚ሶ

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
൰
்
∆௧

ଶ
 ,  (47) 

where 𝐑ഥ௜௡௖
௧ሺ௥ሻ is the rotation matrix representation of mean increment in rotation, 𝐪ഥ௜௡௖

௧ሺ௥ሻ.  

The misorientation spreads, Eq. (44) may become large with plastic strains so that it is not possible 
to represent the misorientation with just one mean value along with one second moment. 
Therefore, a grain fragmentation model becomes necessary. In our formulation a parent grain is 
subdivided into two child grains once the intragranular misorientation spread per grain reaches a 
critical value [30]. The fragmented child grains initialized with parent state variables evolve 
separately in the next deformation steps. We chose to quantify the magnitude of intragranular 
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orientation spreads using an equivalent isotropic spread, which is a scalar parameter defined as: 

𝑆𝐷 ൌ ඥ𝑆𝐷ଵ ൈ 𝑆𝐷ଶ ൈ 𝑆𝐷ଷ
య  [81] with 𝑆𝐷௜ ൌ √𝜆௜, where 𝜆௜ are the principal values with directions, 

𝐯௜ of the misorientation distribution, 〈δ𝐫 ⊗ δ𝐫〉ሺ௥ሻ, Eq. (44).  

Misorientation distribution of a parent grain described by its mean value, 〈δ𝐫〉ሺ௥ሻ ൌ 0 and its 

second moment, 〈δ𝐫 ⊗ δ𝐫〉ሺ௥ሻ, needs to be divided into two distributions for two equally weighted 

child grains. Each needs to have a mean value, 〈δ𝐫〉௙೔
ሺ௥ሻ, and a second moment, 〈δ𝐫 ⊗ δ𝐫〉௙೔

ሺ௥ሻ. At 

first, the eigenvalues and eigenvectors of the parent’s misorientation distribution, 〈δ𝐫 ⊗ δ𝐫〉ሺ௥ሻ are 
calculated and arranged in descending order as: 𝐄 ൌ ሾλଵ, λଶ, λଷሿ and 𝐕 ൌ ሾ𝐯ଵ, 𝐯ଶ,  𝐯ଷሿ. The 
distribution along the direction of largest variation, 𝐯ଵ, can be divided separately from the other 
two principal distributions. The misorientation between two orientations along largest principal 

direction, 𝐯ଵ is calculated using 𝛼 ൌ 4 sinିଵ ቆ2ට஛భ

ଶగ
ቇ. When 𝛼 becomes greater than a selected 

critical fragmentation angle (set as 15° for all simulation in the present work or equivalently 𝑆𝐷ଵ ൌ
0.082), the parent grain is divided into two child grains or fragments. The mean misorientations 
of the fragments relative to the mean orientation of the parent are [82, 83]: 

〈δ𝐫〉௙భ
ሺ௥ሻ ൌ െ2ට஛భ

ଶగ
𝐯ଵ;   〈δ𝐫〉ଶ

ሺ௥ሻ ൌ 2ට஛భ

ଶగ
𝐯ଵ.                                                                               (48) 

The misorientations are also: 

〈δ𝐪〉௙భ
ሺ௥ሻ ൌ ൝

ටଵି〈ஔ𝐫〉೑భ
ሺೝሻ.〈ஔ𝐫〉೑భ

ሺೝሻ

〈ஔ𝐫〉೑భ
ሺೝሻ

ൡ ;  〈δ𝐪〉௙మ
ሺ௥ሻ ൌ ൝

ටଵି〈ஔ𝐫〉೑మ
ሺೝሻ.〈ஔ𝐫〉೑మ

ሺೝሻ

〈ஔ𝐫〉೑మ
ሺೝሻ

ൡ.                                                              (49)  

The mean orientations of fragments are then given by: 

𝐪ഥ௙భ
ሺ௥ሻ ൌ 〈δ𝐪〉௙భ

ሺ௥ሻ𝐪ഥሺ௥ሻ; 𝐪ഥ௙మ
ሺ௥ሻ ൌ 〈δ𝐪〉௙మ

ሺ௥ሻ𝐪ഥሺ௥ሻ.                                                                                            (50) 

The second moments of fragments in the principal frame of parent’s distribution are given as: 

〈δ𝐫 ⊗ δ𝐫〉௙భ
ሺ௥ሻ,௣ ൌ 〈δ𝐫⊗ δ𝐫〉௙మ

ሺ௥ሻ,௣ ൌ ቎
λଵ ቀ1 െ ଶ

గ
ቁ 0 0

0 λଶ 0
0 0 λଷ

቏.                                                                         (51) 

The second moments of the fragments in sample frame are obtained by the simple coordinate 
transformation as: 

〈δ𝐫 ⊗ δ𝐫〉௙భ
ሺ௥ሻ ൌ 〈δ𝐫⊗ δ𝐫〉௙మ

ሺ௥ሻ ൌ 𝐕〈δ𝐫 ⊗ δ𝐫〉௙భ
ሺ௥ሻ,௣𝐕்.                                                                 (52) 

 
The grain fragmentations are considered in the physical space and not only in the orientation space 
by division of intragranular orientation space as in our earlier work [30]. To this end, grain size 
(diameter) of the fragmented grains is calculated. The total volume of the initial material, 𝑉௧௢௧, is 
calculated assuming that each grain has spherical shape and same grain diameter as: 

𝑉௧௢௧ ൌ 𝑛௚௥
ଵ

଺
𝜋𝐷௜

ଷ,                                                                                                                          (53) 
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where 𝑛௚௥ is the total number of initial equally weighted grains at the start of the simulation and 

𝐷௜ is the initial diameter of grains. At any strain increment, the diameter of any grain, 𝐷௚
ሺ௥ሻ can be 

calculated from its weight, 𝑤ሺ௥ሻ using: 

𝐷௚
ሺ௥ሻ ൌ 2 ቀ𝑤ሺ௥ሻ ଷ௏೟೚೟

ସగ
ቁ
ଵ/ଷ

.                                                                                                                     (54) 

During plastic deformation, a fraction of grains develops divergent regions relative to the parent 
orientation. Such orientation subdivision causes deformation bands. Thin regions between the 
deformation bands are called transition bands. The orientation spreads of such bands are typically 
bi-modal meaning that the orientations are clustered around two distinct stable regions, which also 
have some misorientation spreads. In the FF-VPSC model, a grain is bi-modal if it forms a 
transition band. Next, the criteria for a transition band formation i.e. a grain to be called bi-modal 
is described. 
 
In the FF-VPSC model, at any strain increment, a parent grain can be fragmented into two child 
grains each having half of the weight of its parent, as described earlier. In the next step, each of 
these two children will act as independent grain (parent grain) which may further be fragmented if 
the fragmentation criteria are fulfilled. As a result, an initial parent grain can be subdivided into 
large numbers of child grains at a large deformation level. It is to be noted that, in our model, we 
determine if a grain is bi-modal or form a transition band for initial parent grain only and not for 
any child grains. In other words, we identify the bimodality for initial grains only. The reason is 
our recrystallization model, which will be described shortly In order to determine a transition band 
formation i.e. whether the grain is bimodal, all sub grains of a parent grain are stacked/merged 

together and mean orientation of parent grain, 𝐪ഥሺ௥ሻ,௧௢௧ is calculated, the value of which depends on 
all orientation of subdivided grains. Then mean second moment of misorientation of the grain 

〈δ𝐫 ⊗ δ𝐫〉ሺ௥ሻ,௧௢௧ is calculated taking the vector part of 𝐪ഥሺ௥ሻ,௧௢௧. Next, eigen values λଵ, λଶ, λଷ and 

eigen vectors 𝐯ଵ, 𝐯ଶ,  𝐯ଷ of 〈δ𝐫 ⊗ δ𝐫〉ሺ௥ሻ,௧௢௧ are calculated and arranged in the descending order. 
Now, a set of discrete intervals are sampled along the dominant rotation axis 𝐯ଵ of the initial parent 
grain. Probability density functions of 𝑆𝐷ଵ along the dominant rotation axis are calculated over the 
discrete intervals. Next, the shape of the distribution is assessed. If there are two larger peaks of 
the distribution separated by a smaller peak in between, the parent grain is tagged as a bi-modal 
grain forming a transition band. This parent grain forming a transition band serves as suitable spot 
for transition band nucleation and orientation of the nucleus is taken from the transition band 
region in the recrystallization model. In contrast, if misorientation spreads are more uniform in 
every direction such that there is no bi-modal separation in the misorientation distribution but only 
unimodal, these grains will influence the grain boundary nucleation kinetics in the recrystallization 
model.  
     
 
2.4 Recrystallization model 
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The process of recrystallization involves nucleation of new grains in deformed microstructures 
and their growth, which happens during annealing at a given temperature for a given time [40, 84]. 
Intragranular orientation gradients and strain energy of the microstructure drive the nucleation of 
new grains during recrystallization [40, 85]. The growth of the nucleus takes place by migration 
of high-angle grain boundaries influenced by the difference of strain energies of two sides of the 
boundary. Therefore, modeling of recrystallization is only possible after accurate modeling of 
plastic deformation. The nucleation and growth kinetics sub-models are developed based on the 
quantities calculated using FF-VPSC. The formulation of  intragranular orientation gradients and 
strain energy are briefly summarized according to [31]. Two nucleation processes of grain 
boundary nucleation and transition band nucleation are also presented.  

 

2.4.1 Intragranular orientation gradients and strain energy 

An expression for calculating the intragranular orientation gradients based on a known quantity, 

the second moment of misorientation vectors, 〈δ𝐫⨂δ𝐫〉ሺ௥ሻ was developed in [31].  

Let us consider a reference misorientation vector, δ𝐫௥௘௙ and a misorientation vector, δ𝐫 which is 
a spatially neighboring point with respect to the reference point within a grain. The misorientation 

between these two points is: δ𝐫௟௢௖ ൎ δ𝐫 െ δ𝐫௥௘௙. An expression for the first and second moment 
of δ𝐫௟௢௖ can be formulated as [31]: 

〈δ𝐫௟௢௖〉ሺ௥ሻ ൌ 𝟎, (55) 

〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉ሺ௥ሻ ൌ ቀ〈δ𝐫⨂δ𝐫〉ሺ௥ሻ
ିଵ
൅ ଵ

ఈ
𝐈ቁ
ିଵ
〈δ𝐫⨂δ𝐫〉ሺ௥ሻ

ି்
ቀ〈δ𝐫⨂δ𝐫〉ሺ௥ሻ

ିଵ
൅ ଵ

ఈ
𝐈ቁ
ି்
൅

ቀ〈δ𝐫⨂δ𝐫〉ሺ௥ሻ
ିଵ
൅ ଵ

ఈ
𝐈ቁ
ିଵ

, (56) 

where 𝐈 is the identity matrix, 𝛼 is the variance which controls the magnitude of misorientation 

angle of the local neighbor. When 𝛼 → 0, the second moment 〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉ሺ௥ሻ → 0, while 

when 𝛼 → ∞, 〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉ሺ௥ሻ → 2〈δ𝐫⨂δ𝐫〉ሺ௥ሻ all possible local neighbor misorientation 

distributions are included. In this study, we assume 𝛼 → ∞ resulting in 〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉ሺ௥ሻ ൌ
2〈δ𝐫⨂δ𝐫〉ሺ௥ሻ. Then, the local neighbor misorientations distribution can be defined by 〈δ𝐫௟௢௖〉ሺ௥ሻ. 

The misorientation angle between two neighboring material points, 𝛿𝜃 can be defined (using small 
angle approximation) as: 

𝛿𝜃 ൎ 2|δ𝐫௟௢௖|, (57) 

where | | defines the length of the misorientation vector. The average misorientation angle of the 
local neighbors is given by: 

〈𝛿𝜃〉ሺ௥ሻ ൎ 2〈|δ𝐫௟௢௖|〉ሺ௥ሻ ൌ 2〈√δ𝐫௟௢௖ ∙ δ𝐫௟௢௖〉ሺ௥ሻ ൎ 2ඥ2𝐈: 〈δ𝐫⨂δ𝐫〉ሺ௥ሻ. (58) 

The strain energy in a grain is given by [35, 86, 87]: 
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𝐸ሺ௥ሻ ൌ 𝜌ሺ௥ሻ𝜇𝑏ଶ/2, (59) 

where 𝑏 is the Burgers vector, 𝜇 is the shear modulus, 𝜌ሺ௥ሻ is the dislocation density in the grain 
𝑟. The increase of slip resistance due to hardening is proportional to the square root of the 

accumulated dislocation density, ∑ ቀ𝜏௖
௦,ሺ௥ሻ െ 𝜏௖,଴

௦,ሺ௥ሻቁ௦ ~ඥ𝜌ሺ௥ሻ. Then, the strain energy can be written 

as [35]: 

𝐸ሺ௥ሻ~∑ ቀ𝜏௖
௦,ሺ௥ሻ െ 𝜏௖,଴

௦,ሺ௥ሻቁ௦

ଶ
.  (60) 

The calculated dislocation density which is the sum of statistically stored dislocation (SSD) and 
geometrically necessary dislocation (GND), is related only to the accumulated shear strain on slip 
systems in the grain. In this study, we make no distinction between SSD and GND densities, 
although more accurate approach would be calculating GNDs from intragranular orientation 
spread or strain-field distributions, while SSDs would evolve separately. This separate treatment 
of GND densities will be the subject of future works, which in turn will affect the recrystallization 
through work hardening and stored strain energy. 

We adopt a Voce-type hardening law and make it simply linear for all simulation cases presented 
in the paper based on: 𝜏଴

௦ = 1 MPa, 𝜏ଵ
௦ = 0 MPa, 𝜃଴

௦ = 1 MPa, 𝜃ଵ
௦ = 1 MPa. 

𝜏௖
௦,ሺ௥ሻ ൌ 𝜏଴

௦ ൅ ൫𝜏ଵ
௦ ൅ 𝜃ଵ

௦ ∑ 𝛾௦ᇱ,ሺ௥ሻ௦ᇱ ൯ ቆ1 െ 𝑒𝑥𝑝 ቀെ∑ 𝛾௦ᇱ,ሺ௥ሻ௦ᇱ ቚఏబ
ೞ

ఛభ
ೞ ቚቁቇ     (61) 

 

2.4.2 Grain boundary and transition band nucleation mechanisms  

Experimental observations are that nucleation usually occurs at grain boundaries and transition 
bands in deformed structures, while grain grown is driven by the difference in stored energy [40, 
85]. For grain boundary nucleation, the local neighbor misorientation angle and strain energy per 

grain are assumed to be proportional to the mean neighbor misorientation angle, 〈𝛿𝜃〉ሺ௥ሻ and mean 

strain energy, 𝐸ሺ௥ሻ of the grain. To nucleate a new grain, the given grain must have a critical local 

neighbor misorientation angle, 𝛿𝜃௧௛
௚௕, and a critical strain energy, 𝐸௧௛

௚௕. In our simulations, we set 

𝐸௧௛
௚௕ ൌ 0 meaning that even very minimal strain energy is sufficient for nucleation.  

Let us consider the probability of grain boundary nucleation for a grain of weight 𝑤ሺ௥ሻ in time ∆𝑡. 
The grain with an area, 𝐴 is subdivided into large number of small areas 𝑑𝐴 having weight 𝑑𝑤. 
The probability of forming a grain boundary nucleus of the area 𝑑𝐴 is [31, 35, 88]:  

𝑃௚௕
ሺ௥ሻ൫∆𝑡,𝑤ሺ௥ሻ,𝐸ሺ௥ሻ ൯ ൌ 1 െ ቀ1 െ 𝐵௚௕ exp ሺെ

஺೒್

ாሺೝሻ
మሻቁ

∆௧൬ೢ
ሺೝሻ

೏ೢ
൰
మ/య

,                                                       (62) 
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where 𝐵௚௕ is a pre-exponential factor scaling the probability ሺ𝐵௚௕ ൑ 1ሻ, 𝐴௚௕ is a fitting parameter 

that determines likelihood of grain boundary nucleation in terms of strain energy. In our 
simulations, 𝑑𝑤 ൌ 10ି଺.  

After calculating the nucleation probability, it is compared to a random number between 0 and 1. 
If the probability is greater than the random number, a new grain nucleates having a weight of 
𝑤௡௨௖ ൌ 0.0001. The newly nucleated grain has zero strain energy and an initial value of slip 
resistance taken from the deformation model.  

The grain boundary nucleation takes place by a grain boundary sub-grain formation, which bulges 
out into the neighboring grain. Crystal orientation of the nucleated grain is randomly sampled from 
the misorientation distribution extremes. The condition for the grain boundary misorientation is 

[31]: |𝛿𝐫௚௕| ൐ 𝑐 ൈ 𝑆𝐷 ൬
ఋ𝐫೒್

หఋ𝐫೒್ห
൰, where 𝑆𝐷 ൬

ఋ𝐫೒್

หఋ𝐫೒್ห
൰ is the standard deviation in the misorientation 

direction 
ఋ𝐫೒್

หఋ𝐫೒್ห
, and 𝑐 is a constant that determines the minimum misorientation angle in degrees 

between the mean grain orientation and grain boundary orientation. 

The nucleation is also observed in the transition bands [43, 89]. Grains often form regions of 
deformation bands which has large orientation gradients [90]. Transition bands are situated 
between deformation bands having narrow regions with high orientation gradients making it 
suitable place for grain nucleation. In this model, the transition bands are identified from 
misorientation distributions which forms multi-modal orientation distributions [30].   

The transition band nucleation happens in grains that form bi-modal misorientation distributions. 
The local neighbor misorientation angle and strain energy are also considered as proportional to 

the mean neighbor misorientation angle 〈𝛿𝜃〉ሺ௥ሻ and strain energy, 𝐸ሺ௥ሻ of the given grain. We 
emphasize that only those grains that have bi-modal misorientation distributions and have 

sufficient strain energy and local misorientation angle greater than the threshold values: 𝐸௧௛
௧௕ and 

𝛿𝜃௧௛
௧௕ can nucleate a new grain. The probability for the transition band nucleation is [31, 35]: 

𝑃௧௕
ሺ௥ሻ൫∆𝑡,𝑤ሺ௥ሻ,𝐸ሺ௥ሻ ൯ ൌ 1 െ ቀ1 െ 𝐵௧௕ exp ሺെ ஺೟್

ாሺೝሻ
మሻቁ

∆೟ 
೏೟
൬ೢ

ሺೝሻ

೏ೢ
൰
మ/య

,                                                       (63) 

where 𝐵௧௕ is a pre-exponential factor scaling the probability ሺ𝐵௧௕ ൑ 1ሻ, while 𝐴௧௕ is a fitting 
parameter that determines likelihood of grain boundary nucleation. For each grain having a bi-
modal distribution, the probability of nucleation at transition band is calculated and then compared 
to a random number between 0 and 1. If the probability is greater than the random number, a new 
grain is nucleated. The defect-free grain growth into plastically deformed microstructure.  

Grain growth happens by the mobility of a grain boundary when there is difference of stored energy 
between the two sides of boundary. The boundary should be a high angle grain boundary. Since 
our mode is mean-field we assume every grain boundary is a high angle boundary. Grains with a 
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higher strain energy shrink, while grains with lower strain energy grow. The velocity of the grain 
boundary when it becomes mobile is given by: 

𝑣 ൌ 𝑀𝑃,                                                                                                                                      (64) 

where 𝑃 is the pressure on the boundary and 𝑀 is the mobility of the boundary [91]. In FF-VPSC, 

the boundary velocity of each grain, 𝑣ሺ௥ሻ is considered proportional to the difference of stored 

energy of a given grain 𝐸ሺ௥ሻ and stored energy of the effective medium 𝐸௔௩௚: 

𝑣ሺ௥ሻ ൌ 𝑀൫𝐸௔௩௚ െ 𝐸ሺ௥ሻ൯,                                                                                                                                        (65) 

where 𝐸௔௩௚ ൌ ∑ 𝑤ሺ௥ሻ
௥ 𝐸ሺ௥ሻ. The change of weight of the grain due to its boundary migration with 

velocity 𝑣ሺ௥ሻ from time 𝑡 to 𝑡 ൅ ∆𝑡 is given by [35]: 

𝑤ሺ௥ሻ,௧ା∆௧ ൌ 𝑤ሺ௥ሻ,௧ ൅ 3𝑀ቀସగ
ଷ
ቁ
భ
య ൫𝑤ሺ௥ሻ,௧൯

మ
య൫𝐸௔௩௚ െ 𝐸ሺ௥ሻ൯∆𝑡.                                                                     (66) 

 

3. Results and discussion  

The FF-VPSC with its deformation and recrystallization sub-models is used for the prediction of 
deformation and recrystallization textures of cubic metals. First, the model is used to simulate 
formation of Cu-type and brass-type rolling textures to 95% rolling reduction and formation of 
static recrystallized textures. These predicted textures are compared to those predicted by the full-
field viscoplatic fast Fourier transform (VPFFT) [92-96] and standard VPSC models. Next, the 
deformed and recrystallized textures of Al-5182-O are predicted and compared to experimental 
results. The recrystallized textures of an AM cobalt-based alloy, MarM-509, are predicted and 
compared to experimental data. Finally, the deformation after rolling to 85% reduction and 
recrystallization textures of IF-steel are predicted and verified experimentally.  

 

3.1 Cu-type and brass-type rolling and recrystallization textures of FCC metals 

The Cu-type texture features orientation around the ideal ሼ211ሽ〈1ത11〉 orientation, which is termed 
as the copper component (Cu) and some orientations around ሼ153ሽ〈112ത〉 [49, 97, 98]. The 
development of such texture is favored in high SFE metals [99]. On the other hand, the brass-type 
texture is described mainly by the ideal orientations of ሼ110ሽ〈1ത12〉, which is termed as the brass 
components (B) and some intermediate orientations around ሼ110ሽ〈11ത0〉 [49, 97, 100, 101]. The 
development of such texture is favored in low SFE metals [49, 99]. Appendix A presents locations 
of these ideal rolling texture components in pole figures.  

 

3.1.1 Cu-type rolling texture and its recrystallization  
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Rolling of high SFE metal, copper, to 95% reduction and subsequent annealing [97, 102, 103] 
are simulated using FF-VPSC. A velocity gradient, 𝐋, to impose the rolling in the model is 

𝐋 ൌ ൥
1 0 0
0 0 0
0 0 െ1

൩.              (67) 

A time increment is selected to provide a strain increment, ∆𝜀, of 0.01. For the initial texture to 
initialize the simulation, we selected 400 randomly orientated equally weighted grains. The grains 
deform by ሼ111ሽ〈11ത0〉 slip family. Linear hardening of the slip systems is considered, as described 
earlier. The rolling process is simulated using the plane strain compression (PSC) boundary 
conditions, Eq. (67). ሼ111ሽ and ሼ100ሽ poles are presented to visualize texture evolution. 

Comparisons of textures simulated by standard VPSC and FF-VPSC are presented in Fig. 1 for the 
Cu-type texture evolution at different strain levels. The standard VPSC and FF-VPSC models were 
initialized with the same initial texture and slip systems as well as the same hardening and 
boundary conditions. The models are different because the FF-VPSC model considers the second 
moments of micromechanical fields and misorientations spreads causing grain fragmentations, 
while the standard VPSC model relies on the first moments of micromechanical fields with no 
intragranular misorientation spreads developing and thus, no grain fragmentation. Starting with 
400 initial grains, the FF-VPSC model predicts the total number of grains after fragmentation with 
equivalent plastic strain to be: 435 (𝜀௘௤ ൌ 0.22), 647 (𝜀௘௤ ൌ 0.51), 1091 (𝜀௘௤ ൌ 0.92), 2001 

(𝜀௘௤ ൌ 1.61), and 3091 (𝜀௘௤ ൌ 3.0). Future works will attempt to predict the evolution of grain 

size.  

Looking at Fig. 1, both FF-VPSC and standard VPSC simulate the Cu component with no 
significant differences in intensities up to 80% reduction. At 95% reduction, we observe that the 
rate of texture evolution is slower using FF-VPSC than standard VPSC. Moreover, comparing 
ሼ111ሽ poles, we observe that the standard VPSC begins to lack of intensities at ሺ112ሻሾ111തሿ [97] 
orientation compared to FF-VPSC.  

Fig. 2 compares measured and simulated textures using standard VPSC, FF-VPSC and VPFFT. 
The initial microstructural cell for the simulation using VPFFT was a periodic Voronoi unit cell 
shown in the appendix. The same 400 random grain orientations used in the VPSC simulations 
were assigned to approximately equiaxed grains in the 400 grains Voronoi unit cell. PSC boundary 
conditions, slip systems, and hardening as in the VPSC simulations were used for the VPFFT 
simulations. Comparison of the pole figures shows that the FF-VPSC and VPFFT models predict 
similar texture evolution to very large strains. It is grateful to achieve such predictions using FF-
VPSC, which is a much faster code since mean-field than VPFFT. The simulation using VPFFT 
took 26100 seconds, while that using FF-VPSC took 2528 seconds on a regular desktop computer.  

Fig. 3 shows measured [103] and predicted fully recrystallized textures. The predictions are shown 
based solely on transition band nucleation and based on solely grain boundary nucleation. 
Evidently, the predicted recrystallized texture based on the nucleation at transition bands captures 
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the cube component (C) very well consistent with the measured texture. The formation of the cube 
texture is well known in the literatus [33, 44]. The C component is also depicted in appendix A. 
The parameters used in the recrystallization model are given in Table 1.  

 

 

Figure 1. Pole figures showing the evolution of Cu-type texture as predicted using the standard 
VPSC model during rolling to: (a) 20% (െ0.22), (b) 40% (െ0.51),  (c) 60% (െ0.92), (d) 80% 
(െ1.61) and (e) 95% (െ3.0) reduction (true strain), respectively. The corresponding results 
obtained using the FF-VPSC model are shown in a', b', c', d', and e'.  
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Figure 2. Pole figures comparing the Cu-type texture after rolling to 95% reduction (a) measured 
deformation texture of 99.99% Cu taken from [49] and predicted deformation texture using (b) 
standard VPSC, (c) FF-VPSC, and (d) VPFFT.  
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Figure 3. Pole figures showing Cu-type textures after rolling to 95% reduction (Figs. 2a and c) and 
subsequent recrystallization: (a) measured fully recrystallized texture of 99.99% Cu taken from 
[103] and predicted fully recrystallized texture based on (b) 100% transition band nucleation and 
(c) 100% grain boundary nucleation.  

 

3.1.2 Brass-type rolling texture and its recrystallization  

For predicting brass-type texture evolution during rolling to 95% reduction and subsequent 
recrystallization, we use the same initial texture consisting of 400 random orientations as for 
simulating Cu-type texture evolution and subject it to the same boundary conditions (i.e. Eq. (67). 
The deformation is carried out using ሼ111ሽ〈11ത0〉 slip and ሼ111ሽ〈112ത〉 twin systems. The twin 
systems accommodate strain through the pseudo slip and no crystal reorientation is performed for 
the twinned domains. These simplifications have no appreciable influence on texture evolution 
considering morphology of twins in the FCC metals [104]. However, accurate modeling of twin 
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lamellae is important for predicting hardening since twins cause pronounced barrier-type 
hardening [105]. In our work, the ratio of initial twin (pseudo slip) resistance and initial slip system 
resistance is set to be 0.8, as in earlier works [58, 63]. The brass-type rolling simulations were 
performed with the same rolling boundary condition as the Cu-type rolling simulations with linear 
hardening. ሼ111ሽ and ሼ100ሽ poles are presented next to visualize predicted texture evolution 
during deformation and recrystallization.  

The comparisons of texture evolution for the brass-type texture simulated by standard VPSC and 
FF-VPSC during rolling to very large strains are presented in Fig. 4. The simulations using FF-
VPSC begins with 400 grains but due to modeling of grain fragmentation, the number of grains 
evolved with equivalent plastic strain as: 412 (𝜀௘௤ ൌ 0.22), 562 (𝜀௘௤ ൌ 0.51), 872 (𝜀௘௤ ൌ 0.92), 

1075 (𝜀௘௤ ൌ 1.61), and 3392 (𝜀௘௤ ൌ 3.0). Comparing the model performances, we observe that 

there is no large differences in the predicted texture evolution up to 60% reduction, except that the 
standard VPSC predicts slightly sharper texture. However, the standard VPSC begins to deviate 
from the ideal brass-type texture at 80% reduction, which becomes even more prominent at 95% 
reduction. In contrast, the FF-VPSC continue to predict texture evolution around the ideal B 
orientations even at very high strain levels. Fig. 5 shows the comparison between standard VPSC, 
FF-VPSC and VPFFT predictions and experiments. Evidently, the FF-VPSC and VPFFT 
predictions resemble experiments much better than the standard VPSC model. The consideration 
of grain fragmentation enables such good predictions of FF-VPSC in a computationally efficient 
manner.  

Fig. 6 shows a measured brass-type texture after 95% rolling reduction followed by subsequent 
recrystallization. The measured brass-type texture is for a low SFE Ag from [103]. The 
corresponding pole figures showing the simulated rolled and recrystallized textures using the FF-
VPSC model based on the transition band nucleation and grain boundary nucleation mechanisms 
are also given in the figure. The former shows much better agreement because the transition band 
nucleation is a predominant nucleation mechanism in the material undergoing recrystallization. It 
should be noted that even better predictions can be achieved by allowing a few percentages of the 
grain boundary nucleation. The parameters for the recrystallization model are provided in Table 1.  
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Figure 4. Pole figures showing the evolution of brass-type texture as predicted using the standard 
VPSC model during rolling to: (a) 20% (െ0.22), (b) 40% (െ0.51),  (c) 60% (െ0.92), (d) 80% 
(െ1.61) and (e) 95% (െ3.0) reduction (true strain), respectively. The corresponding results 
obtained using the FF-VPSC model are shown in a', b', c', d', and e'.  
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Figure 5. Pole figures comparing the brass-type texture after rolling to 95% reduction (a) measured 
deformation texture of 99.999% Ag taken from [103], (b) measured deformation texture of brass 
(with 30% zinc) taken from [49] and predicted deformation texture using (c) standard VPSC, (d) 
FF-VPSC, and (e) VPFFT.  
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Figure 6. Pole figures showing brass-type textures after rolling to 95% reduction (Figs. 5a and d) 
and subsequent recrystallization: (b) measured fully recrystallized texture of 99.999% Ag taken 
from [103] and corresponding predicted fully recrystallized texture based on  (b) 100% transition 
band nucleation, (c) 100% grain boundary nucleation.  

 

Fig. 7 compares the probability density functions (pdfs) of equivalent isotropic spreads ሺ𝑆𝐷ሻ 
developing for the Cu-type and brass-type textures during rolling at several strain levels. The 
magnitude of isotropic spreads increases with increase in the strain levels. Initially, the spreads are 
slightly larger for the Cu-type texture but later become similar. The spreads saturate at large strains. 
Note the presented spreads include both unimodal and bi-modal misorientation distributions of the 
400 weighted parent grains and their fragments.  
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Figure 7. Probability density functions of equivalent isotropic spreads developed during rolling of 
Cu-type and brass-type textures predicted by FF-VPSC with plastic strain (a) 20% (0.22), (b) 40% 
(0.51), (c) 60% (0.92), (d) 80% (1.61), and (e) 95% (𝜀௏ெ ൌ 3.0) reduction (true strain), 
respectively. For reference, the equivalent isotropic spread axes correspond to the misorientation 
angles as follows: 0.05=9.1˚, 0.1=18.3˚, 0.15=27.5˚, 0.2=36.7˚.  
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3.2 Deformed and recrystallized texture evolution in AA5182-O: Experiment and simulation  

As a next case study, the simulations of deformation in simple tension and subsequent 
recrystallization were performed for an aluminum alloy, AA5182-O, using the FF-VPSC model. 
A velocity gradient, 𝐋, to impose the tension in the model is  

𝐋 ൌ ൥
1 0 0
0 െ0.5 0
0 0 െ0.5

൩             (68) 

A time increment is selected to provide a strain increment, ∆𝜀, of 0.01. The initial texture of the 
alloy was measured using electron backscattered diffraction (EBSD) and represented using 1488 
weighted grains. The grains deform by the FCC octahedral slip system ሼ111ሽ〈11ത0〉 [106-108] and 
with the linear hardening. The alloy was pulled in tension along the rolling direction (RD) using a 
continuous bending under tension (CBT) setup [109-115] to a greater strain level than achievable 
in tension. Fig. 8 shows IPF maps of the alloy in its as-received state and deformed in CBT to a 
tensile strain of 0.45. The figure also shows the corresponding grain average misorientation 
(GAM) maps. The measurement of the deformed structure allowed us to obtain a normalized 
distributions of GAM spreads, as shown in Fig. 9a. Pole figures showing the initial texture and the 
texture after CBT are shown in Fig. 10a and b, respectively. Fig. 10c shows the measured texture 
of the annealed alloy at 280° C for 2 hours. The recrystallized texture does not appear substantially 
different from the deformed texture but is much less intense than the deformed one.  

Before showing simulated texture evolution, we show in Fig. 9b the calculated average 
intragranular misorientation spreads using the expression for obtaining a misorientation angle 

corresponding to a second moment of misorientation per grain r, 2ඥ𝐈: 〈δ𝐫⨂δ𝐫〉ሺ௥ሻ, for all grains (all 
sub grains are considered separately) after deformation at a strain level of 0.45. A similar plot was 
obtained based on a set of discrete orientations selected from the misorientation spread per grain 
from which an average misorientation is calculated per grain.  

The simulated texture after simple tension along RD to a strain of 0.45 is shown in Fig. 10b’. As 
expected, the texture evolution is such that the  ሼ111ሽ peak arises along the pulling direction, RD, 
[116, 117]. Measured and simulated deformation textures have some differences because CBT is 
not exactly simple tension [118-121]. However, without relying on CBT, we would not be able to 
pull the alloy to such large strain necessary to promote texture evolution.  

The simulated fully recrystallized texture is shown in Fig. 10c'. The parameters are given in Table 
1. It is experimentally observed that the nucleation in aluminum alloys happens at grain boundaries 
[122-125]. The model was set such that the nucleation at grain boundaries is operative. A small 
percentage of transition bands (or bi-modal distribution) was predicted after the deformation 
simulation. The fraction was low given the relatively low strain level of deformation. 
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To quantify the texture differences, we calculate the pole figure difference† (PFD) between 
measured and predicted pole figures, which is given by [10, 126]: 

𝑃𝐹𝐷ℎ௞௟ ൌ
׬ ׬ ቚூሺഝ,ഇሻ

ೝ೐೑ ିூሺഝ,ഇሻቚ ௦௜௡ ఏௗఏௗథ
ഏ/మ
ഇసబ

మഏ
ഝసబ

׬ ׬ ቚூሺഝ,ഇሻ
ೝ೐೑ ାூሺഝ,ഇሻቚ ௦௜௡ ఏௗఏௗథ

ഏ/మ
ഇసబ

మഏ
ഝసబ

,                                                          (69) 

where 𝜙 and 𝜃 are the longitude and latitude positions in an ሼℎ𝑘𝑙ሽ pole figure and 𝐼ሺథ,ఏሻ
௥௘௙   

(corresponding to a reference taken to be measured texture) and 𝐼ሺథ,ఏሻ (corresponding to predicted 

texture) are intensities. A value of PFD = 0 corresponds to a perfect match between the measured 
and the predicted pole figures and PFD = 1 corresponds to a perfect mismatch. Two textures with 
a PFD < 0.2 are considered to be in good agreement, and PFD < 0.1 represents excellent agreement. 
PFD between Fig. 10c and Fig. 10c’ averaged over the poles is 0.13. 

Results corresponding to Fig. 10b’ and Fig. 10c’ after proper modeling of hardening instead of the 
linear hardening are shown in appendix D.  

 

 

 
† The pole figure difference indices were calculated using POLE ver. 8c, code developed by C.N. Tomé. 

a b 

ND 

RD 
a' b' 

5.0 0 
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Figure 8. IPF maps showing grain structure in specimens of AA5182-O: (a) as-received and (b) 
deformed in CBT to a tensile strain of 0.45. Corresponding grain average misorientation (GAM) 
maps: (a') as-received and (b') deformed in CBT to a tensile strain of 0.45.  

 

 

Figure 9. Normalized distributions showing (a) measured GAM spreads after CBT to a tensile 
strain of 0.45 and (b) corresponding simulated average intragranular misorientation spreads.   

 

b a 
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Figure 10. Pole figures of AA5182-O alloy: (a) measured initial texture in an as-received rolled 
and recrystallized specimen, (b) measured texture after CBT along RD of the as-received sheet to 
0.45 tensile deformation, (c) measured texture after CBT followed by recrystallization, (b') 
predicted texture in tension along RD to a true strain of 0.45, and (c') predicted texture after 
tension followed by recrystallization.  
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3.3 Evolution of texture during recrystallization of MarM-509 alloy  

Next, we present the simulations of texture evolution during recrystallization of a cobalt-based 
alloy, MarM-509, made by additively manufactured (AM) [127, 128]. The texture evolution of the 
alloy was measured using neutron diffractions (NeD). Fig. 11a shows pole figures of the measured 
initial texture. Pole figures showing texture used in the simulations were indistinguishable and are 
not shown. The measured initial texture was represented using 400 equally weighted crystal 
orientations. The initial texture used in the simulations was constructed from the measured using 
the procedure described in [129-132]. After AM, the alloy was annealed for 2, 6, and 10 hours at 

2300 F [127]. Figs. 11b, c, and d show measured recrystallization textures after for 2 hours (46% 
recrystallized), 6 hours (57% recrystallized), and 10 hours (91% recrystallized), respectively [127, 
133].  

Given that texture evolution was measured using NeD [134-138], orientation gradients in grains 
were zero. However, the AM process produces grains with some orientation spread. For 
simulations of recrystallization, it was necessary to create some spreads in grains for nucleation 
and to induce some stored energy for nucleation and growth. In our recrystallization model, the 
nucleation of grains is driven by the strain energy and gradient in orientation, where the orientation 

gradients depend on the intragranular orientation spreads, 〈δ𝐫⨂δ𝐫〉ሺ௥ሻ . The nucleation was 
modeled using the grain boundary nucleation model. The alloy was deformed in compression 
along RD to a strain of 0.1 by ሼ111ሽ〈11ത0〉 FCC octahedral slip systems with linear hardening. 
Lower strain levels were insufficient for recrystallization, while higher levels like 0.15 or 0.2 
produced similar results like those at 0.1 pre-strain.  

The predicted recrystallization textures for 46%, 57%, 91% recrystallized structure are shown in 
Figs. 11b’, c’, and d’, respectively. These simulated recrystallized textures show good agreement 
with the measured textures and can capture all components in the pole figures. In the simulations, 
percentage of recrystallization is regulated by the time increment ∆𝑡 used in Eq. 61 and Eq. 62 and 
the number of increments. Larger values of ∆𝑡 results in more nucleated grains leading to higher 
percentage of recrystallization and ∆𝑡 is the fitting parameter to get desired percentage of 
recrystallization. The parameters are given in Table 1. PFDs between Fig. 11b and Fig. 11b’, Fig. 
11c and Fig. 11c’, and Fig. 11d and Fig. 11d’ are 0.06, 0.08, and 0.09, respectively.  

While it is observed that the application of the compressive strain energy lead to the 
recrystallization textures that match well the measured recrystallized textures, we would like to 
indicate that pre-deformation in tension did not yield such good prediction suggesting that 
misorientation trends after AM were more similar to those induced using compression along RD 
than tension.  
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Figure 11. Pole figures showing texture evolution during annealing of MarM-509 alloy at 2300 F: 
(a) measured initial texture in an as-built specimen, (b) measured texture in a specimen after 
annealing for 2 hours, (c) measured texture in a specimen after annealing for 6 hours, (d) measured 
texture in a specimen after annealing for 10 hours, (b’) predicted recrystallization texture 
corresponding to (b), (c’) predicted recrystallization texture corresponding to (c) and (d’) predicted 
recrystallization texture corresponding to (d). The additive manufacturing specimen frame is 
defined as build direction (BD), recoat direction (RD), and gas flow direction (GF).  

 

3.4 Deformed and recrystallized textures of interstitial free (IF) steel 

Finally, the simulations of texture evolution of Ti-Nb IF steel to 85% rolling reduction and 
subsequent recrystallization are performed and compared to experimental results [139, 140]. For 
these simulations, the BCC metal is represented with 400 randomly oriented spherical grains 
deforming by ሼ110ሽ〈111〉 and ሼ112ሽ〈111〉 slip systems with the linear hardening under Eq. (67) 
boundary conditions.  

Fig. 12a shows the 𝜑ଶ ൌ 45° section of Euler space for the measured rolling texture [139, 140], 
while Fig. 12a' shows the predicted deformed texture. Majority of the orientations concentrate 
around the 𝛾-fiber and a portion of the 𝛼-fiber [141-143]. A figure in Appendix A shows 𝛼 and 𝛾 
fibers. Fig. 12b and Fig. 12b' show the 𝜑ଶ ൌ 45° section of Euler space for the measured and 
predicted recrystallization textures. Comparing measured recrystallized texture with measured 
deformed texture, it is evident that 𝛾-fiber strength increases during recrystallization while 𝛼- fiber 
weakens [141, 143-146]. The grains on 𝛾-fiber have higher stored energy and are favorable 
nucleation sites [145, 147-149] during recrystallization. It is also observed that nuclei grow around 
the grain boundaries [140, 150]. In the simulation, the grain boundary nucleation was operative. 
The parameters are given in Table 1.  

 



33 
 

 

Figure 12. ODF sections at 𝜑ଶ ൌ 45° showing (a) measured deformation texture in interstitial-
free (IF) steel rolled to 85% reduction, (b) measured recrystallization texture after rolling, (a’) 
predicted deformed texture, and (b') predicted recrystallized texture.  

 

Table 1. Recrystallization model parameters per material. The identification of the parameters 
was accomplished as follows: first, 𝛿𝜃௧௛ and 𝐸௧௛ are set to nearly zero or zero to promote the 
probability to nucleate new grains during recrystallization, next, the parameters 𝐴 and 𝐵 are 
adjusted to obtain an appropriate rate of nucleation, and finally, 𝑀 is adjusted to obtain % 
recrystallized structure per simulation case. Also, the parameters are chosen to promote a desired 
type of nucleation. For example, to promote the TB nucleation, the parameters 𝐴௧௕ and 𝐵௧௕ must 
be set to lower values than 𝐴௚௕ and 𝐵௚௕. While automated methodologies for parameter 
identification exist in the literature [151, 152], a manual procedure was employed in the present 

a b 

a' b' 
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work. ∆𝑡 is also a fitting parameter to get a desired % of recrystallization. Larger values of ∆𝑡 
results in more nucleated grains leading to higher % of recrystallized structure.  

 Cu-type Brass-type AA5182-O IF-steel MarM-509 

Grain 
boundary 
nucleation 

𝐸௧௛
௚௕ 0.0 0.0 0.0 0.0 0.0 

𝛿𝜃௧௛
௚௕ 1.2 1.2 1.5 ൈ 10ିଷ 1.1 1.5 ൈ 10ିଷ 

𝐴௚௕ 5.21 ൈ 10ହ 2.15 ൈ 10ଷ 3.5 ൈ 10ିସ 1.55 ൈ 10ହ 1.5 ൈ 10ିହ 

𝐵௚௕ 3.06 ൈ 10ି଺ 3.1 ൈ 10ି଺ 3.5 ൈ 10ି଻ 3.5 ൈ 10ି଻ 3.5 ൈ 10ି଻ 

𝑐 2.0 2.0 2.0 2.0 2.0 

Transition 
band 

nucleation 

𝐸௧௛
௧௕ 0.0 0.0 0.0 𝑁/𝐴 𝑁/𝐴 

𝛿𝜃௧௛
௧௕ 0.9 0.1 𝑁/𝐴 𝑁/𝐴 𝑁/𝐴 

𝐴௧௕ 5.21 ൈ 10ହ 2.15 ൈ 10ଶ 𝑁/𝐴 𝑁/𝐴 𝑁/𝐴 

𝐵௧௕ 3.06 ൈ 10ି଺ 3.1 ൈ 10ି଺ 𝑁/𝐴 𝑁/𝐴 𝑁/𝐴 

Growth 𝑀 3.0 ൈ 10ିଽ 3.0 ൈ 10ିଽ 1.5 ൈ 10ିଽ 3.0 ൈ 10ିଽ 1.5 ൈ 10ିହ 

Time 
increment 

𝛥𝑡 0.2 0.2 0.2 0.2 0.0015 ሺ46%ሻ 
 0.0036 ሺ57%ሻ  

0.02 (92%) 

 

 

4. Conclusions 
 
In this work, we integrated a deformation model considering fragmentation of grains and a 
recrystallization model formulated based on intragranular orientation distributions and strain 
energy fields into a computationally efficient mean-field model termed FF-VPSC. The FF-VPSC 
model predicted both a Cu-like texture formation in a high SFE metal and a brass-like texture 
formation in a low SFE metal after rolling to very large plastic strains to agree well with 
experimental measurements. While the former texture evolution was successfully predicted using 
several mean-field crystal plasticity models, the available mean-field models were challenged 
greatly at predicting the latter texture evolution. We have shown that a combination of not only 
including deformation twinning but also accounting for orientation gradients along with grain 
fragmentation facilitated predicting the brass-like texture evolution in low SFE metals. 
Subsequently, the recrystallization texture evolution for the two texture types was simulated and 
good agreements with corresponding experiments were achieved. Three additional case studies 
were run to demonstrate effectiveness of the model in predicting effects of strain-path, stored 
energy, and crystal structure on the predictions. To this end, tension and recrystallization of an 
aluminum alloy 5182-O, recrystallization of an AM cobalt-based alloy MarM-509 and rolling and 
recrystallization of an IF steel were simulated to predict texture evolution. Comparisons with 
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experiments revealed good predictions for all these simulation cases. We found that tradeoffs 
between transition-bands and grain boundary nucleation mechanisms enabled such good 
predictions of the recrystallization texture evolution. The nucleation mechanisms were driven by 
the misorientation spreads in grains, the former by the bi-modal spreads and underlying transition 
bands, while the latter by the unimodal spreads. To achieve good predictions of the 
recrystallization texture evolution, the Cu-type and brass-type rolled textures underwent the 
transition band nucleation, while AA, MarM509, and IF steel underwent the grain boundary 
nucleation. The work confirmed that the consideration of intragranular misorientation fluctuations 
and grain fragmentations is essential for predicting texture evolution during deformation and 
recrystallization.  
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Appendix A 

This appendix depicts FCC texture components in Fig. A1 and BCC texture fibers in Fig. A2. It 
also shows the VPFFT model in Fig. A3.  

 

 

Figure A1. ሼ111ሽ and ሼ100ሽ pole figures showing the rolling and recrystallization texture 
components for FCC metals: copper, brass, and cube. 
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Figure A2. An ODF section at 𝜑ଶ ൌ 45° showing 𝛼 and 𝛾 fibers for BCC metals. 

 

 

Figure A3. Voxel-based (1283) microstructural cell consisting of 400 grains used for the VPFFT 
simulations.  

 

Appendix B 

The linear mapping of stress fluctuations from time 𝑡 െ ∆𝑡 to 𝑡 caused by spatial variation of mean 
stress values is performed by a linear mapping matrix 𝐙ሺ௥ሻ. At time 𝑡 െ ∆𝑡 (the first step of 
deformation), the second moment of stress without any spatial mean stress effect and 
misorientation effect is calculated using the RHS term of Eq. (20) as: 

〈𝛔௧ି∆௧ ⊗ 𝛔௧ି∆௧〉ሺ௥ሻ ൌ ଶ

௪೟ష∆೟ሺೝሻ
డ௎෩೅

೟ష∆೟

డ𝐌೟ష∆೟ሺೝሻ  (B1) 

𝜑ଵ 

ϕ 
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Eq. (20) at the time step 𝑡 െ ∆𝑡 is: 

〈𝛔௧ି∆௧ ⊗ 𝛔௧ି∆௧〉ሺ௥ሻ ൌ 𝛔௧ି∆௧ሺ௥ሻ ⊗ 𝛔௧ି∆௧ሺ௥ሻ ൅ 〈δ𝛔௧ି∆௧ሺ௤തሻ ⊗ δ𝛔௧ି∆௧ሺ௤തሻ〉ሺ௥ሻ  (B2) 

Rearranging Eq. (B2) we get the expression for the second moment of stress fluctuations 
influenced by the variation of the spatial mean value as the difference of the second and first 
moment of stress field calculated at the first deformation step as:  

〈δ𝛔௧ି∆௧ሺ௤തሻ ⊗ δ𝛔௧ି∆௧ሺ௤തሻ〉ሺ௥ሻ ൌ 〈𝛔௧ି∆௧ ⊗ 𝛔௧ି∆௧〉ሺ௥ሻ െ 𝛔௧ି∆௧ሺ௥ሻ ⊗ 𝛔௧ି∆௧ሺ௥ሻ  (B3) 

Now, the calculation of the mapping matrix 𝐙ሺ௥ሻ is described: 

The term 〈δ𝛔௧ି∆௧ሺ௤തሻ ⊗ δ𝛔௧ି∆௧ሺ௤തሻ〉ሺ௥ሻ is decomposed into a lower triangular matrix 𝐋௧ି∆௧ and its 
conjugate transpose by Cholesky decomposition.  

At the second deformation step i.e., at the time 𝑡, we calculate the second moment of stress without 
fluctuations of mean stress value and misorientation effects as: 

〈𝛔௧ ⊗ 𝛔௧〉ሺ௥ሻ ൌ ଶ

௪೟ሺೝሻ
డ௎෩೅

೟

డ𝐌೟ሺೝሻ  (B4) 

Now, by subtracting the first moment from the second moment we get an expression like the RHS 

of Eq. (B3) expressed as: 〈𝛔௧ ⊗ 𝛔௧〉ሺ௥ሻ െ 𝛔௧ሺ௥ሻ ⊗ 𝛔௧ሺ௥ሻ. This term is then decomposed into a lower 
triangular term 𝐋௧ and its conjugate transpose. 

We can now write mapping of 𝐋௧ as a composition of mapping of 𝐋௧ି∆௧ and mapping matrix 𝐙ሺ௥ሻ 
as 

𝐋௧ ൌ 𝐙ሺ௥ሻ𝐋௧ି∆௧ which can also be written as: 

𝐙ሺ௥ሻ ൌ 𝐋௧ሺ𝐋௧ି∆௧ሻିଵ       (B5) 

Finally, the second moment of stress due to the mean stress fluctuations at time 𝑡 is mapped using 

the matrix 𝐙ሺ௥ሻ as: 

〈δ𝛔௧ሺ௤തሻ ⊗ δ𝛔௧ሺ௤തሻ〉ሺ௥ሻ ൌ 𝐙ሺ௥ሻ〈δ𝛔௧ି∆௧ሺ௤തሻ ⊗ δ𝛔௧ି∆௧ሺ௤തሻ〉ሺ௥ሻሺ𝐙ሺ௥ሻሻ் (B6) 

where ሺ𝐙ሺ௥ሻሻ୘ is transpose of 𝐙ሺ௥ሻ.  

 

Appendix C  

As explained in the text, the cross-correlation term in Eq. (27), 〈δ𝛔௧ሺ௤തሻ ⊗ δ𝛔௧ሺఋ௥ሻ〉ሺ௥ሻ, is 
approximated using a cross-covariance term, 〈δ𝛔௧ሺ௤തሻ ⊗ δ𝐫௧〉ሺ௥ሻ, arising due to the stress 
fluctuations caused by mean grain properties and misorientation fluctuations inside a grain as:  

〈δ𝛔௧ሺ௤തሻ ⊗ δ𝛔௧ሺఋ௥ሻ〉ሺ௥ሻ ൌ 〈δ𝛔௧ሺ௤തሻ ⊗ δ𝐫௧〉ሺ௥ሻ ൬
డ𝛔

డஔ𝐫
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧
൰
்

,                                                       (C1) 
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where 
డ𝛔

డஔ𝐫
 is a derivative of Eq. (3) considering 𝛆ሶ  as a constant: 

డ𝛆ሶ

డஔ𝐫
ൌ

𝐦௦ ቆ𝛾ሶ଴ ∑ 𝑛 ቀ
|𝛔∶𝐦ೞ|

ఛ೎
ೞ ቁ

௡ିଵ డ

డஔ𝐫௦ ቀ
|𝛔∶𝐦ೞ|

ఛ೎
ೞ ቁቇ ൅ 𝛾ሶ଴ ∑ ቀ

|𝛔∶𝐦ೞ|

ఛ೎
ೞ ቁ

௡

௦
డ𝐦ೞ

డஔ𝐫
 yielding: 

డ𝛔

డஔ𝐫
ൌ െ ቂ∑ 𝐦௦ ⊗ பఊሶ ೞ

ப𝛔௦ ቃ
ିଵ
ቄ∑ ቂ𝐦௦ ⊗ ቀడఊ

ሶ ೞ

డ𝐦ೞ

డ𝐦ೞ

డஔ𝐫
ቁ ൅ 𝛾ሶ ௦ డ𝐦

ೞ

డஔ𝐫
ቃ௦ ቅ,                                                       (C2) 

where 
பఊሶ ೞ

ப𝛔
ൌ 𝛾ሶ଴𝑛 ቀ

|𝛔∶𝐦ೞ|

ఛ೎
ೞ ቁ

௡ିଵ
𝐦௦ ଵ

ఛ೎
ೞ, and 

డఊሶ ೞ

డ𝐦ೞ ൌ 𝛾ሶ଴𝑛 ቀ
|𝛔∶𝐦ೞ|

ఛ೎
ೞ ቁ

௡ିଵ
𝛔 ଵ

ఛ೎
ೞ are obtained by taking the 

derivatives of Eq. (2). Finally, 
డ𝐦ೞ

డஔ𝐫
 is simply evaluated using 

డ𝐦ೞ

డஔ𝐫
ൌ డ𝐦ೞ

డஔ𝐑

డஔ𝐑

డஔ𝐫
, where δ𝐑 is the 

rotation matrix representation of the rotation of misorientation vector δ𝐫.  

The cross-covariance term, 〈δ𝛔௧ሺ௤തሻ ⊗ δ𝐫௧〉ሺ௥ሻ, owing to the fluctuations of mean grain properties 
δ𝛔௧ሺ௤തሻ and misorientation fluctuations δ𝐫௧ at a time 𝑡 is obtained by a linear mapping matrix 𝐙ሺ௥ሻ 
(described in Appendix B) given the cross-covariance term 〈δ𝛔௧ି∆௧ሺ௤തሻ ⊗ δ𝐫௧ି∆௧〉ሺ௥ሻ at time 𝑡 െ ∆𝑡 
is known. Assuming a linear relationship between stress fluctuations due to mean grain properties 
from time 𝑡 െ ∆𝑡 to 𝑡, the mapping is: 

δ𝛔௧ሺ௤തሻሺ𝐱ሻ ൌ 𝐙ሺ௥ሻδ𝛔௧ି∆௧ሺ௤തሻ.                                                                                                         (C4) 

The misorientation δ𝐫௧ at 𝑡 can be approximated as the function of δ𝛔௧ି∆௧ሺ௤തሻ and δ𝐫௧ି∆௧ after 

utilizing Eqs. ((29), (43)) and substituting δ𝐫௧,௥௢௧ሺ𝐱ሻ ൌ 𝐑ഥ௜௡௖
௧,ሺ௥ሻδ𝐫௧ሺ𝐱ሻ and δ𝐫௜௡௖

௧ ൌ δ𝛚ሶ ௧ሺ𝐱ሻ as: 

δ𝐫௧ሺ𝐱ሻ ൌ 𝐘ሺఋ௥ሻሺ௥ሻδ𝐫௧ି∆௧ሺ𝐱ሻ ൅ 𝐘ሺఋఙሻሺ௥ሻδ𝛔௧ି∆௧ሺ௤തሻሺ𝐱ሻ,                                                                 (C5) 

𝐘ሺఋఙሻሺ௥ሻ ൌ ∆௧

ଶ

డ𝛚ሶ

డ𝛔
ቚ
𝛔ሺೝሻ,𝐪ഥሺೝሻ

௧ି∆௧
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The derivative terms in Eqs. ((C6), and (C7)) are calculated as follows (note these are used in Eq. 
(31)): 

డ𝛚ሶ
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ൌ െ∑ 𝛂௦ ⊗ பఊሶ ೞ

ப𝛔௦ ,                                                                                                  (C8a) 
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Using Eqs. ((C4), and (C5)), the term 〈δ𝛔௧ሺ௤തሻ ⊗ δ𝐫௧〉ሺ௥ሻ is calculated as: 

〈δ𝛔௧ሺ௤തሻ ⊗ δ𝐫௧〉ሺ௥ሻ ൌ 𝐙ሺ௥ሻ〈δ𝛔௧ି∆௧ሺ௤തሻ ⊗ δ𝐫௧ି∆௧〉ሺ௥ሻ𝐘ሺఋ௥ሻሺ௥ሻ
்
൅ 𝐙ሺ௥ሻ〈δ𝛔௧ି∆௧ሺ௤തሻ ⊗

δ𝛔௧ି∆௧ሺ௤തሻ〉ሺ௥ሻ𝐘ሺఋఙሻሺ௥ሻ
்
.                                                                                 (C9) 

Also, at time 𝑡 െ ∆𝑡, the cross-covariance term 〈δ𝛔௧ି∆௧ሺ௤തሻ ⊗ δ𝐫௧ି∆௧〉ሺ௥ሻ is: 

〈δ𝛔௧ି∆௧ሺ௤തሻ ⊗ δ𝐫௧ି∆௧〉ሺ௥ሻ ൌ 𝐙ሺ௥ሻ〈δ𝛔௧ି∆௧ሺ௤തሻ ⊗ δ𝛔௧ି∆௧ሺ௤തሻ〉ሺ௥ሻ𝐘ሺఋఙሻሺ௥ሻ
்
.                                      (C10) 
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The second moment of stress fluctuations because of intragranular misorientation fluctuations term 
in Eq. (27), 〈δ𝛔௧ሺఋ௥ሻ ⊗ δ𝛔௧ሺఋ௥ሻ〉ሺ௥ሻ, can now be evaluated using: 

〈δ𝛔௧ሺఋ௥ሻ ⊗ δ𝛔௧ሺఋ௥ሻ〉ሺ௥ሻ ൌ డ𝛔
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,                                        (C11) 

where the second moment of misorientations term 〈δ𝐫௧ ⊗ δ𝐫௧〉ሺ௥ሻ is expressed in Eq. (44). 

 
Appendix D 
 
This appendix shows that the simplifications introduced into the evolution of hardening per case 
study play a secondary role in the evolution of texture. Given that we do not have flow stress data 
for all materials, we fitted a tensile stress-strain response for AA5182-O with a dislocation density-
based hardening law available in our model [153, 154] and then simulated the deformation and 
recrystallization texture evolution for the alloy. Hardening of cubic metals is usually assumed to 
be isotropic over slip systems per grain. The hardening varies from grain to grain but slip systems 
per grain harden equally. As a result, the activity of slip systems per grain is not influenced by 
hardening but by crystal orientation only. Therefore, texture evolution is not a strong function of 
the evolution of slip resistance. Fig. D2a and Fig. D2b are predicted after correct modeling of 
hardening. The results are like those in Fig. 10b' and Fig. 10c', which are based on the simplified 
hardening. 
 
For completeness of the present work, we provide a brief summary of the dislocation density 
hardening law. To estimate the resistance required to trigger slip systems, s, from the octahedral 
family, 𝛼, we consider the contributions of the following terms: a friction stress 𝜏଴,௙

ఈ , a forest 

dislocation interaction stress 𝜏௙௢௥
ఈ , and a dislocation substructure/debris interaction stress 𝜏௦௨௕

ఈ : 

             𝜏௖ఈ ൌ 𝜏଴,௙
ఈ ൅ 𝜏௙௢௥

ఈ ൅ 𝜏௦௨௕
ఈ .                                                                                               (D1) 

The individual values of 𝜏௙௢௥
ఈ  and 𝜏௦௨௕

ఈ  are governed by the evolution of the dislocation densities, 

i.e. the forest 𝜌௙௢௥
ఈ  and substructure/debris 𝜌௦௨௕

ఈ  dislocations, evolving from their initial values 

given in Table D1. Taylor-like laws are used to represent these relationships for each dislocation 
type:  

             𝜏௙௢௥
ఈ ൌ χ𝑏ఈ𝜇ఈට𝜌௙௢௥

ఈ ,                                                 (D2) 

             𝜏௦௨௕
ఈ ൌ 𝑘௦௨௕𝜇ఈ𝑏ఈඥ𝜌௦௨௕𝑙𝑜𝑔 ൬

ଵ

௕ഀඥఘೞೠ್
൰.                                                                         (D3) 

Here χ is a dislocation interaction constant set to 0.9 and 𝑘௦௨௕ ൌ 0.086 is a mathematical parameter 
that insures that Eq. (D2) compensates the Taylor law at low dislocation densities [155]. The value 
of the forest density 𝜌௙௢௥

ఈ  changes according to competition between the rate of storage/generation 

and the rate of dynamic recovery/removal as: 
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In Eq. (D4), 𝑘ଵ
ఈ is a coefficient for the rate of dislocation storage because of statistical trapping of 

gliding dislocations and 𝑘ଶ
ఈ is the coefficient determining the rate of dynamic recovery by 

thermally activated mechanisms. The second coefficient is calculated using:  

            
௞మ
ഀሺఌሶ ,୘ሻ

௞భ
ഀ ൌ ఞ௕ഀ

௚ഀ
ቆ1 െ ௞்

஽ഀ௕య
𝑙𝑛 ቀ ఌ

ሶ

ఌሶ బ
ቁቇ,                                              (D5) 

where 𝑘, 𝜀ሶ଴, 𝑔ఈ and 𝐷ఈ are respectively Boltzmann’s constant, a reference strain rate (taken here 
to be 107 s-1), an effective activation enthalpy and a drag stress. Lastly, the increment in 
substructure/debris development is related to the rate of dynamic recovery of all active dislocations 
as: 

              ∆𝜌௦௨௕ ൌ ∑ 𝑞𝑏ఈ
డఘೝ೐೘,೑೚ೝ

ഀ

డఊഀఈ |∆𝛾ఈ|,                                                                                  (D6) 

where 𝑞 is a rate parameter that determines the fraction of an 𝛼-type dislocations that do not 
annihilate, but become substructure dislocation. The parameters of the law are given in Table D1. 

 

 
Figure D1. Comparison of experimentally measured (Exp.) and simulated (Sim) stress-strain 
curves for uniaxial tension along RD of AA5182-O.  
 
 
Table D1. Hardening parameters for the evolution of slip resistance of AA5182-O alloy.  
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Figure D2. Pole figures of AA5182-O alloy: (a) predicted texture in tension along RD to a true 
strain of 0.45 after proper modeling of hardening and (b) predicted texture after tension followed 
by recrystallization.  
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