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We use a microscopic phase-field (MPF) model, incorporating the generalized stacking fault energy (GSFE)
surfaces (i.e., the y-surface) as inputs, to investigate systematically the evolution of dislocation network con-
figurations at low-angle pure twist grain boundaries (GBs) in six face-centered cubic (FCC) metals (Ag, Cu, Rh, Ir,
Pd and Pt) that have different GSFE surfaces. The equilibrium configurations of GB dislocation networks are
obtained via the interplay between the crystalline energy and the elastic strain energy during the energy
minimization process. It was found that for {111} twist GBs, though the geometrically necessary dislocations
(GNDs) of the screw type are observed, they can be either full or partial ones depending on the GSFE surfaces of
the above metal systems. The areas of the staking faults regions formed between partial dislocations are quan-
titatively characterized as a function of the magnitude of the stacking fault energy, the elastic modulus and the
GB misorientation angle. A fast-acting model for predicting the geometric characteristics of the GB dislocation
networks is developed based directly on the material properties and GB misorientation, which is validated by its

applications to another two metal systems (Au and Ni) with the same GB.

1. Introduction

Both physical and mechanical properties of polycrystalline materials
are significantly impacted by the structures of grain boundaries (GBs)
[1], and GB engineering has been one of the key subjects in physical
metallurgy for many decades. GB energy is known to be anisotropic,
depending on both the crystal structure and the five degrees of freedom
(DOF) of a GB and is therefore difficult to quantify [2,3]. Moreover, the
intricate atomic interactions at GBs alter impurity contents at GBs
(deviate from those in the bulk) and, consequently, influence their
structures (e.g., phase transitions or complexion transitions) and energy
[4].

Computationally, molecular dynamics (MD) with empirical poten-
tials and density functional theory (DFT) calculations are commonly
used to study the structures and properties of GBs. For example, with the
technique of embedded atom method (EAM), researchers have gained a
better understanding of the atomic structures and energies of GBs in
pure metals [5-7]. Moreover, Holm et al. [8] found that the energies of
GBs in different materials are strongly correlated with the stacking fault
energy (SFE) after calculating more than 300 GBs in Al, including

general and special £ GBs using atomistic simulations that were devel-
oped for GBs with both CSL misorientations and rational boundary plane
normal under certain simulation cell constrains [9]. However, MD
simulations are limited by the availability of high-quality interatomic
potentials that can reproduce the ab initio GSFE surface, and it can be
challenging for these potentials to account for more than two element
types [10,11] due to the size scale and complexities caused by the
mutual interactions among different elements. The DFT calculations,
though offering high accuracy, can only be applied to a small set of
specific GBs due to the limited computational-cell size that can be
considered. On the other hand, geometric approaches such as O-lattice
theory [12] and Frank-Bilby model [13,14] have been developed over
the past decades to provide direct predictions of dislocation networks
formed by geometrically necessary dislocations (GNDs) based on the
macroscopic DOFs of GBs, and the 3D polyhedral unit model first pro-
posed by Ashby et al. [15] has recently been improved through an al-
gorithm based on Voronoi network that was used to automatically
capture the polyhedral structure of symmetric/asymmetric tilt and twist
GBs in FCC metals [16]. Nevertheless, these predictions are essentially
based solely on geometric analysis without considering the underlying
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free energy or force-field and, thus, not suitable for studying the for-
mation mechanism and dynamic evolution of GB GND networks. In
addition, GB models are expected to be coupled with mesoscale property
models so that multi-scale modeling can be carried out to predict GB
structures and their impacts on material properties.

In order to overcome these difficulties, Shen et al. [10,11] incorpo-
rated the generalized stacking fault energy (GSFE) surfaces from DFT
calculations into a microscopic phase field model (MPF), which is
essentially a generalization of the Peierls model of dislocations [17] to
arbitrary dislocation configurations, to simulate dislocation core struc-
tures and various dislocation network configurations at pure twist GBs.
Based on the generalized Peierls-Nabarro model, Dai et al. [18] calcu-
lated structures of {1 1 1}-GBs with different twist angles in Al, Ni and Cu
using both the perfect crystal reference and twin reference states, and
calculated the corresponding energies of GBs over the full range of twist
angles using an interpolation method. Qiu et al. [19] adopted the MPF
model in their study of (110) pure twist GBs in five BCC metals, which
has allowed them to lift the degeneracy of the geometric models
[13,14,20] in predicting GB structures. A general observation from Qiu
et al. simulations is that dislocation dissociation is prohibited in BCC
metals due to the high SFE and the resulting GND networks at GBs are
controlled only by the reaction of full dislocations at the nodal point.
However, it is well known that Shockley partial dislocations are
commonly observed in FCC metals and complex dislocation reactions
are expected in the formation of GND networks at GBs. In the previous
work on FCC metals mentioned above [10,18,21], while the GND
structure of pure twist {111}-GB in Al exhibits a hexagonal geometry
[10], those in Cu and Ni have a triangular morphology [18]. In this
paper we investigate a larger group of FCC metals (namely, Ag, Cu, Rh,
Ir, Pd, Pt for the parametric study and Au, Ni for the validation) for the
dependency of GB dislocation configuration on their GSFE property as
well as the misorientation angle. The GB formation mechanisms are
analyzed in terms of the underlying dislocation reactions and evolutions.
GBs consisting of a whole spectrum from pure screw partial to pure screw
full dislocations are revealed, which are found to correlate strongly with
the stacking fault energy and the elastic modulus. Fast-acting models are
developed to evaluate the configurations of the GND network, as a
function of the material properties (i.e., GSFE and elastic constants) and
the misorientation angle of GBs.

For FCC metals, SFE is a critical material parameter that is commonly
used to describe their plastic deformation behaviors [22]. For example,
the easiness of dislocation cross-slip, competition between deformation
twinning and dislocation slips and that between dynamic recovery and
dynamic recrystallization are all closely related to the value of SFE
[23-25]. It is well known that the separation between two Shockley
partials in a full dislocation of FCC metals is uniquely determined by the
elastic properties and SFE, which is commonly used to estimate the
value of SFE based on TEM characterization of the dislocation cores
[26]. Therefore, extensive efforts have been made both computationally
and experimentally [27-31] in determining SFE in different metals and
alloys. However, the extended dislocation configurations observed in
the experiments may not be the equilibrium configurations, which may
bring errors in the SFE measurements. For dislocation networks at GBs,
the GND configurations are in equilibrium and the stacking fault area
formed at the GND network may allow one to determine the SFE more
accurately in experiments.

The paper is organized as follows. The framework of the phase-field
model used in this study is explained in Section 2. In Section 3, we
present the model inputs and the main results obtained through our
parametric study, followed by some important analyses in Section 4 that
account for the physical principals guiding the temporal evolution of GB
dislocations and their geometric features at equilibrium. The main
findings are summarized in Section 5.
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2. Methods

Phase-field (PF) method [32,33] has a great flexibility in describing
microstructural nonuniformity due to defects, precipitates and micro
zones caused during mechanical processing. The flexibility comes from
the fact that in PF models, different heterogeneities are described by
phenomenological variables, or, the so-called order parameter fields,
whose numerical values are distinguished based on physical and
chemical properties (e.g., the phase, grain orientation, concentration,
etc.) at the local position in the system. In addition, the “diffuse inter-
face” assumption in PF model involves the spread of sharp interfaces in
the continuum limit into a smooth interfacial layer, whose motion is
governed by variational principles based on energy minimization
without the need to explicitly tracking the position of the interfaces.
Therefore, PF becomes an ideal way to describe the evolution of complex
microstructural nonuniformities at the micro- and meso-scale.

In the specific MPF model for a grain boundary, consider that a single
crystal is divided into two semi-infinite crystal blocks, which are twisted
relative to each other by a small angle (¢ = 2° in the current work) along
a certain plane, i.e., the GB plane (GBP). In the current work, we use
order parameters 7/, , to describe the displacement field u™ caused by

rigid-body rotation due to the macroscopic DOF of GBs, and 7}, , to

describe the displacement u™ due to the microscopic variation of the
elastic strain during the relaxation process. Note that 7, , is a static
field variable but #*!; , keeps evolving and is subjected to the periodic
boundary condition. At the initial, 7" is non-zero but #*! is zero. The
total displacement field u(r, t) is the summation of u™ and u™, both of
which are the combinations of order parameters and displacement base
vectors b;_1 »:

u(r,) =u™ +u* = Z [ql’,‘“(r) + r];d(r, r) ]bi (¢}
=12
The temporal evolution of GB structure is governed by minimizing
the total energy of the system consisting of two parts of energies, i.e., the
localized inelastic crystalline energy E*¥* restrained within the GBP, and
the long-range elastic strain energy E° stored in the bulk:

Etol(r7 I) — Ecryst [uml(r) + urel (l', 1)} + Eel [urel(r7 [) } (2)

The relaxation field u™(r,t) keeps updating with the order parame-
ters 7' according to Eq. (1) and in return altering the system energy by
Eq. (2). The competition between the two energy terms through the
evolution of order parameter fields will lead to the equilibrium state of
the grain boundary structure. Specifically, E*** is a functional of total

displacement at the GBP and determined by the GSFE surface y:

Eo = / 7(u(r, O])dA. 3)

The GSFE data in the current study is from DFT calculations by Su
et al. [34]. For the elastic part, following the Eshelby inclusion
approach, the analytical solution for strain energy is a functional of
stress-free transformation strain (SFTS) efj of dislocations and corre-
sponding order parameters 7, at the reciprocal space, which is expressed

as [35]:
dg

R o
Dy | @ e )2 @

where g is the reciprocal vector, n=g/|g], and By(n) =
Cijkle{.}egl 7ni6‘i}ij(ﬁ)aglnl. The tide ~ designates the Fourier transform
and the asterisk a complex conjugate. of; = Cyie; with Cyq being the
elastic stiffness tensor. [Qik]’l(ﬁ) = Cyunjn;. The relaxation of the GB
structure can be described by the Allen-Cahn equations, which reaches
the equilibrium state when the variation of the total energy becomes
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Fig. 1. 3D view of the continuous GSFE surface of Pd, fitted according to Eq. (5), using original discrete data (black dots) [34], with x || [110] and ¥l [112] (units of

x and y: ap), z-axis is the GSFE (unit: mJ/m?).

Table 1
Fitting parameters of GSFE surface (unit: mJ/m?) of six FCC metals.
Metal Ag Cu Rh Ir Pd Pt
Co 218.931 379.605 693.501 907.23 355.908 376.797
c1 —58.03 —105.4 —140.8 —-169.4 —90.43 —88.21
[ —15.83 -22.7 —88.19 -126.2 —26.1 —31.66
c3 3.255 4.403 7.573 10.36 1.482 1.247
C4 —1.186 —1.419 —4.875 —8.585 —-1.794 —3.488
a -96.16 —168.5 -177.3 —168.9 -113.2 —66.01
as —6.094 —8.868 -23.69 —36.44 -9.197 —18.05
L g
zero, i.e., 2— = 0.
5 > om Table 2
Lattice parameters and elastic constants of six metals.
3. Results
Metal Ag Cu Rh Ir Pd Pt
3.1. GSFE swfac e Lattice Parameter (unit: A)
ap 4.153 3.634 3.831 3.873 3.942 3.968
X . Elastic constants (unit: 10 GPa)
In this WOI‘k, the close-packed (1 1 1) plane is chosen as the GBP and a c1 10.05 17.496 40.534 58.365 20.229 29.951
periodical repeating rectangular computational cell is defined with the x 12 8.525 12.157 18.31 23.436 15.132 22.536
Caq 3.916 7.645 18.747 25.435 6.152 5.985

and y direction parallel to [110] and [112], respectively, and the ratio of
two dimensions, i.e., % = /3 due to the symmetry of (111) plane, with

periodic boundary condition applied to both directions. Due to the
variational nature of the PF model, the discrete GSFE datapoints from ab
initio calculations need to be equipped with a functional form to char-
acterize a smooth GSFE energy surface. Several methods have been used
previously to address this issue [11,19]. In the current study, a Fourier
series, originally proposed by Schoeck [36] et al., is used to fit the
discrete GSFE data into a continuous function of the displacement in the
GBP, which takes the following form:

F(x,y) = {eo+ci[cos(2px) + cos(px+ qy) +cos(px — gy)]
+c2[c0s(2gy) +cos(3px+gy) +cos(3px — gy)]
+c3[cos(4px) + cos(2px + 2qy) +cos( — 2px — 2qy)]
“eyfcos(px+3qy) + cos( — px+3qy) + cos(4px +2qy) + cos( — 4px+2qy)
+cos(5px+gy) +cos(5px —qy)]
+ay [sin(2px) — sin(px + qy) — sin(px — qy)]
+as[sin(4px) — sin(2px +2gy) — sin(2px — 2gy)|}/d,
(5)

Where x and y are the coordinates along [110] and [112], respec-
tively, p = 2z/(bv/3), ¢ = 2z/b, b= %% with a, being the lattice constant,
and d is the interplanar distance of the slip plane (111). Fig. 1 presents a
3D view of the continuous GSFE surface fitted according to Eq. (5),
together with original discrete GSFE data (black dots) of metal Pd [34].
The periodically repeated regions with high and low GSF energies
exhibit the 3-fold symmetry of {111} planes. The fitting parameters for
Pd and other five FCC metals are listed in Table 1. Besides the GSFE
surface, the lattice parameters and elastic constants are also required as
the input of the current MPF model, which are listed in Table 2.

3.2. Evolution of GB dislocation networks

Taking Pd as an example, the very initial microstructure of a twist GB
with § = 2° at t = 1 (reduced time) is shown in Fig. 2(a). During the
minimization of the total free energy, the GB morphologies keep
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Fig. 2. (a-e) The crystalline energy distribution (i.e., the distribution of GB dislocations) at an {111} twist (2°) GBP of Pd as a function of evolution time, (f) the
corresponding evolution of crystalline energy (E*), elastic strain energy (E®') and grain boundary energy (EG®) (unit: mJ/m?).

z[111]

x-[110]

Fig. 3. The configurations of GB dislocations of different FCC metals: (a) Ag, (b) Cu, (c) Rh, (d) Ir, (e) Pd and (f) Pt, the arrows in the figures represent the dis-

placements at corresponding field points.

evolving as presented in Fig. 2(b)-(e) at different time steps, together
with the changes in energies during the whole evolution process shown
in Fig. 2(f). The values of crystalline energy indicate the degrees of
faulting, i.e., zones of zero E°¥* representing the perfect crystal and
zones of positive E°Y™ representing the cores of dislocations. In Fig. 2, at
the initial stage (t = 1), zones with high E*¥* occupy a large percentage
of the whole computational cell. It should be noted that the dislocation
nodes have the highest E*¥*' at fixed positions during the whole process
due to the crystal symmetry. During the following evolution, the high
E¥ zones start to shrink, with the decrease of the total crystalline en-
ergy (E°¥* in Fig. 2(f) but the increase of the elastic strain energy (E* in
Fig. 2(f)). After t = 40, the GB dislocations start to curl and the regions
between the dislocations, i.e., the stacking fault (SF) regions, become
smaller until the equilibrium is reached at t = 100. The equilibrium
dislocation configuration consists of curved line segments of Shockley
partials (as indicated by red arrows in Fig. 2(e)) with a certain width. By
examining the GB energy (i.e., EOB in Fig. 2(f)), which is the summation

of crystalline energy and elastic strain energy, we find that it keeps
decreasing all the way from t = 1 and converges to around 130 mJ/m?
when the system reaches the equilibrium state.

3.3. Characteristics of GB dislocations of different FCC metals

For parametric study, we calculate the equilibrium GB structures of
six different metals with inputs listed in Table 1 and Table 2. The cor-
responding results are shown in Fig. 3. Apparently, even though these
metals all have FCC structures, they can form very distinctive GB
dislocation network configurations. To further analyze the characteris-
tics of GB dislocation networks for different metals, we superimpose the
displacement fields at equilibrium for all these metal systems in Fig. 3,
which are denoted by the white arrows. Note that the length and di-
rection of the displacement vectors represent the magnitude and direc-
tion of displacement at each position, respectively. Unlike the geometric
methods (e.g., O-lattice theory or Frank-Bilby equations), where the
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Table 3
GB energies of six FCC metals with 6 = 2°.

Material Ag Cu Rh Ir Pd Pt

ESB(unit: mJ/m?)) 56.2 111.5 346.2 510.7 130.0 160.8

Burgers vectors are set as the inputs of the model, our MPF model can
output the displacements, thus the Burgers vectors, at each step of
evolution. Upon equilibrium, the order parameter 5 stops evolving. We
then output the equilibrium #* and the static background order
parameter 5" to calculate the displacement field according to Eq. (1). As
can be seen in Fig. 3, the displacements in the whole (111) plane at
equilibrium are regionalized: the boundaries of adjacent regions are
separated by dislocations with different configurations and within each
region, the displacements at each field point are identical. The Burgers
vectors associated with the dislocations at the region boundaries can be
identified simply by calculating the displacement differences between
adjacent region centers.

Unlike the cases in BCC metals, where the Burgers vectors associated
with those GB dislocations are identical for all metals belonging to the
same crystal structure [19], the GB dislocations in FCC metals can be
either Shockley partials or full dislocations. For example, as shown by
the red arrows in Fig. 3(f), the GB dislocations in Pt are full dislocations,

with the Burgers vectors determined to be b; = @ao,bz = @ao and

bs = I@ao; for Ag, as in Fig. 3(a), however, the GB dislocations are

partial dislocations, with the Burgers vectors being b; = @ao, by, =
@ao and bs = %ao. Therefore, stacking faults can be seen among

partial dislocations in Ag-(111) but missing in the case of Pt. Disloca-
tions with the above configurations are commonly observed in FCC
crystals. It is obvious that although the dislocations in Ag are partial
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ones but those in Pt are full ones, all the dislocations in these two cases
have the feature of almost pure screw dislocations. In contrast, the
curved dislocations in other cases (especially those in Rh, Ir and Pd) are
of the mixed type. The calculated structure of the twist GB in Cu agrees
well with the previous work done by Dai et al. [18], where the GB
dislocation in Cu also show a triangular network. We will further
analyze the geometric features concerning the GB dislocation networks
and their relationships with the material properties (i.e., the GSFE sur-
face and the elastic constants) and GB misorientation angle 6 in the
Discussion Section. Apart from the dislocation sense directions and the
corresponding Burgers vectors, the GB energies ES® of these metals are
shown in Table 3. As can be seen in Table 3, the magnitude of the GB
energy varies greatly for different metal systems, since the crystalline
energy and elastic strain energy are closely related to the stacking fault
energy and elastic constants of materials, both of which vary greatly
from metal to metal.

4. Discussion
4.1. Quantification of the size of stacking fault regions

To find a direct relationship between the GSFE surface and the
dislocation network configuration, we first plot the GSFE curves of the
six metals in the direction of [112] in Fig. 4(a). The stacking fault energy
(7,) is specified in the curve (taking Ir as an example) by the red arrow,
together with the cooresponding values shown in Fig. 4(b). Note that we
denote the ratio of y; and ub as the reduced stacking fault energy 7,
where b is the magnitude of the Burgers vector (b = @ao) and
u =1/5(c11 +3c44 —c12) for cubic crystals [37].

Comparing Fig. 4(b) with Fig. 3, we can find that the dislocation
dissociation is harder to take place in metals with larger 7, resulting in

(b)

Metals

Fig. 4. (a) GSFE curves of six metals in the direction of [112], (b) the values of stacking fault energy (r,;) and the reduced stacking fault energy (7; = %) of the

six metals.

Fig. 5. (a) Schematic drawing of the GB dislo-
cation lines (green) and the incircle (red) of a
stacking fault region surrounded by the partial
dislocations with the computational cell param-

(a) (b) &, byl (112)
‘ A

eters of I, and I, (b) possible configurations of GB
dislocation networks in FCC metals, including
two extreme cases (solid red and blue lines) and
general cases (dashed green curves). (The coor-
dinate in (a) with the origin set at A is for latter
discussion.). (For interpretation of the references
to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 6. (a) the relationship between incircle radius Ry and misorientation @ for different metals, (b) the fitted R;",- surface as a function of 7; and 6 according to Eq. (6)

with fitting parameter m = 14.84.
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Fig. 7. The comparison between the fitted Ry according to Eq. (6) and the measured value directly from the current MPF model for different metals: (a) Ag, (b) Cu,

(c) Rh and (d) Pt.

smaller stacking fault regions. To quantify the size of stacking fault re-
gion, we draw an incircle with radius of Ry within the faulted region, as
schematically shown in Fig. 5(a), based on the distribution of the crys-
talline energy shown in Fig. 3. With different values of Ry, the GNDs
within the twist GB can form hexagonal (solid blue lines) or triangular
(solid red lines) networks, or configurations in between (dashed green
lines), as shown in Fig. 5(b). On the other hand, precious work by Dai
et al. [38] has shown that the misorientation angle @ also plays an
important role in the structure of GB dislocation networks. Therefore, a
parametric study with & =1 10° has been carried out for all the above
metals. The calculation result shows that for a given metal system, Ry
exhibits a negative correlation with the increase in both 6 and 7, as
shown in Fig. 6 (a). To incorporate both the effects of material property
7 and misorientation 6, two special cases should be firstly considered:

e Case-I: 74,—o0, Ry—0, indicating no dislocation dissociation takes
place due to high 7 and a hexagonal network will form, with the
junction of dislocations located at “A” in Fig. 5(a).

e Case-II: 7,—0, Rsf—%lx (with I, = @ being the periodic length of the
computational cell in the direction of [110)), indicating dislocation

dissociation takes place thoroughly and a triangular network will
form with the point of tangency being “N” in Fig. 5(a).

These two special cases correspond to the dislocation networks
shown in Fig. 5(b) with blue and red solid lines, respectively. Based on
the above analysis, we assume the magnitude of R as a function of 7
(J/m?) and @ (rad) is in the form of:

2
R=-—r ©
12(m7 +0°)

sf
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Fig. 8. The prediction of geometric GB dislocation lines based on the reduced stacking fault energy 7,; with 8 = 2° for (a) Ag, (b) Cu, (c) Rh, (d) Ir, (e) Pd, (f) Pt, (g)

Au and (h) Ni.

With the fitting parameter m = 14.84, the fitted surface R? as a
function of 7,; and 0 based on Eq. (6) is shown in Fig. 6(b) with the black
dots suggesting the values of R% with ¢ ranging from 1° to 10° and 7
from 1.0 to 20.0 mJ/m>. The coefficient of determination R-Squared of
Eq. (6) is ~ 0.99, indicating that Eq. (6) is a good approximation to R2.
Fig. 7 compares the fitted R as a function of ¢ for Ag, Cu, Rh and Pt
metals according to Eq. (6) with the measured R; from our MPF model.
For metals with smaller 7, the fitted R ; agrees well with our simulation
data (see Fig. 7(a)-(c)). However, for metal with a larger 7 (e.g., Pt) the
deviation of fitted R, from the simulation result is relatively larger,
mainly due to the resolution issue of the model in measuring the value of
R when R is as small as 1b ~ 4b (Fig. 7(d)).

To quantitatively characterize the degree of dislocation dissociation
taking place in different metals within the twist GBs under different
misorientation angles, and with the above two special cases being
considered, we introduce a parameter defined by the ratio of R over its

limit value of (R 2 = % (corresponding to special Case-II):

R 1
T (m7+6) @
sf

)max

The degree of dislocation dissociation p decays with both increasing
74 and 6. In other words, for a given misorientation angle 6, p is
approaching zero when 7, is infinitely large and dislocations do not
dissociate at all; on the contrary, p reaches the maximum value of }
when 7, is zero and dislocation dissociation takes place completely.
Importantly, with known misorientation angle 6, Eq. (6) also provides a
possible way to calculate the value of y; for FCC materials if we can measure
the size of stacking fault region at twist GBs from experiments and evaluate
the value of Ry.

4.2. A fast-acting model for the predictions of GB dislocation network
configurations

Due to the computational complexity of the above full MPF
modeling, it is desirable to obtain an approximate model to predict the
equilibrium configurations of GB dislocation networks and GB energy
directly and simply via the GSFE data, GB misorientation angle and
elastic constants. The geometric features concerning the curvature of
dislocation lines within the network (see Fig. 3 obtained by our MPF
model and Fig. 5(b) for schematic drawings and analysis) shows the
characteristics of bow-shaped curves described by the equation of hy-
perbola. Therefore, by neglecting the diffuse core structure and treat
dislocations as geometric lines dividing perfect crystal and faulted re-
gions, we introduce a hyperbola function to describe the shape of those
dislocation lines, since the concave-convex degree of the partial dislo-
cation lines can be directly correlated with the 7; of materials and the
misorientation angle 6. As shown in Fig. 5(a), by setting the origin at
Point A the incircle radius Ry equals the length of transverse axis. With

the standard form of a hyperbola function, we can then derive the length
of conjugate axis A by substituting the coordinate of P (—£l,,31,), which is
a fixed point due to the symmetry of the {111} planes in FCC crystals:

R = B
st
22 12<m7f~ +(7‘2>
x_z_yZ =1, with o . 8)
R 2 P »?
- Amy

As can be seen in Eq. (8), while the variation in the length of trans-
verse axis Ry depends on both 7,; and 6, the length of the conjugate axis 1
is independent of 6. Based on Eq. (8), the asymptote equation can be

derived by the ratio of A over Ry, i.e,y = £,/3+2e 3x The slope of
the asymptote, i.e., ,/3 + 3o _2, decreases monotonically from co when

74—0 and reaches to /3 when 74— o0, which corresponds to the evo-
lution in dislocation network configurations in Fig. 5(b) from triangular
(solid red) to curved triangular (dashed green) and finally to hexagonal
(solid blue) network. From the above analysis, one can expect that Eq.
(6) gives a quantitative description of the size of stacking fault region
and the point of tangency M in Fig. 5(a) and, on the other hand, Eq. (8)
describes the shapes of the dislocation networks with known material
property 7, and GB misorientation 6.

Using the above fast-acting method by Eq. (6) and (8), we predict
twist GB dislocation networks (white solid lines in Fig. 8) for eight
metals (with additional two metals of Ni and Au) with 8 = 2° and the
results are shown in Fig. 8 in comparison with the predictions from the
MPF simulations. The agreement is excellent. Such a method provides
one a quick way to link material properties to the structure of GBs, which
is an important input required by some physics-based models such as
crystal plasticity model and GB segregation model.

5. Conclusions

By incorporating the generalized stacking fault energy (GSFE) sur-
faces from DFT calculations in the microscopic phase field (MPF) model,
we are able to predict detailed configurations of GND networks of low-
angle twist GBs and their energies for different FCC metals. The main
findings include:

(1) The GB dislocations network configurations in FCC metals varies
from triangular networks consisting of pure screw Shockley
partial dislocations to hexagonal networks consisting of pure
screw full dislocations, with various of intermediate configura-
tions consisting mixed Shockley partial dislocations, depending
on their GSFE surfaces. For example, a triangular dislocation
network forms in Ag with partial dislocations (b = £ (112)) sur-
rounding stacking fault regions, and a hexagonal network form in
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Pt with full dislocations (b = 1(110)). The partial and full dis-
locations in Ag and Pt are both pure screw type.

(2) The transition from triangular to hexagonal dislocation networks
is analyzed, which suggests that the value of the reduced stacking
fault energy (defined as the ratio of stable stacking fault energy
over ub) determines the configuration of the GB dislocation net-
works and thus the areas of the corresponding stacking fault re-
gions. More specifically, a larger reduced stacking fault energy
would prefer a hexagonal network consisting of full dislocations,
while a smaller one would prefer a triangular network consisting
of Shockley partial dislocations.

Based on the simulation results, a fast-acting analytical model is
formulated for predicting GB dislocation network configurations as a
function of the elastic constants, stacking fault energy and misorienta-
tion angle. The model is validated for two additional FCC metals against
MPF model predictions. The analytical model could be useful for a quick
and accurate access to detailed configurations of GB dislocation net-
works of FCC metals and alloys.
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