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A B S T R A C T   

We use a microscopic phase-field (MPF) model, incorporating the generalized stacking fault energy (GSFE) 
surfaces (i.e., the γ-surface) as inputs, to investigate systematically the evolution of dislocation network con
figurations at low-angle pure twist grain boundaries (GBs) in six face-centered cubic (FCC) metals (Ag, Cu, Rh, Ir, 
Pd and Pt) that have different GSFE surfaces. The equilibrium configurations of GB dislocation networks are 
obtained via the interplay between the crystalline energy and the elastic strain energy during the energy 
minimization process. It was found that for {111} twist GBs, though the geometrically necessary dislocations 
(GNDs) of the screw type are observed, they can be either full or partial ones depending on the GSFE surfaces of 
the above metal systems. The areas of the staking faults regions formed between partial dislocations are quan
titatively characterized as a function of the magnitude of the stacking fault energy, the elastic modulus and the 
GB misorientation angle. A fast-acting model for predicting the geometric characteristics of the GB dislocation 
networks is developed based directly on the material properties and GB misorientation, which is validated by its 
applications to another two metal systems (Au and Ni) with the same GB.   

1. Introduction 

Both physical and mechanical properties of polycrystalline materials 
are significantly impacted by the structures of grain boundaries (GBs) 
[1], and GB engineering has been one of the key subjects in physical 
metallurgy for many decades. GB energy is known to be anisotropic, 
depending on both the crystal structure and the five degrees of freedom 
(DOF) of a GB and is therefore difficult to quantify [2,3]. Moreover, the 
intricate atomic interactions at GBs alter impurity contents at GBs 
(deviate from those in the bulk) and, consequently, influence their 
structures (e.g., phase transitions or complexion transitions) and energy 
[4]. 

Computationally, molecular dynamics (MD) with empirical poten
tials and density functional theory (DFT) calculations are commonly 
used to study the structures and properties of GBs. For example, with the 
technique of embedded atom method (EAM), researchers have gained a 
better understanding of the atomic structures and energies of GBs in 
pure metals [5–7]. Moreover, Holm et al. [8] found that the energies of 
GBs in different materials are strongly correlated with the stacking fault 
energy (SFE) after calculating more than 300 GBs in Al, including 

general and special Σ GBs using atomistic simulations that were devel
oped for GBs with both CSL misorientations and rational boundary plane 
normal under certain simulation cell constrains [9]. However, MD 
simulations are limited by the availability of high-quality interatomic 
potentials that can reproduce the ab initio GSFE surface, and it can be 
challenging for these potentials to account for more than two element 
types [10,11] due to the size scale and complexities caused by the 
mutual interactions among different elements. The DFT calculations, 
though offering high accuracy, can only be applied to a small set of 
specific GBs due to the limited computational-cell size that can be 
considered. On the other hand, geometric approaches such as O-lattice 
theory [12] and Frank-Bilby model [13,14] have been developed over 
the past decades to provide direct predictions of dislocation networks 
formed by geometrically necessary dislocations (GNDs) based on the 
macroscopic DOFs of GBs, and the 3D polyhedral unit model first pro
posed by Ashby et al. [15] has recently been improved through an al
gorithm based on Voronoi network that was used to automatically 
capture the polyhedral structure of symmetric/asymmetric tilt and twist 
GBs in FCC metals [16]. Nevertheless, these predictions are essentially 
based solely on geometric analysis without considering the underlying 
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free energy or force-field and, thus, not suitable for studying the for
mation mechanism and dynamic evolution of GB GND networks. In 
addition, GB models are expected to be coupled with mesoscale property 
models so that multi-scale modeling can be carried out to predict GB 
structures and their impacts on material properties. 

In order to overcome these difficulties, Shen et al. [10,11] incorpo
rated the generalized stacking fault energy (GSFE) surfaces from DFT 
calculations into a microscopic phase field model (MPF), which is 
essentially a generalization of the Peierls model of dislocations [17] to 
arbitrary dislocation configurations, to simulate dislocation core struc
tures and various dislocation network configurations at pure twist GBs. 
Based on the generalized Peierls-Nabarro model, Dai et al. [18] calcu
lated structures of {111}-GBs with different twist angles in Al, Ni and Cu 
using both the perfect crystal reference and twin reference states, and 
calculated the corresponding energies of GBs over the full range of twist 
angles using an interpolation method. Qiu et al. [19] adopted the MPF 
model in their study of (110) pure twist GBs in five BCC metals, which 
has allowed them to lift the degeneracy of the geometric models 
[13,14,20] in predicting GB structures. A general observation from Qiu 
et al. simulations is that dislocation dissociation is prohibited in BCC 
metals due to the high SFE and the resulting GND networks at GBs are 
controlled only by the reaction of full dislocations at the nodal point. 
However, it is well known that Shockley partial dislocations are 
commonly observed in FCC metals and complex dislocation reactions 
are expected in the formation of GND networks at GBs. In the previous 
work on FCC metals mentioned above [10,18,21], while the GND 
structure of pure twist {111}-GB in Al exhibits a hexagonal geometry 
[10], those in Cu and Ni have a triangular morphology [18]. In this 
paper we investigate a larger group of FCC metals (namely, Ag, Cu, Rh, 
Ir, Pd, Pt for the parametric study and Au, Ni for the validation) for the 
dependency of GB dislocation configuration on their GSFE property as 
well as the misorientation angle. The GB formation mechanisms are 
analyzed in terms of the underlying dislocation reactions and evolutions. 
GBs consisting of a whole spectrum from pure screw partial to pure screw 
full dislocations are revealed, which are found to correlate strongly with 
the stacking fault energy and the elastic modulus. Fast-acting models are 
developed to evaluate the configurations of the GND network, as a 
function of the material properties (i.e., GSFE and elastic constants) and 
the misorientation angle of GBs. 

For FCC metals, SFE is a critical material parameter that is commonly 
used to describe their plastic deformation behaviors [22]. For example, 
the easiness of dislocation cross-slip, competition between deformation 
twinning and dislocation slips and that between dynamic recovery and 
dynamic recrystallization are all closely related to the value of SFE 
[23–25]. It is well known that the separation between two Shockley 
partials in a full dislocation of FCC metals is uniquely determined by the 
elastic properties and SFE, which is commonly used to estimate the 
value of SFE based on TEM characterization of the dislocation cores 
[26]. Therefore, extensive efforts have been made both computationally 
and experimentally [27–31] in determining SFE in different metals and 
alloys. However, the extended dislocation configurations observed in 
the experiments may not be the equilibrium configurations, which may 
bring errors in the SFE measurements. For dislocation networks at GBs, 
the GND configurations are in equilibrium and the stacking fault area 
formed at the GND network may allow one to determine the SFE more 
accurately in experiments. 

The paper is organized as follows. The framework of the phase-field 
model used in this study is explained in Section 2. In Section 3, we 
present the model inputs and the main results obtained through our 
parametric study, followed by some important analyses in Section 4 that 
account for the physical principals guiding the temporal evolution of GB 
dislocations and their geometric features at equilibrium. The main 
findings are summarized in Section 5. 

2. Methods 

Phase-field (PF) method [32,33] has a great flexibility in describing 
microstructural nonuniformity due to defects, precipitates and micro 
zones caused during mechanical processing. The flexibility comes from 
the fact that in PF models, different heterogeneities are described by 
phenomenological variables, or, the so-called order parameter fields, 
whose numerical values are distinguished based on physical and 
chemical properties (e.g., the phase, grain orientation, concentration, 
etc.) at the local position in the system. In addition, the “diffuse inter
face” assumption in PF model involves the spread of sharp interfaces in 
the continuum limit into a smooth interfacial layer, whose motion is 
governed by variational principles based on energy minimization 
without the need to explicitly tracking the position of the interfaces. 
Therefore, PF becomes an ideal way to describe the evolution of complex 
microstructural nonuniformities at the micro- and meso-scale. 

In the specific MPF model for a grain boundary, consider that a single 
crystal is divided into two semi-infinite crystal blocks, which are twisted 
relative to each other by a small angle (θ = 2◦ in the current work) along 
a certain plane, i.e., the GB plane (GBP). In the current work, we use 
order parameters ηrot

i=1,2 to describe the displacement field urot caused by 
rigid-body rotation due to the macroscopic DOF of GBs, and ηrel

i=1,2 to 
describe the displacement urel due to the microscopic variation of the 
elastic strain during the relaxation process. Note that ηrot

i=1,2 is a static 
field variable but ηrel

i=1,2 keeps evolving and is subjected to the periodic 
boundary condition. At the initial, ηrot

i is non-zero but ηrel
i is zero. The 

total displacement field u(r, t) is the summation of urot and urel, both of 
which are the combinations of order parameters and displacement base 
vectors bi=1,2: 

u(r, t) = urot + urel =
∑

i=1,2

[
ηrot

i (r) + ηrel
i (r, t)

]
bi (1) 

The temporal evolution of GB structure is governed by minimizing 
the total energy of the system consisting of two parts of energies, i.e., the 
localized inelastic crystalline energy Ecryst restrained within the GBP, and 
the long-range elastic strain energy Eel stored in the bulk: 

Etot(r, t) = Ecryst[urot(r) + urel(r, t)
]

+ Eel[urel(r, t)
]

(2) 

The relaxation field urel(r, t) keeps updating with the order parame
ters ηrel

i according to Eq. (1) and in return altering the system energy by 
Eq. (2). The competition between the two energy terms through the 
evolution of order parameter fields will lead to the equilibrium state of 
the grain boundary structure. Specifically, Ecryst is a functional of total 
displacement at the GBP and determined by the GSFE surface γ: 

Ecryst =

∫

γ([u(r, t)])dA. (3) 

The GSFE data in the current study is from DFT calculations by Su 
et al. [34]. For the elastic part, following the Eshelby inclusion 
approach, the analytical solution for strain energy is a functional of 
stress-free transformation strain (SFTS) ∊p

ij of dislocations and corre
sponding order parameters ηp at the reciprocal space, which is expressed 
as [35]: 

Eel =
1
2

∑N

p,q=1

∫

Bpq(n̂)η̃p(g)η̃*
q(g)

dg
(2π)

3 (4)  

where g is the reciprocal vector, n̂ ≡ g/|g|, and Bpq(n̂) =

Cijkl∊
p
ij∊

q
kl −niσp

ijΩjk(n̂)σq
klnl. The tide ~ designates the Fourier transform 

and the asterisk a complex conjugate. σp
ij ≡ CijklεT

kl with Cijkl being the 

elastic stiffness tensor. [Ωik]
−1

(n̂) ≡ Cijkl n̂j n̂l. The relaxation of the GB 
structure can be described by the Allen-Cahn equations, which reaches 
the equilibrium state when the variation of the total energy becomes 
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zero, i.e., δEtot

δηi
= 0. 

3. Results 

3.1. GSFE surface 

In this work, the close-packed (111) plane is chosen as the GBP and a 
periodical repeating rectangular computational cell is defined with the x 
and y direction parallel to [110] and [112], respectively, and the ratio of 
two dimensions, i.e., lxly =

̅̅̅
3

√
due to the symmetry of (111) plane, with 

periodic boundary condition applied to both directions. Due to the 
variational nature of the PF model, the discrete GSFE datapoints from ab 
initio calculations need to be equipped with a functional form to char
acterize a smooth GSFE energy surface. Several methods have been used 
previously to address this issue [11,19]. In the current study, a Fourier 
series, originally proposed by Schoeck [36] et al., is used to fit the 
discrete GSFE data into a continuous function of the displacement in the 
GBP, which takes the following form: 

f (x,y) = {c0 + c1[cos(2px) + cos(px + qy) + cos(px − qy)]

+c2[cos(2qy) + cos(3px + qy) + cos(3px − qy)]

+c3[cos(4px) + cos(2px + 2qy) + cos( − 2px − 2qy)]

+c4[cos(px + 3qy) + cos( − px + 3qy) + cos(4px + 2qy) + cos( − 4px + 2qy)

+cos(5px + qy) + cos(5px − qy)]

+a1[sin(2px) − sin(px + qy) − sin(px − qy)]

+a3[sin(4px) − sin(2px + 2qy) − sin(2px − 2qy)]}/d,

(5) 

Where x and y are the coordinates along [110] and [112], respec
tively, p = 2π/(b

̅̅̅
3

√
), q = 2π/b, b = a0̅̅

2
√ with a0 being the lattice constant, 

and d is the interplanar distance of the slip plane (111). Fig. 1 presents a 
3D view of the continuous GSFE surface fitted according to Eq. (5), 
together with original discrete GSFE data (black dots) of metal Pd [34]. 
The periodically repeated regions with high and low GSF energies 
exhibit the 3-fold symmetry of {111} planes. The fitting parameters for 
Pd and other five FCC metals are listed in Table 1. Besides the GSFE 
surface, the lattice parameters and elastic constants are also required as 
the input of the current MPF model, which are listed in Table 2. 

3.2. Evolution of GB dislocation networks 

Taking Pd as an example, the very initial microstructure of a twist GB 
with θ = 2◦ at t = 1 (reduced time) is shown in Fig. 2(a). During the 
minimization of the total free energy, the GB morphologies keep 

Fig. 1. 3D view of the continuous GSFE surface of Pd, fitted according to Eq. (5), using original discrete data (black dots) [34], with x || [110] and y || [112] (units of 
x and y: a0), z-axis is the GSFE (unit: mJ/m2). 

Table 1 
Fitting parameters of GSFE surface (unit: mJ/m2) of six FCC metals.  

Metal Ag Cu Rh Ir Pd Pt 

c0  218.931  379.605  693.501  907.23  355.908  376.797 
c1  −58.03  −105.4  −140.8  −169.4  −90.43  −88.21 
c2  −15.83  –22.7  −88.19  −126.2  −26.1  −31.66 
c3  3.255  4.403  7.573  10.36  1.482  1.247 
c4  −1.186  −1.419  −4.875  −8.585  −1.794  −3.488 
a1  −96.16  −168.5  −177.3  −168.9  −113.2  −66.01 
a3  −6.094  −8.868  –23.69  −36.44  −9.197  −18.05  

Table 2 
Lattice parameters and elastic constants of six metals.  

Metal Ag Cu Rh Ir Pd Pt 

Lattice Parameter (unit: Å) 
a0  4.153  3.634  3.831  3.873  3.942  3.968 
Elastic constants (unit: 10 GPa) 
c11  10.05  17.496  40.534  58.365  20.229  29.951 
c12  8.525  12.157  18.31  23.436  15.132  22.536 
c44  3.916  7.645  18.747  25.435  6.152  5.985  
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evolving as presented in Fig. 2(b)-(e) at different time steps, together 
with the changes in energies during the whole evolution process shown 
in Fig. 2(f). The values of crystalline energy indicate the degrees of 
faulting, i.e., zones of zero Ecryst representing the perfect crystal and 
zones of positive Ecryst representing the cores of dislocations. In Fig. 2, at 
the initial stage (t = 1), zones with high Ecryst occupy a large percentage 
of the whole computational cell. It should be noted that the dislocation 
nodes have the highest Ecryst at fixed positions during the whole process 
due to the crystal symmetry. During the following evolution, the high 
Ecryst zones start to shrink, with the decrease of the total crystalline en
ergy (Ecryst in Fig. 2(f)) but the increase of the elastic strain energy (Eel in 
Fig. 2(f)). After t = 40, the GB dislocations start to curl and the regions 
between the dislocations, i.e., the stacking fault (SF) regions, become 
smaller until the equilibrium is reached at t = 100. The equilibrium 
dislocation configuration consists of curved line segments of Shockley 
partials (as indicated by red arrows in Fig. 2(e)) with a certain width. By 
examining the GB energy (i.e., EGB in Fig. 2(f)), which is the summation 

of crystalline energy and elastic strain energy, we find that it keeps 
decreasing all the way from t = 1 and converges to around 130 mJ/m2 

when the system reaches the equilibrium state. 

3.3. Characteristics of GB dislocations of different FCC metals 

For parametric study, we calculate the equilibrium GB structures of 
six different metals with inputs listed in Table 1 and Table 2. The cor
responding results are shown in Fig. 3. Apparently, even though these 
metals all have FCC structures, they can form very distinctive GB 
dislocation network configurations. To further analyze the characteris
tics of GB dislocation networks for different metals, we superimpose the 
displacement fields at equilibrium for all these metal systems in Fig. 3, 
which are denoted by the white arrows. Note that the length and di
rection of the displacement vectors represent the magnitude and direc
tion of displacement at each position, respectively. Unlike the geometric 
methods (e.g., O-lattice theory or Frank-Bilby equations), where the 

Fig. 2. (a-e) The crystalline energy distribution (i.e., the distribution of GB dislocations) at an {111} twist (2◦) GBP of Pd as a function of evolution time, (f) the 
corresponding evolution of crystalline energy (Ecryst), elastic strain energy (Eel) and grain boundary energy (EGB) (unit: mJ/m2). 

Fig. 3. The configurations of GB dislocations of different FCC metals: (a) Ag, (b) Cu, (c) Rh, (d) Ir, (e) Pd and (f) Pt, the arrows in the figures represent the dis
placements at corresponding field points. 
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Burgers vectors are set as the inputs of the model, our MPF model can 
output the displacements, thus the Burgers vectors, at each step of 
evolution. Upon equilibrium, the order parameter ηrel stops evolving. We 
then output the equilibrium ηrel and the static background order 
parameter ηrot to calculate the displacement field according to Eq. (1). As 
can be seen in Fig. 3, the displacements in the whole (111) plane at 
equilibrium are regionalized: the boundaries of adjacent regions are 
separated by dislocations with different configurations and within each 
region, the displacements at each field point are identical. The Burgers 
vectors associated with the dislocations at the region boundaries can be 
identified simply by calculating the displacement differences between 
adjacent region centers. 

Unlike the cases in BCC metals, where the Burgers vectors associated 
with those GB dislocations are identical for all metals belonging to the 
same crystal structure [19], the GB dislocations in FCC metals can be 
either Shockley partials or full dislocations. For example, as shown by 
the red arrows in Fig. 3(f), the GB dislocations in Pt are full dislocations, 

with the Burgers vectors determined to be b1 =
[011]

2 a0,b2 =
[110]

2 a0 and 

b3 =
[101]

2 a0; for Ag, as in Fig. 3(a), however, the GB dislocations are 

partial dislocations, with the Burgers vectors being b1 =
[211]

6 a0, b2 =

[112]

6 a0 and b3 =
[121]

6 a0. Therefore, stacking faults can be seen among 
partial dislocations in Ag-(111) but missing in the case of Pt. Disloca
tions with the above configurations are commonly observed in FCC 
crystals. It is obvious that although the dislocations in Ag are partial 

ones but those in Pt are full ones, all the dislocations in these two cases 
have the feature of almost pure screw dislocations. In contrast, the 
curved dislocations in other cases (especially those in Rh, Ir and Pd) are 
of the mixed type. The calculated structure of the twist GB in Cu agrees 
well with the previous work done by Dai et al. [18], where the GB 
dislocation in Cu also show a triangular network. We will further 
analyze the geometric features concerning the GB dislocation networks 
and their relationships with the material properties (i.e., the GSFE sur
face and the elastic constants) and GB misorientation angle θ in the 
Discussion Section. Apart from the dislocation sense directions and the 
corresponding Burgers vectors, the GB energies EGB of these metals are 
shown in Table 3. As can be seen in Table 3, the magnitude of the GB 
energy varies greatly for different metal systems, since the crystalline 
energy and elastic strain energy are closely related to the stacking fault 
energy and elastic constants of materials, both of which vary greatly 
from metal to metal. 

4. Discussion 

4.1. Quantification of the size of stacking fault regions 

To find a direct relationship between the GSFE surface and the 
dislocation network configuration, we first plot the GSFE curves of the 
six metals in the direction of [112] in Fig. 4(a). The stacking fault energy 
(γsf) is specified in the curve (taking Ir as an example) by the red arrow, 
together with the cooresponding values shown in Fig. 4(b). Note that we 
denote the ratio of γsf and μb as the reduced stacking fault energy γsf , 
where b is the magnitude of the Burgers vector (b =

̅̅
2

√

2 a0) and 
μ = 1/5(c11 +3c44 −c12) for cubic crystals [37]. 

Comparing Fig. 4(b) with Fig. 3, we can find that the dislocation 
dissociation is harder to take place in metals with larger γsf , resulting in 

Table 3 
GB energies of six FCC metals with θ = 2◦.  

Material Ag Cu Rh Ir Pd Pt 

EGB(unit: mJ/m2))  56.2  111.5  346.2  510.7  130.0  160.8  

Fig. 4. (a) GSFE curves of six metals in the direction of [112], (b) the values of stacking fault energy (γsf) and the reduced stacking fault energy (γsf =
γsf
μb) of the 

six metals. 

Fig. 5. (a) Schematic drawing of the GB dislo
cation lines (green) and the incircle (red) of a 
stacking fault region surrounded by the partial 
dislocations with the computational cell param
eters of lx and ly, (b) possible configurations of GB 
dislocation networks in FCC metals, including 
two extreme cases (solid red and blue lines) and 
general cases (dashed green curves). (The coor
dinate in (a) with the origin set at A is for latter 
discussion.). (For interpretation of the references 
to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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smaller stacking fault regions. To quantify the size of stacking fault re
gion, we draw an incircle with radius of Rsf within the faulted region, as 
schematically shown in Fig. 5(a), based on the distribution of the crys
talline energy shown in Fig. 3. With different values of Rsf , the GNDs 
within the twist GB can form hexagonal (solid blue lines) or triangular 
(solid red lines) networks, or configurations in between (dashed green 
lines), as shown in Fig. 5(b). On the other hand, precious work by Dai 
et al. [38] has shown that the misorientation angle θ also plays an 
important role in the structure of GB dislocation networks. Therefore, a 
parametric study with θ = 1 10◦ has been carried out for all the above 
metals. The calculation result shows that for a given metal system, Rsf 

exhibits a negative correlation with the increase in both θ and γsf , as 
shown in Fig. 6 (a). To incorporate both the effects of material property 
γsf and misorientation θ, two special cases should be firstly considered:  

• Case-I: γsf→∞, Rsf→0, indicating no dislocation dissociation takes 
place due to high γsf and a hexagonal network will form, with the 
junction of dislocations located at “A” in Fig. 5(a).  

• Case-II: γsf→0, Rsf→1
6lx (with lx =

̅̅
3

√
b

θ being the periodic length of the 
computational cell in the direction of [110]), indicating dislocation 
dissociation takes place thoroughly and a triangular network will 
form with the point of tangency being “N” in Fig. 5(a). 

These two special cases correspond to the dislocation networks 
shown in Fig. 5(b) with blue and red solid lines, respectively. Based on 
the above analysis, we assume the magnitude of R2

sf as a function of γsf 
(J/m2) and θ (rad) is in the form of: 

R2
sf =

b2

12
(

mγ2
sf + θ2

) (6) 

Fig. 6. (a) the relationship between incircle radius Rsf and misorientation θ for different metals, (b) the fitted R2
sf surface as a function of γsf and θ according to Eq. (6) 

with fitting parameter m = 14.84. 

Fig. 7. The comparison between the fitted Rsf according to Eq. (6) and the measured value directly from the current MPF model for different metals: (a) Ag, (b) Cu, 
(c) Rh and (d) Pt. 
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With the fitting parameter m = 14.84, the fitted surface R2
sf as a 

function of γsf and θ based on Eq. (6) is shown in Fig. 6(b) with the black 
dots suggesting the values of R2

sf with θ ranging from 1◦ to 10◦ and γsf 
from 1.0 to 20.0 mJ/m2. The coefficient of determination R-Squared of 
Eq. (6) is ~ 0.99, indicating that Eq. (6) is a good approximation to R2

sf . 
Fig. 7 compares the fitted Rsf as a function of θ for Ag, Cu, Rh and Pt 
metals according to Eq. (6) with the measured Rsf from our MPF model. 
For metals with smaller γsf , the fitted Rsf agrees well with our simulation 
data (see Fig. 7(a)-(c)). However, for metal with a larger γsf (e.g., Pt) the 
deviation of fitted Rsf from the simulation result is relatively larger, 
mainly due to the resolution issue of the model in measuring the value of 
Rsf when Rsf is as small as 1b ~ 4b (Fig. 7(d)). 

To quantitatively characterize the degree of dislocation dissociation 
taking place in different metals within the twist GBs under different 
misorientation angles, and with the above two special cases being 
considered, we introduce a parameter defined by the ratio of R2

sf over its 
limit value of (R2

sf)max = b2

12θ2 (corresponding to special Case-II): 

ρ =
R2

sf

(R2
sf)max

=
(

mγ2
sf + θ2

)−1
(7) 

The degree of dislocation dissociation ρ decays with both increasing 
γsf and θ. In other words, for a given misorientation angle θ, ρ is 
approaching zero when γsf is infinitely large and dislocations do not 
dissociate at all; on the contrary, ρ reaches the maximum value of 1

θ2 

when γsf is zero and dislocation dissociation takes place completely. 
Importantly, with known misorientation angle θ, Eq. (6) also provides a 
possible way to calculate the value of γsf for FCC materials if we can measure 
the size of stacking fault region at twist GBs from experiments and evaluate 
the value of Rsf . 

4.2. A fast-acting model for the predictions of GB dislocation network 
configurations 

Due to the computational complexity of the above full MPF 
modeling, it is desirable to obtain an approximate model to predict the 
equilibrium configurations of GB dislocation networks and GB energy 
directly and simply via the GSFE data, GB misorientation angle and 
elastic constants. The geometric features concerning the curvature of 
dislocation lines within the network (see Fig. 3 obtained by our MPF 
model and Fig. 5(b) for schematic drawings and analysis) shows the 
characteristics of bow-shaped curves described by the equation of hy
perbola. Therefore, by neglecting the diffuse core structure and treat 
dislocations as geometric lines dividing perfect crystal and faulted re
gions, we introduce a hyperbola function to describe the shape of those 
dislocation lines, since the concave-convex degree of the partial dislo
cation lines can be directly correlated with the γsf of materials and the 
misorientation angle θ. As shown in Fig. 5(a), by setting the origin at 
Point A the incircle radius Rsf equals the length of transverse axis. With 

the standard form of a hyperbola function, we can then derive the length 
of conjugate axis λ by substituting the coordinate of P ( −1

6lx,12ly), which is 
a fixed point due to the symmetry of the {111} planes in FCC crystals: 

x2

R2
sf

−
y2

λ2 = 1, with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R2
sf =

b2

12
(

mγ2
sf + θ2

)

λ2 =
b2

4mγ2
sf

. (8) 

As can be seen in Eq. (8), while the variation in the length of trans
verse axis Rsf depends on both γsf and θ, the length of the conjugate axis λ 
is independent of θ. Based on Eq. (8), the asymptote equation can be 

derived by the ratio of λ over Rsf , i.e., y = ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3 + 3

m • θ2

γ2
sf

√
x. The slope of 

the asymptote, i.e., 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3 + 3

m • θ2

γ2
sf

√
, decreases monotonically from ∞ when 

γsf→0 and reaches to 
̅̅̅
3

√
when γsf→∞, which corresponds to the evo

lution in dislocation network configurations in Fig. 5(b) from triangular 
(solid red) to curved triangular (dashed green) and finally to hexagonal 
(solid blue) network. From the above analysis, one can expect that Eq. 
(6) gives a quantitative description of the size of stacking fault region 
and the point of tangency M in Fig. 5(a) and, on the other hand, Eq. (8) 
describes the shapes of the dislocation networks with known material 
property γsf and GB misorientation θ. 

Using the above fast-acting method by Eq. (6) and (8), we predict 
twist GB dislocation networks (white solid lines in Fig. 8) for eight 
metals (with additional two metals of Ni and Au) with θ = 2◦ and the 
results are shown in Fig. 8 in comparison with the predictions from the 
MPF simulations. The agreement is excellent. Such a method provides 
one a quick way to link material properties to the structure of GBs, which 
is an important input required by some physics-based models such as 
crystal plasticity model and GB segregation model. 

5. Conclusions 

By incorporating the generalized stacking fault energy (GSFE) sur
faces from DFT calculations in the microscopic phase field (MPF) model, 
we are able to predict detailed configurations of GND networks of low- 
angle twist GBs and their energies for different FCC metals. The main 
findings include:  

(1) The GB dislocations network configurations in FCC metals varies 
from triangular networks consisting of pure screw Shockley 
partial dislocations to hexagonal networks consisting of pure 
screw full dislocations, with various of intermediate configura
tions consisting mixed Shockley partial dislocations, depending 
on their GSFE surfaces. For example, a triangular dislocation 
network forms in Ag with partial dislocations (b = 1

6 〈112〉) sur
rounding stacking fault regions, and a hexagonal network form in 

Fig. 8. The prediction of geometric GB dislocation lines based on the reduced stacking fault energy γsf with θ = 2◦ for (a) Ag, (b) Cu, (c) Rh, (d) Ir, (e) Pd, (f) Pt, (g) 
Au and (h) Ni. 
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Pt with full dislocations (b = 1
2 〈110〉). The partial and full dis

locations in Ag and Pt are both pure screw type.  
(2) The transition from triangular to hexagonal dislocation networks 

is analyzed, which suggests that the value of the reduced stacking 
fault energy (defined as the ratio of stable stacking fault energy 
over μb) determines the configuration of the GB dislocation net
works and thus the areas of the corresponding stacking fault re
gions. More specifically, a larger reduced stacking fault energy 
would prefer a hexagonal network consisting of full dislocations, 
while a smaller one would prefer a triangular network consisting 
of Shockley partial dislocations. 

Based on the simulation results, a fast-acting analytical model is 
formulated for predicting GB dislocation network configurations as a 
function of the elastic constants, stacking fault energy and misorienta
tion angle. The model is validated for two additional FCC metals against 
MPF model predictions. The analytical model could be useful for a quick 
and accurate access to detailed configurations of GB dislocation net
works of FCC metals and alloys. 
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