

1 **Systematic Engineering of Virus-Like Particles to Identify Self-Assembly Rules for Shifting**

2 **Particle Size**

3 Bon Ikwuagwu^a, Emily Hartman^b, Carolyn E. Mills^a, Danielle Tullman-Ercek^{a,c,d}

4 ^a Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road,
5 Technological Institute E136, Evanston, IL, 60208, USA

6 ^b Department of Chemistry, University of California, Berkeley, California 94720-1460

7 ^c Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute B486,
8 Evanston, IL, 60208, USA

9 ^d Corresponding Author: ercek@northwestern.edu

10 **ABSTRACT**

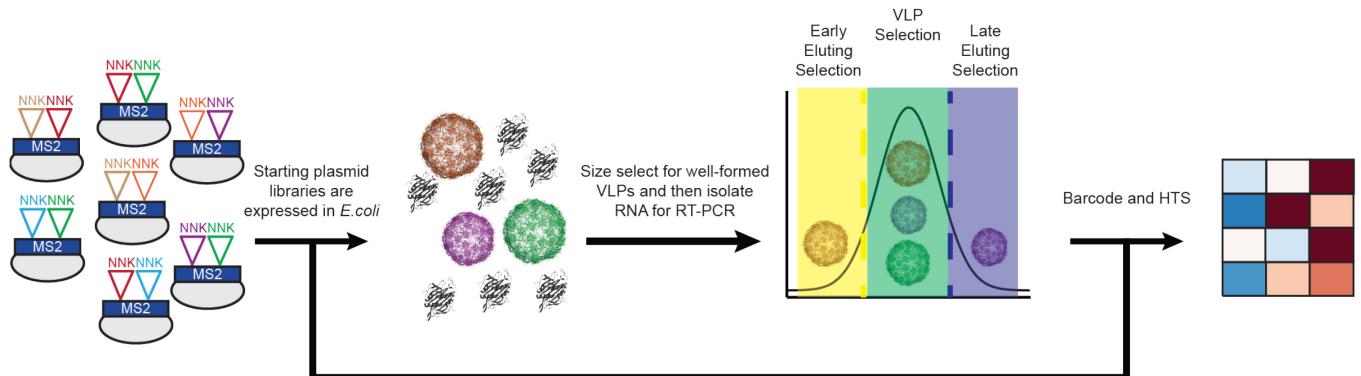
11 Virus-like particles (VLPs) are promising scaffolds for biomaterials as well as diagnostic and therapeutic
12 applications. However, there are some key challenges to be solved, such as the ability to engineer alternate
13 sizes for varied use cases. To this end, we created a library of MS2 VLP variants at two key residues in the
14 coat protein which have been implicated as important to controlling VLP size and geometry. By adapting a
15 method for systematic mutagenesis coupled with size-based selections and high-throughput sequencing
16 as a readout, we developed a quantitative assessment of two residues in MS2 coat protein that govern the
17 size shift in MS2 VLPs. We then applied the strategy to the equivalent residues in Q β VLPs, an MS2
18 homolog, and demonstrate that the analogous pair of residues are also able to impact VLP size and shape.
19 These results underscore the power of fitness landscapes in identifying critical features for assembly.

20 **KEYWORDS:** Virus-like Particles; MS2; apparent fitness landscape; Q β ; design rules

21

22

23 **Introduction**


24 Protein assemblies are found everywhere in biology and industry and serve important natural
25 functions. Virus-like particles (VLPs) are a self-assembling subset of such structures and garner particular
26 interest due to their ease of production coupled with their encapsulating geometry. These features lend
27 themselves to use in diverse applications such as enzyme spatial organization [1], therapeutic delivery [2–
28 5], imaging [6], and biomaterial scaffolding [7]. Much effort has been directed towards understanding how
29 self-assembly works [8, 9] for the further implementation of these useful protein assemblies. Despite the
30 tremendous progress in predicting proper protein folding [10], the ability to alter quaternary structures to a
31 specific design for an application remains lacking.

32 Viruses and their associated VLPs are an excellent model for protein self-assembly because they
33 often 1) express well and in high titers, 2) are straightforward to purify, 3) harbor encoding nucleic acid
34 sequences to link genotype to the resulting structures, and 4) form native structures with relatively high
35 stability. Thus, single amino acid variants of their coat proteins can yield stable alternative structures. For
36 example, a double variant of the tobacco mosaic virus (TMV) coat protein (CP) yielded a “nanodisk”[11]
37 assembly instead of the standard rod assembly. Single variants in the CP of the bacteriophage Q β yielded
38 a size distribution of assemblies that included smaller, wild-type (WT)-sized, and longer prolate VLPs [12,
39 13]. A single amino acid variant in bacteriophage MS2 CP [S37P] [14] maintains nearly identical protein
40 sequence, and has remarkably similar secondary and tertiary structure to the parent CP; however, the
41 quaternary structure changes dramatically. MS2 CP [S37P] forms a 17 nm T=1 “Mini MS2” VLP instead of
42 the 27 nm T=3 geometry WT MS2 VLP [14], such that the hexameric faces are eliminated in Mini VLP.
43 Crystal structure analysis of both Mini and WT MS2 VLPs revealed different interdimer side chain
44 interactions at residue 36 between WT and Mini MS2 VLPs, leading to a hypothesis that the change in
45 interdimer interactions at residues 36 were a contributing factor for this shifted geometry. This shift
46 illustrates how a single amino acid variation can access a large shift in the assembly mechanics of a protein
47 complex, and further underscores the utility of the MS2 VLP as a model system.

48 Protein fitness landscapes offer the ability to comprehensively study the effect of a mutation in the
49 amino acid sequence to a defined “fitness” metric used to generate the landscape. This defined fitness
50 metric may be enzyme activity, binding, infectivity, or fluorescence, among other options [15]. We

51 previously developed a method called SyMAPS (systematic mutagenesis and assembled particle selection)
 52 [16], in which a library of single amino acid mutations are generated in a VLP CP, followed by size-exclusion
 53 chromatography (SEC) to select for the ability to form icosahedral VLPs, the fitness applied in this context.
 54 Mutations are identified as present or absent following the selection by taking advantage of the native
 55 assembly dynamics of MS2. Specifically, the mRNA that encodes for a specific mutant is likely to be
 56 encapsulated and interacting with the interior of the VLP similarly to how the MS2 genome interacts with
 57 the native capsid [17]. A unique feature of this selection is that this passive encapsulation provides a
 58 snapshot into the mRNA available in the cell, but only if MS2 VLP assembly occurs. Thus, after SEC and
 59 VLP extraction, mRNA is extracted from intact VLPs that encode for assembled particles. Reverse-
 60 transcription (RT-PCR) is used to transcribe this RNA into DNA, allowing high-throughput sequencing (HTS)
 61 on the assembly selections alongside the starting library plasmids. Fitness is quantified by calculating the
 62 ratio of HTS reads from the assembly selection to those of the starting plasmid library, enabling identification
 63 of variant MS2 VLPs that likely assemble. SyMAPS has since been adapted to study permitted residues
 64 and modifications at the N-terminus, a double mutation epistatic library at the pore[18], and a library
 65 containing all three-residue insertions into the MS2 FG Loop[19].

66 Here, we adapted SyMAPS to create a two-dimensional apparent fitness landscape (2D-AFL),
 67 which is an AFL for two mutations of the CP. We set out to assess if the side chain interaction differences
 68 we see in MS2 CP [S37P] can be used as a basis for uncovering assembly rules for VLPs with the smaller-

Figure 1:Modified SyMAPS protocol for MS2 36/37 NNK² Library. The NNK codon = (Any)(Any)(G/T), so the resulting NNK² Library has 441 members. *E. coli* are transformed with the library, and the variants are expressed, purified via a process that includes a size selection using size-exclusion chromatography, and sequenced to generate an apparent fitness landscape.

69 sized phenotype. Our library consisted of 441 members, with degenerate NNK codons cloned into residues
70 36 and 37 in MS2 to encode for all 20 amino acids and a stop codon at both positions. (Figure 1).

71 Our approach takes advantage of the assembled particle selection step to separate smaller (e.g.,
72 Mini MS2-sized) VLPs from larger (e.g., MS2 WT-sized) particles. In this scheme, smaller diameter VLPs
73 will elute in a distinctly later peak than the WT sized MS2 VLPs (Figure 1), offering the opportunity to identify
74 the important contributions to the formation of each type of particle. We find that our hypothesis that
75 residues 36 and 37 are important for Mini MS2 formation is supported. When mutations in this region are
76 applied to an MS2 homolog Q β , we see a similar smaller sized VLP phenotype emerge.

77 **Materials and Methods**

78 **Strains and Media**

79 Strains used in this study include *Escherichia coli* DH10B MegaX T1r DH10B *Escherichia coli*
80 (ThermoFisher Scientific, Cat# C640003), which were used for all library experiments, and DH10B
81 chemically competent cells produced in-house, which were used for expression of individual variants of
82 interest. Overnight inoculums from a single colony were grown for 16-20 h at 37 °C shaking at 225 RPM in
83 Luria Broth (LB)-Miller media (Fisher Scientific, Cat# BP1426-2) with chloramphenicol at 34 mg/L.

84 **Library Generation**

85 To generate libraries with two amino acid mutations in MS2 and Q β CPs, we modified a library
86 preparation strategy used in prior studies to generate variant MS2 VLP libraries [14, 16, 17, 19]. The
87 strategy, developed in the Bolon lab as EMPIRIC cloning [22], uses a plasmid with a self-encoded
88 removable fragment (SERF) surrounded by inverted Bsal restriction sites. With this setup, Bsal digestion
89 simultaneously removes both SERF and Bsal sites. These plasmids are termed “entry vectors”. The SERF
90 in the entry vectors used in this study encodes constitutively expressed GFP to permit green/white colony
91 screening. The MS2 36/37 NNK² library was inserted into a previously generated entry vector of this
92 design[16] . We created a new entry vector for the Q β 40/41 NNK² library via Gibson cloning, replacing
93 residues 28 -54 with a constitutively active GFP flanked by Bsal sites.

94 The fragment that replaces the SERF in the entry vectors contains the double mutants for the 441-
95 member insertion libraries. These fragments were synthesized using overlapping forward and reverse
96 single-stranded DNA oligonucleotide primers, which were purchased through Sigma-Aldrich. Each primer

97 was resuspended in water, pooled, and diluted to a final concentration of 50 ng/µL. The reverse strands
98 were filled in by overlap extension (10 cycles of PCR). The resulting double-stranded DNA fragments were
99 purified using a PCR Clean-up Kit (Promega, Cat# A9282). The purified DNA was then cloned into the entry
100 vectors in place of the respective SERF using Golden Gate techniques [14, 16, 17, 19]. Briefly, a cycling
101 Golden Gate method was performed that shifted between 37 °C for 2 minutes and 16 °C for 5 min for 24
102 cycles followed by 50 °C for 5min and 80 °C for 5 min. The resulting Golden Gate assemblies were desalting
103 on membranes (Fisher Scientific# VSWP02500) for 5 min. Then MegaX DH10B *E. coli* was transformed
104 with the resulting desalting Golden Gate assemblies and recovered for 1 h at 37 °C with shaking at 225
105 RPM. The recovered electroporated cells were plated on large (245 × 245 × 20 mm, #7200134, Fisher) LB-
106 agar plates containing 34 mg/L chloramphenicol and allowed to grow overnight at 37 °C. To confirm that
107 each unscreened, naïve library had at least three times the theoretical library size, we plated and counted
108 1:100 dilutions of recovered, transformed cells. This process was done in biological duplicate for the MS2
109 36/37 library and biological triplicate for the Qβ 40/41 library at every step.

110 **VLP Library Expression and Purification**

111 Colonies for each library replicate were individually scraped from their plates into 5 mL of 2×YT
112 with 34 mg/L chloramphenicol and grown for 2 h at 37 °C with shaking at 225 RPM. Glycerol stocks were
113 made with equal OD equivalents saved in each tube. Each replicate was then subcultured into 1 L of 2×YT
114 with 34 µg/mL chloramphenicol. The cultures were grown to an OD₆₀₀ of 0.4-0.6, and then expression was
115 induced with 0.02% (w/v) L-(+)-arabinose. The NNK² double mutant libraries were expressed at 37 °C with
116 shaking at 225 RPM overnight (16-20 h). The cells were then harvested by centrifugation at 4,800 × g for
117 10 min, resuspended in 10 mM sodium phosphate, 200 mM sodium chloride, pH 7.2 buffer, and sonicated
118 at 50% amplitude, pulsing 2 s on and 4 s off for a total of 10 min of “on” time (Fisher Scientific, catalog no.
119 FB120A220, probe CL-18). Note that from harvesting onward the libraries were kept at 4 °C. The libraries
120 were precipitated overnight with 50% (w/v) ammonium sulfate and collected by centrifugation at 17,000 ×
121 g for 10 min. Pelleted precipitates were then resuspended in 10 mM sodium phosphate, 200 mM sodium
122 chloride, pH 7.2 buffer and 50% (w/v) ammonium sulfate precipitated for at least one hour. Samples were
123 then collected by centrifugation at 17,000 × g for 10 min resuspended in 10 mM sodium phosphate, 200

124 mM sodium chloride, pH 7.2 buffer and syringe filtered (Polyethersulfone (PES) 0.45 µm, Fisher Scientific
125 catalog no. 05-713-387).

126 ***FPLC SEC (Assembly Selection)***

127 VLPs were purified on an Akta Pure FPLC system via SEC with a HiPrep Sephacryl 16/60 S-500
128 HR (GE Healthcare Life Sciences, Cat# 28935607) column. Isocratic flow was used to elute, with a 10 mM
129 sodium phosphate, 200 mM sodium chloride, pH 7.2 buffer. Fractions expected to contain MS2 CP were
130 collected for further analysis (fractions from 0.47 – 0.7 column volumes (CV), representing the fractions that
131 harbor WT and/or Mini MS2 VLPs). To identify double mutants with different sizes, fractions from 0.47 –
132 0.5 CV were pooled as the “early fraction” and separately analyzed, as were fractions from 0.67 – 0.7 CV
133 as the “late fraction”. These fractions were determined from differences in the FPLC spectra of MS2 WT
134 and Mini MS2 VLPs (Supplemental Figure 1). Similarly, fractions containing Q β CP were collected for
135 further analysis based on where WT Q β is observed to elute under the same conditions (fractions from 0.47
136 – 0.7 CV). To identify double mutants with different sizes, the same CV fractions were collected for the Q β
137 “early fraction” and “late fraction.”

138 ***Sample Preparation for High-Throughput Sequencing***

139 Plasmid DNA was extracted from frozen glycerol library aliquots using a Zippy Plasmid Miniprep
140 Kit according to manufacturer instructions (Zymo, Cat# D4036). After performing assembly selections on
141 the double mutant libraries, RNA was extracted from the samples taken from SEC using previously
142 published protocols [14, 16, 17, 19]. Briefly, TRIzol (Thermo Fisher Cat# 15596026) was used to
143 homogenize samples, followed by chloroform addition. The sample was separated by centrifugation into
144 aqueous, interphase, and organic layers. The aqueous layer, which contained RNA, was isolated, and the
145 RNA was then precipitated with isopropanol and washed with 70% ethanol. RNA was then briefly dried and
146 resuspended in RNase-free water. cDNA was then synthesized using Superscript III first-strand cDNA
147 synthesis kit from Life Technologies (catalog no. 18080051, random Hex primer). cDNA and plasmids were
148 both amplified with two rounds of PCR to add barcodes (10 cycles for MS2, 13 cycles for Q β) and the
149 Illumina sequencing handles (8 cycles), respectively, following Illumina 16S Metagenomic Sequencing
150 Library Preparation recommendations. Libraries were combined and analyzed by 300 PE MiSeq in

151 collaboration with the Lucks Lab at Northwestern. Reads in excess of 2 million passed filter, and an overall
152 Q30 > 75%.

153 ***High-throughput Sequencing Data Analysis***

154 Data were trimmed and processed as previously described[16, 19, 20] with minor variation. Briefly, data
155 were trimmed with Trimmomatic [21] with a 4-unit sliding quality window of 20 and a minimum length of 30.

156 ***2D-AFL calculations***

157 Trimmed high-throughput sequencing reads were analyzed using Python programs written in-
158 house. Briefly, reads encoding for the first 57 residues of the MS2 or Q β CP were isolated, and the number
159 of mutations per read was calculated. Reads with zero mutations (WT reads) or greater than two mutations
160 were both removed. In reads with two mutations, the two non-wild-type codons were identified and counted.
161 In reads with one mutation, the mutated codon was tallied in combination with every wild-type codon. Non-
162 wild-type codons that did not end in G or T were also eliminated as these were not encoded by NNK.
163 Codons were then translated into amino acids. These calculations were repeated for all experiments to
164 generate abundances before and after each assembly selection. Relative percent abundances were
165 calculated as previously described [14]. Briefly, the grand sum, or the sum of all counts at every combination
166 at the two residues of interest, were calculated. We next divided the matrix by its grand sum, generating a
167 matrix of percent abundances (PA). These calculations were repeated for each biological replicate of
168 plasmid, VLP fraction, early fraction, or late fraction, generating eight PA matrices for the MS2 36/37 library
169 and twelve PA matrices for Q β 40/41 library. We calculated relative percent abundances (RPA) by dividing
170 the PA for the selected library compared by the PA for the plasmid library for each replicate.

171 (EQ 1.) $PA = \frac{\text{Abundance of variant}}{\text{Sum of all variants}}$

172 (EQ 2.) $\text{Relative Percent Abundance} = \frac{PA_{VLP}}{PA_{Plasmid}}$

173 We calculated the mean across two replicates for MS2 and three replicates for Q β . All Nan (null)
174 values, which indicate variants that were not identified in the plasmid library, were ignored. Scores of zero,
175 which indicate variants that were sequenced in the unselected library but absent in the VLP library, were
176 replaced with an arbitrary score of 0.0001. We calculated the log10 of the Relative Percent Abundance
177 array to calculate the final array for each replicate. Finally, we calculated the average apparent fitness score

178 (AFS) value for each amino acid combination by finding the mean value for every combination across
179 replicates.

180 (EQ 3.) $AFS = \log_{10}(Relative\ Percent\ Abundance)$

181 ***Mini Forming Propensity Apparent Fitness Score Calculation***

182 AFSs were generated using the early fraction and late fraction from the FPLC SEC assembly
183 selection barcoded DNA and the starting plasmid library barcodes. The MFP AFS is the ratio of the PA from
184 the late fraction over the PA from the early fraction.

185 (EQ 4.) $MFP\ AFS = \log_{10}\left(\frac{PA_{Late\ Fraction}}{PA_{Early\ Fraction}}\right)$

186 ***HPLC SEC***

187 To prepare samples for running on HPLC, each was normalized to an A_{280} value of 1 using a
188 Nanodrop spectrophotometer. VLP variants were analyzed on an Agilent 1290 Infinity HPLC with a YARA-
189 4000 SEC column (5 μ m, 2000 \AA , 7.8x300 mm) with isocratic flow of 10 mM sodium phosphate, 200 mM
190 sodium chloride, pH 7.2 buffer. Fractions were collected at the characteristic elution peak for WT MS2 and
191 Q β VLPs (7.5 -8.5 min) and Mini-sized VLPs (9.4-10.6 min).

192

193 ***Relative Size Bias***

194 Area under the WT and Mini HPLC characteristic peaks are calculated for each biological replicate
195 of an individual variant using the trapezoid rule. The relative size bias is the ratio of the area under the
196 characteristic Mini peak over the sum of the areas of the WT and Mini characteristic peak. A value of one
197 means there was no area under the WT characteristic peak while a value of 0.5 means that the area under
198 the WT and Mini peaks are equivalent.

199 (EQ 5.) Relative Size Bias = $\frac{\text{Mini Peak Area}}{\text{Mini Peak Area} + \text{WT Peak Area}}$

200 ***Individual Variant Cloning***

201 Individual variants were cloned using a variation on the method described earlier. Briefly, overlap
202 extension PCR yields a double stranded fragment that spans the length of the missing 26-codon region in
203 the entry vector. Each fragment was cloned into the entry vector using standard Golden Gate cloning
204 techniques. Cloned plasmids were transformed into chemically competent DH10B cells. Individual clones
205 were sequence confirmed via Sanger Sequencing (Quintara Biosciences) prior to expression. All plasmids

206 were stored in DH10B cells and plasmid names described in Supplemental Table 1 refer to strain
207 transformed with the plasmid. All primer names are described in Supplemental Table 2.

208 ***Individual Variant Expression and Purification***

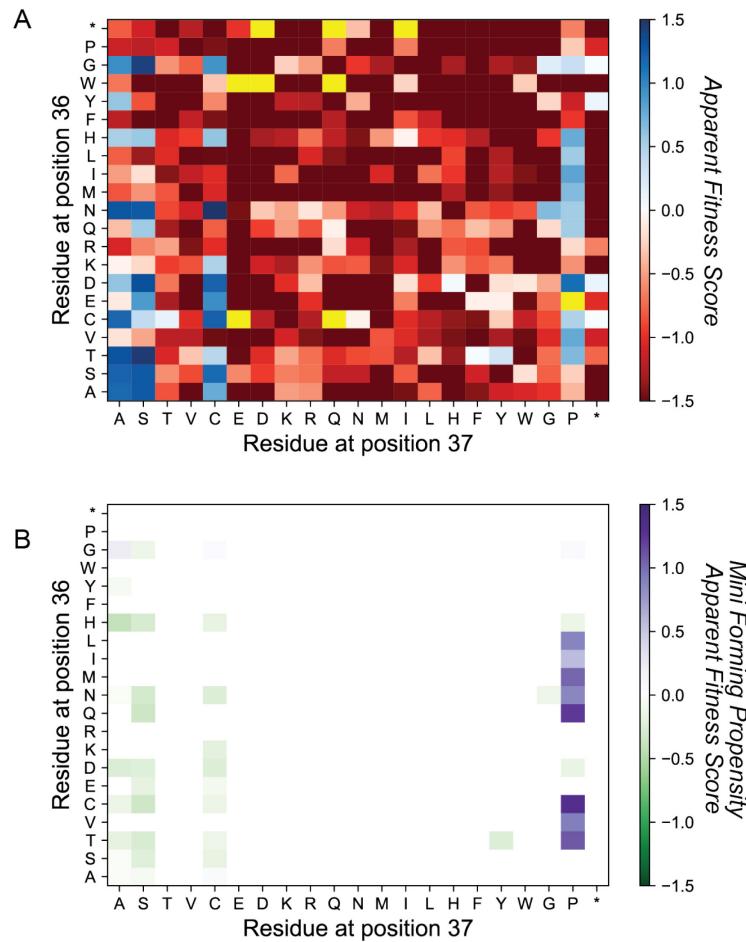
209 Selected variants were individually expressed in 50 mL cultures of 2×YT following the same
210 procedure as for the libraries. The cultures were pelleted, resuspended in 10 mM sodium phosphate, 200
211 mM sodium chloride, pH 7.2 buffer, lysed by sonication, precipitated with 50% w/v ammonium sulfate, and
212 evaluated by HPLC for VLP assembly.

213 ***Transmission Electron Microscopy (TEM)***

214 VLP samples purified by HPLC were collected and spin concentrated with a centrifugal filter with a
215 100 kDa molecular weight cutoff (Millipore Sigma, catalog no. UFC510024) at 5,000 G for 10 min. All VLP
216 samples greater than 10 mg/mL were diluted down to 10 mg/mL for TEM visualization. VLP samples were
217 fixed with 2% (v/v) glutaraldehyde in water solution on 400 mesh Formvar-coated copper grids (EMS
218 Cat#FF400-Cu). After fixation, grids were washed with MilliQ™ pure water and stained with 1% (w/w) uranyl
219 acetate in water. Grids were dried and stored prior to imaging. Images were acquired on a JEOL 1230
220 transmission electron microscope with a Gatan 831 bottom-mounted CCD camera with a 200 kV
221 accelerating voltage. TEM Images were contrast-adjusted and cropped using ImageJ [22]. For VLP sizing,
222 images were scale-corrected based on the instrument used to collect the images. The oval tool was used
223 to manually trace an ellipse surrounding VLPs. The diameter of the ellipse, corresponding to the diameter
224 for the VLP, was recorded. Further data analysis was carried out using Microsoft Excel or Python.

225 **Results and Discussion**

226 ***Generating a 2D-AFL for MS2 36/37***


227 Based on a comparison of previously published crystal structures of MS2 and Mini MS2 [14], we
228 hypothesized that residues 36 and 37 in MS2 are crucial to forming Mini MS2 VLPs due to the change in
229 sidechain interactions, such as hydrogen bonding, at residue 36. The change from the MS2 WT VLP is a
230 result of the proline mutation at residue 37 shifting the structure of the Mini MS2 VLP. To test this
231 hypothesis, we created a 441-member library in which residues 36 and 37 were encoded as NNK to ensure
232 we tested all possible amino acids simultaneously at these two positions. The mutations were introduced
233 into a pBAD-inducible vector. *E. coli* cells harboring these vectors were collected into a single culture,

234 grown, and induced for expression of all library members. To identify combinations of residues that
235 conferred Mini MS2-sized particles as well as WT sized particles, we selected for assembled particles using
236 fast protein liquid chromatography (FPLC) SEC. To do so, we recovered fractions from the characteristic
237 VLP elution peak and from both the leading (earlier) portion of the peak and the lagging (later) portion of
238 the VLP peak. Given that larger particles elute earlier than smaller particles with SEC, we reasoned that
239 these selections would be biased toward larger and smaller particles, respectively (Figure 1). The overall
240 VLP selection included the elution range starting at the early fraction and ending at the later fraction. To
241 identify the sequences encoding each type of particle, we first extracted RNA from all three of the collected
242 assembly fractions, because mRNA encoding an assembly competent variant MS2 VLP is encapsulated
243 within the VLP during the assembly of that particle within the host cell[23–25]. We then performed RT-PCR
244 to generate the DNA that encoded the mutations from our assembled VLP variant. We barcoded these
245 samples and our starting plasmid library for each biological replicate. After high-throughput sequencing, the
246 2D-AFL was then generated from an AFS [14] for each member of the library, which is calculated by taking
247 the log10 of the ratio between the relative abundance of the plasmid library over the relative abundance of
248 the VLP selection fraction reads. An artificial AFS of -4.0 is assigned to mutants that are present in the
249 plasmid library but not sequenced in the VLP assembly fractions. Based on our prior work, we find that an
250 AFS > 0.2 indicates assembly competent VLPs and an AFS < -0.2 indicates assembly deficient VLPs [14,
251 16, 17, 19]. We initially speculated that the smaller mini-sized MS2 VLPs might have lower encapsulated
252 mRNA abundances, however analysis of our previous one-dimensional fitness landscape[16] reveals that
253 the MS2 CP[S37P] variants were sufficiently abundant to be well above assembly cutoff.

254 ***Assessing the Quality of the MS2 36/37 2D-AFL***

255 To explore the coverage of the 2D-AFL, defined as how many members of the library are present,
256 we analyzed the counts of each possible member in the biological replicates of the plasmid library. The
257 starting plasmid library is the basis for any fitness calculation, so if a double mutant is missing in the plasmid
258 library, then no fitness data can be computed for that double mutant. Approximately 99.9% of the library
259 was present in the biological replicates of the plasmid library reads, with missing mutants colored yellow
260 and striped in our AFL (Figure 2A). Of the nine missing double mutants, three were designed to encode the
261 TAG stop codon, so we do not expect those variants to form assembly competent VLPs. With a significant

portion of the plasmid libraries present for expression, we are confident that the analysis we derive from the 2D-AFL reflects the nature of the sequence space of possible mutations at residues 36 and 37 of the MS2 CP.

Figure 2: 2D-Apparent Fitness Landscape of MS2 36/37 Library. A) 2D-AFL of the VLP selection library. Blue indicates double variants were enriched after assembly selection and red indicates double variants that were less abundant after selection. Yellow indicates missing values. B) Composite 2D-AFL in which Mini Forming Propensity Apparent Fitness Scores are overlayed double variant combinations whose AFS > 0.2. Purple indicates variants were more abundant in the later eluting fractions vs the earlier eluting fractions. Green indicates variants were more abundant in the earlier eluting fractions vs the later eluting fractions.

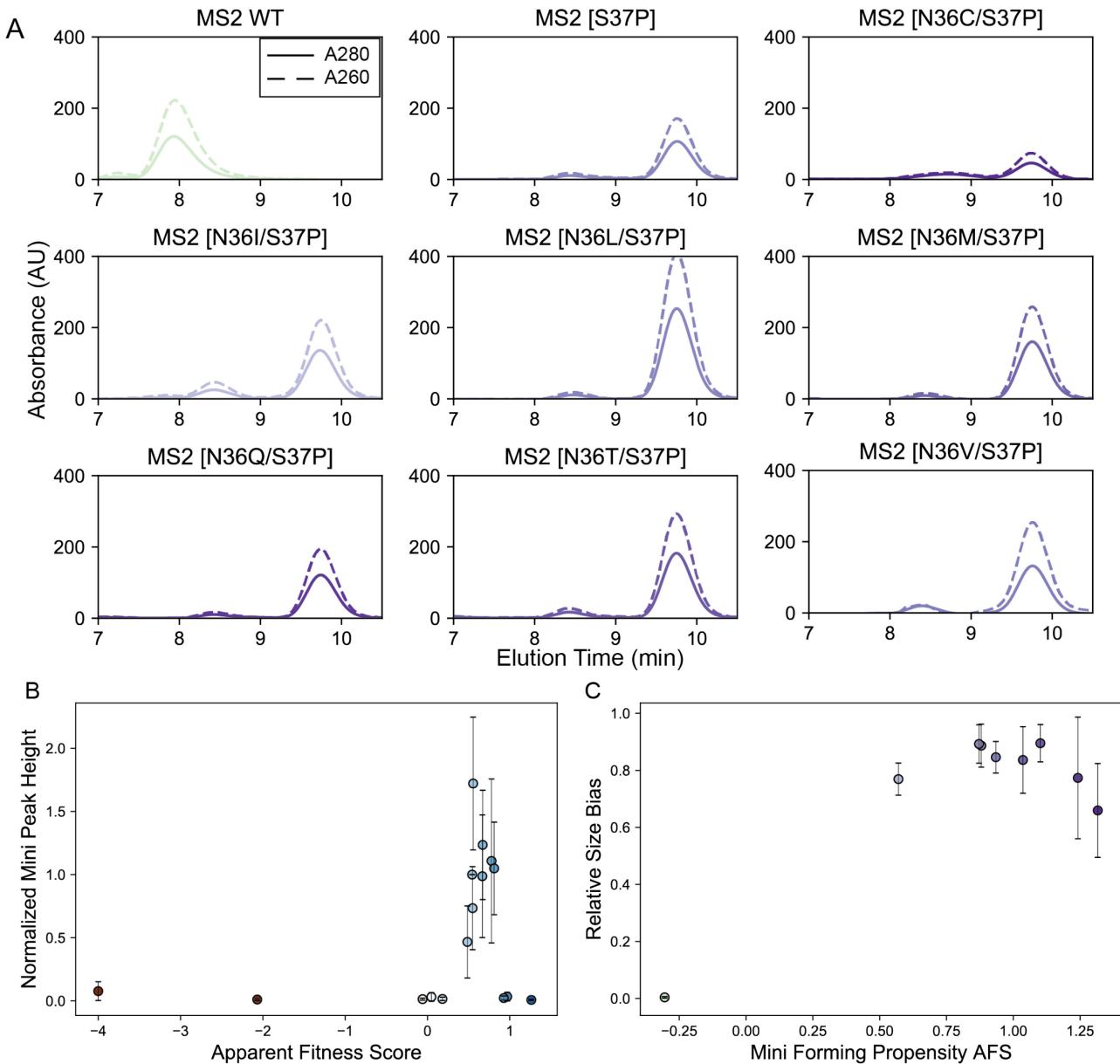
Analysis of the 2D-AFL was next performed to determine whether scores at nonsense mutations were consistent with their expected value. Nonsense mutations are mutations in which a stop codon is encoded and thus should not form full length protein, so we expected an AFS < -0.2 for any variant encoding

269 at least one nonsense mutation. 38/41 nonsense mutations were present in our plasmid library and the
270 average AFS for these mutations are -2.2, consistent with what we expected for non-assembling mutants.
271 Only four of the possible nonsense mutations have an AFS > 0, but those variants are all less than 0.2, and
272 are thus below the cutoff for VLP assembly. Approximately 66% of nonsense mutants are screened out of
273 the VLP library completely, which is indicated by an AFS of -4.

274 ***Identifying Trends and Validating the MS2 36/37 2D-AFL***

275 Using our heuristic AFS > 0.2 as a cutoff for assembly, we observed that assembly competent
276 VLPs have either an alanine, cysteine, proline, or serine at position 37 (Figure 2A). To validate that an AFS
277 > 0.2 is predictive of icosahedral VLPs with this library, we constructed a subset of double mutants with an
278 alanine, cysteine, or proline at position 37 and used HPLC SEC to measure assembly. Assembly is
279 evidenced by a higher A_{260} peak than A_{280} peak at a given position, so we considered a particle to be
280 assembled if $A_{260} > A_{280}$ either at the characteristic WT VLP elution time, 7.5 -8.5 min, or at the characteristic
281 Mini VLP elution time, 9.4-10.6 min [14]. For MS2 WT (CP[N36/S37], AFS = 1.3) and Mini MS2
282 (CP[N36/S37P], AFS = 0.54) VLPs, the HPLC SEC assembly assay yielded expected peaks in the WT or
283 Mini elution times respectively.

284 We next examined select members of the 2D-AFL with a focus on those that contain a flexible
285 amino acid at residue 36 and assemble per our heuristic of an AFS > 0.2. First, we checked that three
286 predicted assembling double mutants, MS2 CP[N36G/S37A], MS2 CP[N36G/S37C], and MS2
287 CP[N36G/S37P], formed particles with the flexible amino acid glycine at residue 36. We individually cloned
288 each double mutant, leveraging our library's Golden Gate "entry vectors" to clone the variants into an
289 expression plasmid. We performed small scale 50 mL expressions of these three variants, purified with the
290 same techniques as used with the library, and then assessed the VLP assembly via HPLC SEC. All three
291 of these double variants elute near the expected MS2 WT elution time and have $A_{260} > A_{280}$. We note that
292 the peaks of these variants are broader than those of MS2 WT and elute slightly later, but they do not
293 overlap with the Mini MS2 characteristic peak (Supplemental Figure 2).


294 We next examined two assembly deficient members of the library, introducing a bulky tryptophan
295 or another proline into residue 36. Our HPLC SEC-based assembly validation of MS2 CP[N36W/S37P]
296 (AFS = -4) and MS2 CP[N36P/S37P] (AFS = -2.1) revealed that no peaks were present in any characteristic

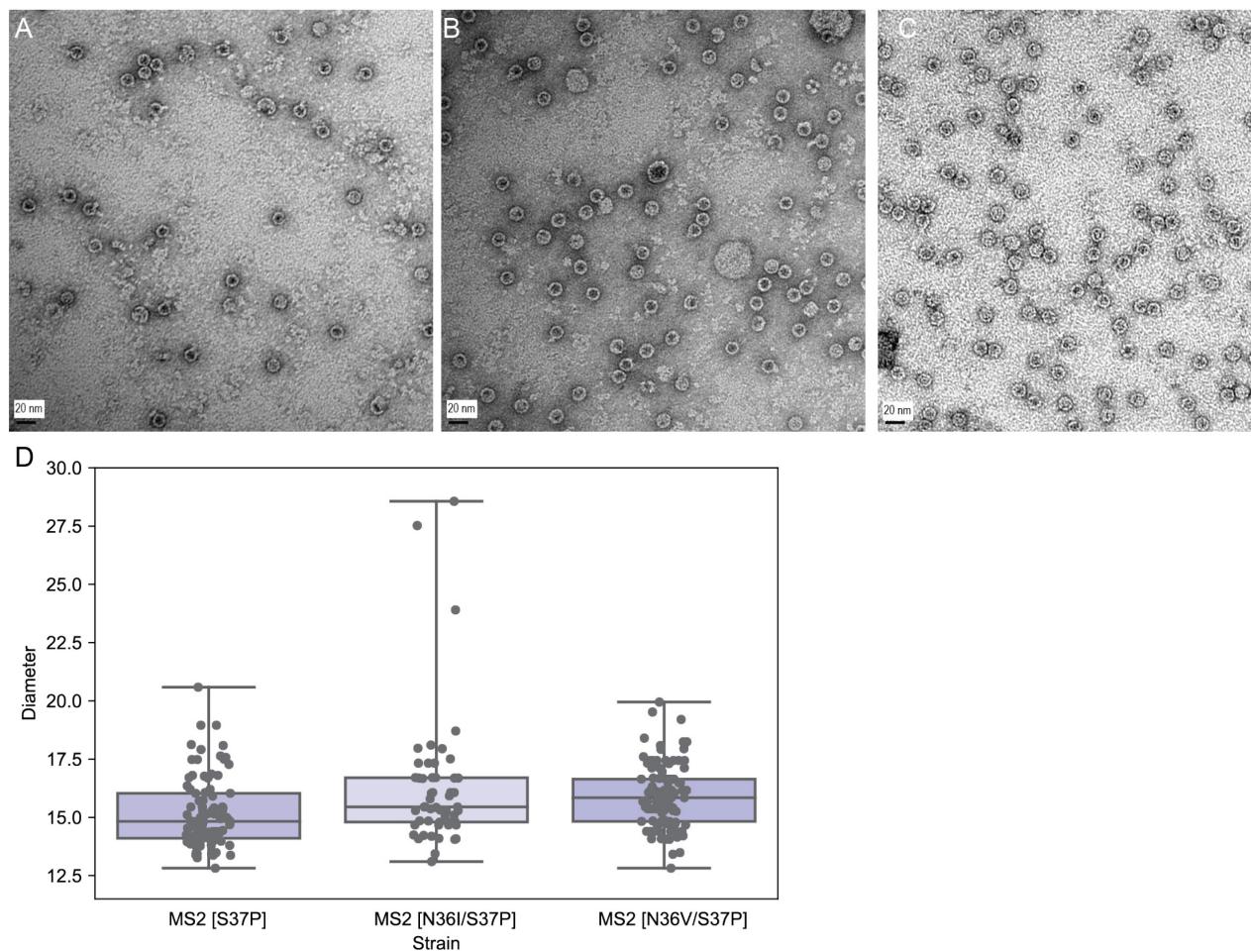
297 VLP elution ranges, consistent with the non-assembling phenotype we expected. (Supplemental Figure 3
298 A-B). We finally wanted to examine the assembly nature of library members for which we were unable to
299 predict assembly from the AFS, such as MS2 CP[N36E/S37F] and MS2 CP[N36D/S37H], which both have
300 an AFS = ~0. As assessed by our HPLC SEC-based method, these mutants did not form VLPs
301 (Supplemental Figure 3 C-D), supporting our hypothesis that an AFS > 0.2 continues to represent VLP
302 assembly for this 2D-AFL.

303 ***Identifying Different Sized MS2 VLPs using the Mini Forming Propensity AFS***

304 With our assays established and validated, we returned to our goal of understanding how mutations
305 in residues 36 and 37 affect Mini MS2 formation propensity. To identify different sized MS2 VLPs using the
306 SyMAPS approach, we simultaneously generated 2D-AFLs based on the later eluting fractions and earlier
307 eluting fractions of the FPLC SEC assembly selection (Figure 1). We hypothesized that the ratio of the
308 AFSs derived from the later eluting AFL over the AFSs derived from the early eluting AFL (Supplemental
309 Figure 4) will provide us with a useful metric to identify potential smaller VLPs. We define this comparison
310 metric as the “Mini MS2 Forming Propensity” (MFP) AFS. We further constrained the set to those variants
311 that have an AFS > 0.2 in the assembly 2D-AFL. Our composite MFP 2D-AFL therefore includes only the
312 double mutant-containing variants in the library that are likely to form Mini MS2 sized VLPs as shown in
313 purple (Figure 2B).

314 The composite MFP 2D-AFL revealed 12 MS2 CP double mutants that potentially form Mini MS2
315 sized VLPs. Although MS2 CP[N36G/S37A], MS2 CP[N36G/S37C], and MS2 CP[N36G/S37P] MFP AFSs
316 > 0, we had already determined these double mutants do not have peaks in the characteristic Mini VLP
317 elution times (Supplemental Figure 2). Interestingly, 9/12 of the double mutants include the MS2 CP [S37P]
318 mutation. Moreover, 8/9 of the MS2 CP[S37P]-based double mutants have an AFS > 0.2 and an MFP AFS
319 ≥ 0.2 (Figure 2B). The trend reaffirms the importance of a benchmark for a physical assembling phenotype
320 being set at an MFP AFS ≥ 0.2 , rather than MFP AFS ≥ 0 , just as we observed with prior MS2 fitness
321 landscapes.

Figure 3: HPLC SEC Validation of MS2 36/37 2D-AFL. A) HPLC Traces of MS2 WT, Mini MS2 and double mutants that have AFS >0.2 and Mini Forming Propensity (MFP) AFS >0.2. Traces colored by Mini Forming Propensity AFS value. B) Normalized Mini Peak Heights plotted against the variant AFS. Peak heights were normalized against MS2 CP [S37P] ($n=3$). Points colored by the assembly AFS, including non-assembling and non-mini forming variants. C) Relative Size Bias plotted against Mini Forming Propensity AFS.


322 HPLC SEC assembly validation revealed that members of the composite 2D-AFL with MFP AFS
 323 ≥ 0.2 form Mini MS2-sized VLPs (Figure 3A). We see a smaller peak with a higher A_{260} than A_{280} , consistent
 324 with VLP formation, appearing in the later time frame of the characteristic WT elution peak for select double
 325 variants such as MS2 CP[N36I/S37P] and MS2 CP[N36T/S37P]. The presence of this smaller peak raised
 326 the hypothesis that other VLP assemblies were forming with these double variants.

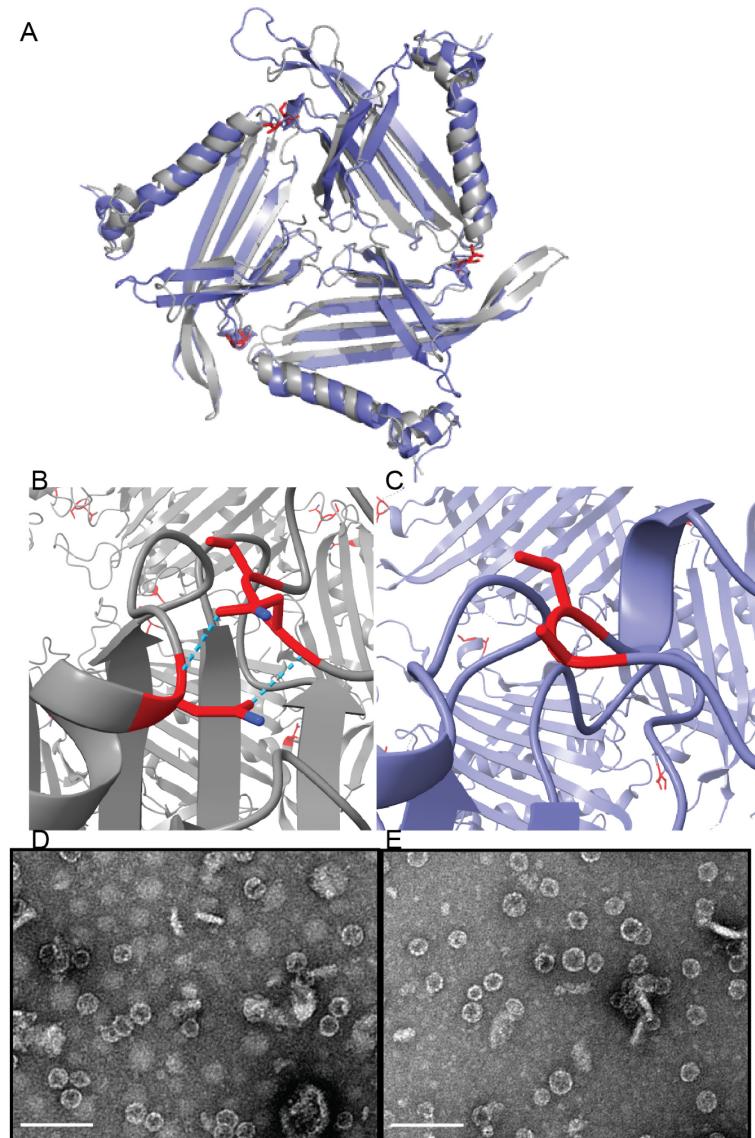
327 **Characterization of MS2 CP[S37P] Double Mutant VLPs**

328 We next assessed if the different amino acid substitutions to residue 36 among the eight MS2
329 CP[S37P]-containing double variants influenced the extent of Mini MS2 VLP formation. For each individual
330 double mutant, we analyzed the A_{280} traces, a proxy for protein concentration, from the characteristic Mini
331 MS2 VLP peak. We calculated the maximum peak height for each double variant and normalized to the
332 MS2 CP[S37P] value. Four double mutants, MS2 CP[N36L/S37P], MS2 CP[N36V/S37P], MS2
333 CP[N36I/S37P], and MS2 CP[N36T/S37P], had normalized Mini peak height values > 1 , possibly forming
334 more Mini MS2 VLPs than the original MS2 CP[S37P] (Figure 3B). For three of these (MS2 CP[N36L/S37P],
335 MS2 CP[N36V/S37P], MS2 CP[N36I/S37P]), the non-native amino acid sidechains for the mutated residues
336 do not have hydrogen bonding interactions such as the asparagine at residue 36[14] in Mini MS2, so the
337 presence of Mini-sized MS2 VLPs was unexpected.

338 We next sought to understand if MS2 CP[S37P]-including variants formed homogeneous or
339 heterogeneous VLP size populations. To do so, we analyzed the elution peak areas from the HPLC SEC
340 assembly fractions compared to their MFP AFSs. The relative size bias is a metric that compares the
341 maximum normalized peak area in Mini and WT elution time ranges. A relative size bias of one is analogous
342 to Mini MS2 behavior, while a relative size bias = 0.5 would indicate an even split between Mini MS2 and
343 MS2 WT peak areas (Figure 3C). MS2 WT has a relative size bias of 0.0038 and Mini MS2 has a relative
344 size bias of 0.89 by this metric, giving us confidence that the metric would reflect different-sized VLP
345 phenomena. Of the eight double variants predicted to form a Mini MS2-sized particle, MS2 CP[N36C/S37P],
346 MS2 CP[N36I/S37P], and MS2 CP[N36T/S37P] have the lowest relative size bias scores at 0.65, 0.76, and
347 0.77 respectively. Of these three double mutants, MS2 CP[N36C/S37P] has an MFP AFS of 0.93, MS2
348 CP[N36T/S37P] has an MFP AFS of 1.1, and MS2 CP[N36I/S37P] MFP AFS is the lowest of the mutants
349 predicted to form Mini MS2 VLPs with an MFP AFS of 0.567, which is still well above the 0.2 threshold. We
350 identified MS2 CP[N36I/S37P] as a likely candidate for forming a heterogeneous population of both Mini
351 and WT sized VLPs due to the combination of having a higher A_{260} than A_{280} in both the Mini MS2 and MS2
352 WT characteristic elution ranges, having the lowest relative size bias, and the lowest MFP AFS of our eight
353 selected double variants.

354 To assess the possibility of other sizes or geometries arising in our samples, we decided to use
 355 TEM to study individual particles at higher resolution. To do so, we modified the HPLC SEC VLP assembly
 356 assay to collect fractions ranging from the characteristic WT to the characteristic Mini elution peaks. We
 357 combined the fractions into one sample, concentrated the sample, and then loaded the supernatant onto
 358 grids for TEM analysis. We performed this assay for Mini MS2 as a positive control for mini-size VLP
 359 assembly. We also examined MS2 CP[N36V/S37P] as a sample likely to form exclusively Mini-sized MS2
 360 VLPs, and MS2 CP[N36I/S37P], which our various metrics indicated may form other sizes or geometries in
 361 addition to Mini-sized VLPs. All the variants chosen had visual evidence of Mini VLPs by TEM (Figure 4A-
 362

Figure 4: TEM Analysis of individual variants for Mini-sized MS2 VLPs. Black bar represents 20 nm. A) MS2 CP[S37P] B) MS2 CP[N36I/S37P] C) MS2 CP[N36V/S37P] D) Diameters of at least 50 VLPs quantified from TEM images are shown.


362 C). We see that in MS2 CP[N36I/S37P] we have a majority of Mini MS2 VLPs, but some evidence of WT
363 sized VLPs (Figure 4, B and D).

364 TEM image analysis was performed with at least 90 particles counted per double variant. TEM
365 analysis on MS2 CP[N36I/S37P] characteristic WT elution fraction alone also showed that WT VLPs are
366 forming (Supplemental Figure 5), so we were confident that MS2 CP[N36I/S37P] forms a heterogeneous
367 population of MS2 VLPs.

368 The change in sidechain interactions due to the proline mutation at residue 37 likely contributes to
369 MS2 VLPs forming smaller 17 nm particles. Analysis of the crystal structure of MS2 WT VLPs revealed that
370 there are two hydrogen bonding interactions between native asparagine in residue 36 in a C/C dimer and
371 native asparagine in residue 98 in the B conformation of an A/B dimer[14, 26]. These two hydrogen bonds
372 were between the sidechain oxygen at residue 36 in the C conformation and backbone nitrogen at residue
373 98 in the B conformation and conversely the sidechain oxygen at residue 98 in the B conformation and the
374 backbone nitrogen at residue 36 in the C conformation. In the Mini MS2 VLP crystal structure, the sidechain
375 interactions between residues 36 and 98 changed to the sidechain nitrogen in the asparagine at residue 36
376 of one monomer and the backbone oxygen in the asparagine at residue 98 of an opposing MS2 CP[S37P]
377 monomer. We hypothesized that this interaction difference, the single inter sidechain hydrogen bonding
378 interaction, could lead to more flexibility in VLP assembly for Mini MS2 VLPs. We see that Mini MS2 CP
379 have more flexibility in forming CP dimers, with Mini MS2 having five distinct conformations compared to
380 the three conformations in WT MS2 CP. With the other known nitrogen containing amino acid, glutamine,
381 at position 36, MS2 CP[N36Q/S37P], homogeneous size populations of Mini MS2 VLPs are formed.
382 Threonine at residue 36 potentially hydrogen bonds with the side chain nitrogen at residue 98 and not the
383 oxygen in this residue, yet we see MS2 CP[N36T/S37P] VLPs form a homogeneous population of Mini MS2
384 VLPs. Moreover, five of the eight double mutants we validated as forming Mini MS2 VLPs did not have any
385 potential hydrogen bonding interaction at residue 36. To further explore the assembly dynamics of these
386 double variant MS2 VLPs, Cryo-EM of specific variants should be performed, especially MS2
387 CP[N36Q/S37P], which has the highest probability of having similar side chain interactions of Mini MS2
388 VLPs and MS2 CP[N36I/S37P] yet appears to form a heterogeneous population with respect to size.

389 **Applying Design Heuristics for Mini MS2 VLPs to MS2 Homologs**

390 We hypothesized that the heuristics we identified for MS2 are generalizable to other VLPs. There
391 are many other bacteriophages that can form VLPs by overexpressing a coat protein, and a number of
392 these are structurally similar to MS2 [26, 27]. We decided to study the CP of Q β bacteriophage as a second
393 model VLP, because it has a solved structure, forms VLPs, and is at least 20% similar in coat protein
394 sequence to MS2. (Figure 5A). We rationally imposed a proline mutation into residue 40 of Q β , the
395 analogous position to residue 37 in MS2, to see if we could recreate the smaller sized VLP phenotype
396 (Figure 5A). Both residue 40 in Q β and residue 37 in MS2 are in unstructured loop regions of their coat
397 protein (Figure 5B-C). Therefore, even if there were less interaction with other amino acids at residue 40 in
398 Q β , we hypothesized that a proline mutation could shift the CP in similar ways to Mini MS2 CP. TEM
399 visualization of Q β CP[A40P] mutants demonstrate a heterogenous size population results from this
400 mutation, which confers both WT Q β -sized and smaller-sized VLPs (Figure 5E).

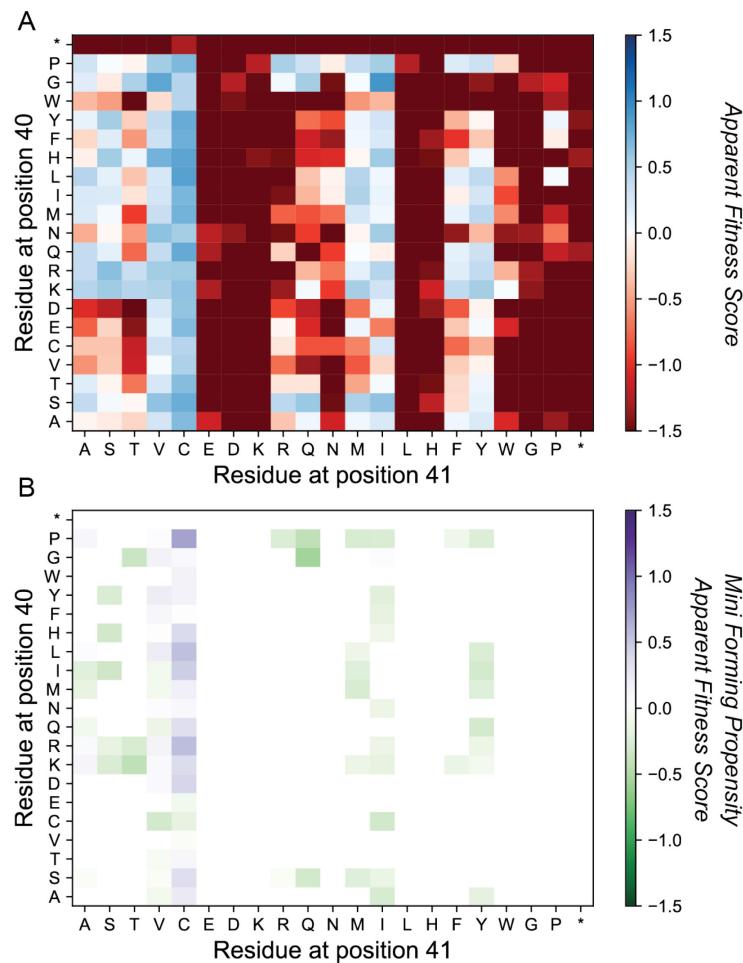
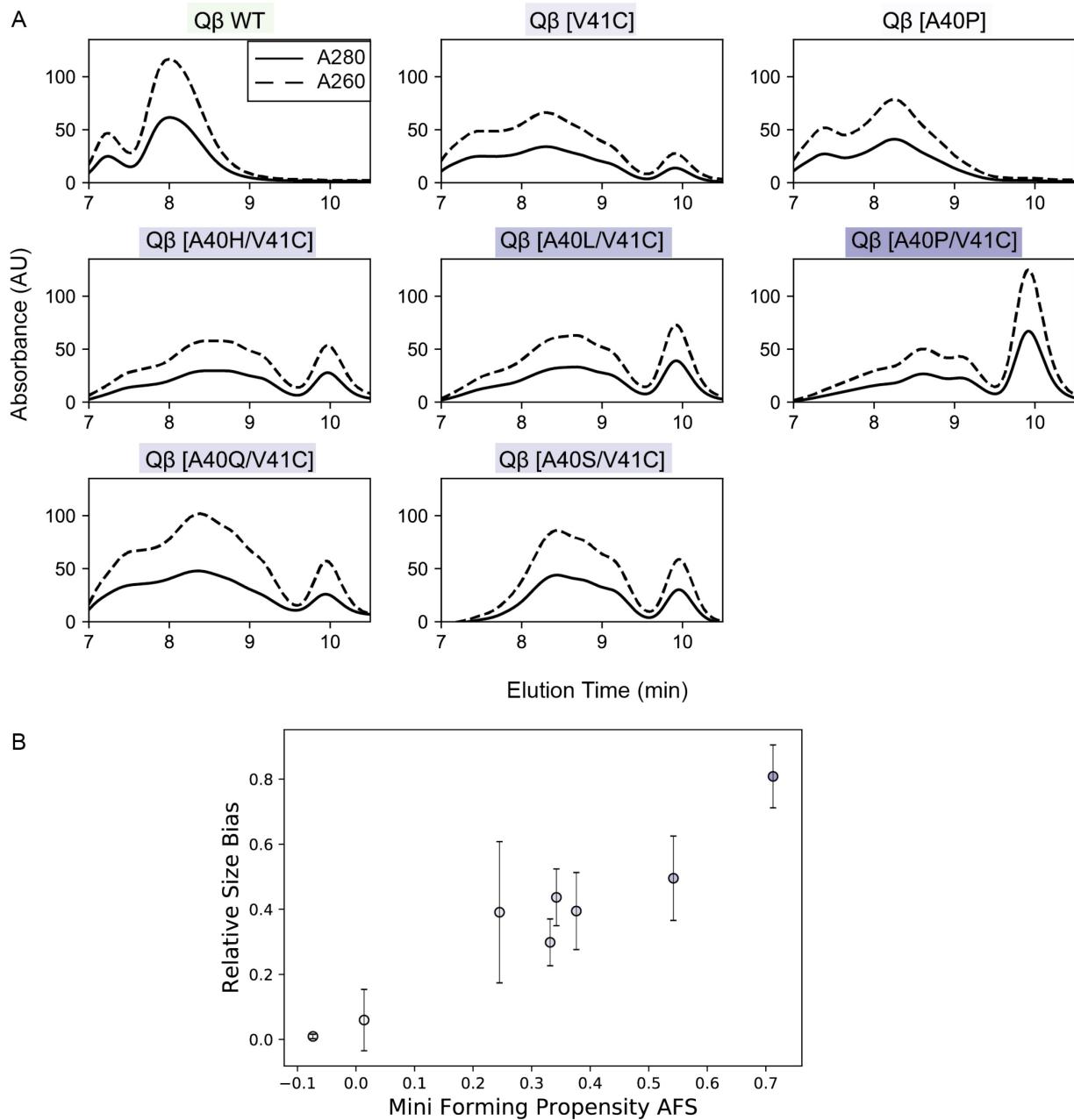


Figure 5: Q β VLPs are structurally similar to MS2. A) Structural alignment between MS2 (PDB: 2MS2, gray) and Q β (PDB: 1QBE, purple) B) Residues 36, 37, and 98 (red) in MS2 and hydrogen bonding interactions between them (blue) C) Residues 40 and 41 in Q β (red). TEM images of D) Q β WT VLPs with and E) Q β A40P VLPs. Scale bar equals 100 nm.

406 **Generating and Assessing a 2D-AFL for Q β 40/41**


407 We wanted to assess if the trends we recorded in the MS2 36/37 2D-AFL were applicable in another
 408 VLP, so we again generated a 2D-AFL for residues 40 and 41 in Q β , CP [A40/V41] (Figure 6A). Since the
 409 region in Q β is not a precise match for the region in MS2, we reasoned that position 41 was an acceptable
 410 position to change when constructing a Q β 2D-AFL. We completed similar quality checks as described
 411 earlier, and observed full coverage of the 441 mutants in the Q β 2D-AFL. The average AFS of nonsense
 412 mutations was -3.2 for the Q β 2D-AFL, further strengthening our assertion that the 40/41 Q β 2D-AFL can
 413 be used to learn about Q β VLP assembly.

414 We observed that in residue 40, mutations to serine, lysine, and proline have the highest number
 415 of AFS > 0.2 double mutants, but there was no banding trend like what we saw at residue 37 in MS2.

Figure 6: 2D-AFL of Q β 40/41 Library. A) 2D-AFL of the VLP selection library.
 B) Composite 2D-AFL in which Mini Forming Propensity Apparent Fitness Scores are overlaid double variant combinations whose AFS >0.2.

416 However, there are bands of AFS > 0.2 double mutants for cysteine, isoleucine and valine mutations at
417 position 41. Cysteine mutations appear to be an assembly tolerant single mutation in this region in both
418 MS2 and Q β VLPs. When we generated a composite Q β 2D-AFL with MFP AFSs over positions in the
419 40/41 2D-AFL that have an AFS > 0.2, we saw that Q β CP[V41C] containing double mutants have a trend
420 of potentially forming smaller VLPs as shown in purple (Figure 6B). We performed similar HPLC SEC
421 assembly validation assays for various 40/41 double mutants. As a negative control to see that our design
422 heuristics applied to Q β VLPs, we looked at three Q β CP[V41I] mutants whose AFS > 0.2 but MFP AFS <
423 0.2 (predicted to form VLPs, but not Mini-sized): Q β CP[A40T/V41I], Q β CP[A40K/V41I], and Q β
424 CP[A40G/V41I]. HPLC SEC assembly validation of these individual mutants revealed that not only do the
425 mutants with negative MFP AFSs only elute in WT characteristic elution range, but Q β CP[A40G/V41I],
426 MFP AFS = 0.01, also only elutes in the WT characteristic elution range (Supplemental Figure 6).

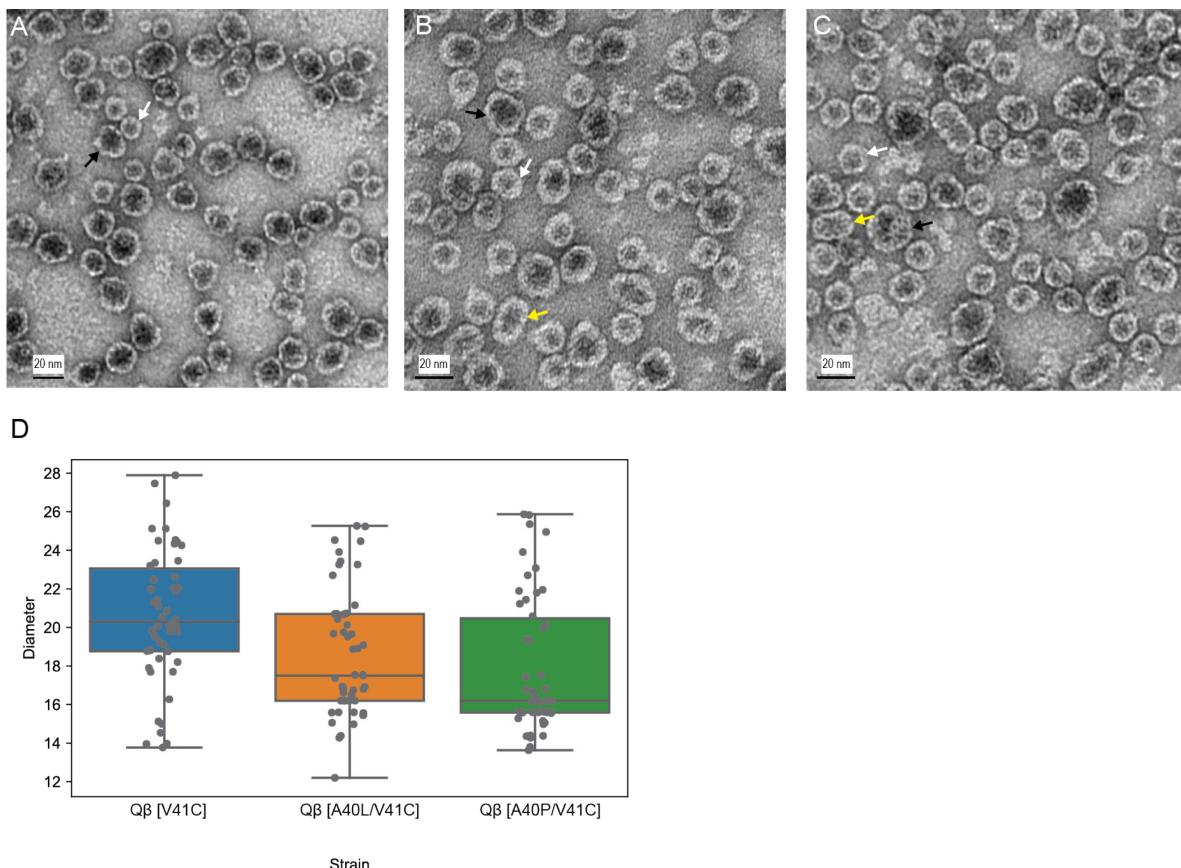


Figure 7: HPLC SEC Validation of Q β 40/41 2D-AFL. A) HPLC Traces of Q β WT, Q β CP[A40P], and double mutants that have AFS > 0.2 and Mini Forming Propensity (MFP) AFS > 0.2. Variant highlighted by MFP AFS value. B) Relative Size Bias plotted against Q β MFP AFS. Points colored by MFP AFS.

429 Since we established the 2D-AFL is functioning similarly to the MS2 36/37 2D-AFL, we wanted to
 430 validate if double mutants containing Q β CP[V41C] formed “Mini” VLPs. The HPLC SEC assembly assay
 431 results indicated that both WT and Mini-sized VLPs formed (Figure 7A). The relative size bias scores (Figure
 432 7B) for Q β in this case seem predictive of only presence of smaller VLPs because the highest scoring
 433 double mutant Q β CP[A40P/V41C] at 0.8 has both a WT and mini VLP characteristic peak.

434 **Characterization of Q β CP[V41C] Double Variant VLPs**

435 Gaining more resolution on the structure of Q β CP[V41C] containing variants would validate if the
 436 assembly metrics calculated predict biological Q β VLP assembly phenomena. Q β CP[V41C] was chosen
 437 first, to assess a baseline mutation that has not been previously assessed for a smaller sized phenotype.
 438 Two other double mutants, Q β CP[A40L/V41C] and Q β CP[A40P/V41C], were selected because they had
 439 AFS > 0.2, MFP AFS > 0.2, and the two highest relative size scores.

Figure 8: TEM Analysis of individual mutants for Q β variants predicted to form Mini sized VLPs.
 Black bar represents 20 nm. White arrows point to mini VLPs, black arrows point to WT VLPs, and
 yellow arrows point to prolate VLPs. A) Q β CP[V41C] B) Q β CP[A40L/V41C] C) Q β CP[A40P/V41C] D)
 Diameters of at least 50 VLPs quantified from TEM images are shown.

440 Like with the MS2 36/37 double mutant VLP characterizations, we visualized these variants with
441 TEM and analyzed the distribution of sizes by counting at least 50 particles in each image (Figure 8). We
442 see that the Q β CP[V41C] CP variant forms a heterogeneous population of VLPs, similar to what we saw
443 with Q β CP[A40P] CP (Supplemental Figure 7). There is no proline to potentially shift away interactions
444 with surrounding residues, so this result suggests that hydrogen bonding is not the only feature that could
445 be involved with forming the smaller sized phenotype in Q β VLPs. Q β CP[A40L/V41C] and Q β
446 CP[A40P/V41C] also both form Mini and WT VLPs, but both variants also seem to form a prolate shaped
447 VLP which forms as an elongated particle VLPs (Figure 8 C-D) [12].

448 Q β bacteriophages form small percentages of mini-sized assembled capsids naturally even if those
449 variants are not infective and therefore are less than 5% of the particle population[12]. Crystal structure
450 analysis of the VLP has shown that Q β dimer conformations are flexible, being that the crucial VLP
451 stabilizing interactions are intradimer salt bridges and other amino acid interactions. The robustness of their
452 assembly was shown when “Mini” Q β VLP variants were first identified with the Q β CP [L35W] and Q β CP
453 [L35F][13]. These two Mini Q β VLPs actually formed a heterogeneous population of VLPs, majorly forming
454 small ~16.5 nm particles and less, but also forming 20 nm VLPs and longer prolate (23.5 x 20 nm) VLPs[13].
455 These alternate structure Mini Q β VLPs showed that large amino acid variations at an interior facing residue
456 disrupt WT VLP formation, but the flexibility of Q β dimer conformations led to assembly of alternate
457 geometry VLPs.

458 We have seen that variations to residues 40/41 of the Q β CP in the same loop region as Mini Q β
459 variant and in analogous positions to the double mutant MS2 VLPs led to a heterogeneous size population
460 dominated by smaller VLPs. We saw that Q β CP[A40P], Q β CP[V41C], Q β CP [A40P/V41C], and Q β
461 CP[A40L/V41C] display consistent heterogeneous assembled VLP populations that were seen in Mini Q β .
462 The introduction of proline in this loop region in the Q β CP conferred a similar smaller sized VLP phenotype
463 as seen in MS2, but the change in hydrogen bonding does not seem to be the defining property. Q β
464 CP[V41C] also confers the smaller sized particles, leading us to believe similar to Mini Q β VLP variants, it
465 was the disruption of potential intradimer side chain interactions that was a defining characteristic of forming
466 smaller Q β VLPs.

467 **Conclusions and Future Work**

468 We have seen variations in analogous positions in two VLPs, that were not particularly sequenced
469 aligned, led to a “mini” VLP formation. The characterization of our double mutants show that side chain
470 interactions are crucial to smaller VLP formation, but the residue position themselves might only be
471 predictive for VLPs that are stabilized by interdimer side chain interactions like in MS2 VLPs. Future work
472 for these studies would be to crystallize double mutant-containing MS2 and Q β VLPs and assess what
473 sidechain interactions are present in the assembly and if these double variants lead to an increased number
474 of conformations the CP can access.

475 **Acknowledgements**

476 Portions of this project were funded by National Science Foundation Award CBET-2043973 to
477 D.T.E.. E.C.H. was supported under by the Department of Defense, Air Force Office of Scientific Research,
478 National Defense Science and Engineering Graduate (NDSEG) Fellowship (32 CFR 168a).

479 We would also like to acknowledge our collaborators in the Francis Lab and Lisa Burdette for helpful
480 advice on this project.

481 **References**

- 482 1. Glasgow, J. E., Capehart, S. L., Francis, M. B., & Tullman-Ercek, D. (2012). Osmolyte-Mediated
483 Encapsulation of Proteins inside MS2 Viral Capsids. *ACS Nano*, 6(10), 8658–8664.
484 <https://doi.org/10.1021/nn302183h>
- 485 2. Li, W., Jing, Z., Wang, S., Li, Q., Xing, Y., Shi, H., ... Hong, Z. (2021). P22 virus-like particles as an
486 effective antigen delivery nanoplatform for cancer immunotherapy. *Biomaterials*, 271, 120726.
487 <https://doi.org/10.1016/j.biomaterials.2021.120726>
- 488 3. Wang, Y., Uchida, M., Waghwan, H. K., & Douglas, T. (2020). Synthetic Virus-like Particles for
489 Glutathione Biosynthesis. *ACS Synthetic Biology*, 9(12), 3298–3310.
490 <https://doi.org/10.1021/acssynbio.0c00368>
- 491 4. Giessen, T. W., & Silver, P. A. (2016). A Catalytic Nanoreactor Based on in Vivo Encapsulation of
492 Multiple Enzymes in an Engineered Protein Nanocompartment. *ChemBioChem*, 17(20), 1931–1935.
493 <https://doi.org/10.1002/cbic.201600431>

- 494 5. Glasgow, J. E., Asensio, M. A., Jakobson, C. M., Francis, M. B., & Tullman-Ercek, D. (2015). Influence
495 of Electrostatics on Small Molecule Flux through a Protein Nanoreactor. *ACS Synthetic Biology*, 4(9),
496 1011–1019. <https://doi.org/10.1021/acssynbio.5b00037>
- 497 6. Jeong, K., Netirojanakul, C., Munch, H. K., Sun, J., Finbloom, J. A., Wemmer, D. E., ... Francis, M.
498 B. (2016). Targeted Molecular Imaging of Cancer Cells Using MS2-Based ^{129}Xe NMR. *Bioconjugate
499 Chemistry*, 27(8), 1796–1801. <https://doi.org/10.1021/acs.bioconjchem.6b00275>
- 500 7. Capehart, S. L., Coyle, M. P., Glasgow, J. E., & Francis, M. B. (2013). Controlled Integration of Gold
501 Nanoparticles and Organic Fluorophores Using Synthetically Modified MS2 Viral Capsids. *Journal of
502 the American Chemical Society*, 135(8), 3011–3016. <https://doi.org/10.1021/ja3078472>
- 503 8. Butterfield, G. L., Lajoie, M. J., Gustafson, H. H., Sellers, D. L., Nattermann, U., Ellis, D., ... Baker, D.
504 (2017). Evolution of a designed protein assembly encapsulating its own RNA genome. *Nature*,
505 552(7685), 415. <https://doi.org/10.1038/nature25157>
- 506 9. Hsia, Y., Bale, J. B., Gonen, S., Shi, D., Sheffler, W., Fong, K. K., ... Baker, D. (2016). Design of a
507 hyperstable 60-subunit protein icosahedron. *Nature*, 535(7610), 136–139.
508 <https://doi.org/10.1038/nature18010>
- 509 10. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... Hassabis, D. (2021).
510 Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873), 583–589.
511 <https://doi.org/10.1038/s41586-021-03819-2>
- 512 11. Finbloom, J. A., Han, K., Aanei, I. L., Hartman, E. C., Finley, D. T., Dedeo, M. T., ... Francis, M. B.
513 (2016). Stable Disk Assemblies of a Tobacco Mosaic Virus Mutant as Nanoscale Scaffolds for
514 Applications in Drug Delivery. *Bioconjugate Chemistry*, 27(10), 2480–2485.
515 <https://doi.org/10.1021/acs.bioconjchem.6b00424>
- 516 12. Chang, J.-Y., Gorzelnik, K. V., Thongchol, J., & Zhang, J. (2022). Structural Assembly of Q β Virion
517 and Its Diverse Forms of Virus-like Particles. *Viruses*, 14(2), 225. <https://doi.org/10.3390/v14020225>
- 518 13. Fiedler, J. D., Higginson, C., Hovlid, M. L., Kislyukhin, A. A., Castillejos, A., Manzenrieder, F., ... Finn,
519 M. G. (2012). Engineered Mutations Change the Structure and Stability of a Virus-Like Particle.
520 *Biomacromolecules*, 13(8), 2339–2348. <https://doi.org/10.1021/bm300590x>

- 521 14. Asensio, M. A., Morella, N. M., Jakobson, C. M., Hartman, E. C., Glasgow, J. E., Sankaran, B., ...
522 Tullman-Ercek, D. (2016). A Selection for Assembly Reveals That a Single Amino Acid Mutant of the
523 Bacteriophage MS2 Coat Protein Forms a Smaller Virus-like Particle. *Nano Letters*, 16(9), 5944–
524 5950. <https://doi.org/10.1021/acs.nanolett.6b02948>
- 525 15. Hartman, E. C., & Tullman-Ercek, D. (2019). Learning from protein fitness landscapes: a review of
526 mutability, epistasis, and evolution. *Current Opinion in Systems Biology*, 14, 25–31.
527 <https://doi.org/10.1016/j.coisb.2019.02.006>
- 528 16. Hartman, E. C., Jakobson, C. M., Favor, A. H., Lobba, M. J., Álvarez-Benedicto, E., Francis, M. B., &
529 Tullman-Ercek, D. (2018). Quantitative characterization of all single amino acid variants of a viral
530 capsid-based drug delivery vehicle. *Nature Communications*, 9(1), 1385.
531 <https://doi.org/10.1038/s41467-018-03783-y>
- 532 17. Stockley, P. G., Rolfsson, O., Thompson, G. S., Basnak, G., Francese, S., Stonehouse, N. J., ...
533 Ashcroft, A. E. (2007). A Simple, RNA-Mediated Allosteric Switch Controls the Pathway to Formation
534 of a T=3 Viral Capsid. *Journal of Molecular Biology*, 369(2), 541–552.
535 <https://doi.org/10.1016/j.jmb.2007.03.020>
- 536 18. Hartman, E. C., Lobba, M. J., Favor, A. H., Robinson, S. A., Francis, M. B., & Tullman-Ercek, D.
537 (2019). Experimental Evaluation of Coevolution in a Self-Assembling Particle. *Biochemistry*, 58(11),
538 1527–1538. <https://doi.org/10.1021/acs.biochem.8b00948>
- 539 19. Robinson, S. A., Hartman, E. C., Ikwuagwu, B. C., Francis, M. B., & Tullman-Ercek, D. (2020).
540 Engineering a Virus-like Particle to Display Peptide Insertions Using an Apparent Fitness Landscape.
541 *Biomacromolecules*, 21(10), 4194–4204. <https://doi.org/10.1021/acs.biomac.0c00987>
- 542 20. Brauer, D. D., Hartman, E. C., Bader, D. L. V., Merz, Z. N., Tullman-Ercek, D., & Francis, M. B. (2019).
543 Systematic Engineering of a Protein Nanocage for High-Yield, Site-Specific Modification. *Journal of
544 the American Chemical Society*, 141(9), 3875–3884. <https://doi.org/10.1021/jacs.8b10734>
- 545 21. Trimmomatic: a flexible trimmer for Illumina sequence data | Bioinformatics | Oxford Academic. (n.d.).
546 Retrieved July 20, 2022, from
547 <https://academic.oup.com/bioinformatics/article/30/15/2114/2390096?login=true>

- 548 22. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image
549 analysis. *Nature Methods*, 9(7), 671–675. <https://doi.org/10.1038/nmeth.2089>
- 550 23. Peabody, D. S. (1993). The RNA binding site of bacteriophage MS2 coat protein. *The EMBO Journal*,
551 12(2), 595–600.
- 552 24. Rolfsson, Ó., Middleton, S., Manfield, I. W., White, S. J., Fan, B., Vaughan, R., ... Stockley, P. G.
553 (2016). Direct Evidence for Packaging Signal-Mediated Assembly of Bacteriophage MS2. *Journal of*
554 *Molecular Biology*, 428(2), 431–448. <https://doi.org/10.1016/j.jmb.2015.11.014>
- 555 25. Dykeman, E. C., Stockley, P. G., & Twarock, R. (2013). Packaging Signals in Two Single-Stranded
556 RNA Viruses Imply a Conserved Assembly Mechanism and Geometry of the Packaged Genome.
557 *Journal of Molecular Biology*, 425(17), 3235–3249. <https://doi.org/10.1016/j.jmb.2013.06.005>
- 558 26. Valegård, K., Liljas, L., Fridborg, K., & Unge, T. (1990). The three-dimensional structure of the
559 bacterial virus MS2. *Nature*, 345(6270), 36–41. <https://doi.org/10.1038/345036a0>
- 560 27. Tars, K., Bundule, M., Fridborg, K., & Liljas, L. (1997). The crystal structure of bacteriophage GA and
561 a comparison of bacteriophages belonging to the major groups of Escherichia coli leviviruses¹¹Edited
562 by K. Nagai. *Journal of Molecular Biology*, 271(5), 759–773. <https://doi.org/10.1006/jmbi.1997.1214>
- 563