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Abstract

Context Land-cover class definitions are scale-
dependent. Up-scaling categorical data must account
for that dependence, but most decision rules aggre-
gating categorical data do not produce scale-specific
class definitions. However, non-hierarchical, empiri-
cally derived classification systems common in phy-
tosociology define scale-specific classes using species
co-occurrence patterns.

Objectives Evaluate tradeoffs in class precision and
representativeness when up-scaling categorical data
across natural landscapes using the multi-dimensional
grid-point (MDGP)-scaling algorithm, which gen-
erates scale-specific class definitions; and compare
spectral detection accuracy of MDGP-scaled classes
to ‘majority-rule’ aggregated classes.

Methods Vegetation maps created from 2-m resolu-
tion WorldView-2 data for two Everglades wetland
areas were scaled to the 30-m Landsat grid with the
MDGP-scaling algorithm. A full-factorial analy-
sis evaluated the effects of scaled class-label preci-
sion and class representativeness on compositional
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information loss and detection accuracy of scaled
classes from multispectral Landsat data.

Results MDGP-scaling retained between 3.8 and
27.9% more compositional information than the
majority rule as class-label precision increased.
Increasing class-label precision and information
retention also increased spectral class detection
accuracy from Landsat data between 1 and 8.6%.
Rare class removal and increase in class-label simi-
larity were controlled by the class representative-
ness threshold, leading to higher detection accuracy
than the majority rule as class representativeness
increased.

Conclusions When up-scaling categorical data
across natural landscapes, negotiating trade-offs in
thematic precision, landscape-scale class representa-
tiveness and increased information retention in the
scaled map results in greater class-detection accuracy
from lower-resolution, multispectral, remotely sensed
data. MDGP-scaling provides a framework to weigh
tradeoffs and to make informed decisions on param-
eter selection.

Keywords Categorical data - Classification
systems - MDGP - Multi-dimensional grid-point
scaling - Remote sensing - Phytosociology - Relative
class abundance - Scale dependence
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Introduction

Classification systems represent generalized human
perceptions of the world that group objects with
similar properties. The properties and degree of gen-
eralization in a classification system are often deter-
mined by discipline and are scale specific. To model
and understand physical and biological processes
that operate at different spatial scales, ecologists fre-
quently use categorical land-cover information that
standardizes and categorizes land units (pixels or grid
cells) across large spatial regions (e.g., landscape to
continental or global scale). For classification sys-
tems to be useful when modeling a specific process
in a spatially explicit fashion, the classes in a classi-
fication system need to be (1) recognizable and iden-
tifiable on the ground at the scale of analysis and (2)
detectable from remotely sensed data across the entire
(spatially exhaustive) landscape of interest. How-
ever, since data are often acquired and interpreted
at different spatial scales, information from different
sources often needs to be scaled up to become com-
patible among sources. Hence, up-scaling, the pro-
cess of information aggregation also referred to as
coarse-graining, has received much attention in the
geographic branches of many scientific disciplines
(Wu and Hobbs 2002; Lischke et al. 2007; Teng et al.
2020). Newman et al. (2019) identified the problem
of up-scaling in a statistically unbiased manner as
one of three intrinsic limitations to progress in land-
scape ecology. In the context of understanding land-
cover dynamics and their effects on organisms, three
aspects of information aggregation that are not suffi-
ciently addressed are (1) scale-dependency of classi-
fication schemes, (2) effects of up-scaling on compo-
sitional information loss, and (3) how that reduction
in information affects the accuracy of land-cover
detection from remotely sensed data. These aspects
are important to consider when modeling interactions
of landscape patterns and ecological processes at the
landscape scale.

Interdisciplinary approaches to problem-solving
often lead to new methods in science. This study
integrates concepts from three disciplines—Iland-
scape ecology, phytosociology, and remote sens-
ing—to establish a new method to scale categorical
information across spatial scales. The theory of scal-
ing in landscape ecology is combined with concepts
from phytosociology that construct scale-specific,
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representative vegetation classifications. Further cou-
pling the process of defining a scaled classification
system with the principles of accurate delineation of
classes from remotely sensed data provides a feed-
back process for refining landscape-specific, cross-
scale classification systems. The main objective of
this study is to demonstrate the efficacy of the multi-
dimensional grid-point (MDGP)-scaling algorithm
(Gann 2019) in generating scale-specific and non-
hierarchical classification schemes that can be effec-
tively detected from multi-spectral remotely sensed
data.

Up-scaling categorical data in landscape ecology.

Despite the ever-increasing spatial resolution of satel-
lite data and aerial photography, in order to detect and
quantify changes in land cover and land use across
long temporal scales, up-scaling of more recent very
high-resolution categorical maps to the courser reso-
lution of older maps is required. Up-scaling categori-
cal information aggregates information from multiple
original map objects (e.g., pixels, grid cells) at the
initial resolution, and information is generalized and
lost in the process. Up-scaling categorical informa-
tion is more problematic than up-scaling continuous
data because of limited mathematical or statistical
methods. The most frequently used decision rules to
aggregate compositional information are the majority,
random, and nearest-neighbor rules. Studies that eval-
uated the effect of these rules on class abundance and
landscape metrics (Turner et al. 1989; O’Neill et al.
1996) showed that common and clumped classes
were overrepresented, while rare and dispersed
classes disappeared or were underrepresented (Turner
et al. 1989; He et al. 2002; Wu et al. 2002; Raj et al.
2013; Coulston et al. 2014). Even more complex
spatial aggregation methods that attempt to preserve
rare classes (Coulston et al. 2014) only consider the
original classes when class labels are assigned to the
larger spatial units. When simply replacing mixes
of multi-class landscape units at a lower resolution
with a single non-mixed class label, the classification
scheme of the original scale by default is assumed
to be valid at the aggregated scale. However, even if
this assumption is justifiable when scale change is
small, for large scale factors and especially in hetero-
geneous landscapes, this assumption leads to a huge,
often unquantified, loss of compositional information.
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When aggregating a landscape, we can quantify the
compositional information that is retained in the
scaled landscape units with the Czekanowski Index
(Czekanowski 1909), which we define here as the
local compositional information retention (IR,) as

IR, ==Y min (PC;, PC,S) (1)

where PC; is the proportion of class i cells within the
scaled grid cell and PC;S is the proportion of class i
retained in the scaled class label. Quantifying infor-
mation loss using Eq. (1) when scaling a small land-
scape with the majority and nearest-neighbor rules
is illustrated in Fig. 1. Aggregating at a small-scale
factor of three leads to large compositional infor-
mation loss (Fig. 1). Information loss increases as
the scale factor increases to nine, where the appli-
cation of these rules leads to a single class at the
lower scale, although which class is retained differs
between the rules (Fig. 1). Gann (2019) has dem-
onstrated the impact on information loss that apply-
ing these decision rules has when scaling simulated
landscapes with varying known characteristics. This
over-simplification of land-cover information at the
aggregated scale ultimately propagates to ecological
models, where frequently co-occurring class mixtures
that might be ecologically meaningful cannot be con-
sidered because they are lost in the scaling process.
Ecological models that rely on scaled data then suf-
fer from this oversimplification, when relationships
between processes operating at the aggregated scale
of landscape patterns are obscured or erroneously
rendered significant.

The few aggregation methods that acknowledge
mixed classes at coarser spatial scales often use hier-
archical class systems that ignore non-hierarchical
compositions of natural systems (Wu and David
2002a; Ju et al. 2005). Ju et al. (2005) developed a
multi-scale, multi-granular framework that allows
for scaling in the spatial domain using quad-tree data
structures to increase flexibility for aggregation in
the spatial and categorical domains. The categorical
domain, however, was limited to hierarchical class
labels that aggregated the finer scale class labels to
coarser, predetermined class labels at the next hier-
archical level (Ju et al. 2005). Hierarchical classifi-
cation systems aggregate linearly, and groups from a
lower level belong to only a single group at the higher
level. However, class or species associations result

from processes that operate at different spatial and
temporal scales and do not necessarily lead to hier-
archical class systems. For instance, individual pixels
labeled trees at a high spatial resolution (i.e., class:
tree) can, at lower resolutions, become members of
forests, woodlands, swamps, or savannas; the tree
density, environmental conditions, and floristic char-
acteristics of the co-occurrence with other species
determine the coarser resolution class membership
of individual trees. Thus, hierarchical classification
systems can over-simplify complex patterns of spatial
heterogeneity and obscure community assembly rules
that determine species and class co-occurrences.

Class detection at varying spatial scales in remote
sensing

Similarly, classification systems applied in land-
cover mapping from remotely sensed data are often
structured hierarchically, presenting over-generalized
classes that were detected from remotely sensed data
at medium to coarse resolutions. Classification accu-
racy, the label correctly representing the ground con-
dition, depends on the spatial resolution of the sensor
in relation to the local heterogeneity of the landscape
and the thematic resolution (detail) of the classifica-
tion system. Like the scaling of categorical maps,
evaluation of class accuracy and quantification of
class abundance across sensors with different spatial
resolutions is generally restricted to coarse classifica-
tion systems that do not vary with spatial scales, even
when scales vary by magnitudes (Raptis et al. 2003;
Knight et al. 2013; Xu et al. 2019, 2021). In remote
sensing, the class that is dominant is often accepted
as the correct class for mixed pixels (Ozdogan and
Woodcock 2006), even when in cases of high local
diversity, that dominance can be much smaller than
50%. Using sub-pixel fractions of the correct classes
has been proposed to adjust accuracy estimates and
to better estimate actual land-cover abundances (Lati-
fovic and Olthof 2004; Pontius and Connors 2009),
but they are still not the norm because of statistical
challenges (Stehman and Foody 2019). The use of a
single classification system across multiple scales and
the practice of accepting the dominant class as cor-
rect at the coarser scale not only leads to gross over-
or under-representation of land cover classes (Fig. 1)
but also makes precise quantification of change in
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Original Landscape with 3 Classes

Majority Rule
Scale Factor =3

Scale Factor =9

Fig. 1 Effects of majority and nearest-neighbor decision rules
on compositional information retention (IR;) in a spatially
heterogeneous and dispersed landscape with three classes.
Top: The original landscape with 81 grid cells (left) and class
abundances as counts and percentages (right). Bottom: original
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Class Count Perc.

37 45.7%

23 28.4%

21 25.9%
Nearest-Neighbor Rule

Scale Factor = 3

Scale Factor =9

Classc
IR, =25.9%

landscape upscaled with the majority rule (left) and nearest-
neighbor rule (right) with scale factors of 3 (top) and 9 (bot-
tom). Percentage within each scaled grid cell is the composi-
tional information retention (IR ) for the scaled cell
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very heterogeneous landscapes with mixed pixels
impossible.

Generating classification systems in phytosociology

Solutions to the disconnect between thematic resolu-
tion of classification schemes and spatial resolution
are provided by phytosociology, which has a long
history of generating representative classification
systems at different spatial scales from quantitative
measures of species co-occurrence in relevés (Braun-
Blanquet 1964; Van Der Maarel 1979). In phytoso-
ciology, association patterns of species sampled at a
1-m? scale differ from those at 900-m? (e.g., a Land-
sat pixel), resulting in classification schemes that
recognize this scale-dependence of co-occurrence as
analytical scales vary. Further, vegetation classifica-
tion systems that are driven by quantitative analysis
need to be robust to sampling error and to consist-
ently assign class labels to random samples within the
spatial domain they represent (De Céceres et al. 2009;
Wildi 2010; Tichy et al. 2011; De Céceres and Wiser
2012). Samples drawn from a categorical raster map
within a window of a specific size (e.g., 33 aggre-
gation kernel) resemble relevé data of species abun-
dance for quadrats or plots, where each sampled grid
cell represents a plot of a relevé set with a relative
abundance of each class. Hence, the principles and
methods applied in phytosociology can be extended
to classification systems when scaling categorical
data and detecting mixed land-cover classes from
remotely sensed data.

Unifying scaling framework

The multi-dimensional grid-point (MDGP)-scaling
algorithm (Gann 2019) is, to our knowledge, the only
published algorithm that generates scale-specific and
non-hierarchical classification schemes that recog-
nize non-hierarchical co-occurrence patterns or class/
species associations across scales. The algorithm is
founded on principles of compositional data analysis
and phytosociology. Using local class abundances at
the higher resolution, this algorithm generates a new
classification system that reflects common class co-
occurrence frequencies from the higher resolution
data and assigns new class labels to the lower resolu-
tion grid cells. The two user-determined parameters
that control information loss and class definitions at

the lower resolution are class-label precision (parts)
and a representativeness threshold. Class-label pre-
cision determines how much detail of the original,
location-specific compositional information (i.e., IR,)
is retained in a scaled grid cell. Because we are deal-
ing with categorical raster data, the number of cells
within a scaled grid cell is finite, and the relative
abundance data are compositional count data or fre-
quencies that fill the space of a polytope where class
count (richness) determines the number of polytope
axes (Gann 2019). Class-label precision, expressed
as parts, proportions, or percentage cover, determines
the number and location of grid points in the multi-
dimensional polytopes that represent the potential
class labels (Fig. 2, black dots in ternary plots).

The effects of the class-label precision parameter
on information retention are demonstrated in Fig. 2,
where the MDGP-scaling algorithm was applied to
the original landscape in Fig. 1. In what follows, we
use parts and the corresponding precision of per-
centage cover interchangeably (e.g., 1-part=100%,
2-part=50%, 3-part=33%, 4-part=25% and
5-part=20%). Information retention increases rapidly
from 45.7% for the 100% precision (majority rule) to
78.4%, 87.6% and 95.7% for the 50%, 33%, and 25%
precision of class labels, respectively (Fig. 2). How-
ever, with increasing label precision, the number of
potential scaled classes increases exponentially. In
the three-class example with a scale factor of nine,
increasing label precision from I-part (100%) to
4-part (25%), the class number increased from three
to 15 classes (Fig. 2). Increasing the number of origi-
nal classes to 5, a 25% label precision produces 70
potential classes. To control the number of classes as
class count and label precision increase, rare mixed
classes are eliminated by the MDGP-scaling algo-
rithm by applying a representativeness threshold,
which sets the lowest acceptable proportion across
the landscape for a scaled class to be retained in the
scaled classification scheme (Gann 2019).

Further, to address sampling error related to the
generation of a classification system from one ran-
domly selected and arbitrary origin for the lower
resolution grid (i.e., remote sensor grid), and to be
able to consistently assign class labels to random
samples within the spatial domain the labels repre-
sent, the MDGP-scaling algorithm evaluates class-
label fidelity (CLF). Class-label fidelity is represented
by the mean probability of a class to occur across
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Fig. 2 MDGP solutions (left), ternary plots (center) and
scaled grid cells (right) for majority rule (1-part, 100% preci-
sion) and MDGP 50% to 25% class label precisions. Left: Pos-
sible scaled class labels (Label List) for MDGP 100% through
25% label precisions with maximum compositional informa-
tion retention (IR.) in bold; the numbers in each label are the
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for each label precision (Label List), and the colored point is
the MDGP that maximizes IR, for the scaled grid cell. Right:
Scaled solution for each precision; IR, increases greatly with
mixed classes
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random-origin scaling results (CLF,,) or the propor-
tion of classes that had a recurrence probability of
one (CLF,). To generate representative classification
schemes, class-label precisions and representative-
ness thresholds that do not produce high fidelity (i.e.,
that have high sampling error for a specific landscape)
can be easily identified and avoided (Gann 2019).

The MDGP-scaling algorithm was developed and
tested in simulated landscapes (Gann 2019). Here,
we evaluate its performance when up-scaling vegeta-
tion cover in real landscapes and detecting the scaled
land-cover classes from remotely sensed, multispec-
tral data. In this study, because of the repercussions
that map precision (Meentemeyer and Box 1987;
Quattrochi 1991; Buyantuyev and Wu 2007; Wick-
ham and Riitters 2019; Halstead et al. 2022) and map
accuracy (Langford et al. 2006; Kleindl et al. 2015)
have on modeling landscape-scale patterns and pro-
cesses, our main objectives were to quantify the
effects of MDGP-scaling parameters on (1) informa-
tion retention and class representativeness when up-
scaling categorical data across natural, heterogeneous
landscapes and (2) the accuracy of detecting scaled
classes from remotely sensed data from lower resolu-
tion multispectral satellite data.

Methods

Effects of the MDGP-scaling parameters on land-
scape-level information retention and class detectabil-
ity using remotely sensed data were evaluated for two
natural landscape types within the greater Everglades
ecosystem (FL, USA) (Fig. 3). Plant communities for
these two landscapes had been mapped from bi-sea-
son WorldView-2 (WV-2; Maxar Technologies, West-
minster, CO) multispectral data (eight spectral bands
ranging from 0.4 to 1.04 um) at a spatial resolution
of 2 m (Richards et al. 2015; Gann 2018). For this
study, both mapped landscapes were scaled to 30 m
using the MDGP-scaling algorithm (Fig. 4), and class
detection accuracy of the scaled community classes
was evaluated for Landsat Thematic Mapper multi-
spectral data (six spectral bands ranging from 0.45
to 2.35 um) that had been acquired for the same time
(Fig. 4).

The integrated testing framework for scaling and
spectral-detection analysis was coded in R (R Core
Team 2016), making extensive use of packages

“raster” (Hijmans and van Etten 2010), “rgdal”
(Bivand et al. 2013), “compositions” (van den Boo-
gaart and Tolosana-Delgado 2008), “caret” (Kuhn
et al. 2016), “ggplot2” (Wickham 2016) for all
graphs, and the “MDGP-scaling” algorithm which
was scripted in R (Gann, 2019) and is available as an
R package at https://github.com/gannd/landscapeS
caling. Maps were made in ArcGIS Pro 2.9.

Study areas

The two natural landscapes we studied were (1) a
healthy, ridge-and-slough patterned landscape within
southern Water Conservation Area 3A (WCA3A) and
(2) a degraded, sawgrass-dominated, wet prairie in
northeast Shark River Slough (NESRS) (Fig. 3), both
within the larger Everglades wetland system in south-
ern Florida, USA. The ridge-and-slough landscape
dominated the undeveloped Everglades, while the
degraded slough is disturbed habitat currently under-
going restoration (McVoy et al. 2011).

Water Conservation Area 3A—ridge and slough

The ridge-and-slough landscape of WCA3A is
characterized by alternating sawgrass (Cladium
jamaicense) ridges and deeper sloughs that are
dominated by submerged aquatic, floating broad-
leaved, and emergent graminoid freshwater species;
higher elevations can have woody shrubs and vari-
ous tree species. The most common slough species
is Nymphaea odorata, which forms dense, floating-
leaved carpets and is often accompanied by species
of Utricularia and floating mats of periphyton. The
2-m-scale community classification scheme for the
ridge-and-slough landscape was composed of eight
classes, including two each in aquatic-submerged,
broadleaved-floating, graminoid- and broadleaved-
emergent vegetation, a mixed shrub-marsh class, and
a shrub-tree class (Fig. 5, Table 1).

Northeast Shark River Slough—human-influenced
wet prairie

The second landscape, a 4.19 km?, sawgrass-domi-
nated wet prairie in NESRS (Fig. 3), is a degraded,
former ridge-and-slough landscape that experi-
enced decades of altered hydrology with decreased
water depth and hydroperiod, causing a reduction in
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Fig. 3 Study areas (white outline) in the Everglades of South
Florida, USA. Two 1.21 km? areas within Water Conserva-
tion Area 3A (WCA3A) and one 4.19 km? polygon in North-

topographic relief (McVoy et al. 2011). As a conse-
quence, the slough communities transitioned into
remnant shallow depressions dominated by sedges
and other graminoids that form distinct patches
within a matrix of sawgrass-dominated communi-
ties. The classification scheme for NESRS consisted
of 14 community classes: two included broadleaved
species; six, graminoid-dominated vegetation; four,
shrub or tree components; and two were non-vegeta-
tion classes (Fig. 6, Table 2).

High-resolution plant community maps

The high-resolution plant communities that served as
the basis for the scaling evaluation had been mapped
from bi-season WV-2 data at a 2-m spatial resolution
using the random forest classifier (Breiman 1984).
The vegetation map for WCA3A used wet-season
data acquired on October 20, 2012, and dry-season
data from May 5, 2011, and had a design-based esti-
mated 95% confidence accuracy of 91.2% (Fig. 5)
(Gann 2018). WV-2 satellite data for the NESRS map
had been acquired on November 6 and 9, 2010 (wet
season) and on May 6, 2013 (dry season), and the
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east Shark River Slough within the boundaries of Everglades
National Park. Background imagery provided by Earthstar
Geographics (Esri 2021, ArcGIS PRO 2.9.3)

design-based overall accuracy for the map was 89.2%
(Fig. 6) (Richards et al. 2015).

Scaling parameter evaluation for information
retention and class-label fidelity

The three parameters of MDGP-scaling that con-
trol information retention in the scaled classification
scheme are (1) scale factor, (2) class-label precision,
and (3) class representativeness, where

(1) Scale factor is the ratio of the lower resolution to
that of the higher resolution.

(2) Class-label precision is the minimum propor-
tion of a class that is retained in aggregated class
labels.

(3) Representativeness of a scaled class is the mini-
mum proportion of the larger landscape that
a newly generated class must occupy to not get
dropped from the scaled classification scheme.

The scale factor for this study was 15 for scal-
ing from WV-2 2-m resolution to a 30-m Landsat
grid-cell. Relative abundances of classes for the 225
WV-2 grid cells in each coarse-resolution grid cell



Landsc Ecol (2023) 38:659-687

667

Parameters
n = number of random origin

High-Resolution
Categorical Map

sf = scale factor { odd integer }

for rndOrg & IrOrg

generate all enumerated scaled grid
cells for sfand {rndOrg | IrOrg}

-

cross-tabulate relative class
abundances for each scaled cell

Ve

generate MDGPs for parts and
corresponding class labels

calculate IRc for each grid cell and MDGP and
assign cell to MDGP with highest IRc

calculate scaled class remove MDGP <

proportions across LS rprThr

Scaled Map

n samples of parts = label precision in parts { integer }
random origin rprThr = representativeness threshold list { 0-100 }
(rndOrg)
L] generate :
r 2 realized Low-Resolution
MDGP Routine low-res grid Multispectral
origin (IrOrg) Data

extract signatures RF-classifier 10-fold
for scaled grid cells cross validation

from spectral data
for scaled classes

RF-predicted map &

class probability map

s cross tabulate scaled
and RF predicted map

calculate overall and class-specific
weighted accuracy Aow

calculate OS/,

calculate
mean IR,

calculate OS/

calculate CLFy, & CLFp across rndOrg ]

4% calculate CLFpro }—’

Fig. 4 Flowchart for evaluating effects of MDGP-scaling
parameters for class precision (parts) and representativeness
thresholds (rprThr) on mean IR, CLF,, CLFP, CLFpRO and
on scaled-class detection accuracy (4,,) from low-resolution
multispectral data. Algorithm inputs in black boxes; algorithm
outputs in darker gray boxes. [rOrg low-resolution grid origin;
mean IR, the mean of compositional information retention
across all cells of the scaled map of the realized grid of the
low-resolution multispectral data, CLF,, mean probability of a

were determined, and MDGP scaled class labels were
generated. The algorithm was applied in a full facto-
rial design of five options each for class-label preci-
sion and landscape representativeness. The options
considered were class-label precisions of 1, 2, 3, 4,

class to occur across random origin scaling results; CLF), class-
label fidelity as a proportion of classes recurring across all ran-
dom map origin (RO) samples; CLF g, proportion of classes
generated for the realized Landsat grid that occur across all
classes generated for 10 random origin solutions; A, weighted
overall accuracy; OSI optimal scaling index; OSI, optimal scal-
ing solution considering weighted class-detection accuracy,
mean IR, and CLF

and 5 parts, which translate to 100% (equivalent to
the majority rule), 50%, 33%, 25% and 20% label
precisions. For landscape representativeness, thresh-
olds of 1%, 5%, 10%, 15% and 20% were evaluated.
Monotypic classes that were below the landscape
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Fig. 5 High-resolution vegetation map for WCA3A study area (Fig. 3) derived from WV-2 2-m satellite data. Coordinates in Meters
WGS84 UTM 17 N

Table 1 Classification scheme and mapped class proportions for high-resolution plant community map for WCA3A

Class Code Class Name Class Proportion (%)
aS Aquatic Submerged 1.8
aSpblF Aquatic Submerged—Periphyton—Broadleaved Floating 28.2
bIF Broadleaved Floating—Aquatic Submerged 10.8
bIFNy Broadleaved Floating Nymphaea 10.3
gMbIE Graminoid Marsh—Broadleaved Emergent 18.9
eMCl Graminoid Marsh Cladium 24.7
s_gMbIE Shrub—Graminoid Marsh—Broadleaved Emergent 4.5
S Shrub—Tree 0.8
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Fig. 6 High-resolution
vegetation map for NESRS
study area (Fig. 3) derived
from WV-2 2-m satellite

data; class labels as in S
Table 2. Coordinates in >
Meters WGS84 UTM 17 N 3
8
2
<
&
(=3
S
<
<
S

544000 546000 548000 550000
Plant Communities

B Brdlv. Float. [ Grm. Mrsh. Dns. [ | Shrub Salix
[:] Grm. Mrsh. Brdlv. Emrg. |:] Grm. Mrsh. Sprs. - Tree Bayhead A
|:| Grm. Mrsh. Cladium - Grm. Mrsh. Typha - Tree Hammock ,&

- Grm. Mrsh. Cladium Dns. - Peat - Water h

|:| Grm. Mrsh. Cladium Sprs. - Shrub Bayhead 0 05 1km

Table 2 Classification scheme and mapped class proportions for high-resolution plant community map for NESRS

Class Code Class Name Class Proportion (%)
bIF Broadleaved Floating (Brdlv. Float.) <0.1
gMbIE Graminoid Marsh—Broadleaved Emergent (Grm. Mrsh. Brdlv. Emgr.) 2.9
eMS Graminoid Marsh Sparse (Grm. Mrsh. Sprs.) 8.0
eMD Graminoid Marsh Dense (Grm. Mrsh. Dns.) 2.3
eMCl Graminoid Marsh Cladium (Grm. Mrsh. Cladium) 29.3
eMCID Graminoid Marsh Cladium Dense (Grm. Mrsh. Cladium Dns.) 13.7
eMCIS Graminoid Marsh Cladium Sparse (Grm. Mrsh. Cladium Sprs.) 355
gMTy Graminoid Marsh Typha (Grm. Mrsh. Typha) 2.7
sB Shrub Bayhead 2.0
sSa Shrub Salix 3.0
tB Tree Bayhead 0.3
tH Tree Hammock 0.1
witr Water 0.1
pt Peat 0.3
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representativeness threshold were retained in the
scaled classification scheme, since they have high
information retention and are expected to generate
pure spectral signatures with high detection probabil-
ity and accuracy. The algorithm thus generated class
labels that reflected the constrained relative abun-
dances of classes from the fine-scale map, and each
scaled class had a defined minimum relative abun-
dance across the landscape. This process resulted in
25 scaled maps (Fig. 4) and their associated scale-
specific classification schemes for each study area
(Fig. 4).

To account for sampling error related to the arbi-
trary grid origin of Landsat, effects of class-precision
and landscape representativeness thresholds on class-
label fidelity, the recurrence of class labels across
scaling solutions, were evaluated for 10 random ori-
gins of each of the 25 landscapes (Fig. 4). This ran-
dom origin sampling also provides a mean and con-
fidence interval for the landscape-scale information
retention.

Significance of differences in label precision by
representativeness thresholds was tested with a pair-
wise-paired Wilcoxon signed-rank test, where data
were paired by random origin iteration. Optimal
scaling parameter solutions for each landscape were
identified with an optimal scaling index (OSI) that
weighted per-class information retention /Rc,,;, above
a user-defined, minimum-expected threshold mul-
tiplied by the two class label fidelity metrics CLF,,
and CLF), (Fig. 4, Eq. 2). Information retention above
the expected minimum was normalized to per-class
IR, gain (Eq. 2) above the minimum to only credit
models that reached the minimum expected infor-
mation retention. The optimal-solution model was
determined by the maximum OSI across all compared
models.

@)

IRc — IRc,y;,
OSI =CLF,, « CLF, * | ————
P class count

Scaling parameter evaluation for spectral detection
accuracy

Accuracy of detecting scaled classes from Landsat
Thematic Mapper (TM) multispectral reflectance data
(Fig. 4) was evaluated for cloud-free Landsat 5 TM
images acquired close to the acquisition dates of the
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WV-2 images used for the high-resolution maps. A
November 11, 2011, scene was used for the WCA3A
map and a December 25, 2010, scene for the NESRS
map. Landsat data were atmospherically corrected
using the FLAASH module in ENVI. For each study
area, high-resolution maps were scaled for the real-
ized 30-m grid specific to the Landsat scene path 015
row 042 (World Reference System 2). The MDGP-
scaling algorithm generated relative class abundances
from the high-resolution map for each Landsat grid
cell, using the same class precision and representa-
tiveness threshold combinations as for the random-
origin evaluation, and assigned up-scaled class labels.
Scaled class labels for each of the 25 models were
joined with Landsat spectral reflectance data of the
corresponding pixel in the processed Landsat reflec-
tance data (Fig. 4). Overall and class-specific spectral
detection accuracy for each scaled map were esti-
mated for each study area using a model-based, ten-
fold cross-validation when applying the random forest
classification algorithm (Breiman 1984) as imple-
mented in the “caret” package (Kuhn et al. 2016).
The number of trees was set to 200. To determine the
optimal number of randomly selected features at each
node, the “mtry” parameter was evaluated for a range
of two to six features, the number of features (spec-
tral bands) in the TM dataset. Overall accuracy was
used to evaluate spectral detectability and separability
between classes for each of the 25 models.

As class-label precision and class count increase,
misclassifications are more likely, purely by chance.
Hence, a tradeoff exists between class-label preci-
sion and accuracy. To account for less severe misclas-
sifications and to more accurately present the actual
class proportions on the ground (Latifovic and Olthof
2004; Pontius and Connors 2009), partial credit for
accurate proportions of class labels was given by
weighting label errors with a weighted Kappa statistic
(Cohen 1968). The portions of the partially match-
ing class labels were used to calculate the weights
of the weight matrix. The weight matrix was then
applied to the confusion matrix, generating partial-
credit class accuracies and weighted overall accuracy
(A,,) and their 95% confidence intervals (Rossiter
2014). Class-label fidelity for the realized Landsat
grid was calculated as the proportion of classes iden-
tified for the Landsat grid over the classes generated
from the 10 random origin solutions (CLFrp). As
CLF, o increases, it is more likely that the scaled
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classes for Landsat are representative classes for
random locations across the landscape at that scale.
For all 25 scaled landscapes per study area, A, IR,
and CLF ., were used to evaluate and select optimal
class-label precision and representativeness threshold
(Fig. 4).

The trade-offs that must be negotiated in the case
of spectral detection from a realized grid are class-
detection accuracy, information retention, and repre-
sentativeness of the scaled classes of a realized grid.
An index was developed to select the optimal scaling
solution (OSL,), defined as

IRc — IRc,;,
OSI, = CLF z, # Ay 3)

class count

The optimal model solution was defined as the
maximum of OSI, across all evaluated models. Final
maps were generated for solutions that maximized
OSI,.

Results

When applying the MDGP-scaling algorithm across
the two natural landscapes, interaction effects of
class-label precision and landscape representativeness
on information retention and class-label fidelity were
similar but not uniform. Therefore, results for scal-
ing and classification accuracy are presented by study
area.

WCA3A: information retention and class-label
fidelity

Scaling produced 250 scaled landscapes and asso-
ciated scale-specific class schemes. Evaluating the
effects of class-label precision and representativeness
thresholds for scaled maps for WCA3A showed that
scaled class count and mean IR (p <0.05) increased
with increasing class-label precision for a minimum
class representativeness of 1% (Fig. 7, Table 3).
Increase in IR, however, diminished with increas-
ing class-label precision. As class representativeness
threshold increased to 5 and 10%, the increase of IR,
with increasing class-label precision diminished until
no significant increases for class-label precisions
greater than 4-parts (25%) were observed. As rep-
resentativeness thresholds increased to 15 and 20%,

significant IR, increase was observed only for label
precisions below 3-parts (33%) (Fig. 7, Table 3).

Class-label fidelity generally decreased with
increased class-label precision and representative-
ness. However, higher CLF occurred when preci-
sion exceeded 50% and minimum representative-
ness increased above 10% (Table 3). Setting the
minimum expected IR, threshold to 60% (Table 3),
a class-label precision of 25% with a representative-
ness threshold of 10% (OSI=0.73) or a 33% class-
label precision with a landscape representativeness
of 15% (OSI=0.66) scored high on the OSI. The
33%-precision solution on average yielded 7.0 scaled
classes, with an average IRz, of 73.5% across the
landscape and a mean probability of class-label recur-
rence of 0.78 (Fig. 7 Table 3, Mean Prob.), with 44%
of classes recurring with a probability of 1 (Table 3,
Prop.1). The 25% class-label precision solution pro-
duced on average 7.9 scaled classes, which on aver-
age retained 77.7% of information and had a mean
probability of class-label recurrence of 0.72 (Table 3,
Mean Prob.), with 45% of classes re-occurring with a
probability of 1 (Table 3, Prop. 1). In both cases, the
higher CLF increased the optimal scale index.

WCA3A: spectral-detection accuracy

Scaling the WCA3A landscape to the specific Landsat
grid, IR p; averaged 1.1% greater than the mean IR
across the 10 random-origin grids (IR gq). Overall
accuracy ranged from 66.6% for majority rule (1-part)
with a 1% class representativeness to 78.2% for a 20%
class-label precision and minimum landscape repre-
sentativeness of 15% for each of the five classes the
classification scheme produced (Fig. 8, Table 4).

All scaling solutions of the Landsat grid with
a majority rule had a mean IR, of less than 63%,
which was significantly lower than the MDGP-scaled
solutions for the 2- to 5-part label precisions and
produced significantly lower overall accuracies than
the corresponding multi-part solutions (p <0.05).
The three 2-part class precision models above 70.4%
overall accuracy were those with representativeness
thresholds of 10% and greater (Fig. 8, Table 4). Com-
paring the three solutions showed that the classifica-
tion schemes were identical and that the differences in
accuracy were minor (Table 4).

Adding the spectral detection accuracy to the opti-
mal scaling index provided the same scaling solutions
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Fig. 7 Mean probability
of class label recurrence 1.0
vs. information retention
for WCA3A. Point shape
specifies scaled landscape
representativeness threshold
(Rep.), while point color
specifies class-label preci-
sion (Parts). Point labels
represent the mean number
of classes generated for
each model across the 10
random origins. Horizontal
bars are 95% confidence
intervals

o~

>
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0.8 56

0.6

Mean Probability of Class Label Recurrence

60

Rep. 0 1 A 5O 10 v 15 & 20

as those identified by the OSI. The 3-part class-label
precision with a 15% representativeness threshold
produced a classification scheme with 8 classes, an
IR g1 of 74.2%, and a class ratio of realized Land-
sat grid to random origin class solutions of (.89
(Table 4). The overall classification accuracy was
73.9%, with an OSI, of 1.17 (Fig. 8, Table 4). The
second highest OSI, was 1.12 for the 4-part class-
label precision and 10% representativeness thresh-
old model (Table 4). This solution also produced
eight scaled classes, retained a slightly higher IR p;
of 76.4%, and had a higher classification accuracy
of 75.3% with a class-label fidelity of 0.73 (Fig. 8,
Table 4).

The maps for the two optimal solutions indicate
that only the 3-part class-label precision solution
maintained the shrub/tree label in the scaled classes
(Table 5). This solution was selected as the best-
scaled map for a minimum requirement of 60% infor-
mation retention when compared to the original high-
resolution input map. This solution had eight classes,
of which five were monotypic input classes and the
other three were mixed classes that occupied 60.1%
of the landscape (Fig. 9, Table 5). Two of the high-
resolution community classes, “Aquatic Submerged”
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and “Shrub-Tree”, which accounted for 2.58% cover
of the high-resolution map (Table 1), were not main-
tained in the scaled community class labels. Except
for “trees”, all original class names were included
in pure or mixed class names (Fig. 9, Table 5). The
scaled map and its associated location-specific, infor-
mation-retention map are presented in Fig. 9, and the
spectrally classified map and location-specific classi-
fier confidence in Fig. 10.

NESRS: information retention and class-label fidelity

Results for NESRS were similar to those for WCA3A.
The original high-resolution map of NESRS had 14
plant community classes, six more than the WCA3A
map. Applying MDGP-scaling for all 25 class-label
precision and representativeness-threshold combina-
tions confirmed the expected increase in class number
and mean IRz, when class-label precision increased
(Fig. 11, Table 6). With increasing class-label preci-
sion, the increase in IR .z diminished, and the differ-
ences for consecutive pairwise comparisons became
insignificant (p>0.05) when representativeness was
greater than 1% (Fig. 11, Table 6). For representa-
tiveness of 5%, the 4- and 5-part label precisions had



673

Landsc Ecol (2023) 38:659-687

9409 UBY) 19)BaIS UOTIU)AI UOTJRULIOJUI JOJ JIPAID “9°T) Xopu] Surfeos rewnd, ‘urSLIo wopuel ssoxoe Y1 %¥’y7 ‘uonusiax
%09 uey ! I Jut JOJ 3P I) XopuJ sulfed§ ewndQ /SO "ulol puel O Al Y1 "uol

uonewiojur feuonisodwod °yy ‘uoneraep prepuels s ‘ordKjouowr ouopy ‘1 jo Anpiqeqord oousrmnoar yim sassed jo uontodoid | dotg ‘@ouarmoar sse[d jo Aiiqeqoid qoig

SoTTeIT Ul pAYSIYSIY oIe SUOHNIOS 0M) 153q Y,

0T0 S 8CL o 9v € S 8 €ro 860 4 g
010 LT YyL £5°0 Y € 6 cl 80°0 90 Sl S
600 (2! 9LL 80 08 € ! 14! L00 LSO ol 9
01ro 9L0 908 140! 8¢l € 9T 6C v1°0 870 9 9
cro 610 2% o1 8Ly € SL 8L 9¢'0 19°0 ! 9
6C0 Yl 9IL 0 6Y 14 S 6 o 1Y oc 4
9C0 LS'T 6°GL L9°0 €9 ¥ L ! 810 LSO S 14
£20 £20 L'LL [ZA0} 672 4 L Il Y40} Lo ol 4
¥¢0 9S0) L6L 9Tl el ¥ 91 0C Se0 L9°0 9 14
9C°0 00 ¥'€8 9I'l coy 14 8 [43 860 8L0 I 4
9T0 LT oL LSO 6°¢ S 14 6 (44 99°0 0c £
99°0 &l §€L 290 (v 9 4 6 1240 820 Sl £
0¢0 $6°0 6'vL IL0 8 S 6 14! 6C0 190 ol £
£e’0 90 8°9L £9°0 8¢CI S 4! 61 LE0 L9°0 9 £
0S50 620 S'08 0C'l 1o S 6C 123 80 680 ! £
€0 LO0C 8°L9 60 L9 L € 01 0¢0 L9°0 (4 4
6C0 L80 $'69 148! L L € 01 0¢0 Lo S 4
010 60 0'0L L60 9L L € 01 00 9L°0 ol 4
ev'o €50 0CL L9°0 0l L 8 Sl €50 080 9 4
19°0 90 8VL SI'T 0Ll L 4! ! 6L0 680 [ 4
SI'o— £€9°0 98¢ 0L0 9°¢ L 0 L IL0 080 0c [
SI'o— £€9°0 98¢ 0L0 9°¢ L 0 L L0 080 Sl Il
SI'o— £9°0 98¢ 0L°0 9°¢ L 0 L L0 080 ol !
170 — LSO 08¢ £9°0 9 L 0 L 1.0 680 9 [
60— S¥0 LS 00°0 0L L 0 L 00T 00°L ! !
(%) (%) Odgasser) Odgassel) sasse[) Sasse[) sasse[)
%09 <M1 OFuras  O¥yuruesy as UBIA "OUON POXTI [e0L [ doig  -qoid uesy
ISO UonNuAAY uoneuwrIojuy %uﬂoﬁﬂm Sse[D ..HQUM sired

(OY) surSuro wopuer T 10§ (1dey) spoysamy) ssauaanejuasardor adesspuey pue (syreq) suoistoord [oqe[-ssed Surkrea 10§ synsar Suress VEVOM € dqeL

pringer

H's



674

Landsc Ecol (2023) 38:659-687

Fig. 8 Cross-validated o)
weighted overall accuracy g 0.80
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insignificant differences in IR . As the representa-
tiveness threshold increased above 5%, insignificant
differences also occurred for 2- and 3-part label preci-
sions (p >0.05) (Fig. 11, Table 6).

Class-label fidelity in NESRS was significantly
higher than for WCA3A (Tables 3, 6). With a mini-
mum expected IR, threshold of 60%, two solutions,
the 3-part class-label precision with a representative-
ness threshold of 15% and a 2-part class-label preci-
sion with representativeness of 5% both had an OSI
of 0.79, which was higher than the other 23 models
(Table 6). The 3-part label-precision solution on aver-
age yielded 11.3 scaled classes, with an average IR
of 72.7% and a mean probability of class-label recur-
rence of 0.94 (Fig. 11, Table 6, Mean Prob.), with
75% of classes recurring across all random-origin
iterations (Table 6, Prop. 1). The 2-part class-label
precision solution produced 13.3 scaled classes, with
an average IR p of 74.2% and a mean probability of
class-label recurrence of 0.95 (Fig. 11, Table 6, Mean
Prob.), with 79% of classes recurring across all ran-
dom origin landscapes (Table 6, Prop. 1).
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NESRS: spectral-detection accuracy

Information retention for the Landsat-grid scaled
maps (IR.g;) averaged 4.6% higher than the mean
IR, of the random-origins scaled maps (IR (). Over-
all accuracy ranged from~69% for majority-rule
solutions to the highest accuracy of 73.2% (Fig. 12,
Table 7). As in WCA3A, the highest cross-validated
overall accuracy was achieved for a 3-part class-label
precision and minimum landscape representativeness
of 10%. This solution had 13 scaled classes (Table 8).
All scaling solutions with a 1-part label preci-
sion had a mean IR p; of 70.3%, which was signifi-
cantly lower than the MDGP-scaled solutions for the
2- to 5-part label precisions (Fig. 12, Table 7). Accu-
racy was significantly higher for all multi-part solu-
tions with class representativeness greater than 5%
(p <0.05) (Table 7). For class-label precisions of 50%
and less, the 15% and 20% representativeness thresh-
olds produced identical classification solutions.
Adding spectral-detection accuracy to the opti-
mal scaling index indicated that the 33% class-label
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Table 4 Scaling effects on spectral detection accuracies for WCA3A for varying class-label precisions (Parts) and landscape repre-

sentativeness thresholds (Repr.)

Parts Repr. IR q1. (%) Total CLFpRL Overall OA-CIL (%) OA-CIU (%) OSI,
Classes Accuracy
(%)
1 1 62.6 7 1.00 66.6 64.8 68.5 0.25
1 62.3 6 0.86 67.1 65.3 68.9 0.22
1 10 61.5 5 0.71 70.0 68.2 71.8 0.15
1 15 61.5 5 0.71 69.6 67.8 71.4 0.15
1 20 61.5 5 0.71 70.4 68.6 72.2 0.15
2 1 77.1 16 0.84 68.3 66.5 70.1 0.61
2 5 75.5 12 0.80 70.4 68.6 72.2 0.73
2 10 71.3 7 0.70 72.3 70.5 74.0 0.82
2 15 71.3 7 0.70 71.8 70.1 73.6 0.81
2 20 71.3 7 0.70 72.1 70.4 73.9 0.82
3 1 82.8 29 0.85 69.2 67.4 71.0 0.46
3 5 78.6 12 0.63 71.5 69.7 73.3 0.70
3 10 76.0 9 0.64 72.1 70.3 73.8 0.82
3 15 74.2 8 0.89 73.9 72.1 75.6 1.17
3 20 69.2 6 0.67 72.9 71.2 74.6 0.75
4 1 85.9 40 0.77 69.5 67.7 71.3 0.35
4 5 80.2 14 0.70 72.5 70.8 74.3 0.73
4 10 76.4 8 0.73 75.3 73.6 77.0 1.12
4 15 75.1 7 0.64 76.1 74.4 77.7 1.04
4 20 71.0 5 0.56 74.8 73.1 76.5 0.92
5 1 87.1 47 0.60 69.8 68.0 71.6 0.24
5 5 80.5 13 0.45 73.2 71.5 75.0 0.52
5 10 75.2 8 0.57 78.0 76.4 79.7 0.85
5 15 714 5 0.42 78.2 76.6 79.8 0.74
5 20 68.9 4 0.50 71.5 75.8 79.1 0.86

The two best solutions are highlighted in italics

IR g;, mean information retention across the landscape for the realized landscape (Landsat grid), CLF g, the ratio of scaled classes
for the realized landscape to the number of all classes identified across 10 random grid origins, OA-CIL and OA-CIU lower and
upper confidence estimates of the tenfold cross-validated overall accuracy, OSI, Optimal Scaling Index for class-detection accuracy

precision with a 10% class representativeness thresh-
old produced the best scaling result (OSI,=1.10),
generating 13 scaled classes (Table 8) that were
detected from multispectral Landsat data with
an accuracy of 70.7% (Table 7). The information
retained for this solution was 80.3%, and the class-
label count ratio was 1, indicating that all classes
derived for the Landsat grid were represented in the
random origin solutions (Fig. 13, Table 7).

Scaled community classes for the optimal solution
of 33% class-label precision included three mixed
classes (47.7% of the landscape) and 10 monotypic

input classes (Table 8). The original community
classes that were omitted in the scaled class labels
were ‘“Broadleaved Floating”, “Tree Hammock”,
“Water”, and “Peat” (Tables 2, 8). These four classes,
however, accounted for only 0.4% cover in the original
map (Table 2). The small class of “Tree Bayhead” was
maintained as a monotypic class with the same cover
percentage (0.28%) as the original map and mean
information retention of 82.5%. The scaled map and
its associated information retention by grid cell are
presented in Fig. 13 and the spectrally classified map
with location-specific classifier confidence in Fig. 14.
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Table 5 WCA3A class schema and class proportions (Class Prop.) for two good scaling solutions of a 33% class-label precision
with landscape representativeness of 15% (top) and a 25% class-label precision with representativeness of 15% (bottom)

Class name—33% Precision 15% Representativeness Class Prop. (%) Mean IR (%) SDIR, (%)
100 Aquatic Submerged—Periphyton - Broadleaved Floating* 15.7 88.9 9.2
67 Aquatic Submerged—Periphyton - Broadleaved Floating 19.9 68.0 14.7
33 Broadleaved Floating Nymphaea

100 Broadleaved Floating—Aquatic Submerged* 9.7 65.6 19.2
33 Broadleaved Floating Nymphaea 21.8 65.1 11.8
33 Graminoid Marsh—Broadleaved Emergent

33 Graminoid Marsh Cladium

100 Graminoid Marsh—Broadleaved Emergent* 52 69.0 11.7
100 Graminoid Marsh Cladium* 6.6 89.5 7.2
67 Graminoid Marsh Cladium 18.4 81.2 11.0
33 Graminoid Marsh—Broadleaved Emergent

100 Shrub—Graminoid Marsh—Broadleaved Emergent* 2.6 63.2 17.6
Class name—25% Precision 10% Representativeness Class Prop. (%) Mean IR, (%) SD IR, (%)
100 Aquatic Submerged—Periphyton—Broadleaved Floating* 13.0 89.3 16.6
25 Aquatic Submerged—Periphyton—Broadleaved Floating 12.8 62.6 17.0
25 Broadleaved Floating—Aquatic Submerged

25 Broadleaved Floating Nymphaea

25 Graminoid Marsh—Broadleaved Emergent

25 Aquatic Submerged—~Periphyton—Broadleaved Floating 15.9 68.6 15.0
25 Broadleaved Floating—Aquatic Submerged

25 Graminoid Marsh—Broadleaved Emergent

25 Graminoid Marsh Cladium

75 Aquatic Submerged—Periphyton—Broadleaved Floating 14.0 78.1 12.4
25 Broadleaved Floating Nymphaea

100 Broadleaved Floating—Aquatic Submerged* 7.0 74.0 14.5
50 Graminoid Marsh—Broadleaved Emergent 16.0 72.8 9.9
25 Broadleaved Floating Nymphaea

25 Graminoid Marsh Cladium

100 Graminoid Marsh Cladium* 5.0 924 5.1
75 Graminoid Marsh Cladium 16.2 82.9 104
25 Graminoid Marsh—Broadleaved Emergent

Left column gives the relative abundance of original classes in the scaled class

Prop proportion, IR, compositional information retention, SD standard deviation

*Indicate original classes. Mixed classes make up 60.1% of the landscape for 33% precision and 74.9% for 25% precision solutions

Discussion

We have shown that in natural landscapes the MDGP-
scaling algorithm generates thematic classes at a
coarser resolution that retain high levels of compo-
sitional information for the mapped area that was
represented in the higher resolution map. The scaled
classes are quantitatively derived from the finer res-
olution data rather than being predetermined and
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reflect common vegetation associations present at
the coarser resolution. Below, we discuss the scaling
parameter effects on information retention and class-
label fidelity and how the scaling results influence the
scaled-class detection from coarser resolution Land-
sat spectral reflectance data. We conclude the discus-
sion with applications that demonstrate the benefits of
MDGP-scaling over decision rules that do not modify



Landsc Ecol (2023) 38:659-687 677

2860100

2859800

(=
o
el
2]
T2l
-]
N

2859800 2860100

2859500

519800 520100 520400 520700 521900 522200 522500 522800

Scaled Plant Communities IR (%)

I s_gMbIE100 [ bIFNy33_x_gMbIE33_x_gMCI33 B 0-25

I gMCI67_x_gMbIE33 [ | bIFas100 . % :z - f‘lg

I gmci100 [ aspblIF67_x_bIFNy33 ,X 75 i 90

N -
[ ] gmbIE100 I aspbiF100 - N B 20 - 100
0 0.25 0.5 km
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Fig. 10 Scaled plant-community classes predicted from Landsat spectral data (top) and location-specific classifier probability for
class-label assignment (bottom) for WCA3A. Classes and abbreviations as in Fig. 9. Coordinates in Meters WGS84 UTM 17 N
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Fig. 11 Mean probability 111,111
of class label recurrence 1.0 W

vs. information retention 1
for NESRS. Point shape
specifies scaled landscape
representativeness threshold
(Rep.), while point color
specifies class-label preci-
sion (Parts). Point labels
represent the mean number
of classes generated for
each model across the 10
random origins. Horizontal
bars are 95% confidence
intervals

0.9

0.8

0.7

Mean Probability of Class Label Recurrence

0.6

65

Rep. 0 1 A 5 & 10 v 15 © 20

the classification scheme in the data aggregation
process.

Categorical data integration across spatial scales

Analyses that integrate categorical data from dif-
ferent spatial resolutions require scaling the high-
resolution data to a coarser resolution. Combining
coarse-resolution categorical maps with maps gen-
erated from high spatial but low temporal resolution
is more effective when information retention of the
scaled product is optimized. The MDGP-scaling algo-
rithm allows the user to optimize parameter selection,
negotiating the trade-offs between information reten-
tion and class-label fidelity in natural landscapes.
Information retention of MDGP-scaling was consist-
ently and significantly higher for both natural land-
scapes when compared to the majority-rule solution,
as was expected from results for artificial landscapes
presented in Gann (2019). Class-label fidelity for
both landscapes was high, which demonstrates that
the algorithm can generate classification systems in
natural landscapes that consistently assign new scaled
labels as recognizable classes at the scaled spatial
resolution.
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Compared to majority-rule aggregation, the
increases in information retention and class-label
fidelity were always higher for WCA3A than for
NESRS. On average, the pairwise mean IR, dif-
ference was 3.4+1.7% and mean CLF, was
0.15+0.11 greater for WCA3A than for NESRS. The
reasons for the differences were either related to a
lower number of classes in the original classification
system of WCA3A or the higher spatial heterogeneity
of the WCA3A landscape, leading to larger gains in
information retention when using mixed class labels.

Scaled class detection from remotely sensed
multispectral data

Classification systems derived from quantitative anal-
ysis of species or class co-occurrence patterns is inte-
gral to several scientific disciplines (e.g., phytosoci-
ology, community ecology). However, as sample area
size increases (e.g., 1 m* to 900 m?), sampling ground
units becomes increasingly difficult. If high-resolu-
tion categorical maps with adequate class detail exist,
application of the MDGP-scaling algorithm can pro-
duce high precision classification systems that pro-
vide representative mixed classes for medium to low
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Fig. 12 Cross-validated
weighted overall accuracy
vs. information retention
for NESRS. Point shape
specifies scaled landscape
representativeness threshold
(Rep.), while point color
specifies class-label preci-
sion (Parts). Point labels
represent the number of
classes generated for the
realized Landsat grid

for each model. Vertical
bars are 95% confidence
intervals
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resolution pixel sizes. Our analysis also demonstrates
that the detection of these more precise and repre-
sentative land-cover classes from medium resolution
spectral data was more accurate than for classification
schemes that did not include the mixed classes.

Class detection accuracy from spectral data
increased with higher class-label precision and with
higher class representativeness thresholds. There are
trade-offs, however, among the parameters. As the
class-representativeness threshold increased, class
count decreased, producing a reduced chance prob-
ability for class confusion and higher classification
accuracy. However, as class count decreased, infor-
mation retention at the grid-cell level was reduced,
and grid cells that were further from the nominal
class label increased the thematic heterogeneity of the
mixed classes, and with it, spectral variability, reduc-
ing classification accuracy. In a similar fashion, class-
label precision increased information retention and,
therefore, more clearly associated defined thematic
classes to spectral classes, so separability among
classes increased. Because the number of thematic
classes also increased with class-label precision,
the chance probability for class confusion increased
as well, reducing classification accuracy. Our study

80 85 90
Information Retention (%)

Parts @ 1 @ 2 @ 3 @ 4 5

indicates that no single best solution exists across
study areas, but that the MDGP-scaling method inte-
grates the quantitative evaluation of scaling parameter
selection and its effects on representativeness of clas-
sification systems, information retention at the local
(pixel) and landscape level, and spectral-detection
of the scaled classes. The optimal scaling index that
includes the class detection accuracy in its calculation
is a useful index to determine parameter selection for
MDGP-scaling. Applying this index when selecting
optimal parameters allows user-specific and prefer-
ence-optimized solutions.

Detection accuracy of the scaled classes from
spectral data could further increase when including
multi-season spectral data because hydrological and
phenological cycles and the associated spectral reflec-
tance patterns vary among plant communities. We
used single-season Landsat data to detect the scaled
classes, which is the most likely scenario for change
detection applications in tropical regions because it is
difficult to acquire cloud-free wet season data.
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Table 7 Scaling effects on spectral detection accuracies for NESRS for varying class-label precisions (Parts) and landscape repre-

sentativeness thresholds (Rpr.)

Parts Repr. IR q1. (%) Total CLFpRL Overall OA-CIL (%) OA-CIU (%) OSI,
Classes Accuracy
(%)
1 1 70.3 11 1.00 69.4 68.9 69.8 0.65
1 70.3 11 1.00 69.4 69.0 69.8 0.65
1 10 70.3 11 1.00 69.5 69.1 70.0 0.65
1 15 70.3 11 1.00 69.4 68.9 69.8 0.65
1 20 70.3 11 1.00 69.3 68.9 69.8 0.65
2 1 82.5 21 0.91 70.2 69.7 70.6 0.69
2 5 80.3 13 0.93 70.8 70.4 71.2 1.03
2 10 78.7 12 0.92 71.0 70.6 71.4 1.02
2 15 76.4 11 0.92 71.1 70.7 71.5 0.97
2 20 76.4 11 0.92 71.1 70.6 71.5 0.97
3 1 86.2 26 0.87 69.7 69.3 70.1 0.61
3 5 83.3 16 0.94 70.1 69.7 70.5 0.96
3 10 80.3 13 1.00 70.7 70.3 71.1 1.10
3 15 78.3 12 1.00 70.5 70.1 70.9 1.08
3 20 78.3 12 1.00 70.5 70.1 70.9 1.08
4 1 88.2 33 0.79 69.6 69.2 70.0 0.47
4 5 85.0 18 0.90 70.6 70.2 71.0 0.88
4 10 82.5 14 0.93 70.3 69.9 70.8 1.05
4 15 77.7 11 0.79 714 71.0 71.8 0.90
4 20 77.7 11 0.79 71.3 70.9 71.7 0.90
5 1 89.1 37 0.61 69.4 69.0 69.8 0.33
5 5 84.0 15 0.54 72.1 71.7 72.5 0.62
5 10 78.9 10 0.63 72.6 72.1 73.0 0.86
5 15 77.1 8 0.57 73.2 72.8 73.6 0.90
5 20 77.1 8 0.57 73.1 72.7 73.5 0.90

Column heading abbreviations as in Table 4. Best solution is highlighted in italics

Land-cover change and biophysical parameter
estimation using remote sensing

Ever-increasing spatial resolution of remote sensors
has led to land-cover maps with very high spatial
and thematic precisions. Since thematic map clas-
sification schemes are not uniform across the spatial
scales of sensors, mixed-pixel classes with a coarse
class label from an earlier time can be represented by
pure pixels of their constituent class components in
more recent maps that have a finer spatial resolution.
Change detection over long periods, therefore, must
reconcile the thematic class schemes that were used
at each spatial scale. A change detection method that
generates a representative classification scheme from
high resolution thematic data and that can be detected

@ Springer

from the multispectral data of the coarser resolution
(e.g., Landsat) can facilitate the detection of scaled
classes across time.

Our application of the MDGP-scaling algorithm
to upscaling vegetation cover in two Everglades wet-
land landscapes produced a classification scheme
that effectively generated classes that can be detected
from coarser resolution spectral data and can now be
used to examine temporal change using recent vs. his-
torical Landsat data without having to forfeit the high
compositional information content of high-resolution
maps derived from other sensors. Our study showed
that including the generated mixed classes not only
retained more information in class labels, represent-
ing the ground conditions in much higher detail, but
also led to higher detection accuracies from Landsat
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Table 8 NESRS class schema and class proportions (Class Prop.) for an optimal scaling solution of a 3-part (33%) class-label preci-

sion with landscape representativeness of 10%

Class name—33% Precision 10% Representativeness Class Prop. Mean IR, SD IRc (%)
(%) (%)
100 Graminoid Marsh—Broadleaved Emergent* 2.1 56.4 16.1
100 Graminoid Marsh Cladium* 8.5 89.8 7.6
67 Graminoid Marsh Cladium 12.1 76.1 14.8
33 Graminoid Marsh Cladium Dense
67 Graminoid Marsh Cladium 14.9 82.8 12.9
33 Graminoid Marsh Cladium Sparse
100 Graminoid Marsh Cladium Dense * 9.6 74.5 16.6
100 Graminoid Marsh Cladium Sparse* 18.0 90.3 8.1
67 Graminoid Marsh Cladium Sparse 20.7 54.8 16.3
33 Graminoid Marsh Cladium
100 Graminoid Marsh Dense* 1.1 70.8 17.6
100 Graminoid Marsh Sparse* 5.5 60.1 17.7
100 Graminoid Marsh Typha* 2.0 74.1 19.9
100 Shrub Bayhead* 1.9 74.1 19.9
100 Shrub Salix* 33 74.1 20.2
100 Tree Bayhead* 0.3 82.5 19.6

Left column gives the relative abundance of original classes in the scaled class. Column heading abbreviations as in Table 5

*Indicate original classes. Mixed classes make up 47.7% of the landscape

data. The MDGP-scaling algorithm is the first algo-
rithm that facilitates the exploration of label precision
of mixed classes on the detectability of those classes
from a medium or low-resolution sensor. In our case,
the high vegetation heterogeneity of the Everglades
landscape makes mixed Landsat pixels the norm
rather than the exception (e.g., 60.1% mixed classes
in WCA3A, 47.7% in NESRS for the optimally scaled
classification systems). Applying the new Landsat-
scale classification system that was derived from the
high-resolution co-occurrence patten of plant com-
munities to historic Landsat scenes now allows for
change detection at higher thematic precision.

Higher information retention in more detailed clas-
sification systems is also of great interest when esti-
mating biophysical variables from remotely sensed
data. The difficulties produced by spatial heterogene-
ity on the reliable estimation of biophysical variables
using remotely sensed data have been identified and
described for a suite of parameters and applications
(Lu 2006). For example, Leaf Area Index (LAI),
which estimates green leaf area per unit ground,
and Fraction of Photosynthetically Active Radiation
(FPAR) are two important biophysical variables in
ecosystem gross primary productivity (GPP) models.

Estimation of these variables from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), which has
a high temporal resolution (daily) but coarse spatial
resolution (500 m), relies on land-cover knowledge
of each pixel (Steltzer and Welker 2006; Zhao et al.
2016). Feagin et al. (2020) acknowledged the dif-
ficulty of modeling GPP for wetlands that display
high heterogeneity of land cover relative to the coarse
resolution of MODIS. Lotsch et al. (2003) demon-
strated the sensitivity of LAI and FPAR to land-cover
information and how the heterogeneity of vegetation
types within a pixel affects LAI estimates in a non-
linear fashion (Garrigues et al. 2006). Tian et al.
(2002) showed that LAI errors at a coarse resolution
are inversely related to the proportion of the dominant
land cover in a pixel and that large errors were intro-
duced when the woody component made up only a
small proportion of otherwise non-woody pixels.
Lack of knowledge about mixed-pixel composition
arises from coarse classification schemes or aggre-
gation of detailed maps with algorithms that do not
modify the classification scheme to accommodate
mixed pixels (e.g., majority rule) at the scale of mod-
eling the biophysical variable. The MDGP-scaling
algorithm generalizes classes but retains much higher
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Fig. 13 Scaled plant com-
munities for NESRS (top)
and location-specific infor-
mation retention (IR) for the
assigned community class
label when compared to the
high-resolution map (Fig. 6)
(bottom). Class codes in
Table 2. Numbers in labels
give the class-label preci-
sion percent. Coordinates in
Meters WGS84 UTM 17 N
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precision in land-cover mixes, which propagates to
more accurate calculation or modeling of biophysi-
cal variables. Especially for very heterogeneous land-
scapes such as wetlands, knowing the approximate
relative abundance of vegetation cover types within
each response unit (pixel) of moderate-resolution
remotely sensed data will allow us to reduce error and
uncertainty of biophysical variable estimates.

Conclusion
Understanding the effects of scale on process/pattern

feedback is often the objective of landscape ecologi-
cal studies, and much attention has been drawn to

@ Springer

defining and determining appropriate scales. The
effect of the scaling process itself, however, is rarely
considered, and the loss of information is usually
unknown or unquantified because default methods in
GIS software do not offer sophisticated choices for
scaling categorical data. We demonstrated that the
application of the MDGP-scaling algorithm when
up-scaling natural landscapes enables the selection
of scaling parameters that preserve or retain more
information and that an increase in class-label preci-
sion also leads to an increase in detection accuracy
of scaled classes from multispectral data. Because
the algorithm generates scale-representative clas-
sification schemes with frequently occurring mixed
classes, transition or expansion of ecotones is more
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Fig. 14 Scaled plant-com-
munity classes predicted
from Landsat spectral data
(top) and location-specific
classifier probability for
class-label assignment (bot-
tom) for NESRS. Classes as
in Fig. 13. Coordinates in
Meters WGS84 UTM 17 N

(=3
(=3
(=3
[=2]
<
©
o
(=3
1=
o
©
<
©
N
(=3
1=
o
~
<
©
N
o
1=
(=3
©
<
©
N
o
=1
o
0
<
©
N
o
=1
=]
<
<
©
N

2844000 2845000 2846000 2847000 2848000 2849000

N
——
544000 545000 546000 547000 548000 549000 550000 0 05 1 2km

Predicted Plant
Communities
[] gmbIE100
[ gmci1o0

[] gmcI67_x_gMCID33
[ ] gmcle7_x_gMcCIS33

I gvcip100

[] gmcis100

[ ] gmcise7_x_gMCI33
[ gmp100

N[ gms100

1 gmTy100

[ sB100

[ ]ssat00

I 100

Class Prob.
Blo-025
[Jo.25-05
[Jo.5-0.75
[o.75-0.9
oo -1

likely to be detected when comparing two categori-
cal maps that have been generated at different spatial
resolutions.

The suite of scaling solutions that can be gener-
ated by varying scaling parameters in MDGP-scaling
showed that information retention, class-label fidelity,
and detection accuracy need to be evaluated together
to negotiate trade-offs for a specific application. The
analysis reported here demonstrated that detection of
scaled classes from lower resolution spectral data was
possible and that the evaluation framework facilitates
parameter selection that optimizes scaling results.
Quantifying class-specific and location-specific infor-
mation retention for the scaled products also enables
estimation of spatially explicit confidence or error at

the low-resolution grid cell level and thus of error
propagation to model results.
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