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Abstract. Uniaxial tension is a universal material characterization experiment.
However, studies have shown that increased formability can be achieved with
simultaneous bending and unbending of the material. This so-called continuous
bending under tension process is an example of bending stress superposition to a
uniaxial tension process. In this research, experiments are conducted on stainless
steel 304 to investigate the effects of bending stress superposition on the austenite
to martensite phase transformation. Two vortex tubes are mounted to the carriage
of the machine and used to decrease the temperature in a localized region of the
specimen to evaluate two temperature conditions. The in-situ strain and tempera-
ture fields are captured using 3D digital image correlation and infrared cameras.
The deformation induced α′-martensite volume fraction is measured at regular
intervals along the deformed gauge length using a Feritscope. The number of
cycles that the rollers traverse the gauge length, corresponding to the strain level,
is also varied to create five conditions. The deformed specimens revealed hetero-
geneous martensite transformation along the gauge length due to the non-uniform
temperature fields observed for each test condition. Decreasing the temperature
and increasing the number of cycles led to the highest amount of phase transforma-
tion for this bending-tension superposed process. These results provide insight on
how stress superposition can be applied to vary the phase transformation in more
complex manufacturing processes, such as incremental forming, which combines
bending, tension, and shear deformation.
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1 Introduction

Incremental forming is a rapid prototyping process that can be used to manufacture cus-
tomized sheet metal parts without requiring specialized tooling. In incremental forming,
a tool, typically hemispherical, traverses a piece of clamped sheet metal following a
layer-by-layer toolpath to form the desired geometry. The conventional process is known
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as single point incremental forming (SPIF) and results in increased material formabil-
ity compared to stamping and deep drawing [1]. Three dominant forming mechanisms
are observed during incremental forming: bending, tension, and shear [2], i.e., stress
superposition. Stress superposition is defined as the incorporation of additional stresses
into a primary forming operation during a single process step [3]. This innately stress-
superposed process can bemanipulated to affect the properties of the formed part [4], but
complex modeling efforts are required to inform manufacturing decisions, e.g., process
parameter selection.

To assist with modeling incremental forming, a similar, simpler manufacturing pro-
cess, known as continuous bending under tension (CBT), can be investigated. The CBT
process ismore complex than uniaxial tension because bending, via rollers, is superposed
to a uniaxial process but less complex than incremental forming, due to the absence of
shear deformation. A numerical model of the CBT process was introduced by Hadoush
et al. [5] to better understand the effects of cycling in sheet metal forming, specifically
in relation to incremental forming and deformation beyond the forming limit curve. The
deformation mechanisms in the CBT process have been likened to those of SPIF, includ-
ing the bending depth to the wall angle and the roller speed of the carriage to the feed
rate and step size. A CBTmachine designed with an additional roller, which is subjected
to a constant compression force, to superpose compression has been used to investigate
the deformation mechanisms in double-sided incremental forming (DSIF) [6].

Several variations of CBT machines exist, including one at the University of New
Hampshire (UNH) [7]. Previous studies have shown that the CBT process increases
elongation to failure, i.e., the formability of the material, compared to uniaxial tension
and decreases the required forming load. This is consistent with two of the three main
objectives of using the stress superposition strategy, which are increased formability
[8], reduced forming loads, and enabling customization [9], which will be demonstrated
in this work through the manipulation of phase transformation. CBT experiments have
been conducted for aluminum [10], magnesium [11], and dual phase steels [12] using
the UNH machine to validate various material models used in finite element analyses.

Austenitic stainless steels undergo an irreversible strain-induced phase transforma-
tion from γ-austenite (face-centered cubic, FCC) to α′-martensite (body-centered cubic,
BCC). Alternatively, the phase transformation can occur from γ-austenite to ε-martensite
(hexagonal close packed, HCP) to α′-martensite. This phase transformation is a func-
tion of several parameters including temperature [13], strain level [14], strain rate [15],
strain path [16], stress state [17], crystallographic texture [18], stacking fault energy
[19], and chemical composition [4]. Related to these parameters, certain grades of stain-
less steel (SS) transform at different rates when subjected to the same temperature and
loading conditions, e.g., SS316L transforms significantly less than SS304 and SS301LN
[20]. This variance dependent upon the material and a combination of parameters dur-
ing experiments makes it difficult for martensitic transformation kinetics models to be
transferable between materials and processes without modification.

As one example, amodel proposed byOlson andCohen in 1975 [14] has been adapted
several times to include additional parameters in order to attempt to fit other materials.
Their model, based on data from Angel [21], predicts the martensitic transformation
as a function of equivalent plastic strain and temperature. In 1992, Stringfellow et al.
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incorporated stress triaxiality into Olson and Cohen’s model [22] to compare with the
experimental results presented by Young [23]. Several years later, Tomita and Iwamoto
amended the previous version of the model to include the effect of strain rate [24]. In
2011, Beese and Mohr expanded the model to incorporate the Lode angle parameter
as another means to define the stress state in addition to the stress triaxiality [17]. The
followingyear,Beese andMohr proposed an anisotropic versionof theirmodel to account
for the differences in phase transformation observed previously for rolling direction and
transverse direction SS301LN uniaxial tension tests [25]. For additively manufactured
SS304L, Wang and Beese proposed a stress state dependent model that also accounts
for the crystallographic texture and chemical composition of the material [18]. Future
numerical analyses of the CBT process will include martensitic transformation kinetics
modeling for the chosen material.

In this work, continuous bending under tension experiments are conducted on stain-
less steel 304, to investigate the effects of bending stress superposition on the austenite to
martensite phase transformation. Two temperature conditions and five strain levels, i.e.,
varied numbers of cycles, are investigated to determine the effects of localized cooling
and strain level on the phase transformation of this material. A Feritscope is used to
measure the α′-martensite volume fraction along the gauge length, and the results are
validated by electron backscatter diffraction (EBSD) analyses of select samples. In future
work, x-ray diffraction analyses will be conducted to determine the effect of temperature
and strain level variation on the residual stress development due to phase transformation.
Finite element analyses will also be performed and validated by experimental results.

2 Material Characterization

2.1 Material

Uniaxial tension experimentswere conducted using the geometry described in theASTM
E8 standard and the procedure detailed in [26] to characterize 1.2 mm thick sheets of
SS304, which are fully austenite in the undeformed condition (i.e., zero α′-martensite
volume fraction). The chemical composition provided by the manufacturer is shown
in Table 1. The resulting true stress-strain curves from specimens oriented along the
rolling direction (RD) is shown in Fig. 1. Note that starting at ~0.20 true strain, the strain
hardening behavior of SS304 increases, which is an indication of the α′-martensite phase
transformation occurring.

Table 1. Chemical composition provided by manufacturer for SS304.

C Si Mn P S Cr Mo Ni N Cu Fe

SS304 0.07 1.00 2.00 0.045 0.030 16.71 – 10.12 – – Bal
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Fig. 1. True stress-strain curve for SS304 from uniaxial tension experiment oriented along the
RD.

2.2 Specimen Preparation

The ASTM E8 geometry with an extended gauge length of 200 mm was used for the
CBT experiments as shown in Fig. 2. The specimens were cut from the sheets along
the RD by laser. The top surfaces of the specimens were prepared with layers of white
paint, a black speckle pattern, and matte clear paint for detection in the digital image
correlation post-processing software.

Fig. 2. Specimen geometry for CBT experiments.

3 Experiments

3.1 Experimental Setup

A custom CBT machine at UNH [7, 27] was used for experiments and is shown in
Fig. 3. The CBT specimen was clamped in the grips, and the center roller of the three
stationary roller systemwas displaced downward to create the bending condition. During
the experiments, the cylinder was displaced to apply axial tension to one end of the
specimen while the opposite side of the specimen remained fixed. The entire carriage
assembly was driven by a ball screw and motor, which caused the specimen to traverse
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through the stationary rollers over the gauge length of the specimen while superposing
bending to the tensile process. To capture the strain and temperature in-situ, a stereo
(3D) digital image correlation (DIC) system (Correlated Solutions Inc.) with two 2.3
megapixel cameras (FLIR Grasshopper2) and 17 mm lenses (Schneider) was coupled
with an SC-645 infrared camera (FLIR). The three cameras were fixtured to the carriage,
using aluminum extrusion and 3D-printed camera mounts as shown in Fig. 3, to allow
the cameras to remain focused on the same area of interest throughout the experiment.
Subset, step, and filter sizes of 4 pixels, 9 pixels, and 5 were used for all analyses
(VIC-3D, Correlated Solutions Inc.).

Fig. 3. CBT machine at the University of New Hampshire.

Based on previous experiments using this machine, the speed of the carriage, which
is the so-called roller speed, was set to 66 mm/s, and the pulling speed, which is the
speed of the cylinder, was set to 1.3 mm/s. The bending depth, which is the ratio of the
bend depth from the rollers to the material thickness, was 2 for all experiments.

3.2 Temperature Control

To locally control the temperature, twovortex tubes (Vortec)weremounted to the carriage
with 3D-printed fixtures, and the attached nozzles were aimed at two locations along
the gauge length in the DIC area of interest (Fig. 4). Note that the cooling effect was
extremely localized, and two controlled zones were created in the gauge area. The
amount of hot air exhausted from the vortex tubes was adjusted to create two temperature
conditions, low and high temperatures.

3.3 Phase Transformation Measurements

The γ-austenite to α′-martensite phase transformation in stainless steel was measured
using an FMP30C Feritscope (Fischer Technology) on the unpainted, bottom surface of
the specimens. The fixed end of the specimen was designated as the reference location,
and measurements were taken every 12.7 mm along the gauge length after 10 cycles.
The strain and temperature data were extracted at the same locations.
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Fig. 4. Close-up of experimental setup from cameras’ perspective.

To validate the α′-martensite measurements from the Feritscope, electron backscat-
ter diffraction (EBSD) analyses were performed on select samples extracted near P3
after 10 cycles (Table 2). A Tescan Lyra3 GMU focused ion beam scanning electron
microscope equipped with an Edax EBSD detector was used for these analyses. The fol-
lowingparameterswere selected:magnification: 750x; beam intensity: 19.1; acceleration
voltage: 10 kV; sample tilt: 70°; binning: 8 × 8; and step size: 0.7 µm.

Table 2. Comparison of Feritscope and EBSD α′-martensite measurements near P3.

Material Temperature Condition α′-Martensite Volume Fraction

Feritscope EBSD

SS304 Low 0.89 0.82

High 0.75 0.72

4 Results

4.1 Strain

The true strain evolution along the pulling direction in the gauge length of a SS304
specimen deformed at the low temperature condition with different number of cycles is
shown in Fig. 5. The strain field is relatively uniform over the gauge length throughout
the forming process and reaches a true strain value of approximately 0.35 after 10 cycles.

4.2 Temperature

The evolution of the temperature in the gauge length with increasing deformation, i.e.,
number of cycles, is shown for a SS304 low temperature experiment in Fig. 6. The two
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Fig. 5. Evolution of true strain in pulling direction (εyy) recorded in gauge length of SS304 low
temperature CBT specimen at 0 (undeformed), 3, 5, 7, 9, and 10 cycles.

controlled zones created by the vortex tubes are distinguishable by their reduced temper-
ature compared to the rest of the area of interest. Note that the controlled zones appear
to remain stationary, but, due to elongation, different regions of the gauge area passed
through the controlled zones as the experiment progressed. Throughout the experiment
shown in Fig. 6, the temperature in the center of the controlled zones increases ~4°. In
the surrounding regions, the temperature increases ~11 °C since the cooling effect of the
vortex tubes is lessened significantly at distances farther away from the nozzle. At the
extreme captured by the thermal camera, i.e., near the bottom of Fig. 6, the temperature
increases to nearly 30 °C due to the lack of temperature control and deformation-induced
heating.

Comparing Figs. 5 and 6, it appears that the localized cooling did not cause significant
inhomogeneity in the true strain in the pulling direction in the region of interest. However,
the DIC images of each cycle were captured after the rollers had traversed the area of
interest. Some localized effects on the strain may occur when the rollers pass through the
controlled zones and superpose bending, but, unfortunately, these regions were obscured
from the cameras’ view.

4.3 Martensitic Transformation

FromOlson andCohen [14], it is known that increasedmartensitic transformation occurs
at decreased temperatures and increased strain levels. Both trends were observed for the
α′-martensite volume fraction of SS304 when comparing the low temperature and high
temperature conditions at varying numbers of cycles as shown in Fig. 7. The average
volume fraction over the area of interest for three specimens at each condition is plotted
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Fig. 6. Evolution of temperature recorded in gauge length of SS304 low temperature CBT
specimen at 0 (undeformed), 3, 5, 7, 9, and 10 cycles.

with vertical error bars representing the maximum and minimum values from the three
specimens’ averages and horizontal error bars representing the true strain values recorded
by the DIC after the designated number of cycles.

Fig. 7. Average α′-martensite volume fraction in the area of interest of SS304 low temperature
and high temperature CBT experiments with respect to true strain in pulling direction and number
of cycles.
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The α′-martensite volume fraction and average temperature at the analysis points in
the area of interest vary slightly along the gauge length of the specimen.An example from
a SS304 low temperature, 10 cycles experiment is shown in Fig. 8. The α′-martensite
volume fraction varies ~0.05, and the temperature varies ~3°. Again, the analysis points
in the area of interest moved through the cooling regions created by the vortex tubes as
the specimen was elongated, so different locations with respect to the reference were
exposed to varying amounts of cooling throughout the experiment.Note that the accuracy
of the Feritscope is not guaranteed above 97.1% volume fraction [28].

Fig. 8. SS304 low temperature, 10 cycle CBT experiment: α′-martensite volume fraction and
average temperature measurements in the area of interest.

5 Conclusions

SS304 specimens were subjected to continuous bending under tension experiments
conducted at high and low temperature conditions, which were created using vortex
tubes. The α′-martensitic phase transformation resulting from the stress superposition
of bending onto a tension process was evaluated using a Feritscope. Five strain levels,
corresponding to 3, 5, 7, 9, and 10 cycles, were investigated.

Increased strain levels and decreased temperature conditions led to increased phase
transformation. The strain in the pulling direction remained relatively homogeneous
throughout the experiments, while the temperature varied due to the presence of two
controlled zones created by the vortex tubes and deformation-induced heating. The
variation in material properties along the gauge length, e.g., volume fraction, supports
that stress superposition can be used in manufacturing processes to achieve functionally
graded materials.
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