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High-order strongly nonlinear long wave
approximation and solitary wave solution. Part 2.
Internal waves
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A strongly nonlinear long-wave approximation is adopted to obtain a high-order model for
large-amplitude long internal waves in a two-layer system by assuming the water depth
is much smaller than the typical wavelength. When truncated at the first order, the model
can be reduced to the regularized strongly nonlinear model of Choi et al. (J. Fluid Mech.,
vol. 629, 2009, pp. 73–85), which lessens the Kelvin–Helmholtz instability excited by
the tangential velocity jump across the interface in the inviscid Miyata–Choi–Camassa
(MCC) equations. Using the second-order model, the next-order correction to the internal
solitary wave solution of the MCC equations is found and its validity is examined with
the Euler solution in terms of the wave profile, the effective wavelength and the velocity
profile. It is shown that the correction greatly improves the comparison with the Euler
solution for the whole range of wave amplitudes and no further correction is necessary
for practical applications. Based on a local stability analysis, the region of stability for
the second-order long-wave model is identified in the physical parameter space so that
the efficient numerical scheme developed for the first-order model can be used for the
second-order model.

Key words: internal waves, solitary waves, shallow water flows

1. Introduction

Nonlinear internal solitary waves propagating in density-stratified oceans are frequently
observed on satellite images. As the density difference in the ocean is typically small,
or O(10−3), the gravitational effect is greatly reduced so that the amplitudes of internal
solitary waves are usually large compared with the characteristic vertical length scale, such
as the well-mixed surface layer thickness, as observed in numerous field and laboratory
experiments (Helfrich &Melville 2006). When its density changes sharply from one value
to another, the stratified ocean is often approximated by a two-layer system, for which one
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can find four characteristic lengths: a, λ, h1 and h2, representing the wave amplitude, the
wavelength and the top and bottom layer thicknesses, respectively. For internal solitary
waves, while the long-wave parameter β defined by β = h1/λ = O(h2/λ) is small, the
amplitude parameter α defined by α = a/h1 is typically O(1). Therefore, the classical
weakly nonlinear assumption of α � 1 cannot be used.
In order to describe large-amplitude long internal waves, Miyata (1988) and Choi &

Camassa (1999) proposed a strongly nonlinear long-wave model, which was derived under
the sole assumption of β � 1 while α is assumed to beO(1). The solitary wave solution of
the so-called Miyata–Choi–Camassa (MCC) equations valid for the shallow-water case of
h2/h1 = O(1) has been found to be in good agreement with previous numerical solutions
of the Euler equations and experimental observations (Choi & Camassa 1999; Camassa
et al. 2006). The MCC equations were also generalized to a two-layer system with a free
surface and a multi-layer system (Choi & Camassa 1996; Choi 2000) and their solitary
wave solutions have been studied (Barros & Gavrilyuk 2007; Kodaira et al. 2016; Barros,
Choi & Milewski 2020; Zhao et al. 2020). A uni-directional model that shares the solitary
wave characteristics of the MCC model was also proposed by Choi, Zhi & Barros (2020),
although its derivation is heuristic.
While the MCC solitary wave solution predicts well the internal solitary wave

characteristics, in particular, for small and large amplitudes, it shows some discrepancy
from the Euler solution for intermediate amplitudes although the difference is relatively
small (Camassa et al. 2006). While the agreement for small amplitudes can be expected,
that for large amplitudes is somewhat surprising. For surface waves, as the wave
amplitude increases, short-wavelength components are important so that the long-wave
assumption becomes invalid. On the other hand, for internal waves, the characteristic
wavelength decreases initially with the amplitude to a minimum, but increases to
infinity as the wave amplitude approaches its maximum. This implies that the long-wave
assumption is valid for small- and large-amplitude waves, but might be less satisfactory for
intermediate-amplitude waves. Considering that the MCC equations are the leading-order
model truncated at O(β2) under the long-wave assumption of β � 1, one can expect the
long-wave expansion to O(β4) or higher to better describe intermediate-amplitude waves.
For surface waves, it has been known that high-order long-wave models can be obtained

as a system of two nonlinear evolution equations in infinite series (Agnon, Madsen &
Schaffer 1999; Wu 1999, 2001; Madsen, Bingham & Liu 2002; Choi 2019, 2022). One
evolution equation is for the surface elevation while the other is for the depth-mean
velocity or the velocity at an arbitrary vertical level, including the free surface and the
bottom. Depending on the desired accuracy, these models can be truncated at some order
of β2 and studied numerically. However, as shown in Choi (2019), the truncated models
can be ill posed at some orders of approximation and such models should be avoided for
numerical computations. The only model that is well posed at any order of approximation
was shown to be one for the bottom velocity (Choi 2022). It was then shown that the
theoretical solutions of the high-order model compare well with Euler solutions and
laboratory measurements for large-amplitude solitary waves.
For internal waves, the MCC equations written in terms of the layer-mean velocities

have been known to be dynamically unstable due to the wave-induced velocity jump
across the interface (Jo & Choi 2002). To avoid this Kelvin–Helmholtz (KH) instability,
the time-dependent MCC equations were solved numerically with a filter that removes
unstable short-wavelength disturbances, whose wavenumbers are greater than a critical
value (Jo & Choi 2008). However, as the internal solitary wave amplitude determines the
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High-order long-wave approximation for internal waves
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Figure 1. Two-layer system.

critical wavenumber, the filter needs to be adjusted depending on initial conditions and,
therefore, is inconvenient to implement for numerical studies.
As an alternative approach, Choi, Barros & Jo (2009) regularized the MCC equations

by rewriting the evolution equations in terms of the top and bottom velocities, instead of
the layer-mean velocities. The regularized model was also extended to two-dimensional
waves by Barros & Choi (2013). Through a local stability analysis, the regularized model
was shown to be stable to disturbances of arbitrary wavelengths if the initial solitary wave
amplitude is smaller than a critical value, which is close the maximum wave amplitude
for a wide range of depth and density ratios (Choi et al. 2009). The robustness of the
regularized model was then tested numerically using a pseudo-spectral method combined
with an iterative scheme (Choi, Goullet & Jo 2011). It is therefore reasonable to choose
the top and bottom velocities as dependent variables for a high-order long internal wave
model.
Here, using a similar procedure to that introduced in Choi (2022) to obtain the

high-order strongly nonlinear long surface wave model, we extend the regularized MCC
model written in terms of the top and bottom velocities to an arbitrary order in β2 and find
a high-order solitary wave solution.
The paper is organized as follows. Based on the linear dispersion relations for different

long-wave models presented in § 2, a high-order long internal wave model for the
shallow-water configuration is obtained for the top and bottom velocities in § 3. Using
the second-order model, the leading-order correction to the MCC solitary wave solution is
obtained and the resulting solitary wave solutions are compared with the Euler solutions
in § 4. After a local stability analysis is presented for the second-order model in § 5,
concluding remarks are given in § 6.

2. Basic formulations for long internal waves

At the interface between two fluids of densities ρi with i = 1 and 2 for the upper and lower
layers, respectively, as shown in figure 1, the boundary conditions written in terms of the
interface variables are given (Taklo & Choi 2020) by

ζt + ∇Φi · ∇ζ = (1 + |∇ζ |2)Wi, (2.1a)

Φit + 1
2 |∇Φi|2 + gζ = −P/ρi + 1

2 (1 + |∇ζ |2)W2
i , (2.1b)

where ζ(x, t) is the interface displacement; Φi(x, t) = φi(x, z = ζ, t) (i = 1, 2) are the
velocity potentials evaluated at the interface; Wi(x, t) are the vertical velocities evaluated
at the interface defined by Wi = φiz|z=ζ ; P(x, t) is the pressure at the interface; g
is the gravitational acceleration. For static stability, ρ2 > ρ1 is assumed. Here the
subscripts t and z represent partial differentiations with respect to time and the vertical
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coordinate, respectively, and ∇ is the two-dimensional horizontal gradient given by
∇ = (∂/∂x, ∂/∂y).
To write (2.1) as a closed system for (ζ, Φi,P), one needs to expressWi in terms of these

variables. This closure is similar to that for surface waves in Choi (2022), but is repeated
here as some details are worth noting.

2.1. Linear models
For small-amplitude waves, the boundary conditions (2.1) can be linearized to

ζt = Wi, Φit + gζ = −Pi/ρi. (2.2a,b)

Here, Φi and Wi can be approximated by those evaluated at the mean interface (z = 0) so
that Φi(x, t) � φi(x, 0, t) = φi0(x, t) and Wi(x, t) � ∂φi/∂z|z=0 = wi0(x, t).
When the three-dimensional Laplace equations are solved for φi (i = 1, 2) with the

top and bottom boundary conditions given by ∂φ1/∂z|z=h1 = 0 and ∂φ2/∂z|z=−h2 = 0,
respectively, their solutions can be written, in Fourier space, as

φ̂i(k, z, t) = {cosh[k(z + (−1)ihi)]/ cosh(khi)}φ̂i0(k, t), (2.3)

where f̂ (k, z, t) is the Fourier transform of f (x, z, t), k = |k| with k being the
two-dimensional wavenumber vector and h1 and h2 are the thicknesses of the upper and
lower layers, respectively. Then, from (2.3), one can obtain

ŵi0(k, t) = (−1)i(k tanh khi)φ̂i0(k, t), (2.4)

from which the approximate expressions forWi � wi0 are given, in terms of Φi � φi0 , by

Ŵi(k, t) � (−1)i(k tanh khi)Φ̂i(k, t). (2.5)

Finally, after taking the Fourier transform of (2.2) and using (2.5), the four linear equations
for ζ , Φi (i = 1, 2) and P are given, in Fourier space, by

ζ̂t = (−1)i(k tanh khi)Φ̂i, Φ̂it + gζ̂ = −P̂/ρi. (2.6a,b)

Assuming (ζ̂, Φ̂i, P̂) ∼ exp(−iωt), the coupled system (2.6) yields the full linear
dispersion relation for internal gravity waves (Lamb 1932)

ω2 = (ρ2 − ρ1)gk tanh kh1 tanh kh2
ρ1 tanh kh2 + ρ2 tanh kh1

, (2.7)

where the wave frequency ω is always real.
For long waves in shallow water with khi � 1 and h1/h2 = O(1), one can expand Ti =

tanh khi as

Ti =
∞∑
n=0

22n+2(22n+2 − 1)B2n+2

(2n + 2)!
(khi)2n+1, (2.8)

where B2n are the Bernoulli numbers given by B0 = 1, B2 = 1/6, B4 = −1/30, B6 =
1/42, · · · .
952 A41-4
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High-order long-wave approximation for internal waves

When the upper limit for the summation in (2.8) is replaced by an integer M (≥ 0), one
can find a truncated linear system given, from (2.6), by

ζ̂t = (−1)ikTi,MΦ̂i, Φ̂ it + gζ̂ = −P̂/ρi, (2.9a,b)

where Ti,M represents the Mth-order long-wave approximation of Ti valid to O(β2M+1)
with khi = O(β). The linear dispersion relation of this truncated system can be found as

ω2 = (ρ2 − ρ1)gkT1,MT2,M
ρ1T2,M + ρ2T1,M

. (2.10)

For example, forM = 2, the dispersion relation is given by

ω2 = (ρ2 − ρ1)gk2h1h2[1 − 1
3 (kh1)

2 + 2
15(kh1)

4][1 − 1
3 (kh2)

2 + 2
15(kh2)

4]

ρ2h1[1 − 1
3(kh1)

2 + 2
15(kh1)

4] + ρ1h2[1 − 1
3 (kh2)

2 + 2
15(kh2)

4]
, (2.11)

whose right-hand side is positive so that ω is always real. On the other hand, under the
leading-order approximation (M = 1), or by neglecting terms proportional to (khi)4 in
(2.11), its right-hand side becomes negative for large k values. If this happens, ω is purely
imaginary so that the system is unstable and its imaginary part represents the growth rate.
In general, the system for the interface potentials Φi is stable for evenM while that for odd
M is unstable. The same observation was made for surface waves in Choi (2022).
It should be stressed that this discussion about stability of the linear system (2.6) or

its long-wave approximation (2.9) is limited to perturbations to the flat interface without
background currents. When the interface is no longer flat, different horizontal velocities
are induced in the top and bottom layers. Due to this velocity discontinuity across
the interface, short-wavelength disturbances are expected to grow by the KH instability
mechanism (Jo & Choi 2002). As we are interested in large-amplitude internal waves, the
stability of a deformed interface should be examined, but its analysis will be postponed
until a high-order long-wave model is obtained.
Instead of the interface potentials, the long-wave model, such as the MCC model, is

often written in terms of the layer-mean velocities ūi defined by

ū1 = 1
(h1 − ζ )

∫ h1

ζ

∇φ1 dz, ū2 = 1
(h2 + ζ )

∫ ζ

−h2
∇φ2 dz. (2.12a,b)

For small-amplitude waves, after replacing ζ by 0 in the limit of the integration and using
(2.3), the Fourier transforms of ūi can be approximated by ˆ̄ui � −ik tanh khi/(khi)Φ̂i,
from which we have hî∇ · ūi � −k tanh khiΦ̂i. Then, from (2.9), the linear system for ζ ,
ūi and P can be found, in Fourier space, as

ζ̂t = (−1)i+1hî∇ · ūi, khi coth khi ˆ̄uit + g∇̂ζ = −∇̂P/ρi. (2.13a,b)

Once again, for long waves, when truncated at O(β2M), the linear system (2.13) yields the
following dispersion relation:

(ρ1h2K1,M + ρ2h1K2,M)ω2 = (ρ2 − ρ1)gk2h1h2, (2.14)

where Ki,M are the truncated series of Ki = khi coth khi given by

Ki,M =
[
1 + 1

3
(khi)2 − 1

45
(khi)4 + · · · + 22MB2M

(2M)!
(khi)2M

]
. (2.15)

Contrary to the system for the surface velocity potentials Φi, the system for the layer-mean
velocities ūi is stable for odd M, but is unstable for even M.
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To regularize the MCC model that is ill posed when the interface is deformed, Choi
et al. (2009) used the velocity potentials at the top and bottom boundaries in the long-wave
model. For small-amplitude waves, the interface potentials Φi and the velocity potentials
evaluated at the rigid top and bottom boundaries ϕi(x, t) = φi(x, z = (−1)i+1hi, t) are
related, from (2.3), as

Φ̂i � φ̂i0(k, t) = cosh(khi)ϕ̂i(k, t). (2.16)

Then, from (2.6) with (2.16), the four linear equations for ζ̂ , ϕ̂i (i = 1, 2) and P̂ can be
obtained as

ζ̂t = (−1)i(k sinh khi)ϕ̂i, (cosh khi)ϕ̂it + gζ̂ = −P̂/ρi. (2.17a,b)

For khi = O(β) � 1, when the expansions for Ci = cosh khi and Si = sinh khi are
truncated at O(β2M), as before, the dispersion relation for (2.17) is given by

ω2 = (ρ2 − ρ1)gkS1,MS2,M
ρ1C1,MS2,M + ρ2S1,MC2,M

, (2.18)

where Ci,M and Si,M are the truncated series of Ci and Si, respectively, given by

Ci,M =
[
1 + (khi)2

2!
+ · · · + (khi)2M

(2M)!

]
, (2.19a)

Si,M = khi

[
1 + (khi)2

3!
+ · · · + (khi)2M

(2M + 1)!

]
. (2.19b)

As the right-hand side of (2.18) is always positive for any values of k and M, the wave
frequency ω is always real. Unlike that for the interface velocity potentials Φi or the
layer-mean velocities ūi, the system for the top and bottom velocity potentials ϕi given by
(2.17) is stable, at any order of approximation, to all small disturbances on the flat surface.
Therefore, the top and bottom velocity potentials ϕi are chosen to write a high-order
long-wave system.

2.2. Nonlinear models
Similarly to Choi (2022), we sketch briefly the derivation of a high-order long-wave model
for ϕi. First we expand the three-dimensional velocity potentials φi(x, z, t) (i = 1, 2) in
Taylor series about fixed vertical levels, or z = ziα

φi(x, z, t) =
∞∑
j=0

(−1) j(z − ziα )
2j

(2j)!
∇2jφi

∣∣∣∣∣∣
z=ziα

+
∞∑
j=0

(−1) j(z − ziα )
2j+1

(2j + 1)!
∇2j+1 · ∇−1 ∂φi

∂z

∣∣∣∣
z=ziα

. (2.20)

By introducing in (2.20)

φiα = φi|z=ziα , wiα = ∂φi/∂z|z=ziα , (2.21a,b)

φi(x, z, t) and wi(x, z, t) = ∂φi/∂z can be written (Madsen et al. 2002; Choi 2022) as

φi = cos[(z − ziα )∇]φiα + sin[(z − ziα )∇] · ∇−1wiα, (2.22a)

wi = − sin[(z − ziα )∇] · ∇φiα + cos[(z − ziα )∇]wiα. (2.22b)

952 A41-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

95
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.950


High-order long-wave approximation for internal waves

For finite-amplitude long waves in shallow water, when we choose ziα = h1 and −h2 for
i = 1 and 2, respectively, (2.22) can be rewritten, with wiα = 0 at the flat top and bottom
boundaries, as

φi(x, z, t) = cos[(z + (−1)ihi)∇]ϕi, wi(x, z, t) = − sin[(z + (−1)ihi)∇] · ∇ϕi,
(2.23a,b)

where ϕ1(x, t) and ϕ2(x, t) are the velocity potentials evaluated at the top and bottom
boundaries, respectively. When z = ζ is substituted into (2.23), Φi and Wi can be
expressed, in terms of ζ and ϕi, as

Φi = cos[(ζ + (−1)ihi)∇]ϕi, Wi = − sin[(ζ + (−1)ihi)∇] · ∇ϕi. (2.24a,b)

Then, substituting (2.24) into (2.1) yields formally a system of nonlinear evolution
equations for ζ and ϕi (i = 1, 2) along with an additional unknown P, although the cosine
and sine functions in (2.24) need to be expanded in infinite series and, then, truncated to a
certain order in β2 for practical applications, as discussed in § 3.
Once the high-order long-wave model for ϕi is found, one can obtain a similar model

for the interface velocity potentials Φi or for the layer-mean velocities ūi using the
relationships between these variables, as shown in Appendices A and B. However, as
mentioned previously, the long-wave model for Φi or ūi should be used with care as it is
stable about the zero states only when truncated at even or odd orders in β2, respectively.
Furthermore, when the interface is deformed, both models suffer from the KH instability.

3. Regularized high-order model for the top and bottom potentials

3.1. Expansion in terms of the top and bottom velocity potentials
Following Choi (2022), by expanding the cosine and sine functions in (2.24), Φi and Wi
can be expressed, in terms of ζ and ϕi, as

Φi =
∞∑
m=0

Φi,2m, Φi,2m = (−1)m

(2m)!
η2mi ∇2mϕi, (3.1a,b)

Wi =
∞∑
m=0

Wi,2m, Wi,2m = (−1)i
(−1)m+1

(2m + 1)!
η2m+1
i ∇2(m+1)ϕi, (3.2a,b)

where both Φi,2m and Wi,2m explicitly depend only on ζ and ϕi, and ηi (i = 1, 2) are
defined by

ηi = hi + (−1)iζ. (3.3)

Assuming that ηi∇ = O(hi/λ) = O(β) � 1 with ζ/hi = O(a/hi) = O(α) = O(1), one
can notice that Φi,2m/Φi = O(β2m) and Wi,2m/|∇Φi| = O(β2m+1) for m ≥ 0. Although
no small parameter is explicitly introduced, these series can be considered asymptotic
series in β2 when truncated.

3.2. System of nonlinear evolution equations
By substituting (3.1)–(3.2) into (2.1), the nonlinear evolution equations for ζ , P and ϕi can
be obtained as

ζt =
∞∑
m=0

Qi,2m(ζ, ϕi), Φit = −P/ρi +
∞∑
m=0

Ri,2m(ζ, ϕi), (3.4a,b)
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where Φi are given, in terms of ζ and ϕi, by (3.1). In (3.4), Qi,2m (m ≥ 0) are given by

Qi,0 = −∇ζ · ∇Φi,0 + Wi,0, (3.5a)

Qi,2m = −∇ζ · ∇Φi,2m + Wi,2m + |∇ζ |2Wi,2(m−1) for m ≥ 1, (3.5b)

while Ri,2m (m ≥ 0) are given by

Ri,0 = −gζ − 1
2
|∇Φi,0|2, Ri,2 = −∇Φi,0 · ∇Φi,2 + 1

2
(Wi,0)

2, (3.6a,b)

Ri,2m = −1
2

m∑
j=0

∇Φi,2j · ∇Φi,2(m−j) + 1
2

m−1∑
j=0

Wi,2jWi,2(m−j−1)

+1
2
|∇ζ |2

m−2∑
j=0

Wi,2jWi,2(m−j−2) for m ≥ 2. (3.6c)

In (3.4), both Qi,2m and Ri,2m are O(β2m) for m ≥ 0.
When the expressions for Φi,2m and Wi,2m given by (3.1)–(3.2) are substituted into

(3.5)–(3.6), one can find the explicit expressions of Qi,2m and Ri,2m in terms of ζ and
ϕi. In particular, it is useful to notice that Qi,2m can be rewritten as

Qi,2m = (−1)i∇ ·
[

(−1)m+1

(2m + 1)!
η2 m+1
i ∇2m∇ϕi

]
for m ≥ 0. (3.7)

As (3.4b) is the evolution equation for Φi, an additional step is necessary to find ϕi from
Φi. When the infinite series for Φi in (3.1) are inverted, ϕi can be expressed, in terms of ζ

and Φi, as

ϕi =
∞∑
m=0

ϕi,2m, ϕi,0 = Φi, (3.8a,b)

ϕi,2m =
m∑
j=1

(−1)j+1

(2j)!
η
2j
i ∇2jϕi,2(m−j) for m ≥ 1. (3.8c)

3.3. Energy
After eliminating the pressure at the interface P, (3.4) can be rewritten as

ζt =
∞∑
m=0

Q2,2m(ζ, ϕ2), Ψt =
2∑

i=1

(−1)iρi
∞∑
m=0

Ri,2m(ζ, ϕi), (3.9a,b)

along with
∞∑
m=0

Q1,2m(ζ, ϕ1) =
∞∑
m=0

Q2,2m(ζ, ϕ2), (3.10)

where Ψ is defined by
Ψ = ρ2Φ2 − ρ1Φ1. (3.11)
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High-order long-wave approximation for internal waves

In Benjamin & Bridges (1997), it has been shown that the system given by (2.1) can be
written as Hamilton’s equations

ζt = δE
δΨ

, ϕt = −δE
δζ

, (3.12a,b)

where δE/δζ and δE/δΨ represent the functional derivatives of the total energy E with
respect to ζ andΨ , respectively. Then, the system (3.12) conserves the total energy E given
by

E = 1
2

∫
[(ρ2 − ρ1)gζ 2 + Ψ ζt] dx. (3.13)

After substituting (3.4a) with (3.7) for ζt into (3.13) and using (3.11) for Ψ with (3.1) for
the expressions for Φi, the total energy E can be expanded as

E =
∞∑
m=0

E2m(ζ, ϕ1, ϕ2), (3.14)

where E2m = O(β2m) for m ≥ 0 are given by

E0 = 1
2

∫
[(ρ2 − ρ1)gζ 2 + ρ1η1∇ϕ1 · ∇ϕ1 + ρ2η2∇ϕ2 · ∇ϕ2] dx, (3.15a)

E2m = 1
2

2∑
i=1

m∑
j=0

∫ [
(−1)i+mρi

η
2j+1
i ∇2j(∇ϕi) · ∇(η

2(m−j)
i ∇2(m−j)ϕi)

(2j + 1)!(2(m − j))!

]
dx. (3.15b)

3.4. Truncated models
The infinite series on the right-hand sides of the system given by (3.4) need to be truncated
for numerical computations. The governing equations for ζ , ϕi and P correct to O(β2M)

are then given by

ζt =
M∑

m=0

Qi,2m(ζ, ϕi), Φit = −P/ρi +
M∑

m=0

Ri,2m(ζ, ϕi), (3.16a,b)

Φi =
M∑

m=0

Φi,2m(ζ, ϕi), (3.16c)

where Φi,2m, Qi,2m and Ri,2m given by (3.1), (3.5) and (3.6), respectively, are all O(β2m).
This system will be referred to as the Mth-order system. As mentioned previously,
after solving for Φi (3.16b), ϕi can be obtained from (3.16c), which can be inverted
asymptotically, as shown in (3.8), or numerically using an iterative scheme introduced
in Choi et al. (2011). For a low-order approximation (M = 1 or 2), the numerical approach
is preferable as the asymptotic inversion is less accurate.
Under the small-amplitude assumption of ζ/hi = O(a/hi) � 1, the truncated system

(3.16) can be linearized to

ζt = (−1)iSi,M[ϕi], Ci,M[ϕit] = −P/ρi − gζ, (3.17a,b)

where the linear operators Ci,M and Si,M are defined in (2.19). Notice that Ci,M[ϕi] and
Si,M[ϕi] are the linear approximations to Φi and Wi. The linear dispersion relation for
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W. Choi

(3.17) is then given by (2.18), which shows that the wave frequency is always real for any
choice of k and M.
When the zeroth-order (M = 0) approximation is made to (3.16), we have

ζt + (−1)−i∇ · (ηi∇ϕi) = 0, ϕit + gζ + 1
2 |∇ϕi|2 = −P/ρi, (3.18a,b)

which are the (non-dispersive) shallow-water equations for a two-layer system.

3.4.1. First-order model
When the leading-order dispersive terms of O(β2) are included, (3.16) can be reduced to
the first-order (M = 1) system given by

ζt + (−1)i∇ ·
[(

ηi −
η3i
3!

∇2

)
∇ϕi

]
= 0, (3.19a)[(

1 − η2i
2!

∇2

)
ϕi

]
t

+ gζ + 1
2
∇ϕi · ∇ϕi = − P

ρi
+ ∇ ·

(
η2i
2!

∇2ϕi∇ϕi

)
. (3.19b)

After taking the gradient, the first-order system (3.19) can be written, in terms of the
bottom velocity vi = ∇ϕi, as

ζt + (−1)i∇ ·
[(

ηi −
η3i
3!

∇2

)
vi

]
= 0, (3.20a)

[
vi − ∇

(
η2

2!
∇ · vi

)]
t
+ ∇

(
gζ + 1

2
vi · vi

)
= − P

ρi
+ ∇

[
∇ ·

{
η2i
2!

(∇ · vi)vi
}]

.

(3.20b)

This is the regularized long-wave model of Choi et al. (2009) that is asymptotically
equivalent to the strongly nonlinear long-wave model for the layer-mean velocities, or
the MCC equations. Using the relationship between the bottom velocities vi and the
layer-mean velocities ūi given, from (B2), by

vi = ūi +
η2i
3!

∇2ūi + O(β4), (3.21)

one can show that the system given by (3.20) becomes the MCC equations for the
layer-mean velocities ūi

ζt + (−1)i∇ · (ηiūi) = 0, (3.22a)

ūit + ūi · ∇ūi + g∇ζ = − P
ρi

+ 1
ηi

∇
[

η3i
3

{∇ · ūit + ūi · ∇(∇ · ūi) − (∇ · ūi)2}
]

.

(3.22b)

Here, we have used ∇(∇ · ūi) = ∇2ūi + O(β2) from ∇ × ūi = O(β2), which can be seen
from (3.21).
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High-order long-wave approximation for internal waves

3.4.2. Second-order model
The second-order (M = 2) model correct to O(β4) can be written explicitly, from (3.16),
as

ζt + (−1)i∇ ·
[{

ηi −
η3i
3!

∇2 + η5i
5!

(∇2)2

}
∇ϕi

]
= 0, (3.23a)

[{
1 − η2i

2!
∇2 + η4i

4!
(∇2)2

}
ϕi

]
t

+ gζ + 1
2
∇ϕi · ∇ϕi

= − P
ρi

+ ∇ ·
(

η2i
2!

∇2ϕi∇ϕi

)
− ∇ ·

[
η4i
4!

∇ϕi(∇2)2ϕi +
η4i
16

∇(∇2ϕi)
2

]
. (3.23b)

The total energy truncated at O(β4) is given by E = E0 + E2 + E4 with E2m (m =
0, 1, 2) defined, from (3.14)–(3.15), by

E0 = 1
2

∫
[(ρ2 − ρ1)gζ 2 + ρ1η1∇ϕ1 · ∇ϕ1 + ρ2η2∇ϕ2 · ∇ϕ2] dx, (3.24a)

E2 = 1
3!

2∑
i=1

(−1)iρi

∫
η3i [(∇2ϕi)

2 − ∇ϕi · ∇2∇ϕi] dx, (3.24b)

E4 = 1
5!

2∑
i=1

(−1)iρi

∫
η5i [3∇2(∇ϕi) · ∇2(∇ϕi)

−4(∇4ϕi)(∇2ϕi) + ∇ϕi · ∇4∇ϕi] dx. (3.24c)

It should be mentioned that, unlike that for the surface velocity potentials or the layer-mean
velocities, the truncated system given by (3.23) conserves the truncated total energy only
asymptotically.

4. Solitary wave solution

4.1. Wave profile
For one-dimensional travelling waves, after introducing X = x − ct with c being the
solitary wave speed, (3.4a) with (3.7) can be integrated into

− cζ = (−1)i
∞∑
m=0

(−1)m+1

(2m + 1)!
η2m+1
i D2m[vi] for m ≥ 0, (4.1)

where D = d/dX and vi(X) = Dϕi. As the right-hand side of (4.1) is equivalent to
(−1)i+1ηiūi, it can be seen that we have imposed (ζ, ūi) → 0 as X → −∞ to obtain (4.1).
Note that (4.1) can be inverted to find the expressions for vi, in terms of ζ , as

vi =
∞∑
m=0

vsi,2m, vsi,0 = (−1)i
cζ
ηi

, (4.2a,b)

vsi,2m =
m∑
j=1

(−1)j+1

(2j + 1)!
η
2j
i D

2j[vsi,2(m−j)] m ≥ 1. (4.2c)
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W. Choi

Then, from (3.1)–(3.2), the new expressions for Φi and Wi can be found, in terms of ζ , as

Φi =
∞∑
m=0

Φs
i,2m, Φs

i,2m =
m∑
j=0

(−1) j

(2j)!
η
2j
i D

2j−1[vsi,2(m−j)], (4.3a,b)

Wi =
∞∑
m=0

Ws
i,2m, Ws

i,2m = (−1)i
m∑
j=0

(−1)j+1

(2j + 1)!
η
2j+1
i D2j+1[vsi,2(m−j)]. (4.4a,b)

After substituting these into the steady form of (3.4b) given by

− cρiΦiX = −P + ρi

∞∑
m=0

Rs
i,2m(ζ, ϕi), (4.5)

and subtracting these two equations (i = 1, 2) from each other to eliminate P, one can find
an ordinary differential equation for ζ(X) as

2∑
i=1

∞∑
m=0

(−1)iρiFi,2m(ζ ; c) = 0, Fi,2m(ζ ; c) = cD[Φs
i,2m] + Rs

i,2m, (4.6a,b)

where Fi,2m = O(β2m) with Rs
i,2m given, from (3.6), by

Rs
i,0 = −gζ − 1

2(D[Φ
s
i,0])

2, Rs
i,2 = −(D[Φs

i,0])(D[Φ
s
i,2]) + 1

2 (W
s
i,0)

2, (4.7a,b)

Rs
i,2m = −1

2

m∑
j=0

(D[Φs
i,2j])(D[Φ

s
i,2(m−j)]) + 1

2

m−1∑
j=0

Ws
i,2jW

s
i,2(m−j−1)

+1
2
(D[ζ ])2

m−2∑
j=0

Ws
i,2jW

s
i,2(m−j−2) for m ≥ 2. (4.7c)

For m = 0, 1, 2, the explicit expressions for F2,2m in (4.6) are given by

F2,0(ζ ; c) = 1
2
ζ

(
2c2

η2
− c2ζ

η22
− 2g

)
, (4.8a)

F2,2(ζ ; c) = c2h22
6η22

(ζ ′2 − 2η2ζ ′′), (4.8b)

F2,4(ζ ; c) = − c2h22
90η22

(12ζ ′4 − 48η2ζ ′′ζ ′2 + 4η22ζ
′′′ζ ′ + 2η32ζ

′′′′ + 3η22ζ
′′2). (4.8c)

The expressions for F1,2m(ζ ; c) (m = 0, 1, 2) can be found from (4.8) by replacing
(g, ζ, h2) by (−g, −ζ, h1).
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High-order long-wave approximation for internal waves

After multiplying by ζ ′, (4.6) can be integrated once with respect to X to have the
following nonlinear ordinary differential equation

2∑
i=1

∞∑
m=0

(−1)iρiNi,2m(ζ ; c) = 0, Ni,2m(ζ ; c, hi) =
∫ X

−∞
Fi,2m(ζ ; c)ζX′ dX′. (4.9a,b)

Once again, the explicit expressions for N2,2m (m = 0, 1, 2) are given by

N2,0(ζ ; c) = ζ 2

2η2
(c2 − gη2), (4.10a)

N2,2(ζ ; c) = −c2h22
6η2

ζ ′2, (4.10b)

N2,4(ζ ; c) = − c2h22
90η2

(2η22ζ
′ζ ′′′ − η22ζ

′′2 + 2η2ζ ′2ζ ′′ − 12ζ ′4), (4.10c)

where we have imposed ζ (n) → 0 as X → −∞ for n ≥ 0. Note that N1,2m can be found
by multiplying N2,2m by -1 and replacing (g, ζ, η2, h2) by (−g, −ζ, η1, h1).
To find an asymptotic solitary wave solution, we expand c and ζ as

c =
∞∑
m=0

c2m, ζ =
∞∑
m=0

ζ2m(X), (4.11a,b)

where both c2m and ζ2m are assumed to be O(β2m). When these expansions are
substituted into (4.9), the zeroth-order approximation, or

∑2
i=1(−1)iρiNi,0(ζ ; c) = 0,

yields a trivial solution, or ζ = 0 by imposing the zero boundary conditions at X =
−∞. This implies that −ρ1N1,0(ζ ; c) + ρ2N2,0(ζ ; c) = O(β2) and, therefore, one should
include the O(β2)-terms for a non-trivial solution of (4.9).

4.1.1. First-order solution
The ordinary differential equation that appears at O(β2) is given, from (4.9), by

2∑
i=1

(−1)iρi[Ni,0(ζ0; c0) + Ni,2(ζ0; c0)] = 0, (4.12)

or

ζ ′
0
2 = 3ζ 2

0 [(ρ1η20 + ρ2η10)c
2
0 − (ρ2 − ρ1)gη10η20]

(ρ1h21η20 + ρ2h22η10)c
2
0

≡ G(ζ0), (4.13)

where ζ0 and c0 will be referred to as the first-order solutions, and ηi0 (i = 1, 2) are defined
by

ηi0 = hi + (−1)iζ0. (4.14)

Equation (4.13) is the steady version of the MCC equations. From ζ ′
0 = 0 at ζ0 = a, the

leading-order wave speed c0 and the amplitude a are related (Choi & Camassa 1999) as

c20 = (ρ2 − ρ1)g(h1 − a)(h2 + a)
ρ1(h2 + a) + ρ2(h1 − a)

, (4.15)
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W. Choi

from which the linear long-wave speed clin can be found, with a = 0, as

c2lin = (ρ2 − ρ1)gh1h2
ρ1h2 + ρ2h1

. (4.16)

For the one-layer case with ρ1 = 0, (4.13) can be reduced to

ζ ′
0
2 =

(
3g
c20h

2
2

)
ζ 2
0

[
c20
g

− (h2 + ζ0)

]
. (4.17)

As shown in Choi (2022), this is the first-order equation for solitary waves on the surface of
a single layer of thickness h2 first obtained by Rayleigh (1876) and its solution is given by
ζ(X) = a sech2(ksX) and c20 = g(h2 + a), where (ksh2)2 = 3a/[4(h2 + a)] with a being
the wave amplitude.
It was shown in Choi & Camassa (1999) that the width of the internal solitary wave

solution increases with the wave amplitude and a front solution appears at the maximum
amplitude am satisfying

ρ1(h2 + am)2 = ρ2(h1 − am)2, or, explicitly, am = h1
√

ρ2/ρ1 − h2√
ρ2/ρ1 + 1

, (4.18a,b)

for which the maximum wave speed is given, from (4.10c), by

c2m = g(h1 + h2)
(√

ρ2/ρ1 − 1√
ρ2/ρ1 + 1

)
. (4.19)

Note that the front solution for a = am represents a heteroclinic orbit that connects two
fixed points of (4.13) located at ζ0 = 0 and am.

4.1.2. Second-order solution
By substituting (4.11) into (4.9) and collecting terms of O(β2m), one can find an equation
for ζ2m (m ≥ 1) as

f1(X)ζ ′
2m + f2(X)ζ2m = f3(X)c2m + f4(X), (4.20)

where f4 is a known function of ζ2l and c2l (l = 0, 1, . . . ,m − 1) while fj (j = 1, 2, 3),
depending only on the leading-order solutions (ζ0 and c0), are given by

f1 =
2∑

i=1

(−1)iρi
∂Ni

∂ζ ′

∣∣∣∣
0
, f2 =

2∑
i=1

(−1)iρi
∂Ni

∂ζ

∣∣∣∣
0
, f3 =

2∑
i=1

(−1)iρi
∂Ni

∂c

∣∣∣∣
0
,

(4.21a–c)
with Ni = Ni,0 + Ni,2 and subscript 0 representing evaluation at (ζ, c) = (ζ0, c0). Using
(4.10a)–(4.10b) for N2,0 and N2,2 and the similar expressions for N1,0 and N1,2, one can
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High-order long-wave approximation for internal waves

find explicitly the following expressions for fj (j = 1, 2, 3)

ζ ′
0f1 = −ζ 2

0 [(ρ1η20 + ρ2η10)c
2
0 − (ρ2 − ρ1)gη10η20], (4.22a)

f2 = −1
6c

2
0(ρ1h

2
1 − ρ2h22)G(ζ0) + c20(ρ1h2 + ρ2h1)ζ0 − 3

2c
2
0(ρ2 − ρ1)ζ

2
0

− (ρ2 − ρ1)gh1h2ζ0 + 3
2 (ρ2 − ρ1)g(h2 − h1)ζ 2

0 + 2(ρ2 − ρ1)gζ 3
0 , (4.22b)

f3 = −(ρ2 − ρ1)gη10η20ζ
2
0 /c0. (4.22c)

The solution of (4.20) is formally given by

ζ2m = 1
f0

∫ X

0
f0

(
f3
f1
c2 + f4

f1

)
dX′ + C

f0
, f0(X) = exp

[∫
( f2/f1) dX

]
, (4.23a,b)

where the integrating factor f0 can be found, from (4.23b) with (4.22), as

f0 = 1/ζ ′
0. (4.24)

As the solitary wave is assumed to be an even function decaying to zero as X → ±∞
(except for a = am, for which the front solution is found), the homogeneous solution
of (4.20) given by Cζ ′

0 is an odd function decaying at infinities and will be therefore
neglected. Note that X = 0 is chosen for the lower limit of the integration in (4.23a).
With this choice, ζ2m are always zero at X = 0 and the solitary wave amplitude a remains
unchanged with the order of approximation.
At O(β2), the expression for f4 that depends on ζ0 and c0 is given by

f4 = [ρ1N14(ζ0, c0) − ρ2N24(ζ0, c0)]η10η20, (4.25)

where Ni4 are given by (4.10c) for i = 2 and the similar expression for i = 1, as explained
previously. In evaluating f4, the following expressions for the derivatives of ζ0 would be
useful

ζ ′
0
2 = G(ζ0), ζ ′′

0 = 1
2G

′(ζ0), ζ ′′′
0 = 1

2ζ
′
0G

′′(ζ0), (4.26a–c)

where G′(ζ0) = dG/dζ0 and G′′(ζ0) = d2G/dζ 2
0 with G(ζ0) defined by (4.13). Unlike the

surface wave case in Choi (2022), this expression for f4 is so complex that (4.23a) needs
to be evaluated numerically.
After rewriting (4.23) with C = 0 and dζ0 = ζ ′

0 dX as

ζ2m = 1
f0

∫ ζ0

a
f0

(
f3
f1
c2 + f4

f1

)
dζ0
ζ ′
0

, (4.27)

we first determine c2 by removing the (non-integrable) singularity of the integrand at the
lower limit, or ζ0 = a. From the following asymptotic behaviour of the integrand near
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W. Choi

ζ0 = a (
f0f3
ζ ′
0f1

,
f0f4
ζ ′
0f1

)
= (μ1, ν1)

|ζ0 − a|3/2 + (μ2, ν2)

|ζ0 − a|1/2 + O(|ζ0 − a|1/2), (4.28)

with μj and νj (j = 1, 2) being constants, the leading-order singularity at ζ0 = a can be
removed by choosing c2 to be c2 = −ν1/μ1, which can be found explicitly as

c2
c0

= − a2(ρ1h21η1a + ρ2h22η2a)(ρ1η
2
2a − ρ2η

2
1a)

2

40η1aη2a(ρ1η2a + ρ2η1a)(ρ1h
2
1η2a + ρ2h22η1a)

2
, (4.29)

where ηia = hi + (−1)ia (i = 1, 2). As ρ1 → 0, this can be reduced to the result for
surface waves on a single layer with the thickness h2 (Choi 2022)

c2
c0

= −a(h2 + a)

40h22
γ, (4.30)

where c0 = [g(h2 + a)]1/2 and γ = a/(h2 + a) is the smallness parameter used in the
expansion.
Notice that c2 in (4.29) vanishes at the maximum wave amplitude a = am, for which

ρ1η
2
2a − ρ2η

2
1a = 0. This implies that the maximumwave speed predicted by the first-order

(MCC) equations is indeed the exact solution of the Euler equations, as shown in Choi &
Camassa (1999). Although no correction to the wave speed c0 at a = am is necessary so
that c2m = 0, the corresponding MCC solution for the wave profile is different from the
exact solution of the Euler equations, in particular, in the transition region between the two
constant states (ζ = 0 and ζ = am).
Figure 2 shows the variation of the wave speed c with the amplitude |a| for the density

and depth ratios given by ρ2/ρ1 = 1.022 and h2/h1 = 4.132, respectively. These physical
parameters were used to compute the solitary wave profiles in Camassa et al. (2006)
to validate the MCC solution with the numerical solution of the Euler equations for
the shallow configuration. The improvement for the wave speed by the second-order
solution is relatively small as the first-order MCC solution c0 given by (4.10c) predicts
well the wave speed for the entire range of wave amplitudes, 0 ≤ |a| ≤ |am|, where the
maximum amplitude am/h1 is approximately −1.552. Nevertheless, one can see that the
first-order solution slightly overpredicts the wave speed, and the second-order solution
c = c0 + c2 + O(β4) with c2 given explicitly by (4.29) clearly improves the comparison
with the Euler solution.
To find ζ2, (4.27) with c2 given by (4.29) needs to be computed numerically. To

accurately evaluate the integral, we rewrite (4.27) as

ζ2 = 1
f0

[
2(μ2c2 + ν2)

√
|�a| +

∫ ζ0

a−�a
F(z) dz

]
, (4.31a)

F(ζ0) = f0
ζ ′
0

(
f3
f1
c2 + f4

f1

)
, (4.31b)

where the first term is O(|�a|1/2) and represents the (approximate) evaluation of the
integral from z = a to z = a − �a with |�a/a| � 1, where �a is a small shift away from
a (integrable) singularity at z = a. The integration in (4.31a) is evaluated numerically with
|�a|/h1 = 10−10 using an integration routine ‘NIntegrate’ in the Mathematica (Wolfram
Research, Inc., v.12). The computed ζ2 as a function of ζ0 is shown in figure 3 for four
different wave amplitudes. Similarly to the wave speed, the second-order correction is still
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c/clin
1.15

1.20

1.25

Figure 2. Solitary wave speed c vs amplitude |a|. The second-order (solid line) solution c = c0 + c2 + O(β4)

is compared with the Euler solution (Camassa et al. 2006) (open squares) and the first-order solution (dashed
line) c = c0 + O(β2), where c0 and c2 are given by (4.10c) and (4.29), respectively. Here, clin is the linear
wave speed given by (4.11a,b), the density and depth ratios are given by ρ2/ρ1 = 1.022 and h2/h1 = 4.132,
respectively, and the maximum amplitude is |am|/h1 � 1.552.

ζ0/h1
0–0.2–0.4–0.6–0.8–1.0–1.2–1.4

ζ2/h1

–0.01

0

0.01

0.02

0.03

0.04

Figure 3. Numerical evaluation of (4.27) for ζ2 parameterized by ζ0 for four different solitary wave amplitudes
of depression: |a|/h1 = 0.36 (dotted), 0.65 (dashed); 1.23 (dot-dashed); 1.51 (solid). Here, the density and
depth ratios are given by ρ2/ρ1 = 1.022 and h2/h1 = 4.132, respectively.

small. For |a|/h1 = 0.36, 0.65 and 1.23, as ζ2 is positive while ζ0 is negative for solitary
waves of depression, the second-order solution would lie above the first-order solution
except for ζ0 = 0 and ζ0 = a, where ζ2 = 0. On the other hand, for |a|/h1 = 1.51 close to
the maximum wave amplitude, ζ2 is positive for smaller values of |ζ0|, but is negative near
the maximal displacement at ζ0 = a.
The computed second-order wave profiles given by ζ = ζ0 + ζ2 + O(β4) for |a|/h1 =

0.36, 0.65, 1.23, 1.51 are shown in figure 4 and are indistinguishable from the Euler
solutions. As shown in Choi & Camassa (1999) and Camassa et al. (2006), the first-order
MCC solutions are close to the Euler solutions over a wide range of wave amplitudes, but
the improvement made by ζ2 can be clearly seen for intermediate wave amplitudes.
Figure 5 shows the effective wavelength λ defined by

λ =
∣∣∣∣1a

∫ ∞

0
ζ(X) dX

∣∣∣∣ = λ0 + λ2 + O(β4), (4.32)
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Figure 4. Comparison of internal solitary wave profiles for four different wave amplitudes: (a) a/h1 = −0.36;
(b) −0.65; (c) −1.23; (d) −1.51. The second-order solitary wave solution (solid) given by ζ = ζ0 + ζ2 + O(β4)

is compared with the Euler solution (Camassa et al. 2006) (open squares), the first-order (MCC) solution ζ0
(dashed) and the weakly nonlinear (Koretweg–de Vries, KdV) solution (dotted). Here, the density and depth
ratios are given by ρ2/ρ1 = 1.022 and h2/h1 = 4.132, respectively.

where λ2m (m = 0, 1) are given by

λ2m =
∣∣∣∣∣1a

∫ 0

a
ζ2m(dζ0/ζ ′

0)

∣∣∣∣∣ . (4.33)

While λ0 can be explicitly expressed in terms of complete elliptic functions, as shown in
Choi & Camassa (1999), λ2 needs to be computed numerically. Using (4.27) and (4.33)
for m = 1, the expression for λ2 can be obtained as

λ2 =
∣∣∣∣∣1a

∫ 0

a

∫ ζ0

a
F(z) dz dζ0

∣∣∣∣∣ , (4.34)

where F(z) is given by (4.31b) with f0 = 1/ζ ′
0. Once again, the ‘NIntegrate’ routine in the

Mathematica has been used to evaluate the integration in (4.34).
As observed in the comparison for the wave profiles, the second-order solution is

expected to better predict the effective wavelength λ, particularly for intermediate wave
amplitudes. As shown in figure 5, the second-order solution indeed agrees well with the
Euler solution for the entire range of wave amplitudes, 0 ≤ |a| ≤ |am|. Therefore, for long
internal waves in the shallow-water configuration, the second-order long-wave solution
is expected to be sufficient and no higher-order approximation seems to be necessary for
practical applications.
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High-order long-wave approximation for internal waves

0 0.5
|a|/h1

1.0 1.5
0

5

10

15

20

λ/h1

Figure 5. Effective wavelength λ vs wave amplitude |a|. The second-order solution (solid) is compared with
the Euler solution (Camassa et al. 2006) (open squares), the first-order (MCC) solution (dashed) and the weakly
nonlinear (KdV) solution (dotted). Here, the density and depth ratios are given by ρ2/ρ1 = 1.022 and h2/h1 =
4.132, respectively.

4.2. Velocity field induced by a solitary wave
The horizontal and vertical velocities, (ui,wi) = (φiX, φiz), induced by a solitary wave can
be computed, from (2.23), as

ui(X, z) =
∞∑
m=0

(−1)m

(2m)!
[z + (−1)ihi]2mD2mvi, (4.35a)

wi(X, z) =
∞∑
m=0

(−1)m+1

(2m + 1)!
[z + (−1)ihi]2m+1D2m+1vi, (4.35b)

where ζ ≤ z ≤ h1 for i = 1 and −h2 ≤ z ≤ ζ for i = 2. To find the asymptotically
consistent velocity field, the top and bottom velocities vi(X) = ϕiX should be first
expanded as

vi =
∞∑
m=0

vsi,2m, (4.36)

where vsi,2m = O(β2m) can be found by substituting into (4.2) the expansions for ζ and c
given by (4.11). After substituting (4.36) into (4.35), one can find the following expressions
of ui and wi

ui(X, z) =
∞∑
m=0

usi,2m(X, z), usi2m =
m∑
j=0

(−1) j

(2j)!
[z + (−1)ihi]2jD2jvsi,2(m−j), (4.37a,b)

wi(X, z) =
∞∑
m=0

ws
i,2m(X, z), (4.38a)

ws
i,2m =

m∑
j=0

(−1)j+1

(2j + 1)!
[z + (−1)ihi]2j+1D2j+1vsi,2(m−j), (4.38b)

where usi,2m and ws
i,2m are both O(β2m).
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With the following expressions for vsi,2m (m = 0, 1)

vsi,0 = (−1)i
c0ζ0
ηi0

, (4.39a)

vsi,2 = c0

[
(−1)i

(
c2
c0

ζ0

ηi0
+ hiζ2

η2i0

)
+ η2i0

6

(
hiη′′

i0

η2i0

− 2hiη′
i0
2

η3i0

)]
, (4.39b)

the horizontal velocity of the ith layer ui correct to O(β2) is given explicitly by

ui(X, z) = c0

[
(−1)i

(
ζ0

ηi0
+ c2

c0

ζ0

ηi0
+ hiζ2

η2i0

)

+
(

η2i0
6

− (z + (−1)ihi)2

2

) (
hiη′′

i0

η2i0

− 2hiη′
i0
2

η3i0

)]
, (4.40)

where the expressions for c2m and ζ2m (m = 0, 1) have been found in § 4.1.
Figure 6 shows the horizontal velocities ui at X = 0 (at the location of the maximal

displacement) given by

ui(0, z) = (−1)ic0

[
ζ0

ηi0
+ c2

c0

ζ0

ηi0
+

(
η2i0
6

− (z + (−1)ihi)2

2

) (
hiζ ′′

0

η2i0

)]∣∣∣∣∣
X=0

, (4.41)

where ζ2 = ζ ′
0 = 0 at X = 0 have been used and ζ ′′

0 can be computed, from (4.26b),
as ζ ′′

0 = G′[ζ0]/2. Here, to better represent the variation in the vertical z direction,
note that |ui| are shown. Again, the second-order solution agrees well with the Euler
solution for all wave amplitudes. As discussed previously, the correction c2 to the
leading-order wave speed c0 is so small that the second term proportional to c2 in (4.39b) is
negligible. Therefore, the expressions for ui(0, z)without the second term used in Camassa
et al. (2006) are good approximations to the second-order solution although they are
asymptotically inconsistent.
The maximum horizontal velocity jump across the interface occurs at the location of the

maximal displacement, or X = 0, and can be found, from (4.39b) with z = a, as

U2 − U1 = (c0 + c2)
a(h1 + h2)

(h1 − a)(h2 + a)
− c0

6
G′(a)(h1 + h2), (4.42)

where Ui = ui(0, a). As shown in figure 7, the velocity jump for the second-order solitary
wave solution is slightly greater than that for the first-order solution. Due to this increased
velocity jump, the second-order internal solitary wave could be more unstable by the KH
instability mechanism (Jo & Choi 2002) and its stability needs to be examined when it is
perturbed by short-wavelength disturbances.

5. Local stability analysis for the high-order system

When a solitary wave is perturbed by short-wavelength disturbances, one can perform a
local stability analysis by assuming that the variations of the internal solitary wave and the
wave-induced currents are slow and can be neglected over the characteristic wavelength of
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Figure 6. Comparison of |ui(0, z)| for four different wave amplitudes: (a) a/h1 = −0.36; (b)−0.65; (c)−1.23;
(d) −1.51. The second-order solitary wave solution (solid) given by (4.39a) is compared with the Euler solution
(Camassa et al. 2006) (open squares) and the mean velocity |ui| = |vsi0 | (dotted). Notice that u1 = |u1| and u2 =
−|u2| for solitary waves propagating to the right. Here, the density and depth ratios are given by ρ2/ρ1 = 1.022
and h2/h1 = 4.132, respectively.

the disturbances. For the local stability analysis, ζ and ϕi are perturbed about a and Uix so
that they can be written as

ζ = a + ζ ′, ϕi = Uix + ϕ′
i, P = P0 + P′, (5.1a–c)

where Ui and P0 represent the current in the ith layer and the interface pressure induced
by the solitary wave, respectively. In (5.1), all perturbations are assumed small so that
|ζ ′/a| � 1, |ϕ′

i x/Ui| � 1, and |P′/P0| � 1. Then, with the following expressions for ζ ′
and ϕ′

i

(ζ ′, ϕ′
i,P

′) = (ζ̂, ϕ̂i, P̂) ei(kx−ωt), (5.2)
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Figure 7. The velocity jump across the interface |U2 − U1| vs the wave amplitude |a|: The second-order
solution (solid) is compared with the first-order (MCC) solution (dashed) for the density and depth ratios
given by ρ2/ρ1 = 1.022 and h2/h1 = 4.132, respectively.

the second-order system (3.23) can be linearized, after eliminating P̂, to

−i(ω − kUi)ζ̂ − (−1)ik2HiAiϕ̂i = 0, (5.3a)

2∑
i=1

(−1)iρi[−i(ω − kUi)Biϕ̂i + gζ̂ ] = 0, (5.3b)

where Ai and Bi are given by

Ai = 1 + (kHi)
2

3!
+ (kHi)

4

5!
, Bi = 1 + (kHi)

2

2!
+ (kHi)

4

4!
, (5.4a,b)

with Hi defined by
Hi = hi + (−1)ia. (5.5)

From (5.3), the dispersion relation for ω can be obtained as

ρ1H2A2B1(ω − kU1)
2 + ρ2H1A1B2(ω − kU2)

2 − (ρ2 − ρ1)gk2H1H2A1A2 = 0, (5.6)

or

(ρ1H2A2B1 + ρ2H1A1B2)ω
2 − 2k(ρ1H2U1A2B1 + ρ2H1U2A1B2)ω

+ k2(ρ1H2U2
1A2B1 + ρ2H1U2

2A1B2) − (ρ2 − ρ1)gk2H1H2A1A2 = 0. (5.7)

For stability, ω has to be real for all possible ranges of physical parameters ρi and hi, which
is true only when the discriminant of (5.7), or Δ, is non-negative:

Δ = −ρ1ρ2H1H2A1A2B1B2(U2 − U1)
2

+ (ρ2 − ρ1)H1H2A1A2(ρ1H2A2B1 + ρ2H1A1B2) ≥ 0, (5.8)

or

|U2 − U1|2 ≤ g(ρ2 − ρ1)g
(
H1

ρ1

A1

B1
+ H2

ρ2

A2

B2

)
. (5.9)

This condition can be reduced to that for the first-order regularized model obtained by Choi
et al. (2009) when the terms proportional to (kHi)

4 are neglected from the expressions for
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0 2 64 8
h2/h1

0

–1

a/h1

–3

–2

No solitary wave

No solitary wave

S1,2

S1 & U2

U1,2
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S1 & U2

Figure 8. Stability diagram in the (a, h)-plane for ρ = 1.022 from the local stability analysis for the first-
and second-order models given by (3.19) and (3.23), respectively. The solid and dashed lines represent the
critical wave amplitudes for the first- and second-order models, respectively. The dot-dashed line represents
the maximum wave amplitude am, above (or below) which the solitary wave solution exists when h >

√
ρ (or

h <
√

ρ). The mth-order solitary wave solution is expected to be stable (or unstable) to local short-wavelength
disturbances in Sm (or Um) for the specified range of the wave amplitude a when its propagation is studied
numerically with the mth-order model (m = 1, 2).

Ai and Bi given by (5.4a,b). As observed in Choi et al. (2009), since Ai/Bi decrease with
kHi monotonically from 1, the maximum velocity jump across the interface allowed for
stability for any values of kHi is determined by the minimum of the right-hand side of
(5.9), which happens when kHi → ∞. Therefore, for given physical parameters (ρi,Hi),
the stability criterion for the second-order model can be written, from (5.9), as

|U2 − U1|2 ≤ g(ρ2 − ρ1)

5

(
H1

ρ1
+ H2

ρ2

)
. (5.10)

By substituting into (5.10) the expression for U2 − U1 in terms of a given by (4.42), one
can find the critical wave amplitude acr. Then, for |a| ≤ |acr|, the solitary wave is stable, as
shown in figure 8. The critical wave amplitude |acr| for the second-order model is smaller
than that for the first-order regularized model of Choi et al. (2009), for which the minima
of Ai/Bi are 1/3, instead of 1/5. Therefore, the stability criterion for the second-order model
is more stringent.
As the solitary wave solution exists up to the maximum amplitude am given by (4.18), it

is stable for all possible wave amplitudes if the physical parameters satisfy the following
inequality

(5 − √
ρ)h3 − √

ρ(12 − 5
√

ρ + ρ)h2 − √
ρ(1 − 5

√
ρ + 12ρ)h + ρ3/2(5

√
ρ − 1) ≤ 0,

(5.11)
where ρ = ρ2/ρ1 and h = h2/h1. To obtain (5.11), the expression for U2 − U1 given by
(4.42) has been substituted into (5.10) with a = am.
Figure 9 shows the region of stability for the second-order model (the shaded region

bounded by the solid lines), where ρ and h satisfy the inequality given by (5.11). For any
values of ρ and h inside the stable region, the solitary wave is expected to be stable for
all possible wave amplitudes, or 0 ≤ |a| ≤ |am|. It should be mentioned that, even for the
values of ρ and h outside the stability region, the solitary wave is still stable for |a| ≤ |acr|.
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Figure 9. Stability diagram in the (ρ, h)-plane. The first- and second-order solitary waves are stable for
all possible amplitudes (0 ≤ |a| ≤ |am|) inside the shaded regions bounded by the solid and dashed lines,
respectively. Notice the stability region for the second-order model is smaller than that for the first-order model
of Choi et al. (2009).

Compared with the first-order stable region defined (Choi et al. 2009) by

(3 − √
ρ)h2 − 8

√
ρh + 3ρ − √

ρ ≤ 0, (5.12)

the second-order model is less stable, as discussed earlier.
In fact, as the dispersion relation for the Mth-order model can be found from (5.6) with

Ai = 1 + (kHi)
2

3!
+ · · · + (kHi)

2M

(2M + 1)!
, Bi = 1 + (kHi)

2

2!
+ · · · + (kHi)

2M

(2M)!
, (5.13a,b)

the stability criterion for the Mth-order model is expected to be

|U2 − U1|2 ≤ g(ρ2 − ρ1)

2M + 1

(
H1

ρ1
+ H2

ρ2

)
. (5.14)

Considering that |U2 − U1| increases with the wave amplitude a, as shown in figure 7,
the critical wave amplitude |acr| decreases as M increases and, therefore, the higher-order
system is more prone to short-wave instability. However, as the second-order solitary wave
solution is sufficiently accurate when compared with the Euler solution, a higher-order
model than the second order might be unnecessary.

6. Conclusion

The high-order long-wave approximation adopted for surface waves (Choi 2022) has
been applied to internal waves in a system of two layers of different density to obtain a
high-order long internal wave model written in terms of the horizontal velocities at the
top and bottom boundaries. This is a high-order extension of the regularized model of
Choi et al. (2009) originally developed to improve the stability characteristics of the MCC
equations in the shallow-water configuration.
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High-order long-wave approximation for internal waves

Using the second-order model, the leading-order correction to the solitary wave solution
of the MCC equations has been found. The resulting second-order solutions have been
compared with the Euler solutions for the wave profile, the effective wavelength and
the vertical profile of the horizontal velocity. While the first-order MCC solutions agree
well with the numerical solutions of the Euler equations and laboratory measurements
for a wide range of wave amplitudes, some discrepancy was previously observed, in
particular, for intermediate wave amplitudes. Considering that the effective wavelength
has a minimum at an intermediate amplitude and becomes unbounded as a → 0 or am,
it is not so surprising that the long-wave approximation is more relevant for waves of
small or large amplitudes than those of intermediate amplitudes. It has been found that the
leading-order correction removes this discrepancy and the second-order solution compares
well with the Euler solution.
It has been known that the inviscid two-layer models including the MCC equations

suffer from the KH-type instability caused by the tangential velocity jump across the
interface (Jo & Choi 2002, 2008). The local stability analysis for the second-order model
has shown that the solitary wave solution is still stable when the wave amplitude is less
than a critical value. Although the critical wave amplitude for the second-order model has
been found to be smaller than that for the first-order model, it could be still equal or close
to the maximum wave amplitude.
In Choi et al. (2011), a numerical method based on a pseudo-spectral method along with

an iterative scheme to invert a semi-linear operator has been found efficient and stable for
the regularized model of Choi et al. (2009). This was consistent with the local analysis
for the first-order model. As the same numerical method has been applied successfully
to the high-order long surface wave model (Choi 2022) that has a mathematical structure
similar to that of the internal wave model, it can be also used to solve the time-dependent
second-order model for long internal waves, as predicted by its local stability analysis.
It should be pointed out that the high-order long-wave model studied here has been

obtained under the assumption of h2/h1 = O(1), or for the shallow-water case and,
therefore, cannot be applied to the deep-water case of h2/h1 
 1. For the deep-water
configuration, the second-order correction to the strongly nonlinear model of Choi &
Camassa (1999) has been previously obtained and studied in de Zárate et al. (2009),
Debsarma, Das & Kirby (2010) and Zhao et al. (2016).
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Appendix A. Long-wave model for the interface velocity potentials

By inverting (3.1a), ϕi (i = 1, 2) can be expressed, in terms of ζ and Φi, as

ϕi =
∞∑
m=0

Φ̃i,2m, Φ̃i,0 = Φi, (A1a,b)

Φ̃i,2m = −
m∑
j=1

(−1) j

(2j)!
η
2j
i ∇2j[Φ̃i,2(m−j)] for m ≥ 1, (A1c)
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where ηi are given (3.3). By substituting (A1) into (3.2), Wi can be found as

Wi =
∞∑
m=0

W̃i,2m, (A2a)

W̃i,2m = (−1)i
m∑
j=0

(−1)j+1

(2j + 1)!
η
2j+1
i ∇2(j+1)[Φ̃i,2(m−j)] for m ≥ 0. (A2b)

By substituting (A2) into (2.1), the nonlinear evolution equations for ζ andΦi can be found
as

ζt =
∞∑
m=0

Q̃i,2m(ζ, Φi), Φit = −P/ρi +
∞∑
m=0

R̃i,2m(ζ, Φi), (A3a,b)

where Q̃i,2m and R̃i,2m are given by

Q̃i,0 = W̃i,0 − ∇Φ̃i,0 · ∇ζ, Q̃i,2m = W̃i,2m + |∇ζ |2W̃i,2(m−1) for m ≥ 1, (A4a,b)

R̃i,0 = −gζ − 1
2 |∇Φ̃i,0|2, R̃i,2 = 1

2W̃
2
i,0, (A.5a,b)

R̃i,2m = 1
2

m−1∑
j=0

W̃i,2jW̃i,2(m−j−1) + 1
2
|∇ζ |2

m−2∑
j=0

W̃i,2jW̃i,2(m−j−2) for m ≥ 2. (A5c)

When the system given by (A3) is truncated at O(β4), one can find the following
second-order system for ζ , Φi (i = 1, 2) and P

(−1)iζt + ∇ · (ηi∇Φi) + ∇2(13η
3
i ∇2Φi)

+ ∇2[∇ · ( 2
15η

5
i ∇2∇Φi) + 1

3η
3
i ∇ · (ηi∇ηi)(∇2Φi)] = 0, (A6a)

Φit + gζ + 1
2
∇Φi · ∇Φi − 1

2
η2i (∇2Φi)

2

+ η2i (∇2Φi)[∇2(12η
2
i ∇2Φi) + 1

2 |∇ηi|2∇2Φi − 1
6η

2
i ∇4Φi] = −P/ρi. (A6b)

When linearized, this second-order system (A6) yields the linear dispersion relation given
by (2.11), which shows that ω is always real and is stable. It should be remembered that the
first-order system for the interface variables is unstable. However, as ω ∼ k3 for large k, the
time step needs to be small for numerical computations. Therefore, the system might not
be so useful when the interface is perturbed by a large-amplitude internal solitary wave.

Appendix B. Long-wave model for the layer-mean velocities

By substituting (2.23a) into (2.12), the layer-mean velocities ūi can be written, in terms of
ζ and ϕi, as

ūi = 1
ηi

sin(ηi∇)ϕi =
∞∑
m=0

(−1)m

(2 m + 1)!
η2mi ∇2mvi, (B1)
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High-order long-wave approximation for internal waves

where vi = ∇ϕi are the velocities at the top (i = 1) and bottom (i = 2) boundaries. By
inverting (B1), the expressions for vi can be found, in terms of ζ and ūi, as

vi =
∞∑
m=0

v̄i,2m, v̄i,0 = ūi, (B2a,b)

v̄i,2m =
m∑
j=1

(−1)j+1

(2j + 1)!
η
2j
i ∇2jv̄i,2(m−j) for m ≥ 1. (B2c)

From (3.7) and (B1), one can see that the evolution equation for ζ given by (3.4a) can
be written, at any order of approximation, as

ζt + (−1)i∇ · (ηiūi) = 0, (B3)

which represents the exact conservation law of mass.
From (3.1), V i = ∇Φi can be expressed, in terms of ζ and vi = ∇ϕi, as

V i =
∞∑
m=0

V i,2m(ζ, vi), V i,2m = ∇
[
(−1)m

(2m)!
η2mi ∇2(m−1)∇ · vi

]
. (B4a,b)

By substituting (B2) into (B4), V i can be expressed, in terms of ζ and the layer-mean
velocity ūi, as

V i =
∞∑
m=0

V̄ i,2m(ζ, ūi), (B5)

where V̄ i,0 = ūi and V̄ i,2m (m ≥ 1) are given by

V̄ i,2m =
m∑
j=0

(−1) j

(2j)!
η
2j
i ∇2jv̄i,2(m−j) + ∇ηi

m−1∑
j=0

(−1)j+1

(2j + 1)!
η
2j+1
i ∇2j∇ · v̄i,2(m−j−1), (B6)

with v̄i,2j expressed, in terms of ζ and ūi, in (B2).
Then, from (B3) and (3.4b), the evolution equations for ζ and ūi can be written as

ζt + (−1)i∇ · (ηiūi) = 0, V it = − P
ρi

+
∞∑
m=0

∇R̄i,2m(ζ, ūi), (B7)

where V i are given, in terms of ζ and ūi, by (B5) with (B6). In (B7), R̄i,2m (m ≥ 0) are
given by

R̄i,0 = −gζ − 1
2 V̄ i,0 · V̄ i,0, R̄i,2 = −V̄ i,0 · V̄ i,0 + 1

2W̄
2
i,0, (B8a,b)

R̄i,2m = −1
2

m∑
j=0

V̄ i,2j · V̄ i,2(m−j) + 1
2

m−1∑
j=0

W̄i,2jW̄i,2(m−j−1)

+1
2
|∇ζ |2

m−2∑
j=0

W̄i,2jW̄i,2(m−j−2) for m ≥ 2, (B8c)
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where W̄i,2m are expressed in terms of ζ and ūi as

W̄i,2m =
m∑
j=0

(−1)j+1

(2j + 1)!
η
2j+1
i ∇2j∇ · v̄i,2(m−j), (B9)

with v̄i,2j given by (B2).
When truncated at O(β2), the system given by (B7) becomes the MCC equations given

by (3.22) while the next-order approximation will yield the second-order system, or the
high-order MCC equations with V̄ i,2m and R̄i,2m given by

V̄ i,0 = ūi, V̄ i,2 = −η2i
3

∇2ūi − ηi∇ηi∇ · ūi, (B10a,b)

V̄ i,4 = η4i
30

∇4ūi −
η2i
18

∇2(η2i ∇2ūi) − η2i
3

|∇ηi|2∇2ūi, (B10c)

R̄i,0 = −gζ − 1
2 ū · ūi, (B11a)

R̄i,2 = η2i
2

(∇ · ūi)2 + ūi ·
(

η2i
3

∇2ūi + ηi∇ηi∇ · ūi
)

, (B11b)

R̄i,4 = −ūi ·
[

η4i
30

∇4ūi −
η2i
18

∇2(η2i ∇2ūi) − η2i
3

|∇ηi|2∇2ūi

]

−1
2

(
η2i
3

∇2ūi + ηi∇ηi∇ · ūi
)2

+ η3i
3

(∇ · ūi)(∇ηi · ∇2ūi)

+1
2
|∇ηi|2(ηi∇ · ūi)2. (B11c)

Unfortunately, this second-order system for the layer-mean velocities is linearly unstable
when the zero states are perturbed and, therefore, should be avoided for practical
applications.
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