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We introduce fast algorithms for generalized unnormalized optimal transport. To handle 
densities with different total mass, we consider a dynamic model, which mixes the Lp
optimal transport with Lp distance. For p = 1, we derive the corresponding L1 generalized 
unnormalized Kantorovich formula. We further show that the problem becomes a simple 
L1 minimization which is solved efficiently by a primal-dual algorithm. For p = 2, we 
derive the L2 generalized unnormalized Kantorovich formula, a new unnormalized Monge 
problem and the corresponding Monge-Ampère equation. Furthermore, we introduce a new 
unconstrained optimization formulation of the problem. The associated gradient flow is 
essentially related to an elliptic equation which can be solved efficiently. Here the proposed 
gradient descent procedure together with the Nesterov acceleration involves the Hamilton-

Jacobi equation arising from the KKT conditions. Several numerical examples are presented 
to illustrate the effectiveness of the proposed algorithms.

 2020 Elsevier Inc. All rights reserved.

1. Introduction

Optimal transport describes transport plans and metrics between two densities with equal total mass [28]. It has wide 
applications in various fields such as physics [14,17], mean field games [10], image processing [23], economics [2], inverse 
problem [11,29], Kalman filter [13] as well as machine learning [1,19]. In practice, it is also natural to consider transport 
and metrics between two densities with different total mass. For example, in image processing, it is very common that we 
need to compare and process images with unequal total intensities [26].

Recently, there has been increasing interests in studying the optimal transport between two densities with different 
total mass. Based on the linear programming formulation, generalized versions for unnormalized optimal transport have 
been considered in [25,27]. In this paper, our discussion is based on the fluid-dynamic formulation following [3], which has 
significantly fewer variables than the linear programming formulation. We consider a source function to provide dynamical 
behaviors of a source term during transportation. Adding a source term for handling densities with unequal total mass 
has been considered in [5,7–9,18,20,24]. These methods consider density-dependent source terms and lead to a dynamical 
mixture of Wasserstein-2 distance and Fisher-Rao distance. The corresponding minimization of the source term is weighted 
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with the density. More recently, a spatially independent source function was considered in [12] to transport densities with 
unequal mass. This model results in creating or removing masses in the space uniformly during transportation when moving 
one density to another. Here, we further extend the model [12] using a spatially dependent source function. As a result, the 
transportation map between two densities with different masses has the flexibility to create or remove masses locally. In 
all our models, the source term does not depend on the current density. This property keeps the Hamilton-Jacobi equation 
arising in the original (normalized) optimal transport problem. We further explore the Kantorovich duality and derive the 
corresponding unnormalized Monge problems and Monge-Ampère equations. Besides these model derivations, the other 
main contribution of this paper is to propose fast algorithms for all related dynamical optimal transport problems with 
source terms.

More specifically, the proposed model is a minimal flux problem mixing both Lp metric and Wasserstein-p metric, 
following Benamou-Brenier formula [3]:

inf
v,μ, f

1
∫

0

∫

�

‖v(t, x)‖pμ(t, x)dxdt +
1

α

1
∫

0

∫

�

| f (t, x)|pdxdt,

such that

∂tμ(t, x) + ∇ · (μ(t, x)v(t, x)) = f (t, x), μ(0, x) = μ0(x), μ(1, x) = μ1(x).

The minimization problem solves for the optimal map between two nonnegative densities μ0 and μ1 , given a source 
function f (see the details in Definition 1 from section 2). The optimal map shows how the masses are added or removed 
by the source function during the transportation. In this paper, in particular, we focus on the cases p = 1 and p = 2, and 
design corresponding fast algorithms. For the L1 case, we propose a primal-dual algorithm [4]. The method updates variables 
at each iteration with explicit formulas, which only involve low computational cost shrink operators, such as those used in 
[16]. For the L2 case, we formulate the minimal flux problem into a novel unconstrained minimization problem as follows

inf
μ

{ 1
∫

0

∫

�

∂tμ(t, x)(−∇ · (μ(t, x)∇) + αId)−1∂tμ(t, x)dxdt :

μ(0, x) = μ0(x),μ(1, x) = μ1(x), x ∈ �

}

,

(1)

where α is a given positive scalar, Id is the identity operator, and the infimum is taken among all density paths μ(t, x) with 
fixed terminal densities μ0 , μ1 . From the associated Euler-Lagrange equation, we derive a Nesterov accelerated gradient 
descent method to solve the unnormalized optimal transport problem. It turns out that our method only needs to solve 
an elliptic equation involving the density at each iteration. Thus, fast solvers for elliptic equations can be directly used. 
Interestingly, the Euler-Lagrange equation of this formulation introduces the Hamilton-Jacobi equation, which characterizes 
the Lagrange multiplier (see related studies in [15]). We, in fact, construct the gradient descent method in the density path 
space to solve this equation:

∂τμ(τ , t, x) = ∂t�(τ , t, x) +
1

2
‖∇�(τ , t, x)‖2,

with

�(τ , t, x) = (−∇ · (μ(τ , t, x)∇) + α Id)−1∂tμ(τ , t, x).

Here τ is an artificial time variable in optimization. The minimizer path μ∗(t, x) is obtained by solving μ∗(t, x) =
limτ→∞ μ(τ , t, x) numerically.

The outline of this paper is as follows. In section 2, we propose a formulation for the generalized unnormalized op-
timal transport. We then derive the Kantorovich duality for both cases. We also formulate the generalized unnormalized 
Monge problem and the corresponding Monge-Ampère equation. In section 3, we propose a fast algorithm for L1-generalized 
unnormalized optimal transport using a primal-dual based method. We also propose a new method for L2-generalized un-
normalized optimal transport based on the Nesterov accelerated gradient descent method. In addition, we discuss detailed 
numerical discretization of the two problems. In section 4, we present several numerical experiments to demonstrate the 
effectiveness of our algorithms. We conclude the paper in section 5.

2. Generalized unnormalized optimal transport

In this section, we study a formulation of generalized unnormalized optimal transport problem as a natural extension 
of the exploration studied in [12]. We specifically discuss the L1 and L2 versions of the generalized unnormalized opti-
mal transport and their associated Kantorovich dualities. Furthermore, we derive a new generalized unnormalized Monge 
problem and the corresponding Monge-Ampère equation.
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Let � ⊂ Rd be a compact convex domain. Denote the space of unnormalized densities M(�) by

M(�) := {μ ∈ L1(�) : μ(x) ≥ 0}.
Given two densities μ0, μ1 ∈M(�), we define the generalized unnormalized optimal transport as follows:

Definition 1 (Generalized unnormalized optimal transport). Define the Lp generalized unnormalized Wasserstein distance 
UW p :M(�) ×M(�) → R by

UW p(μ0,μ1)
p = inf

v,μ, f

1
∫

0

∫

�

‖v(t, x)‖pμ(t, x)dxdt +
1

α

1
∫

0

∫

�

| f (t, x)|pdxdt,

such that the dynamical constraint, i.e. the unnormalized continuity equation, holds

∂tμ(t, x) + ∇ · (μ(t, x)v(t, x)) = f (t, x), μ(0, x) = μ0(x), μ(1, x) = μ1(x).

The infimum is taken over continuous unnormalized density functions μ : [0, 1] ×� → R, and Borel vector fields v : [0, 1] ×
� → Rd with zero flux condition on [0, 1] × ∂�, and Borel spatially dependent source functions f : [0, 1] × � → R. A 
positive constant α ∈ (0, ∞) is a fixed parameter.

This is a generalized definition of unnormalized optimal transport from [12]. Here, we consider a spatially dependent 
source function f (t, x). In this paper, we will focus on the cases with p = 1 and p = 2.

Remark 1. We note that [7] has proposed the model for p = 2 without any discussion about numerical methods. In this 
paper, we mainly study Kantorovich duality and design fast algorithms.

Remark 2. In literature, [8] studied the other dynamical formulations of unbalanced optimal transport problems. In their 
approach, the optimal source term is expressed as a product of a density function and a scalar field function. In our ap-
proach, the optimal source term only depends on a scalar field function. This fact shows that our approach is different from 
[8] in variational problems and dual (Kantorovich) problems.

2.1. L1 generalized unnormalized Wasserstein metric

When p = 1, the problem (1) becomes

UW1(μ0,μ1) = inf
v,μ, f

{ 1
∫

0

∫

�

‖v(t, x)‖μ(t, x)dxdt +
1

α

1
∫

0

∫

�

| f (t, x)|dxdt :

∂tμ(t, x) + ∇ · (μ(t, x)v(t, x)) = f (t, x)

μ(0, x) = μ0(x), μ(1, x) = μ1(x)

}

.

(2)

Here ‖ · ‖ can be any homogeneous of degree one norm, i.e. lq norm ‖u‖q = (
∑d

i=1 |ui |q)
1
q . In particular, we consider q = 1, 2

with

‖u‖1 = |u1| + · · · + |ud| for u ∈ R
d,

or

‖u‖2 =
√

|u1|2 + · · · + |ud|2 for u ∈ R
d.

Proposition 2. The L1 unnormalized Wasserstein metric is given by

UW1(μ0,μ1) = inf
m,c

{

∫

�

‖m(x)‖dx +
1

α

∫

�

|c(x)|dx :

μ1(x) − μ0(x) + ∇ ·m(x) − c(x) = 0

}

. (3)
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There exists �(x), such that the minimizer (m, c) for the problem (3) satisfies

∇�(x) ∈ ∂‖m(x)‖ and α�(x) ∈ ∂|c(x)|
where ∂‖m(x)‖ and ∂|c(x)| denote their sub-differentials.

Proof. Denote

m(x) =
1

∫

0

v(t, x)μ(t, x)dt.

Using Jensen’s inequality and integration by parts, we can reformulate (2).

1
∫

0

∫

�

‖v(t, x)‖μ(t, x)dxdt +
1

α

1
∫

0

∫

�

| f (t, x)|dxdt

≥
∫

�

‖m(x)‖dx +
1

α

∫

�

∣

∣

∣

∣

∣

∣

1
∫

0

f (t, x)dt

∣

∣

∣

∣

∣

∣

dx.

(4)

Define c(x) =
∫ 1
0 f (t, x)dt . Integrating on the constraint of problem (2) with the zero flux condition of v yields,

∫

�

c(x)dx =
1

∫

0

∫

�

f (t, x)dxdt =
∫

�

μ1(x)dx −
∫

�

μ0(x)dx.

Plug c(x) into the equation (4), we obtain a new formulation.

inf
m,c

{

∫

�

‖m(x)‖dx +
1

α

∫

�

‖c(x)‖dx : μ1(x) − μ0(x) + ∇ ·m(x) − c(x) = 0

}

.

Note that the minimization path can be attained in the inequality (4) by choosing μ(t, x) = tμ0(x) + (1 − t)μ1(x), 
m(x) = μ(t, x)v(t, x) and f (t, x) = c(x). Then {μ(t, x), v(t, x), f (t, x)} is a feasible solution to (2) and (3), hence the two 
minimization problems have the same optimal value.

Consider the Lagrangian of this minimization problem.

L(m, c,�) =
∫

�

‖m(x)‖dx +
1

α

∫

�

|c(x)|dx +
∫

�

�(x)

(

μ1(x) − μ0(x) + ∇ ·m(x) − c(x)

)

, (5)

where �(x) is a Lagrange multiplier. From the Karush–Kuhn–Tucker (KKT) conditions, we derive the following properties of 
the minimizer

0 ∈ ∂mL ⇒ ∇�(x) ∈ ∂‖m(x)‖
0 ∈ ∂cL ⇒ α�(x) ∈ ∂|c(x)|

δ�L = 0 ⇒ μ1(x) − μ0(x) + ∇ ·m(x) − c(x) = 0. �

Remark 3. In the case that L1 unnormalized Wasserstein metric with a spatially independent function f (t), c is defined to 
be c =

∫ 1
0 f (t)dt , which is a constant. Integrating on a spatial domain for continuity equation,

c =
1

|�|

(∫

�

μ0(x)dx −
∫

�

μ0(x)dx

)

.

As a result, the minimization problem becomes

UW1(μ0,μ1) = inf
m

{∫

�

‖m(x)‖dx +
1

α

∣

∣

∣

∣

∫

�

μ1(x)dx −
∫

�

μ0(x)dx

∣

∣

∣

∣

:

μ1(x) − μ0(x) + ∇ ·m(x) =
1

|�|

(∫

�

μ1(x)dx −
∫

�

μ0(x)dx

)}

.

This is compatible with the result obtained in [12]. In this case, we note that m(x) does not depend on α.

4
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Proposition 3 (L1 generalized unnormalized Kantorovich formulation). The Kantorovich formulation of L1 unnormalized Wasserstein 
metric is the following:

UW1(μ0,μ1) = sup
�

{∫

�

�(x)(μ1(x) − μ0(x))dx : ‖∇�‖ ≤ 1, |�| ≤
1

α

}

(6)

Remark 4. The Kantorovich formulation of the generalized unnormalized Wasserstein-1 metric has also been stated in [6]
for the ‖ · ‖2 norm.

Proof. From the Lagrangian (5),

inf
m,c

sup
�

L(m, c,�)

≥ sup
�

inf
m,c

L(m, c,�)

= sup
�

inf
m,c

{∫

�

‖m(x)‖dx +
1

α

∫

�

|c(x)|dx +
∫

�

�(x)(μ1(x) − μ0(x) + ∇ ·m(x) − c(x))dx

}

= sup
�

inf
m,c

{∫

�

‖m(x)‖dx +
1

α

∫

�

|c(x)|dx +
∫

�

�(x)(μ1(x) − μ0(x) − c(x))dx

−
∫

�

∇�(x) ·m(x)dx +
∫

∂�

�(x)m(x) · n(x)ds(x)

}

= sup
�

{∫

�

�(x)(μ1(x) − μ0(x)) + inf
m,c

∫

�

‖m(x)‖ − ∇�(x) ·m(x)dx +
∫

�

1

α
|c(x)| − �(x)c(x)dx

}

= sup
�

{∫

�

�(x)(μ1(x) − μ0(x))dx : ‖∇�‖ ≤ 1, |�| ≤
1

α

}

.

From the calculation, the optimizer � satisfies the following:

∇� ∈ ∂‖m(x)‖, α� ∈ ∂|c(x)|.

We show the duality gap is zero using the Proposition 2.

∫

�

‖m(x)‖dx +
1

α

∫

�

|c(x)|dx +
∫

�

�(x)(μ1(x) − μ0(x) + ∇ ·m(x) − c(x))dx

=
∫

�

‖m(x)‖ − ∇� ·m(x)dx +
∫

�

1

α
|c(x)| − �(x)c(x)dx +

∫

�

�(x)(μ1(x) − μ0(x))dx

=
∫

�

�(x)(μ1(x) − μ0(x))dx

This concludes the proof. �

2.2. L2 generalized unnormalized Wasserstein metric

Let p = 2. From the definition (1), we now consider

UW2(μ0,μ1)
2 = inf

v,μ, f

{

1
∫

0

∫

�

‖v(t, x)‖2μ(t, x)dxdt +
1

α

1
∫

0

∫

�

‖ f (t, x)‖2dxdt :

∂tμ(t, x) + ∇ · (μ(t, x)v(t, x)) = f (t, x), t ∈ [0,1], x ∈ �,

μ(0, x) = μ0(x),μ(1, x) = μ1(x)

}

.

(7)

5
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Proposition 4. The L2 generalized unnormalized Wasserstein metric is a well-defined metric function in M(�). In addition, the mini-

mizer (v(t, x), μ(t, x), f (t, x)) for (7) satisfies

v(t, x) = ∇�(t, x), f (t, x) = α�(t, x),

and

∂tμ(t, x) + ∇ · (μ(t, x)∇�(t, x)) = α�(t, x)

∂t�(t, x) +
1

2
‖∇�(t, x)‖2 ≤ 0.

In particular, if μ(t, x) > 0, then

∂t�(t, x) +
1

2
‖∇�(t, x)‖2 = 0.

Proof. Denote m(t, x) = μ(t, x)v(t, x). Then the problem becomes

1

2
UW2(μ0,μ1)

2 = inf
m,μ, f

{

1
∫

0

∫

�

‖m(t, x)‖2

2μ(t, x)
dxdt +

1

2α

1
∫

0

∫

�

| f (t, x)|2dxdt :

∂tμ(t, x) + ∇ ·m(t, x) = f (t, x),

μ(0, x) = μ0(x),μ(1, x) = μ1(x), x ∈ �,0 ≤ t ≤ 1

}

.

(8)

Denote �(t, x) as a Lagrange multiplier. Consider the Lagrangian

L(m,μ, f ,�) =
1

∫

0

∫

�

‖m(t, x)‖2

2μ(t, x)
dxdt +

1

2α

1
∫

0

∫

�

| f (t, x)|2dxdt

+
1

∫

0

∫

�

�(t, x)
(

∂tμ(t, x) + ∇ ·m(t, x) − f (t, x)
)

dxdt.

From KKT condition δmL = 0, δμL ≥ 0, δ fL = 0, δ�L = 0, the minimizer satisfies the following properties:

m(t, x)

μ(t, x)
= ∇�(t, x) (9)

−
‖m(t, x)‖2

2μ(t, x)2
− ∂t�(t, x) ≥ 0 (10)

f (t, x) = α�(t, x)

∂tμ(t, x) + ∇ ·m(t, x) − f (t, x) = 0.

Combining (9) and (10) yields: ∂t�(t, x) + 1
2
‖∇�(t, x)‖2 ≤ 0. �

We next derive the corresponding Monge problem for unnormalized optimal transport with a spatially dependent source 
function. We note that the following derivations are formal in Eulerian coordinates of fluid dynamics. We are following the 
proof of Proposition 4 in [12].

Proposition 5 (Generalized unnormalized Monge problem).

UW2(μ0,μ1)
2 = inf

M, f (t,x)

∫

�

‖M(x) − x‖2μ0(x)dx + α

1
∫

0

∫

�

| f (t, x)|2dxdt

+
∫

�

1
∫

0

t
∫

0

f

(

s, sM(x) + (1− s)x

)

‖M(x) − x‖2Det

(

s∇M(x) + (1 − s)I

)

dsdtdx

(11)

6
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where M : � → � is an invertible mapping function and f : � × [0, 1] → R is a spatially dependent source function. The unnormal-

ized push forward relation holds

μ(1,M(x))Det(∇M(x))

= μ(0, x) +
1

∫

0

f

(

t, tM(x) + (1 − t)I

)

Det

(

t∇M(x) + (1 − t)I

)

dt.
(12)

Proof. We derive the Lagrange formulation of the unnormalized optimal transport with p = 2. Consider a mapping function 
Xt(x) with vector field v(t, Xt(x)) satisfying

d

dt
Xt(x) = v(t, Xt(x)), X0(x) = x. (13)

Then

∫

�

1
∫

0

‖v(t, x)‖2μ(t, x)dtdx =
∫

�

1
∫

0

‖v(t, Xt(x))‖2μ(t, Xt(x))Det(∇Xt(x))dxdt

=
∫

�

1
∫

0

‖
d

dt
Xt(x)‖2μ(t, Xt(x))Det(∇Xt(x))dxdt. (14)

Define J (t, x) := μ(t, Xt(x))Det
(

∇Xt(x)
)

. Differentiate J (t, x) with respect to t ,

d

dt
J (t, x) =

d

dt

{

μ(t, Xt(x))Det(∇Xt(x))

}

= ∂tμ(t, Xt(x))Det(∇Xt(x)) + ∇Xμ(t, Xt(x)) ·
d

dt
Xt(x)Det(∇Xt(x))

+ μ(t, Xt(x))∂tDet(∇Xt(x))

= ∂tμ(t, Xt(x))Det(∇Xt(x)) + ∇Xμ(t, Xt(x)) ·
d

dt
Xt(x)Det(∇Xt(x))

+ μ(t, Xt(x))∇ · v(t, Xt(x))Det(∇Xt(x))

=
(

∂tμ + v · ∇μ + μ∇ · v
)

(t, Xt(x))Det(∇Xt(x))

=
(

∂tμ + ∇ · (μv)

)

(t, Xt(x))Det(∇Xt(x))

= f
(

t, Xt(x)
)

Det(∇Xt(x)).

Denote

J (t, x) = J (0, x) +
t

∫

0

d

ds
J (s, x)ds.

Since X0(x) = x and ∇X0(x) = I, then J (0, x) = μ(0, x). This yields

μ(t, Xt(x))Det(∇Xt(x)) = μ(0, x) +
t

∫

0

f
(

s, Xs(x)
)

Det(∇Xs(x))ds.

Since the minimizer in Eulerian coordinates satisfies the Hamilton-Jacobi equation:

∂t�(t, x) +
1

2
‖∇�(t, x)‖2 = 0,

and d
dt

Xt(x) = ∇�(t, Xt(x)), then we have d2

dt2
Xt(x) = 0. This implies

d

dt
Xt(x) = v(t, Xt(x)) = M(x) − x,

7
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thus Xt(x) = (1 − t)x + tM(x) and Det(∇Xt(x)) = Det((1 − t)I + t∇M(x)). Substitute all the above into (14):

(14) =
1

∫

0

∫

�

‖
d

dt
Xt(x)‖2 J (t, x)dxdt

=
1

∫

0

∫

�

‖M(x) − x‖2
(

J (0, x) +
t

∫

0

d

ds
J (s, x)ds

)

dxdt

=
1

∫

0

∫

�

‖M(x) − x‖2μ(0, x)dxdt

+
1

∫

0

∫

�

‖M(x) − x‖2
t

∫

0

f
(

s, Xs(x)
)

Det(∇Xs(x))dsdxdt

=
∫

�

‖M(x) − x‖2μ(0, x)dx

+
1

∫

0

t
∫

0

∫

�

‖M(x) − x‖2 f
(

s, sM(x) + (1− s)x

)

Det

(

(1− s)I + s∇M(x)

)

dxdsdt.

This concludes the derivation. �

We next find the relation between the spatially dependent source function f (t, x) and the mapping function M(x). For 
the simplicity of presentation, here we assume the periodic boundary conditions on �. We are following the proof of 
Proposition 5 in [12].

Proposition 6 (Generalized unnormalized Monge-Ampère equation). The optimal mapping function M(x) = ∇�(x) satisfies the fol-
lowing unnormalized Monge-Ampère equation

μ(1,∇�(x))Det(∇2�(x)) − μ(0, x)

= α

1
∫

0

(

�(x) −
‖x‖2

2
+

t‖∇�(x) − x‖2

2

)

Det
(

t∇2�(x) + (1− t)I
)

dt.
(15)

Proof. From the Hopf-Lax formula for the Hamilton-Jacobi equation,

�(1, y) = sup
x

�(0, x) +
‖y − x‖2

2
.

Since M is the optimal mapping function, x = M−1(y) is a maximizer of the supremum for each y. Thus, the maximizer 
satisfies

∇�(0, x) + x− M(x) = 0,

and we can rewrite the formula as

�(1,M(x)) = �(0, x) +
‖M(x) − x‖2

2
.

We further denote �(x) = �(0, x) + ‖x‖2
2

, then M(x) = ∇�(x). From Xt(x) = (1 − t)x + tM(x),

�(t, Xt(x)) = �(0, x) +
‖Xt(x) − x‖2

2t

= �(0, x) +
t‖M(x) − x‖2

2

= �(x) −
‖x‖2

2
+

t‖∇�(x) − x‖2

2

8
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and

∇Xt(x) = (1− t)I + t∇2�(x).

Substituting f (t, x) = α�(t, x) and M(x) = ∇�(x) into (12), we get

μ(1,∇�(x))Det(∇2�(x)) − μ(0, x)

=
1

∫

0

α

(

�(x) −
‖x‖2

2
+

t‖∇�(x) − x‖2

2

)

Det
(

t∇2�(x) + (1− t)I
)

dt. �

Now, we show the Kantorovich formulation of the problem (7).

Proposition 7 (L2 generalized unnormalized Kantorovich formulation). The unnormalized Kantorovich formulation with f (t, x) sat-

isfies

1

2
UW2(μ0,μ1)

2 = sup
�

{∫

�

(

�(1, x)μ1(x) − �(0, x)μ0(x)

)

dx −
α

2

1
∫

0

∫

�

�(t, x)2dxdt

}

,

where the supremum is taken among all � : [0, 1] × � → R satisfying

∂t�(t, x) +
1

2
‖∇�(t, x)‖2 ≤ 0.

Proof. We introduce a Lagrange multiplier �(t, x) to reformulate the equation (8).

1

2
UW2(μ0,μ1)

2

= inf
m,μ, f

sup
�

{

1
∫

0

∫

�

‖m(t, x)‖2

2μ(t, x)
+

1

2α
f (x, t)2 + �(t, x)

(

∂tμ(t, x) + ∇ ·m(t, x) − f (t, x)
)

dxdt

}

≥ sup
�

inf
m,μ, f

{

1
∫

0

∫

�

‖m(t, x)‖2

2μ(t, x)
+

1

2α
f (x, t)2 + �(t, x)

(

∂tμ(t, x) + ∇ ·m(t, x) − f (t, x)
)

dxdt

}

= sup
�

inf
m,μ, f

{

1
∫

0

∫

�

‖m(t, x)‖2

2μ(t, x)
− ∇�(t, x) ·m(t, x) +

1

2α
f (x, t)2 + �(t, x) ·

(

∂tμ(t, x) − f (t, x)
)

dxdt

}

= sup
�

inf
m,μ, f

{

1
∫

0

∫

�

1

2

∥

∥

∥

∥

m(t, x)

μ(t, x)
− ∇�(t, x)

∥

∥

∥

∥

2

μ(t, x) −
1

2
‖∇�(t, x)‖2μ(t, x)dxdt

+
∫

�

�(1, x)μ1(x) − �(0, x)μ0(x)dx

+
1

∫

0

∫

�

−μ(t, x)∂t�(t, x) +
1

2α
f (t, x)2 − �(t, x) f (t, x))dxdt

}

.

By the Proposition 4, the minimizer m satisfies 
m(t, x)

μ(t, x)
= ∇�(t, x). Thus,

= sup
�

{∫

�

(

�(1, x)μ1(x) − �(0, x)μ0(x)

)

dx

+ inf
μ

1
∫

0

∫

�

−μ(t, x)

(

∂t�(t, x) +
1

2
‖∇�(t, x)‖2

)

dxdt

9
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+ inf
f

1
∫

0

∫

�

1

2α
f (t, x)2 − �(t, x) f (t, x)dxdt

}

= sup
�

{∫

�

(

�(1, x)μ1(x) − �(0, x)μ0(x)

)

dx

+ inf
μ

1
∫

0

∫

�

−μ(t, x)

(

∂t�(t, x) +
1

2
‖∇�(t, x)‖2

)

dxdt

+ inf
f

1
∫

0

∫

�

1

2α

(

f (t, x) − α�(t, x)

)2

dxdt −
α

2

1
∫

0

∫

�

�(t, x)2dxdt

}

.

Again from Proposition 4, the minimizer satisfies f (t, x) = α�(t, x). With the assumption μ(t, x) ≥ 0 for all t ∈ [0, 1] and 
x ∈ �, the problem can be written with a constraint.

1

2
UW2(μ0,μ1)

2 = sup
�

{∫

�

(

�(1, x)μ1(x) − �(0, x)μ0(x)

)

dx −
α

2

1
∫

0

∫

�

�(t, x)2dxdt :

∂t�(t, x) +
1

2
‖∇�(t, x)‖2 ≤ 0

}

.

We next show that the primal-dual gap is zero.

1
∫

0

∫

�

m(t, x)2

2μ(t, x)
+

1

2α
f (t, x)2dxdt

=
1

∫

0

∫

�

1

2
‖∇�‖2μ(t, x)dxdt +

α

2

1
∫

0

∫

�

�(t, x)2dxdt

=
1

∫

0

∫

�

(

−
1

2
‖∇�(t, x)‖2μ(t, x) + ‖∇�(t, x)‖2μ(t, x) +

α

2
�(t, x)2

)

dxdt

=
1

∫

0

∫

�

∂t�(t, x)μ(t, x) + �(t, x)

(

−∇ ·
(

μ(t, x)∇�(t, x)
)

)

+
α

2
�(t, x)2dxdt

=
∫

�

�(1, x)μ1(x) − �(0, x)μ0(x)dx

−
1

∫

0

∫

�

�(t, x)

(

∂tμ(t, x) + ∇ ·
(

μ(t, x)∇�(t, x)
)

)

dxdt +
α

2

1
∫

0

∫

�

�(t, x)2dxdt

=
∫

�

�(1, x)μ1(x) − �(0, x)μ0(x)dx

−
1

∫

0

∫

�

�(t, x) f (t, x)dxdt +
α

2

1
∫

0

∫

�

�(t, x)2dxdt.

Using f (t, x) = α�(t, x), we get

1

2
UW2(μ0,μ1)

2 =
∫

�

�(1, x)μ(1, x) − �(0, x)μ(0, x)dx −
α

2

1
∫

0

∫

�

�(t, x)2dxdt.

This concludes the proof. �

10
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Remark 5. We note that our results and proofs follow directly from the those used in [12]. The major difference between 
[12] and our paper is that in the case of spatial independent source function, f (t) = α

|�|
∫

�
�(t, x)dx, while in the case 

of spatial dependent source function, f (t, x) = α�(t, x). This difference remains in the corresponding Monge problem and 
Kantorvich problem. In particular, we obtain a new spatial dependent unnormalized Monge-Ampère equation (15).

3. Numerical methods

In this section, we propose a Nesterov accelerated gradient descent method to solve L2 unnormalized OT. In addition, we 
design a primal-dual hybrid gradient method to solve L1 unnormalized OT.

3.1. L2 generalized unnormalized Wasserstein metric

In this section, we present a new numerical implementation for L2 unnormalized Wasserstein metric. We obtain a 
unconstrained version of the problem by plugging the PDE constraint into the objective function. Then the accelerated 
Nesterov gradient descent method is applied to solve the problem. We show that each iteration involves a simple elliptic 
equation where fast solvers can be applied. This novel numerical method can also be used in normalized optimal transport 
and unnormalized optimal transport with a spatially independent source function f (t).

Using Proposition 4, we can rewrite the equation (8) as follows:

UW2(μ0,μ1)
2 = inf

�,μ

{ 1
∫

0

∫

�

‖∇�(t, x)‖22μ(t, x)dxdt + α

1
∫

0

∫

�

|�(t, x)|2dxdt :

∂tμ(t, x) + ∇ · (μ(t, x)∇�(t, x)) = α�(t, x),

μ(0, x) = μ0(x),μ(1, x) = μ1(x)

}

.

Define an operator Lμ = −∇ · (μ∇). The constraint ∂tμ − Lμ� = α� leads to

� = (Lμ + α Id)−1∂tμ. (16)

With (16), the minimization problem can be reformulated as

UW2(μ0,μ1)
2 = inf

μ

{ 1
∫

0

∫

�

μ‖∇(Lμ + α Id)−1∂tμ‖22dxdt + α

1
∫

0

∫

�

|(Lμ + α Id)−1∂tμ|2dxdt :

μ(0, x) = μ0(x),μ(1, x) = μ1(x)

}

.

(17)

Using integration by parts,

1
∫

0

∫

�

μ‖∇(Lμ + α Id)−1∂tμ‖2dxdt + α

1
∫

0

∫

�

|(Lμ + α Id)−1∂tμ|2dxdt

=
1

∫

0

∫

�

−
(

∇μ∇(Lμ + α Id)−1∂tμ

)(

(Lμ + α Id)−1∂tμ

)

dxdt

+ α

1
∫

0

∫

�

|(Lμ + α Id)−1∂tμ|2dxdt

=
1

∫

0

∫

�

(

Lμ(Lμ + α Id)−1∂tμ

)(

(Lμ + α Id)−1∂tμ

)

dxdt

+ α

1
∫

0

∫

�

|(Lμ + α Id)−1∂tμ|2dxdt

11
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=
1

∫

0

∫

�

(

(Lμ + α Id)(Lμ + α Id)−1∂tμ

)(

(Lμ + α Id)−1∂tμ

)

dxdt

=
1

∫

0

∫

�

∂tμ(t, x)(Lμ + α Id)−1∂tμ(t, x)dxdt.

Thus, the unnormalized Wasserstein-2 distance forms

UW2(μ0,μ1)
2 = inf

μ

{ 1
∫

0

∫

�

∂tμ(t, x)(Lμ + α Id)−1∂tμ(t, x)dxdt :

μ(0, x) = μ0(x),μ(1, x) = μ1(x)

}

.

(18)

Proposition 8. If μ(t, x) > 0, then the Euler-Lagrange equation of problem (18) satisfies the Hamilton-Jacobi equation, i.e.

∂t�(t, x) +
1

2
‖∇�(t, x)‖2 = 0, x ∈ �, t ∈ [0,1]

where �(t, x) = (Lμ + α Id)−1∂tμ(t, x).

Remark 6. For unnormalized optimal transport with a spatially independent source function f (t), the formula uses (Lμ +
α

|�|
∫

�
)−1 instead of (Lμ + α Id)−1 , i.e.

UW2(μ0,μ1)
2 = inf

μ

{ 1
∫

0

∫

�

∂tμ(t, x)

(

Lμ +
α

|�|

∫

�

)−1

∂tμ(t, x)dxdt :

μ(0, x) = μ0(x),μ(1, x) = μ1(x)

}

.

The Euler-Lagrange equation satisfies the following:

∂t�(t, x) +
1

2
‖∇�(t, x)‖2 = 0, x ∈ �, t ∈ [0,1]

where �(t, x) =
(

Lμ + α
|�|

∫

�

)−1
∂tμ(t, x).

Remark 7. If μ(t, x) = 0, one can show that the Euler-Lagrange equation of problem (18) satisfies

∂t�(t, x) +
1

2
‖∇�(t, x)‖2 ≤ 0.

Proof. Define

I(μ) =
1

∫

0

∫

�

∂tμ(t, x)(Lμ + α Id)−1∂tμ(t, x)dxdt.

We now calculate the first variation of I(μ) with a perturbation η(t, x) ∈ C∞(� × [0, 1]).

0 = lim
h→0

I(μ + hη) − I(μ)

h

= lim
h→0

1

h

1
∫

0

∫

�

(

(∂tμ + h∂tη)(Lμ+hη + α Id)−1(∂tμ + h∂tη) − ∂tμ(t, x)(Lμ + α Id)−1∂tμ(t, x)
)

dxdt

= lim
h→0

[ 1
∫

0

∫

�

∂tμ

(

(Lμ+hη + α Id)−1 − (Lμ + α Id)−1

h

)

∂tμ

12
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+ 2∂tη(Lμ+hη + α Id)−1∂tμdxdt + O (h)

]

=
1

∫

0

∫

�

−∂tμ(Lμ + α Id)−1Lη(Lμ + α Id)−1∂tμ + 2∂tη(Lμ + α Id)−1∂tμdxdt

=
1

∫

0

∫

�

−�Lη� + 2�∂tηdxdt

=
1

∫

0

∫

�

−η

(

‖∇�‖2 + 2∂t�

)

dxdt.

This has to be true for all η ∈ C∞(� × [0, 1]). Thus, we get

∂t� +
1

2
‖∇�‖2 = 0, x ∈ �, t ∈ [0,1].

This concludes the proof. �

Using Proposition 8, we can formulate a Nesterov accelerated gradient descent method [21] to solve the minimization 
problem (18).

Algorithm 1 Nesterov Gradient descent method for UW2 with f (t, x).
while not converged do

μk+ 1
2 = μk − τ∇I(μk) = μk + τ

2

(

∂t�
k + 1

2
‖∇�k‖2

)

where �k = (Lμk + α Id)−1∂tμ
k

μk+ 1
2 = max{μk+ 1

2 , 0}
μk+1 = (1 − γ k)μk+ 1

2 + γ kμk

end while

Here, τ and γ k are step sizes of the algorithm.

γ k =
1− λk

λk+1
, λ0 = 0, λk =

1+
√

1+ 4(λk−1)2

2
.

Remark 8. The Nesterov accelerated gradient descent method can be used for a spatially independent source function f (t). 
We simply replace the operator Lμ + α Id with Lμ + α

∫

�
from Algorithm 1.

Remark 9. Here we apply an iterative method, such as conjugate gradient, to solve (Lμk + α Id)−1∂tμ
k .

Remark 10. We remark that variational problem (18) is convex w.r.t. μ(t, x). This fact holds following the second variational 
formula derived in Lemma 2 of [15]. In other words, our gradient descent algorithm is applied to a convex optimization 
problem (18). For the completeness of this paper, we present the formal derivation here. Denote

J (μ) =
1

2

1
∫

0

∫

�

∂tμ(t, x)(Lμ + α Id)−1∂tμ(t, x)dxdt.

Consider a test function h ∈ C∞([0, 1] × �), such that h(0, x) = h(1, x) = 0. Given ε ∈ R1 , we claim

d2

dε2
J (μ + εh)|ε=0 ≥ 0.

If the above statement is true, we know that the variational problem (18) is convex w.r.t. μ(t, x). In fact, by routine compu-

tations, we observe that

d2

dε2
J (μ + εh)|ε=0

=
∫

�

(

[∂th − L(h)(Lμ + α Id)−1∂tμ], (Lμ + α Id)−1[∂th − L(h)(Lμ + α Id)−1∂tμ]
)

dxdt,

13
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which finishes the proof.

We next present the discretization of density path in both time and spatial domains, where the spatial domain is given 
by 1D or 2D . Here we formulate the operator Lμ and derive its inverse into matrix forms; see similar approaches in [15].

3.1.1. 1D discretization
Consider the following one dimensional discretization:

µ = (µ0, · · · ,µNt ) ∈ R
(Nt+1)×Nx

µ
n = (μn

0, · · · ,μn
Nx−1) ∈ R

Nx (n = 0, · · · ,Nt)

μn
i ∈ R (i = 0, · · · ,Nx − 1,n = 0, · · · ,Nt)

μ0
i = μ0(i
x), μ

Nt

i = μ1(i
x), (i = 0, · · · ,Nx − 1)


x =
|�|

Nx − 1

t =

1

Nt
.

Using the finite volume method, the weighted Laplacian operator L̃µn,α := Lµn + α Id can be represented as the following 
matrix:

L̃µn,α =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

μn
0+μn

1

2
x2
−μn

0+μn
1

2
x2
0 · · · 0

−μn
0+μn

1

2
x2
μn

0+μn
1

2
x2
+ μn

1+μn
2

2
x2
−μn

1+μn
2

2
x2
· · · 0

0 −μn
1+μn

2

2
x2
μn

1+μn
2

2
x2
+ μn

2+μn
3

2
x2
· · · 0

...
. . .

. . .
. . .

...

0 · · · · · · · · · −μn
Nx−2+μn

Nx−1

2
x2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ α Id

Further using the forward Euler method in time, formula (18) can be discretized as

1
∫

0

∫

�

∂tμ(t, x)(Lμ + α Id)−1∂tμ(t, x)dxdt

≈ 
t
x

Nt−1
∑

n=0

〈

µ
n+1 − µ

n


t
, (Lµn + α Id)−1 µ

n+1 − µ
n


t

〉

L2

=

x


t

Nt−1
∑

n=0

〈

µ
n+1 − µ

n, (Lµn + α Id)−1(µn+1 − µ
n)

〉

L2

with µ0 and µNt are given. 〈·, ·〉L2 is L2 norm in RNx such that

〈a,b〉L2 =
Nx−1
∑

i=0

aibi for a,b ∈ R
Nx .

We are now ready to present the derivative of E(µ), and formulate the discrete Hamilton-Jacobi equation as in Algo-
rithm 1.

Proposition 9. Denote L̃µn,α := Lµn + α Id. Let

E(µ) :=

x


t

Nt−1
∑

n=0

〈

µ
n+1 − µ

n, L̃−1
µn,α(µn+1 − µ

n)

〉

L2
.

Suppose x ∈ �. The derivative of E(µ) with respect to µn (n = 1, · · · , Nt − 1) is

14
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δE(µ)

δµn
=


x


t

(

−2L̃µn,α(µn+1 − µ
n) + 2L̃µn−1,α(µn − µ

n−1)

−
(

〈

L̃−1
µn,α(µn+1 − µ

n), Lei L̃
−1
µn,α(µn+1 − µ

n)

〉

L2

)Nx−1

i=0

)

where ei ∈ RNx is an index vector defined as

ei =
{

1 ith index

0 else.

Proof. Differentiating E(µ) with respect to µn for n = 1, · · · , Nt − 1, we get

δE(µ)

δµn
=

δ

δµn

(


t
x

Nt−1
∑

m=0

(µm+1 − µ
m)L̃−1

µn,α(µm+1 − µ
m)

)

= 
t
x

(

−2L̃−1
µn,α(µn+1 − µ

n) + 2L̃−1
µn−1,α

(µn − µ
n−1)

+ (µn+1 − µ
n)

∂ L̃−1
µn,α

∂µn
(µn+1 − µ

n)

)

,

and

(µn+1 − µ
n)

δ L̃−1
µn,α

δµn
n

(µn+1 − µ
n) = −

〈

µ
n+1 − µ

n, L̃−1
µn,αLei L̃

−1
µn,α(µn+1 − µ

n)

〉

L2

= −
〈

L̃−1
µn,α(µn+1 − µ

n), Lei L̃
−1
µn,α(µn+1 − µ

n)

〉

L2
.

This concludes the proof. �

Consider u = (u0, · · · , uNx−1)
T ∈ RNx , then 

〈

u, Leiu
〉

L2
forms the R.H.S. of the discrete Hamilton-Jacobi equation as follows

〈

u, Leiu
〉

L2
=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2

(

ui+1−ui


x

)2
+ 1

2

(

ui−ui−1


x

)2
, i = 1, · · · ,Nx − 2

1
2

(

ui+1−ui


x

)2
, i = 0

1
2

(

ui−ui−1


x

)2
, i = Nx − 1.

3.1.2. 2D discretization
Now, consider the two dimensional discretization. Assume � = [0, 1] × [0, 1] and t ∈ [0, 1].

µ = (µ0, · · · ,µNt ) ∈ R
(Nt+1)×Nx×N y

µ
n = (μn

i j)
Nx−1
i=0

N y−1

j=0 ∈ R
Nx×N y (n = 0, · · · ,Nt)

μn
i j ∈ R (i = 0, · · · ,Nx − 1, j = 0, · · · ,N y − 1,n = 0, · · · ,Nt)

μ0
i j = μ0(i
x, j
y), μ

Nt

i j = μ1(i
x, j
y), (i = 0, · · · ,Nx − 1, j = 0, · · · ,N y − 1)


x =
1

Nx − 1
, 
y =

1

N y − 1
, 
t =

1

Nt
.

Similar to 1D case, using the finite volume method, formula (18) can be discretized as

1
∫

0

1
∫

0

1
∫

0

∂tμ(t, x, y)(Lμ + α Id)−1∂tμ(t, x, y)dxdydt

≈

x
y


t

Nt−1
∑

n=0

〈

µ
n+1 − µ

n, (Lµn + α Id)−1(µn+1 − µ
n)

〉

L2
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with µ0 and µNt are given and 〈·, ·〉L2 is defined as

〈a,b〉L2 =
Nx−1
∑

i=0

N y−1
∑

j=0

ai jbi j for a,b ∈ R
Nx×N y .

The major difference between 1D discretization and 2D discretization arises from the weighted Laplacian operator L̃µn,α . 

Consider w = (w i, j)
Nx−1
i=0

N y−1

j=0 ∈ RNx×N y . For i = 0, · · · , Nx − 1 and j = 0, · · · , N y − 1, the operator can be described as 
follows:

(L̃µn,αw)i j

= −
1


x2

(

μn
i+1, j + μn

i, j

2
w i+1, j − 2

(

μn
i+1, j + μn

i, j

2
+

μn
i, j + μn

i−1, j

2

)

w i, j +
μn

i, j + μn
i−1, j

2
w i−1, j

)

−
1


y2

(

μn
i, j+1 + μn

i, j

2
w i, j+1 − 2

(

μn
i, j+1 + μn

i, j

2
+

μn
i, j + μn

i, j−1

2

)

w i, j +
μn

i, j + μn
i, j−1

2
w i, j−1

)

+ αw i, j.

Here, we assume the Neumann boundary on the spatial domain �. Thus,

w−1, j = w0, j, wNx, j = wNx−1, j, j = 0, · · · ,N y − 1

w i,−1 = w i,0, w i,N y = w i,N y−1, i = 0, · · · ,Nx − 1

μn
−1, j = μn

0, j, μn
Nx, j

= μn
Nx−1, j, j = 0, · · · ,N y − 1

μn
i,−1 = μn

i,0, μn
i,N y

= μn
i,N y−1, i = 0, · · · ,Nx − 1.

Proposition 10. Denote L̃µn,α := Lµn + α Id. Let

E(µ) :=

x
y


t

Nt−1
∑

n=0

〈

µ
n+1 − µ

n, L̃−1
µn,α(µn+1 − µ

n)

〉

L2
.

Suppose x ∈ � = [0, 1] × [0, 1]. The derivative of E(µ) with respect to µn (n = 1, · · · , Nt − 1) is

δE(µ)

δµn
=


x
y


t

(

−2L̃µn,α(µn+1 − µ
n) + 2L̃µn−1,α(µn − µ

n−1)

−
(

〈

L̃−1
µn,α(µn+1 − µ

n), Lei j L̃
−1
µn,α(µn+1 − µ

n)

〉

L2

)Nx−1,N y−1

i=0, j=0

)

,

where ei j is an index vector such that ek,l = 1 if k = i and l = j and 0 otherwise.

Proof. The proof follows exactly the one in Proposition 9. �

Consider a vector u = (ui j)
Nx−1
i=0

N y−1

j=0 ∈ RNx×N y that satisfies the Neumann boundary condition. Similar to 1D case, 
〈

u, Lei, ju
〉

L2
can be computed easily based on the operator and it forms the R.H.S. of the discrete Hamilton-Jacobi equa-

tion. For i = 0, · · · , Nx − 1 and j = 0, · · · , N y − 1,

〈

u, Lei, ju
〉

L2
=

1

2

(

ui+1, j − ui, j


x

)2

+
1

2

(

ui, j − ui−1, j


x

)2

+
1

2

(

ui, j+1 − ui, j


y

)2

+
1

2

(

ui, j − ui, j−1


y

)2

.

3.2. L1 generalized unnormalized Wasserstein metric

Our discussion here mainly focuses on ‖u‖1 =
∑

i |ui |. The algorithm can be simply extended to ‖u‖2 =
√

∑

i u
2
i using 

the corresponding shrinkage operator. With the Lagrangian (5), we consider a saddle point problem.
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inf
m,c

sup
�

L(m, c,�).

We can use PDHG [4] to solve the saddle point problem by minimizing L(m, c, �) over m and c and maximizing over �.

mk+1 = argmin
m

(

‖m‖1 +
ε

2
‖m‖22 +

〈

�k,∇ ·m
〉

L2
+

1

2λ
‖m −mk‖22

)

(19)

ck+1 = argmin
c

(

1

α
‖c‖1 +

ε

2
‖c‖22 −

〈

�k, c
〉

L2
+

1

2λ
‖c − ck‖22

)

(20)

�k+1 = argmax
�

(

〈

�,∇ · (2mk+1 −mk) − (2ck+1 − ck) + μ1 − μ0

〉

L2
−

1

2τ
‖� − �k‖22

)

(21)

where λ and τ are step sizes of the algorithm. Note that we add a small ‖ · ‖22 perturbation in (19) and (20) to strictly 
convexify the problem. This adjustment can overcome the possible non-uniqueness of the optimal transport problem. This 
trick is also related to so called the elastic net regularization [22], whose proximal operator is essentially the same as the 
proximal operator of L1 norm shrink operator.

Algorithm 2 PDHG for UW1 with f (t, x).

mk+1 = 1/(1 + ελ)shrink

(

mk + λ∇�k, λ
)

ck+1 = 1/(1 + ελ)shrink

(

ck + λ�k, λα
)

�k+1 = �k + τ

(

∇ · (2mk+1 −mk) − (2ck+1 − ck) + μ1 − μ0

)

where the shrink operator is defined as following:

(shrink(u, t))i =
{

(1− t/|ui|)ui, for ‖ui‖1 ≥ t;
0, for ‖ui‖1 < t.

i = 1, · · · ,d.

Remark 11. This algorithm can also be extended to ‖ · ‖2 by simply replacing the above shrink operator as

shrink(u, t) =
{

(1− t/‖u‖2)u, for ‖u‖2 ≥ t;
0, for ‖u‖2 < t.

3.2.1. Discretization
Consider the following two dimensional discretization on a domain � = [0, 1] ×[0, 1] based on the finite volume method.


x =
1

Nx
,
y =

1

N y

μ0
i j = μ0(i
x, j
y), μ1

i j = μ1(i
x, j
y)

V = {(i, j) : i = 0, · · · ,Nx, j = 0, · · · ,N y}

Ex = {(i ±
1

2
, j) : i = 1, · · · ,Nx − 1, j = 0, · · · ,N y)}

E y = {(i, j ±
1

2
) : i = 0, · · · ,Nx, j = 1, · · · ,N y − 1)}

� = (�i j)i j∈V ∈ R
(Nx+1)×(N y+1), c = (ci j)i j∈V ∈ R

(Nx+1)×(N y+1)

mx = (mxe)e∈Ex ∈ R
Nx×(N y+1), my = (mye)e∈E y ∈ R

(Nx+1)×N y

mxi+ 1
2 , j ≈

(i+1)
x
∫

i
x

( j+1/2)
y
∫

( j−1/2)
y

mx(x, y)dydx

myi, j+ 1
2

≈
(i+1/2)
x

∫

(i−1/2)
x

( j+1)
y
∫

j
y

my(x, y)dydx.

Here m satisfies the zero flux condition. Thus, mx and my satisfy the following boundary conditions on m:
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mx− 1
2 , j =mxNx+ 1

2 , j = 0, j = 0, · · · ,N y

myi,− 1
2

=myi,N y+ 1
2

= 0, i = 0, · · · ,Nx.

The discretization of Algorithm 2 can be written as the following:

mx
k+ 1

2

i+ 1
2 , j

=
1

1+ ελ

(

mxk
i+ 1

2 , j
+

λ


x
(�i+1, j − �i, j)

)

my
k+ 1

2

i, j+ 1
2

=
1

1+ ελ

(

myk
i, j+ 1

2

+
λ


y
(�i, j+1 − �i, j)

)

c
k+ 1

2

i j =
1

1+ ελ
shrink

(

ck + λ�k
i j,

λ

α

)

mxk+1 =2mxk+
1
2 −mxk

myk+1 =2myk+
1
2 −myk

ck+1 =2ck+
1
2 − ck

�k+1
i j =�k

i j + τ

(

1


x
(mxk+1

i+ 1
2 , j

−mxk+1

i− 1
2 , j

) +
1


y
(myk+1

i, j+ 1
2

−myk+1

i, j− 1
2

) − ck+1
i j + μ1

i j − μ0
i j

)

.

4. Numerical experiments

In this section, we show the numerical results with various examples for L1 and L2 unnormalized optimal transport with 
the spatially dependent source function. The computations were conducted on 2019 MacBook Pro with 2.6 GHz 6-Core and 
16 GB RAM.

4.1. Nesterov accelerated gradient descent for UW2

We present four numerical experiments with different μ0 and μ1 using Algorithm 1.

4.1.1. Experiment 1
Consider a one dimensional problem on � = [0, 1] with μ0 and μ1 in M(�) as

μ0 = N(x;
1

5
,0.0001)

μ1 = N(x;
4

5
,0.0001) · 1.4

Here we choose N(x, μ, σ 2) = C exp
(

− (x−μ)2

2σ 2

)

with an appropriate choice of C satisfying 
∫

�
N(x; μ, σ 2)dx = 1. Note that 

∫

�
μ0dx = 1 and 

∫

�
μ1dx = 1.4. We use the Algorithm 1 to compute the minimizer μ(t, x) of UW2(μ0, μ1). The parameters 

chosen for the experiment are

Nx = 40,Nt = 30,τ = 0.1,maximum iterations = 200,000.

Fig. 1 shows the L2 unnormalized optimal transport with a spatially dependent source function f (t, x) with different 
α values. The parameter α determines the ratio between transportation and linear interpolation for μ0 and μ1 . If α is 
small, the geodesic of generalized unnormalized optimal transport is similar to the normalized (classical) optimal transport 
geodesics. As the parameter α increases, the generalized unnormalized optimal transport geodesic behaves closer to the 
Euclidean geodesics.

Fig. 2 shows the transportation with a spatially independent source function f (t). It is clear to see that the masses 
are created or removed locally for the transportation with f (t, x), while they are created or removed globally for the 
transportation with f (t).

For each 1-dimensional numerical experiment, the computation took about 5 seconds for 200, 000 iterations.

4.1.2. Experiment 2
In this experiment, we can see how the size of the domain affects the unnormalized Wasserstein distances for both a 

spatially dependent source function f (t, x) and a spatially independent source function f (t). Consider a one dimensional 
problem between two densities with different total masses. Fig. 3 shows plots for the size of the domain |�| vs. the 
unnormalized Wasserstein distance UW2 . As expected, for the spatially independent source function, the distance increases 
as |�| increases since the source function affects the transportation globally. Thus, more masses are created or removed 
as |�| increases. However, the unnormalized Wasserstein distance with the spatially dependent source function does not 
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Fig. 1. Experiment 1. L2 Unnormalized optimal transportation with a spatially dependent source function f (t, x). The figures show the transportation of the 
densities from t = 0 (top left) to t = 1 (bottom right). Blue line shows α = 0.1, orange line shows α = 10, and green line shows α = 100. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

depend on |�|. This actually provides an advantage of using the spatially dependent source function over the spatially 
independent source function when we need a consistent Wasserstein distance for any size of the domain.

4.1.3. Experiment 3
Consider a two dimensional problem with the following input values:

μ0 = N

(

(x, y), (
1

3
,
1

3
), (

√
2

20
,

√
2

20
)

)

+ N

(

(x, y), (
2

3
,
1

3
), (

√
2

20
,

√
2

20
)

)

μ1 = N

(

(x, y), (
2

3
,
2

3
), (

√
2

20
,

√
2

20
)

)

where N
(

(x, y); (μx,μy), (σ
2
x ,σ 2

y )
)

= C exp

(

− (x−μx)
2

2σ 2
x

− (y−μy)
2

2σ 2
y

)

and C is a constant such that 
∫

�
N((x, y); (μx, μy), (σ 2

x ,

σ 2
y ))dxdy = 1. Using the Algorithm 1, we calculate the minimizers of UW2(μ0, μ1) with a spatially dependent source 

function f (t, x). The parameters are chosen as

Nx = 35,N y = 35,Nt = 15,τ = 0.1,maximum iterations = 6,000.

Fig. 4 shows the transportation with α = 1 and α = 1000, respectively. The same phenomena can be observed as in 1D 
case from Experiment 1. In other words, the geodesic with the spatially dependent source function with small α in Fig. 4
behaves closer to the normalized (classical) optimal transport geodesic and the geodesic with large α behaves closer to the 
Euclidean geodesic. The computation took 402.54 seconds for α = 1 and 77.82 seconds for α = 1000. Note that when α
is small, the condition number of the Laplacian operator gets larger. This results in slower convergence rate of conjugate 
gradient method for inverting the Laplacian operator.
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Fig. 2. Experiment 1. L2 Unnormalized optimal transportation with a spatially independent source function f (t). The figures show the transportation of the 
densities from t = 0 (top left) to t = 1 (bottom right). Blue lines show α = 1, orange lines show α = 100, and green lines show α = 1000.

Fig. 3. Experiment 2. The size of the domain |�| vs. L2 unnormalized Wasserstein metrics for f (t, x) and f (t). x-axis represents |�| and y-axis represents 
UW2(μ0, μ1)

2 . Both f (t, x) and f (t) use α = 100.

4.1.4. Experiment 4
In this experiment, we are interested in calculating L2 unnormalized Wasserstein distance between two images. We show 

two sets of experiments with different initial and terminal densities. First, consider images of two cats with different total 
masses defined on the domain � = [0, 1] × [0, 1]. We use Algorithm 1 with the following parameters:

Nx = 64,N y = 64,Nt = 15,maximum iterations = 4,000.

Fig. 5 shows transportation between two cats images with α = 10 and α = 1000, respectively. The computation took 353.85
seconds for α = 10 and 93.67 seconds for α = 1000.
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Fig. 4. Experiment 3. L2 generalized unnormalized optimal transportation: 2D example with a spatially dependent source function f (t, x). The first row is 
with α = 1. The second row is with α = 1000.

Fig. 5. Experiment 4. L2 generalized unnormalized optimal transportation between two cats with a spatially dependent source function f (t, x). The first row 
is with α = 10. The second row is with α = 1000.

Fig. 6. Experiment 4. L2 generalized unnormalized optimal transportation between a pair of scissors and Homer Simpson with a spatially dependent source 
function f (t, x). The first row is with α = 10. The second row is with α = 1000.

Additionally, we consider images of a pair of scissors and Homer Simpson. We again use Algorithm 1 with the same 
set of parameters as above. Fig. 6 shows transportation between two images with α = 10 and α = 1000, respectively. The 
computation took 353.00 seconds for α = 10 and 93.96 seconds for α = 1000.

4.2. Primal dual algorithm for UW1

We conduct two numerical examples of L1 unnormalized optimal transport using Algorithm 2. For UW1 experiments, 
we use maximum iterations for the stopping condition.
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Fig. 7. Experiment 5. Top left: initial density μ0 . Top middle: the terminal density μ1 . Top right: the solution m of L1 unnormalized optimal transportation 
with a spatially independent source f (t). The bottom images show the solution of L1 unnormalized optimal transportation with f (t, x) using different α
values. Bottom left: α = 0.1, bottom middle: α = 10, bottom right: α = 100.

4.2.1. Experiment 5
Assume � = [0, 1] × [0, 1]. Consider the two dimensional problem with the following initial densities:

μ0 = N

(

(x, y), (
1

3
,
1

2
), (

1

10
,
1

10
)

)

μ1 = N

(

(x, y), (
2

3
,
1

2
), (

1

10
,
1

10
)

)

· 1.4

N is the same as the one used in Experiment 3. We chose the parameters as:

Nx = N y = 40,ε = 0.001, λ = 0.001,τ = 0.1,maximum iterations = 30,000.

In Fig. 7, the initial densities μ0 and μ1 are shown on the top two plots and the minimizers m’s are plotted for three 
different α values in the second row. As a comparison, the top right picture in Fig. 7 shows the result from L1 transportation 
with a spatially independent source function f (t). This experiment shows the clear difference between L1 unnormalized 
optimal transport with f (t, x) and with f (t). While the minimizer m from the unnormalized optimal transport with f (t, x)
is nonzero only on the area between two densities, the minimizer from the unnormalized optimal transport with f (t) is 
nonzero everywhere. This is because the spatially dependent source function f (t, x) affects the minimizer locally but the 
spatially independent source function f (t) affects the minimizer globally. The computation took 2.02 seconds for α = 1, 
2.74 seconds for α = 10, and 2.67 seconds for α = 100.

4.2.2. Experiment 6
In this experiment, we are interested in UW1 distance between two images. Consider the same 2D example as in the 

Experiment 4. We use the Algorithm 2 with the following parameters:

Nx = N y = 256,ε = 0.001, λ = 0.0001,τ = 0.01,maximum iterations = 40,000.

Fig. 8 plots the results of L1 unnormalized optimal transport with a spatially dependent source function f (t, x) with different 
α values 0.1, 5, and 10 in the second row. As a comparison, the top right picture in Fig. 8 shows the result from L1

transportation with a spatially independent source function f (t). The result is similar to the Experiment 5. The minimizer 
m from L1 unnormalized optimal transport with f (t) has nonzero values on the surrounding area of the two densities, but 
the minimizers from unnormalized optimal transport with f (t, x) are zero on that surrounding area. The computation took 
153.07 seconds for α = 1, 192.82 seconds for α = 10, and 186.27 seconds for α = 100.
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Fig. 8. Experiment 6. Top left: initial density μ0 . Top middle: the terminal density μ1 . Top right: the solution m of L1 unnormalized optimal transportation 
with a spatially independent source f (t). The bottom images show the solution of L1 unnormalized optimal transportation with f (t, x) using different α
values. Bottom left: α = 0.1, bottom middle: α = 5, bottom right: α = 10.

Fig. 9. Initial and terminal densities for Experiment 7.

4.2.3. Experiment 7
In this last experiment, we demonstrate the spatial convergence of Algorithm 2. Assume � = [0, 1] × [0, 1]. Consider an 

initial density to be a circle of radius 0.05 at (0.2, 0.2) with a mass 1 and a terminal density to be a circle of radius 0.05
at (0.8, 0.8) with a mass 1 (Fig. 9). UW1 distance between these two densities is 0.8 which equals L1 distance. We use the 
following parameters:

α = 0.001,ε = 0.01, λ = 0.001,τ = 0.01,maximum iterations = 50,000.

We repeat the experiment with 4 different space discretizations (Nx = N y = 16, 32, 64, 128). The table below summarizes 
the result of the experiment which shows the algorithm is accurate to order 1 in space.

Nx N y Time (s) Error

16 16 0.62 5.4× 10−2

32 32 2.39 3.8× 10−2

64 64 9.87 1.4× 10−2

128 128 44.14 9.4× 10−3
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5. Discussion

In this paper, we introduced a new class of Lp generalized unnormalized optimal transport distance with a spatially de-
pendent source function. We presented new fast algorithms for L1 and L2 generalized unnormalized optimal transport. For 
L1 case, we derived the Kantorovich duality and used a primal-dual algorithm which has explicit formulas with low compu-

tational costs. For L2 case, we derived the duality formula, the generalized unnormalized Monge problem and corresponding 
Monge-Ampère equation. We applied a weighted Laplacian operator Lμ to formulate the problem into an unconstrained op-
timization. The gradient operator of this unconstrained optimization is precisely the Hamilton-Jacobi equation. We apply the 
Nesterov accelerated gradient descent method to solve this minimization problem.

Our algorithm can be applied to general unnormalized/unbalanced optimal transport problems. It is also suitable for 
considering general variational mean-field games. In future works, we will derive new formulations for all related Lp unbal-

anced or unnormalized mean-field games and design fast numerical algorithms to solve them.
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