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optimal transport with LP distance. For p =1, we derive the corresponding L! generalized
unnormalized Kantorovich formula. We further show that the problem becomes a simple
L' minimization which is solved efficiently by a primal-dual algorithm. For p = 2, we
derive the L2 generalized unnormalized Kantorovich formula, a new unnormalized Monge

Iéi{lvg:ﬁ;d unnormalized optimal transport problem and the corresponding Monge-Ampére equation. Furthermore, we introduce a new
Generalized unnormalized Monge-Ampére unconstrained optimization formulation of the problem. The associated gradient flow is
equation essentially related to an elliptic equation which can be solved efficiently. Here the proposed
Generalized unnormalized Kantorovich gradient descent procedure together with the Nesterov acceleration involves the Hamilton-
formula Jacobi equation arising from the KKT conditions. Several numerical examples are presented

Unconstrained optimization problem to illustrate the effectiveness of the proposed algorithms.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Optimal transport describes transport plans and metrics between two densities with equal total mass [28]. It has wide
applications in various fields such as physics [14,17], mean field games [10], image processing [23], economics [2], inverse
problem [11,29], Kalman filter [13] as well as machine learning [1,19]. In practice, it is also natural to consider transport
and metrics between two densities with different total mass. For example, in image processing, it is very common that we
need to compare and process images with unequal total intensities [26].

Recently, there has been increasing interests in studying the optimal transport between two densities with different
total mass. Based on the linear programming formulation, generalized versions for unnormalized optimal transport have
been considered in [25,27]. In this paper, our discussion is based on the fluid-dynamic formulation following [3], which has
significantly fewer variables than the linear programming formulation. We consider a source function to provide dynamical
behaviors of a source term during transportation. Adding a source term for handling densities with unequal total mass
has been considered in [5,7-9,18,20,24]. These methods consider density-dependent source terms and lead to a dynamical
mixture of Wasserstein-2 distance and Fisher-Rao distance. The corresponding minimization of the source term is weighted
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with the density. More recently, a spatially independent source function was considered in [12] to transport densities with
unequal mass. This model results in creating or removing masses in the space uniformly during transportation when moving
one density to another. Here, we further extend the model [12] using a spatially dependent source function. As a result, the
transportation map between two densities with different masses has the flexibility to create or remove masses locally. In
all our models, the source term does not depend on the current density. This property keeps the Hamilton-Jacobi equation
arising in the original (normalized) optimal transport problem. We further explore the Kantorovich duality and derive the
corresponding unnormalized Monge problems and Monge-Ampére equations. Besides these model derivations, the other
main contribution of this paper is to propose fast algorithms for all related dynamical optimal transport problems with
source terms.

More specifically, the proposed model is a minimal flux problem mixing both LP metric and Wasserstein-p metric,
following Benamou-Brenier formula [3]:

1 1
1
inf //IIV(t,X)II"M(t,X)dxdtJr—//If(t,X)l”dxdt,
v, f o
0 Q 0 Q

such that

atl”“(tax)—i_v'(M(tax)v(t7x)):f(tvx)7 M(O,X):MO(X), [L(l,X):M](X).

The minimization problem solves for the optimal map between two nonnegative densities o and f(q, given a source
function f (see the details in Definition 1 from section 2). The optimal map shows how the masses are added or removed
by the source function during the transportation. In this paper, in particular, we focus on the cases p =1 and p = 2, and
design corresponding fast algorithms. For the L! case, we propose a primal-dual algorithm [4]. The method updates variables
at each iteration with explicit formulas, which only involve low computational cost shrink operators, such as those used in
[16]. For the L? case, we formulate the minimal flux problem into a novel unconstrained minimization problem as follows

1
iﬂf{//at,u(t,x)(—V~(u(t,x)V)—i—ald)18tu(t,x)dxdt:
0 Q (])

(0, %) = po(x), u(1,x) = p1(x),x€ QL ¢,

where « is a given positive scalar, Id is the identity operator, and the infimum is taken among all density paths w(t, x) with
fixed terminal densities g, (1. From the associated Euler-Lagrange equation, we derive a Nesterov accelerated gradient
descent method to solve the unnormalized optimal transport problem. It turns out that our method only needs to solve
an elliptic equation involving the density at each iteration. Thus, fast solvers for elliptic equations can be directly used.
Interestingly, the Euler-Lagrange equation of this formulation introduces the Hamilton-Jacobi equation, which characterizes
the Lagrange multiplier (see related studies in [15]). We, in fact, construct the gradient descent method in the density path
space to solve this equation:

1
depu(T,6,2) = 9 D(T, £, %) + S IV (T, t, |2,
with

D(T,t,X) = (=V - (u(t,t,0)V) +ald) 1o u(r, t, x).

Here 7 is an artificial time variable in optimization. The minimizer path w*(t,x) is obtained by solving w*(t,x) =
lim;_ oo (7, t, x) numerically.

The outline of this paper is as follows. In section 2, we propose a formulation for the generalized unnormalized op-
timal transport. We then derive the Kantorovich duality for both cases. We also formulate the generalized unnormalized
Monge problem and the corresponding Monge-Ampére equation. In section 3, we propose a fast algorithm for L!-generalized
unnormalized optimal transport using a primal-dual based method. We also propose a new method for L%-generalized un-
normalized optimal transport based on the Nesterov accelerated gradient descent method. In addition, we discuss detailed
numerical discretization of the two problems. In section 4, we present several numerical experiments to demonstrate the
effectiveness of our algorithms. We conclude the paper in section 5.

2. Generalized unnormalized optimal transport

In this section, we study a formulation of generalized unnormalized optimal transport problem as a natural extension
of the exploration studied in [12]. We specifically discuss the L! and L? versions of the generalized unnormalized opti-
mal transport and their associated Kantorovich dualities. Furthermore, we derive a new generalized unnormalized Monge
problem and the corresponding Monge-Ampére equation.
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Let © c RY be a compact convex domain. Denote the space of unnormalized densities M (2) by

M(Q) = {p e LN (Q) : p(x) = 0}.
Given two densities po, n1 € M(S2), we define the generalized unnormalized optimal transport as follows:
Definition 1 (Generalized unnormalized optimal transport). Define the LP generalized unnormalized Wasserstein distance
UWp: M(Q) x M(Q) - R by
1 1

1
UWp (o, u)? = infff[IIV(t,X)II"M(t,X)dxdt+&fflf(t,X)l”dxdt,
v, L,
0 Q 0 Q

such that the dynamical constraint, i.e. the unnormalized continuity equation, holds

O (t, X) + V- (e, x)v(t,x)) = f(t,x%), wO,%=po®x), wnl,x)=puiX).

The infimum is taken over continuous unnormalized density functions u : [0, 1] x 2 — R, and Borel vector fields v : [0, 1] x
Q — R? with zero flux condition on [0, 1] x 3S2, and Borel spatially dependent source functions f:[0,1] x @ — R. A
positive constant « € (0, 0o0) is a fixed parameter.

This is a generalized definition of unnormalized optimal transport from [12]. Here, we consider a spatially dependent
source function f(t, x). In this paper, we will focus on the cases with p=1 and p =2.

Remark 1. We note that [7] has proposed the model for p =2 without any discussion about numerical methods. In this
paper, we mainly study Kantorovich duality and design fast algorithms.

Remark 2. In literature, [8] studied the other dynamical formulations of unbalanced optimal transport problems. In their
approach, the optimal source term is expressed as a product of a density function and a scalar field function. In our ap-
proach, the optimal source term only depends on a scalar field function. This fact shows that our approach is different from
[8] in variational problems and dual (Kantorovich) problems.

2.1. L' generalized unnormalized Wasserstein metric

When p =1, the problem (1) becomes

1 1

UW1(,u0,,u,1):vinff{//||v(t,x)||u(t,x)dxdt+;f/lf(t,x)ldxdt:
K A 0 Q
(%) + V - (ut, )V (t, %) = f(t,x) (2)

(0, %) = po(x), wn(l,x)= m(X)].

1 . .
Here || - || can be any homogeneous of degree one norm, i.e. [; norm |[[u|lq = (Zf’z1 |uj|9) 4. In particular, we consider g =1, 2
with

lull = [u1] + -+ |ugl forueRY,

lulla=+/lu12+---+|ugl> forueR%

Proposition 2. The L' unnormalized Wasserstein metric is given by

or

. 1
uw1wo,m>=;,ggi/||m<x>||dx+5[|c<x)|dx.
Q Q

Ml(X)—MO(X)-l-V'm(X)—C(X):O}- (3)
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There exists ®(x), such that the minimizer (m, c) for the problem (3) satisfies

Vo(x) e d|m(x)|| and od(x) € d|c(X)|

where d|/m(x)|| and d|c(x)| denote their sub-differentials.

Proof. Denote
1

m(x):/v(t,x),u(t,x)dt.
0
Using Jensen’s inequality and integration by parts, we can reformulate (2).

1 1
//||v(t,x)||,u(t,x)dxdt+&//If(t,x)ldxdt
0 Q 0 Q

1
> / ||m<x>||dx+$ / / e xdt] dx.
Q

Q 10

(4)

Define c(x) = fol f(t,x)dt. Integrating on the constraint of problem (2) with the zero flux condition of v yields,

1

fc(x)dx://f(t,x)dxdt:/M1(x)dx—/,u,o(x)dx.
Q

Q 0 Q Q
Plug c(x) into the equation (4), we obtain a new formulation.

1
;p{i/ [m(x)]|dx + &fIIC(X)IIdx D (x) —MO(X)+V-m(X)—C(X)=0}~
Q Q

Note that the minimization path can be attained in the inequality (4) by choosing w(t,x) = tpo(x) + (1 — t)pq(x),
m(x) = u(t, x)v(t,x) and f(t,x) = c(x). Then {u(t,x), v(t,x), f(t,x)} is a feasible solution to (2) and (3), hence the two
minimization problems have the same optimal value.

Consider the Lagrangian of this minimization problem.

1
L(m,c, d>)=/||m(><)I|dX+E/IC(X)IdX+/<I>(X)<m(X)—Mo(X)+V~m(X)—C(X)>, (5)
Q Q Q

where ®(x) is a Lagrange multiplier. From the Karush-Kuhn-Tucker (KKT) conditions, we derive the following properties of
the minimizer

0€dml=V>o(x)ed|mx)|
0€0:L=ad(x)ed|cx)|
S L=0=p1(X) — po(X) +V-m(x) —c(x) =0. O

Remark 3. In the case that L' unnormalized Wasserstein metric with a spatially independent function f(t), ¢ is defined to
be c = fol f(t)dt, which is a constant. Integrating on a spatial domain for continuity equation,

c:ﬁ([ MO(X)dX_Q/MO(X)dX)

Q
As a result, the minimization problem becomes

1
UW1(Mo,u1)=igf{/IIm(X)IIdX+ 5'/#1(X)d><—/uo(><)dx
Q Q Q

1
p1(X) = po(X) +V-m(x) = ﬁ(/ M1(X)dx—/ﬂo(x)dx)}~
Q Q

This is compatible with the result obtained in [12]. In this case, we note that m(x) does not depend on «.

4
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Proposition 3 (L' generalized unnormalized Kantorovich formulation). The Kantorovich formulation of L' unnormalized Wasserstein
metric is the following:

1
UW1 (1o, 1) zsgp[/Q(X)(m(X) —po()dx: [|[VP| <1,|P| < E} (6)
Q

Remark 4. The Kantorovich formulation of the generalized unnormalized Wasserstein-1 metric has also been stated in [6]
for the || - || norm.

Proof. From the Lagrangian (5),
infsup £L(m, c, ®)
mc g
> supinf £L(m, c, ®)
o mc

ZSgP,iTPE{/ Im(x)[1dx + é/IC(X)IdX+/<I>(X)(M1(X)—Mo(X)JrV-m(X) —C(X))dx}
Q Q

Q

. 1
ZSE(IDPIITEE{‘/ Im(x)[1dx + &/IC(X)IC]X-F/CD(X)(M(X)—MO(X) —c(x))dx
Q Q Q

—/V@(x)~m(x)dx+/d>(x)m(x) -n(x)ds(x)}
Q

Q2

1
zsgp{/<l>(><)(m(><)—Mo(X))+,i"ng/||m(X)ll - Vo(x) ~m(><)d><+f&|<:(><)| —<I>(X)C(X)d><}
Q

Q Q

1
zsgp{/CD(X)(m(X) — po(X)dx: |[VO| <1,|®| < &}.

From the calculation, the optimizer ® satisfies the following:
Vo ed|mx)|, odedlcX).

We show the duality gap is zero using the Proposition 2.

1
/||m(X)||dX+&/IC(X)Ider/@(X)(M(X)—,uo(X)JrV'm(X)—C(X))dX
Q Q

Q
1
=/ [mx)|| —vq>.m(x)dx+/§|c(x)l —<1>(x)C(X)dX+/<I>(X)(m(X) — Ho(X))dx
Q Q2 ¢
= [ @t - nowrax
Q

This concludes the proof. O
2.2. L? generalized unnormalized Wasserstein metric

Let p = 2. From the definition (1), we now consider

1 1

. 1
UWZ(MO,M1)2=v12ff{ / / ||v(t,x>||2u<t,x>dxdt+5 / / Il f (€, %) |2 dxdt :
TN @ 0 Q

ot x) + V- (ut,x)v(t,x) = f(t,x),t €[0,1],x € Q, 7)

(0, %) = po(x), (1, x) = /M(X)}-

5
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Proposition 4. The L2 generalized unnormalized Wasserstein metric is a well-defined metric function in M (S2). In addition, the mini-
mizer (v(t, X), u(t, x), f(t, X)) for (7)satisfies

v(t,x) =VoO(t,x), f(t,x)=ad(t, x),

and
A pu(t,x) + V- (u(t, ) VO(t, x)) = ad(t, X)
1
3 D(t,X) + 5||Vd>(t,x)||2

In particular, if u(t, x) > 0, then

1
(L, X) + Envcb(t,x)u2 =0.

Proof. Denote m(t, x) = u(t, x)v(t, x). Then the problem becomes

1 1
1 t, x)||? 1
~UWy (1o, u1)% = inf {/ lim(&, V1 4 dt+—//|f(t X)|2dxdt :
2 mu, f
0 Q 0

2(t, x) 20
_ (8)
dep(t,x) +V-m(t, x) = f(t,x),
10, %) = po(x), u(1,x) = pn1(x),x€ Q,0=<t < 1}.
Denote ®(t, x) as a Lagrange multiplier. Consider the Lagrangian
! 2
m(t,
Lm, u, f, ®) = / ”2 ((t")g dxd + o / / |f(t, %) 2dxde
0 Q
1
+ [ [ o0 (ot + v mien - )i
0 Q
From KKT condition ém£ =0,8,£>0,8;L=0,8¢L =0, the minimizer satisfies the following properties:
m(t, x
g =Vo(t,x) 9)
u(t, x)
m(t, x)||
—M—Bﬁb(t,x}zo (10)
2/u(t, x)2

ft,x) =ad(t, x)
o, x)+V-m(t,x) — f(t,x) =

Combining (9) and (10) yields: 9;®(t, x) + %||V<I>(t, 0*?<0. O

We next derive the corresponding Monge problem for unnormalized optimal transport with a spatially dependent source
function. We note that the following derivations are formal in Eulerian coordinates of fluid dynamics. We are following the
proof of Proposition 4 in [12].

Proposition 5 (Generalized unnormalized Monge problem).

1
uwz(uo,unZ:Mifl}gx)/||M(x)—x||2uo<x>dx+oc//|f<r,x>|2dxdr
Q 0 Q (11)

1t
+//ff<s,sM(x)+(l —s)x)llM(x)—x||2Det<sVM(x)+(1 —s)H)dsdtdx
Q00

6
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where M : Q —  is an invertible mapping function and f : Q x [0, 1] — R is a spatially dependent source function. The unnormal-
ized push forward relation holds

w1, M(x))Det(VM(x))

1
12
= (0, x) +/f(t, tM(x) + (1 — t)]I)Det(tVM(X) +1- t)I[)dt. (12)
0

Proof. We derive the Lagrange formulation of the unnormalized optimal transport with p = 2. Consider a mapping function
X¢(x) with vector field v(t, X;(x)) satisfying

d
&Xt(x)=V(t,Xz(x)), Xo(¥) =x. (13)

Then

1 1
//IIV(f,X)IIZM(t,X)ddeZ//IIV(f,Xr(X))IIZM(f, Xt (x))Det (VX (x))dxdt
0

Q 0

d

~

Q
; d
://H—Xt(x)llzu(t, Xe(x))Det (VX (x))dxdt. (14)
Q0
Define J(t,x) := u(t, X¢(x))Det(VX,(x)). Differentiate J(t,x) with respect to t,
i (t,x) = i (t, X¢(x))Det (VX (x))
TRA A TS U ‘
d
=0 (t, Xe(x)) Det (VX (%) + Vx pu(t, X¢ (%)) - &Xt(X)Det(VXt(X))

+ p(t, Xe (%)) 3 Det (VX (x))

d
= 0 (t, Xe (X)) Det (VXe (%)) + Vx u(t, Xe(x)) - &Xt(X)Det(VXt(X))
+ u(t, Xe(X)V - v(t, X¢(x))Det (VX (x))

= <atu +Vv-Vu+uv- v)(t, X¢(x))Det (VX (x))

= <8ru +V- (,uv))(t, Xt (X)) Det (VX (x))

= f(t, Xe(x)) Det (VX (x)).

Denote

t

d
JE0 = 0.0+ / ~ s s,
0
Since Xo(x) =x and VXo(x) =1, then J(0,x) = 1 (0, x). This yields

t
u(t, Xe(x))Det (VXe(x)) = (0, x) + / f(s, Xs(x)) Det (VXs(x))ds.
0
Since the minimizer in Eulerian coordinates satisfies the Hamilton-Jacobi equation:
1
90 (t,X) + S IVOE, 0| =0,
and %Xf(x) =V&(t, X;(x)), then we have %Xt(x) = 0. This implies

d
aXf(X) =v(t, Xt (X)) = M(x) — x,



W. Lee, R. Lai, W. Li et al. Journal of Computational Physics 436 (2021) 110041

thus X¢(x) = (1 —t)x +tM(x) and Det(VX¢(x)) = Det((1 — t)I +tVM(x)). Substitute all the above into (14):
1

d
(14)= / / ll— Xe (®)11? J (¢, x)dxdt

dt
0 Q
1 t d
- / f ||M<x)—x||2(1<o,x)+ / d ](s,x)ds)dxdt
0 Q 0

1

=//||M(X)—x||2pL(0,x)dxdt
0 Q
1

t
+//||M(x)—x||2/f(s,Xs(x))Det(VXS(x))dsdxdt

0 Q 0
= / IM(x) — X]|> (0, x)dx
Q

1 ¢t
+ / // [|M (x) —x||2f(s, sMx)+ (1 — s)x)Det((l -9l +sVM(x)>dxdsdt.
00 Q

This concludes the derivation. O

We next find the relation between the spatially dependent source function f(t,x) and the mapping function M(x). For
the simplicity of presentation, here we assume the periodic boundary conditions on 2. We are following the proof of
Proposition 5 in [12].

Proposition 6 (Generalized unnormalized Monge-Ampeére equation). The optimal mapping function M(x) = VW(x) satisfies the fol-
lowing unnormalized Monge-Ampére equation
11(1, VW(x) Det(V2W(x)) — (0, x)

] 2 12 15

=a/<\ll(x) _ M w)Det(tVZ\D(X) +a —t)H)dt. (13)

2 2
0

Proof. From the Hopf-Lax formula for the Hamilton-Jacobi equation,

2
O(1,y) =sup ®(0,x) + u
X

Since M is the optimal mapping function, x = M~1(y) is a maximizer of the supremum for each y. Thus, the maximizer
satisfies

V&(0,x)+x— M(x) =0,
and we can rewrite the formula as

IMx) —x|*
—

We further denote W(x) = ®(0, x) + M, then M(x) = VW(x). From X;(x) = (1 — t)x + tM(x),

®(1, M(x)) = ®(0, x) +

1 Xe (%) — x|
2t
tIM (x) — x||?
2
X2 tIVW(x) — x|?

B

(L, X¢ (x)) = (0, x) +

=®(0,x) +
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and
VX (%) = (1 — I +tV2W(x).

Substituting f(t,x) = a®(t,x) and M(x) = VW¥(x) into (12), we get
w1, V¥(x)Det (V2 W(x)) — (0, X)

1 2 _ 2
:f <\ll(x) X112 +w>net(rvzwx)+(1—t)ﬂ)dt. 0
2 2

0

Now, we show the Kantorovich formulation of the problem (7).
Proposition 7 (L? generalized unnormalized Kantorovich formulation). The unnormalized Kantorovich formulation with f(t, x) sat-
isfies

1

%uwzwo,wz =sgp{ / (cb(Lx)m(x) - <I><0,x)uo(x))dx— % / / cb(ax)zdxdr},
Q

0 Q

where the supremum is taken among all ® : [0, 1] x Q — R satisfying

1
DL, X) + §||Vd>(r,x>||2 <o0.

Proof. We introduce a Lagrange multiplier ®(t, x) to reformulate the equation (8).

1 2
EUW2(M0,M1)
1

2
:mlgffsup/ ”'Z”;I(txig — L f 0 + 0. 0Bt 0+ V - mit.x) f(t,x))dxdt}

o

1

2
> sgp mu;ff // ”’;lit(txig %f(x, £)? + @ (t, %) (dp(t, X) + V-m(t,x) — f{(t, x))dxdt}

o

1

2
=sup inf // Im(& 217 _ VO(t,x) -m(t, x) + %f(x, 0% + &L, %) - (B (t, %) — f(t,x))dxdt}

o mu,f , 2p(t, x)
1 2
=sup inf // 1Hm(t,x) —Vo(t,x)| wu(t,x)— 1||V(I>(t x)||2M(t x)dxdt
o musl) ) 2] ’ T2 ’ ’

+ / O (1, )1 (x) — DO, ) po(R)dx
Q
1

+//—/L(t,x)8t<1>(t,x) + %f(t, X)% — ®(t,x) f(t, x))dxdt}.
0 Q

m(t, x)

WAt X)

By the Proposition 4, the minimizer m satisfies

= V&(t, x). Thus,

= sgp{f<<b(1,xm](x) - ®(0, X)uo(X)>dx
Q

1

+i2f//—u(t,x)<8[¢(t,x)+%llVdJ(t,x)HZ)dxdt

0 Q
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1
+inf/fi (t, x)2—¢>(t,x)f(t,x)dxdt}
f 20

0

= sgp{ / (CD(LX)M] (x) — B, x)m(x))dx
Q

1
+i2f//—u(t,x)(8td>(t,x)+%||V<I>(t,x)||2)dxdt
0 Q

1 2 1
+inf//l<f(t,x)—ad>(t,x)) dxdt—gf/CD(t,x)zdxdt}.
f 20 2
0 Q 0 Q

Again from Proposition 4, the minimizer satisfies f(t,x) = a®(t, x). With the assumption w(t,x) > 0 for all t € [0, 1] and
X € Q, the problem can be written with a constraint.

1
%UWz(Mo,m)2 zsgp{/(wl,X)m(X) - <I>(0,X)Mo(><))dx— %//Cb(t,wzdxdt:
Q

0 Q
1
e D(t, x) + Enw(r,x)nz < o}.

We next show that the primal-dual gap is zero.

1

m(t, x)? )
/ ) —f(t Xx)“dxdt

1 1
1
://§||vq>||2u(t,x)dxdt+%//cb(t,X)zdxdt
0 Q 0 Q

1

= f f (—%||Vd><r,x)||2u(t,x>+||Vd><r,x)||2u(t,x>+%@(t,xf)dxdr

0 @

=//atd>(t,x),u(t, X) + (¢, x)(—v-(,u(t,x)VCD(t,x)))—i-%CD(t,x)zdxdt

@1, x) 1 (%) — (0, x) o (x)dx

Il
P— ©
)

1

1
//Cb(t x)(&tu(t X)+ V- (n(t, )V, x) )dxdt—i—% /Cb(t,x)zdxdt

0 0

=f<1>(1,X)M1(X)—<I>(0,X)Mo(X)dx
Q

1 1
—//CD(t,x)f(t, x)dxdt + %//Cb(t, x)2dxdt.
0 @ 0 Q

Using f(t,x) = ad(t, x), we get

1 2 - 2

EUWz(uo, n1) = | 1, x)u,x) — o0, x)u(0, x)dx — 0 &(t, x)“dxdt.
Q

This concludes the proof. O

10
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Remark 5. We note that our results and proofs follow directly from the those used in [12]. The major difference between
[12] and our paper is that in the case of spatial independent source function, f(t) = ‘%‘ fQ ®(t, x)dx, while in the case
of spatial dependent source function, f(t,x) = a®(t, x). This difference remains in the corresponding Monge problem and
Kantorvich problem. In particular, we obtain a new spatial dependent unnormalized Monge-Ampére equation (15).

3. Numerical methods

In this section, we propose a Nesterov accelerated gradient descent method to solve L2 unnormalized OT. In addition, we
design a primal-dual hybrid gradient method to solve L! unnormalized OT.

3.1. L? generalized unnormalized Wasserstein metric

In this section, we present a new numerical implementation for L?> unnormalized Wasserstein metric. We obtain a
unconstrained version of the problem by plugging the PDE constraint into the objective function. Then the accelerated
Nesterov gradient descent method is applied to solve the problem. We show that each iteration involves a simple elliptic
equation where fast solvers can be applied. This novel numerical method can also be used in normalized optimal transport

and unnormalized optimal transport with a spatially independent source function f(t).
Using Proposition 4, we can rewrite the equation (8) as follows:

1
UWz(,uo,/L])zzénf{//||Vd>(t,x)||§,u(t,x)dxdt+oz//|d>(t,x)|2dxdt:
H 0 Q 0 Q
e (t,X) + V- (u(t, X)VO(t, x)) = ad(t, X),
©(0,%) = po(x), u(1,x) = M](X)}-

Define an operator L, = —V - (V). The constraint d;p — L, ® = a® leads to

&= (L, +ald) 3 u. (16)

With (16), the minimization problem can be reformulated as

1
Uwz(uo,m)z:igf[//mw(LMJrald)1atu||§dxdt+a//|(LM+a1d)1atu|2dxdt:
0 Q (17)

n(0, x) = po(x), (1, x) = M](X)}-

Using integration by parts,

1
f/,uHV(L,L—|—oz1d)_18tu||2dxdt+a//|(Lﬂ+a1d)_18[,u|2dxdt
0 Q

1
=//—<V/LV(LM+aId)_18t,u> ((L,ﬁmd)—]am)dxdt
0 Q

1

+a//|(L/L +a1d)_18t,u|2dxdt
0

1
//(LM(L,L—Fald)_lat,u)((LM+OtId) ]8tu>dxdt
0 Q

1
+0‘//|(L;L+061d)_18t,u|2dxdt
0

11
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1

= //((LM +ald)(Ly +a1d)_18t//,> ((LM + ald)_1atu>dxdt
Q

0
1
=//8tu(t,x)(LM+a1d)_18fu(t,x)dxdt.
0 Q

Thus, the unnormalized Wasserstein-2 distance forms

1
UWa (o, t11)* = igf[ / / 3 pu(t, X)(Ly + ald) ™ dppu(t, x)dxdt :
0 Q

(0, %) = po(x), u(1,%) = p1(x) ¢

Proposition 8. If (.(t, x) > 0, then the Euler-Lagrange equation of problem (18) satisfies the Hamilton-Jacobi equation, i.e.
1
o d(t, x) + §||V<I>(t,x)||2 =0, xeQ,tel0,1]
where ®(t, x) = (L, + ald) 19 u(t, x).

Remark 6. For unnormalized optimal transport with a spatially independent source function f(t), the formula uses (L, +
i Jo) 7! instead of (L, +ald)~, ie.

1
-1
. o
UWZ(MO,/M)Z :12f[//8tu(t,x)<Lu + @/> oru(t, x)dxdt :
0 Q Q

(0, %) = o), u(1,x) = m(X)}.
The Euler-Lagrange equation satisfies the following:
ord(t, x) + %||Vd:'(t,x)||2 =0, xeQ,tel0,1]
where ®(t,x) = (L, + ol fQ)qB[/L(t,x).
Remark 7. If w(t, x) =0, one can show that the Euler-Lagrange equation of problem (18) satisfies

DL, x) + %llVd)(t,x)llz <0.
Proof. Define
1
() = / / e (t, x)(Ly, + ald) ™18 a(t, x)dxd.
0 Q
We now calculate the first variation of Z(u) with a perturbation 7n(t, x) € C*(2 x [0, 1]).

0= lim Z(+hn) —Z(w)
h—0 h

1
1
Ain}) . / / (Bt + hdem)(Lyshn + o dd) ™ @epa + hden) — depe(t, ) (L + old) ™3 pu(t, X)) dxde
Q

0
1
L )1 —(L 1d)~1
:1im|://8tu(( pothy + 1) (Ly +ald) )atpc
h—0 h
0 Q

12
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+ 281 (Lyhy + oeld) ™ 8 pudxde + 0 (h)}

[—BfM(LM +ald) Ly (Ly + odd) " de e+ 28em(Ly + oeld) ™ 3 pedxdt

Q
/ —®Lyd + 23 ndxdt
Q

/_’7<||Vq>||2+28td>)dxdt.

Q
This has to be true for all n € C*°(Q2 x [0, 1]). Thus, we get

Il
Ot | O °oY—

1
0@+ [V =0, xeQ,tel01].

This concludes the proof. O

Using Proposition 8, we can formulate a Nesterov accelerated gradient descent method [21] to solve the minimization
problem (18).

Algorithm 1 Nesterov Gradient descent method for UW, with f(t, x).
while not converged do
ukt s = pk — VT (k) = pk 4 L (@ + 1vok)?) where ok = (L +ald)~ 1, uk
MH% _ max{u"*% .0}

W =1 - yk)MkJr% + ykuk
end while

Here, T and y* are step sizes of the algorithm.

Sk 14 /14 4(k-1)2
= > ,

K
k_1=2 o
Vo= A1

0,

Remark 8. The Nesterov accelerated gradient descent method can be used for a spatially independent source function f ().
We simply replace the operator L, +ald with L, +« [, from Algorithm 1.

Remark 9. Here we apply an iterative method, such as conjugate gradient, to solve (L« + ald)~ 1o uk.

Remark 10. We remark that variational problem (18) is convex w.r.t. u(t, x). This fact holds following the second variational
formula derived in Lemma 2 of [15]. In other words, our gradient descent algorithm is applied to a convex optimization
problem (18). For the completeness of this paper, we present the formal derivation here. Denote

1
1
j(m:iffatu(t,x)(LM +a1d)_13tu(t,x)dxdt.
0 Q

Consider a test function h € C°°([0, 1] x §2), such that h(0, x) = h(1, x) = 0. Given € € R!, we claim

d2
E](M +€h)le—o > 0.

If the above statement is true, we know that the variational problem (18) is convex w.r.t. u(t, x). In fact, by routine compu-
tations, we observe that

d2
@J(M + €h)|e=0

=f ([Bth — L(h)(Ly + ald) '8¢ al, (L + oeld) ™' [8ch — L(h)(L, +a1d)_18tu])dxdt,
Q

13
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which finishes the proof.

We next present the discretization of density path in both time and spatial domains, where the spatial domain is given
by 1D or 2D. Here we formulate the operator L, and derive its inverse into matrix forms; see similar approaches in [15].

3.1.1. 1D discretization
Consider the following one dimensional discretization:
o= (,Lo, coo, pNy @ RWNeHD XN
W= (e iy ) €RM (=0, Np)
uteR (i=0,---,Ny—1,n=0,---,Np)
1 = polax), p =piAx), (i=0,---,Ny—1)

1 1
Ny —1 N;¢

AX

Using the finite volume method, the weighted Laplacian operator iﬂn'a :=Lyn + ald can be represented as the following
matrix:

uh+u g tud 0 o 0
2AX? 2AX2
Mot RotH | R _ MK . 0
2AX? 2AX? 2AX? 2AX?
Iyng= R R R ald
i 0 T 2AX? 2Ax2 + 2Ax2 0 +
0 SR L P R M
2AX2

Further using the forward Euler method in time, formula (18) can be discretized as

1
//Ehu(t,x)(LM+a1d)_18tu(t,x)dxdt
0 Q

Ne—1 ., nt1 n n+1 n
n —Q 1M —Q
~ AtA ——, (Lyn Id)y~ —
XHX:(:)< At (L +orld) At >,_2
Ne—1
AX
— E (Mﬂ+1 _ ”ln’ (L[l,” —I—OlId)_] (Mn—&-l _ an))Lz
n=0

with u® and Mt are given. (-, -);2 is L? norm in R such that

Nx—1
(@.b)2= Y ab; fora,beRM,
i=0
We are now ready to present the derivative of E(u), and formulate the discrete Hamilton-Jacobi equation as in Algo-
rithm 1.

Proposition 9. Denote Lyn o := Lyn + a1d. Let

Ax
=" n+1 _ ,n 7-1 n+l1 _ ,n
E(u) == D (W = w L ! — )

n=0

2’
Suppose x € 2. The derivative of E(u) with respectto u" (n=1,--- ,Ny — 1) is

14
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SE(m) Ax ~ = _
8[[/’: — E<_2Lu”,a(un+l _ ILH) +2L’Ln—1’a(ll/n _ ,Lﬂ ])
~ . Nyx—1
- ((L,;Jya(u”“ — "), Le Ly, (" — ”n)>Lz )i_o )

where e; € RNx is an index vector defined as

R ith index
"o else.

Proof. Differentiating E () with respect to u" forn=1,---,N; — 1, we get

Ne—1
SE(p) 8 +1 71 +1
S :aun(AtAXZ(“m B o (™ —

m=0

n—1 o

= AtAx <—2i;,},a(ﬂn+1 — "M+ 2]:,:1 (u" — Ian)

oL}
+ (" — ﬂ”)—a’; - u”)),
and
71

8L n - -
,Ln) 8;;’1,01 ([Ln+1 _ an) — _(,Ln—H _ [l,”, L,::}’aLeiL;z},a(an_H _ [l,”)>
n

n+1
(™" = 12

_ _(z’:,}ya(”’n-&-l — ), Leii;r}ya(ﬂnﬂ _ Mn)>L2.

This concludes the proof. O

Consider u = (ug, -+ , un,—1)" € RNx, then (u, Le,.u)L2 forms the R.H.S. of the discrete Hamilton-Jacobi equation as follows
a2 — 2 .
%(%) +%(%) . i=1,---,Ny—2
(ootemha = (%) i
N 2 .
(), =Nt

3.1.2. 2D discretization
Now, consider the two dimensional discretization. Assume Q2 =[0,1] x [0,1] and t € [0, 1].

o= (,Lo’_“ JLNt) € RN+ XNy xNy
—1Ny—1
R =iy 2 RN =0, Ny
MZER (iZO,"',Nx—l,jZO,"',Ny—l,nzo,"',Nt)
. . N . . . .
i = HoGAX, jAY),  piif = mi(Ax, jAy),  (=0,--- Ny—1,j=0,--- Ny —1)
1 1 1
AX=———, Ay=——, At=—.
Ny —1 Ny —1 N¢
Similar to 1D case, using the finite volume method, formula (18) can be discretized as

/

1
/8tu,(t,x, Ny +a1d)’18t,u,(t,x, y)dxdydt
0

o

Ni—1
. AxXAy +1 —1,,n+1
N ; (™ — ", L +add) " (™ — ")

15
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with u® and ™t are given and (-, ), is defined as

Nx—1Ny—1

(a,b)2 = Z Z aijbij  fora, b e RNy,
i=0 j=0

The major difference between 1D discretization and 2D discretization arises from the weighted Laplacian operator iﬂn,a.

Consider w = (w,-,j);\’:";y:yg] e RVNy_For i =0,---,Ny—1 and j=0,---,N, — 1, the operator can be described as
follows:
Lyn o W)ij
_ 1 (gt S Pt B M+ B
=—malT oz oAy L Wi
1 (Hija TR ) R T TR i+ I
B G e R A B
+aw; ;.

Here, we assume the Neumann boundary on the spatial domain . Thus,

W_1,j=Woj, Wn,j=Wn-—1,j, J=0,---,Ny—1

Wi—1=Wio, Win, =WinN,—1, 1=0,--- Ny—1
n _.n n _,n P _
Hoaj=Hojo BNy =HNe1jp J=000 Ny =1

n 4N n N —
Ki—1=HKigs  Kin, =Hin,—1, =0, Ny—T.

Proposition 10. Denote Lyn o := Lyn + aId. Let

Axay N
._ n+1 _ ,n 7-1 n+1 _ ,n
E(p):= At ngio (u I Ly o (1 " )>L2.

Suppose x € Q = [0, 1] x [0, 1]. The derivative of E(u) with respect to u"* (n=1,--- , N — 1) is

SE(m) AxAy - ~ _
M’: == (—2L,Ln,a(u”“ — W)+ 2Ly (" — ")
) 5 Nx—1,Ny—1
- ((L[:’},Ot (M’n+] - M’n)» LeijLI:Y:ll’a (M’n+1 - M’”)>L2 ),‘_O io )7

where e;j is an index vector such that e, ; = 1ifk =i and | = j and 0 otherwise.

Proof. The proof follows exactly the one in Proposition 9. O
Consider a vector u = (uij)f’:*alyzyal € RN«<Ny that satisfies the Neumann boundary condition. Similar to 1D case,

(u, Lei,jl’)Lz can be computed easily based on the operator and it forms the R.H.S. of the discrete Hamilton-Jacobi equa-
tion. For i=0,.-- ,Ny—1and j=0,---,Ny, —1,

1 (uipn—uig)? 1 (i —uicnj\?
u’L u _ s @ J =L - —J
(. Le, ]2 =3 < Ax 3 Ax

+1 Ujjy1 —Ujj 2+l Ujj—Ujj—1 2
2 Ay 2 Ay

3.2. L' generalized unnormalized Wasserstein metric

Our discussion here mainly focuses on |lull; = )_; |u;|. The algorithm can be simply extended to [lull, =,/>"; ui2 using
the corresponding shrinkage operator. With the Lagrangian (5), we consider a saddle point problem.

16



W. Lee, R. Lai, W. Li et al. Journal of Computational Physics 436 (2021) 110041
infsup £L(m, c, ®).
mc g

We can use PDHG [4] to solve the saddle point problem by minimizing £(m, ¢, ®) over m and ¢ and maximizing over ®.

k1 _ : € 2<1<'> a2
m —argIT,l,gn(IImlh + 2||nl||2+ 5, V-m P 2Allm m’ |5 (19)
e+ —argmin( Ll + )2 - <c1>" c> + e g2 (20)
¢\« 212 iz T 2a 2
1
ok = argmqu((cb, V- @mt —m) — @ = ) o)y — 19 - <I>"||§) (21)
where A and t are step sizes of the algorithm. Note that we add a small || - ||§ perturbation in (19) and (20) to strictly

convexify the problem. This adjustment can overcome the possible non-uniqueness of the optimal transport problem. This
trick is also related to so called the elastic net regularization [22], whose proximal operator is essentially the same as the
proximal operator of L! norm shrink operator.

Algorithm 2 PDHG for UW{ with f(t, x).

mH =1/(1+ ex)shrmk(m’f + AV K, x)
=11+ eA)shrinl((Ck + DK, g)

Pht1 — pk +r(V @mE —mky — @ckT = Ry g — Mo)

where the shrink operator is defined as following:

1—t/|ujhu;, for ||uijll1 >t;
(shrink(a, oy, | 0~ /wibu forlulh =6,
0, for |lujll1 <t.
Remark 11. This algorithm can also be extended to | - || by simply replacing the above shrink operator as

(1 —t/llull2)u, for flullz = t;

hrink(u, t) =
shrink(u, £) {0, for |ull2 <t.

3.2.1. Discretization
Consider the following two dimensional discretization on a domain € = [0, 1] x [0, 1] based on the finite volume method.
1 1
AX=—,Ay=—
Ny Ny
1) = po(AX, jAY), ;= pu1(Ax, jAy)

V={(G,j):i=0,--- Ny, j=0,--- Ny}
o1 .
Ex={(1:t§a])3l=1»"'aNx_1,]=0,"',Ny)}

Ey:{(i,ji%)ZiZO,--- Ny, j=1,---,Ny— 1)}
® = (Djj)ijev € RMeADX(Ny+1D) o (Cijijev € RNt D x (Ny+1)
mx = (Mxe)ecg, € RNy Dy — (MYe)eck, € R(Nx+1)xNy
(i+1)Ax (j+1/2)Ay
mxi 1,7~ / my(x, y)dydx
iAx  (j—1/2)Ay
(i+1/2)Ax (jJ+1)Ay
Mmyiji ™ / / my(x, y)dydx.
(i—-1/2)Ax  jAy

Here m satisfies the zero flux condition. Thus, mx and my satisfy the following boundary conditions on m:

17



W. Lee, R. Lai, W. Li et al. Journal of Computational Physics 436 (2021) 110041

mx_%,j=meX+%’j=0, j=0,---,Ny
myi,_%:myinﬁ%:O, i=0,---, Ny.
The discretization of Algorithm 2 can be written as the following:
ey 1 k A i i — B s
Mili T+ en (mxi+%,f + oy (it = Pig)
k+1 1 X A
my..°; = my; . 1 +—(Pijr1— Dij
yl,]+% ‘l—i—e}»( y:,]+% Ay( i,j+1 ij)
k3 1 ol ok kA
c.. 2= shrink( c* + A ®F,, —
u 1+€x ( 7o
mak ! —2makt — mak
my ! —omykts — myk

1
ck+l =2Ck+7 _ Ck

1 1
k+1 _ gk k+1 o k1 kb1 kT k4 1_,0
<1>,.j _<I>,-j +7 (—Ax (mxi%!j mxi_%yj) + —Ay (myi’H% myi,j_%) G T My Mu)'

4. Numerical experiments

In this section, we show the numerical results with various examples for L! and L% unnormalized optimal transport with
the spatially dependent source function. The computations were conducted on 2019 MacBook Pro with 2.6 GHz 6-Core and
16 GB RAM.
4.1. Nesterov accelerated gradient descent for UW

We present four numerical experiments with different p¢ and w1 using Algorithm 1.

4.1.1. Experiment 1
Consider a one dimensional problem on € = [0, 1] with o and @1 in M(R) as

1
Mo = N(x; 5 0.0001)

4
p1=N(x: .0.0001) 1.4

202
Jo odx=1 and [, u1dx =1.4. We use the Algorithm 1 to compute the minimizer p(t, x) of UW3(fio, p1). The parameters
chosen for the experiment are

Here we choose N(x, i, 02) = Cexp (7 (X_“)Z) with an appropriate choice of C satisfying [, N(x; u,0)dx = 1. Note that

Ny =40, N; =30, T = 0.1, maximum iterations = 200, 000.

Fig. 1 shows the L? unnormalized optimal transport with a spatially dependent source function f(t,x) with different
o values. The parameter o determines the ratio between transportation and linear interpolation for wo and wq. If o is
small, the geodesic of generalized unnormalized optimal transport is similar to the normalized (classical) optimal transport
geodesics. As the parameter « increases, the generalized unnormalized optimal transport geodesic behaves closer to the
Euclidean geodesics.

Fig. 2 shows the transportation with a spatially independent source function f(t). It is clear to see that the masses
are created or removed locally for the transportation with f(t,x), while they are created or removed globally for the
transportation with f(t).

For each 1-dimensional numerical experiment, the computation took about 5 seconds for 200, 000 iterations.

4.1.2. Experiment 2

In this experiment, we can see how the size of the domain affects the unnormalized Wasserstein distances for both a
spatially dependent source function f(t,x) and a spatially independent source function f(t). Consider a one dimensional
problem between two densities with different total masses. Fig. 3 shows plots for the size of the domain |2| vs. the
unnormalized Wasserstein distance UW5. As expected, for the spatially independent source function, the distance increases
as || increases since the source function affects the transportation globally. Thus, more masses are created or removed
as |2| increases. However, the unnormalized Wasserstein distance with the spatially dependent source function does not
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UW?2 f(x,t)

Uwz2 f(x,t) UW?2 f(x,t)
t=0.00 t=0.20 t=0.40
200 — a=01 200{ — a=0.1 200 — a=01
—_— a=10 - =10 - a=10
17.5{ — a=100 I 17.54 —— a=100 i 17.54 =—— a=100
1504 \ He '\ Ho ‘
; n A 15.0 i | 15.0 4 i
12,5 [ 12.5 4 / || 12,5 /\
10.01 “ 10.0- / \ | 10.01 | \
| ‘ ‘ ‘
- [ 7.5 ’»‘ |
S
5.0 5.0 1 [
\
W
2.51 2.5 1 .4 \
/ 7 N\ = =
0.0 . . ; ; L : : 0.0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
UW?2 f(x,t) UW?2 f(x,t) UW?2 f(x,t)
t=0.60 t=0.80 t=1.00
2004 — a=0.1 20.04 ™ a=0.1 20.04 — a=0.1
a=10 a=10 a=10
17.54 = a=100 | 17.51 —— a=100 | 17.54 =—— a=100
— Ho — Ho — Ho
15.0 4 - i 15.0 4 s / 15.0 i
12.5 1 /A\ [ 12,5 /\ [ 12.5 1 A\
|
| \ | |
10.0 4 [ [ 10.0 / \ | 10.0 4 / \
A ‘ 0 [ [
7.5 || || 7.5 1 /’ | [ 7.5 [
[ | \ . \ ||
5.0 || [ 5.0 | /7 5.0 |
[\ [\ A\ |\
2.5 . | 2.5 1 [\ / | 2.5 [
o —a / N —— 4 o \
0.0 T T T T 0.0 T T T T 0.0 T T . T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1. Experiment 1. L2 Unnormalized optimal transportation with a spatially dependent source function f(t, x). The figures show the transportation of the

densities from t = 0 (top left) to t =1 (bottom right). Blue line shows o = 0.1, orange line shows « = 10, and green line shows « = 100. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

depend on |2|. This actually provides an advantage of using the spatially dependent source function over the spatially
independent source function when we need a consistent Wasserstein distance for any size of the domain

4.1.3. Experiment 3
Consider a two dimensional problem with the following input values:

V2 V2 2 V2 V2

Ho=N{ (x, Y)( )(20 %) +N (x,y),(3 )(% E)
2 V2 V2
H1=N (X,J/),(3 )(% %)

2
where N ((x, y); (Jix. fty), (07, 07)) = Cexp (—% - %) and C is a constant such that [, N((x, ¥); (ix, iy), (07,
X y

j))dxdy = 1. Using the Algorithm 1, we calculate the minimizers of UW;(uo, 1) with a spatially dependent source
function f(t, x). The parameters are chosen as

Ny =35,Ny =35, N =15, 7 = 0.1, maximum iterations = 6, 000.

Fig. 4 shows the transportation with &« =1 and o = 1000, respectively. The same phenomena can be observed as in 1D
case from Experiment 1. In other words, the geodesic with the spatially dependent source function with small « in Fig. 4
behaves closer to the normalized (classical) optimal transport geodesic and the geodesic with large o behaves closer to the
Euclidean geodesic. The computation took 402.54 seconds for « =1 and 77.82 seconds for & = 1000. Note that when «

is small, the condition number of the Laplacian operator gets larger. This results in slower convergence rate of conjugate
gradient method for inverting the Laplacian operator.
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Fig. 2. Experiment 1. L2 Unnormalized optimal transportation with a spatially independent source function f(t). The figures show the transportation of the
densities from t =0 (top left) to t =1 (bottom right). Blue lines show « =1, orange lines show « =100, and green lines show o = 1000.
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Fig. 3. Experiment 2. The size of the domain |2 vs. L? unnormalized Wasserstein metrics for f(t,x) and f(t). x-axis represents |2| and y-axis represents
UW3 (o, it1)%. Both f(t,x) and f(t) use a = 100.

4.1.4. Experiment 4

In this experiment, we are interested in calculating L? unnormalized Wasserstein distance between two images. We show
two sets of experiments with different initial and terminal densities. First, consider images of two cats with different total
masses defined on the domain 2 = [0, 1] x [0, 1]. We use Algorithm 1 with the following parameters:

Ny =64, Ny =64, Nt = 15, maximum iterations = 4, 000.

Fig. 5 shows transportation between two cats images with =10 and o = 1000, respectively. The computation took 353.85
seconds for « = 10 and 93.67 seconds for o = 1000.
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o0

ole

Fig. 4. Experiment 3. L? generalized unnormalized optimal transportation: 2D example with a spatially dependent source function f(t,x). The first row is
with o = 1. The second row is with o = 1000.

t=0.00 t=0.20 t=0.40 t=0.60 t=0.80 t=1.00

Fig. 5. Experiment 4. L? generalized unnormalized optimal transportation between two cats with a spatially dependent source function f(t, x). The first row
is with o = 10. The second row is with o =1000.

t=0.00 t=0.20 t=0.40 t=0.60 t=0.80

t=0.00 t=0.40 t=0.60 t=0.80

Fig. 6. Experiment 4. L generalized unnormalized optimal transportation between a pair of scissors and Homer Simpson with a spatially dependent source
function f(t, x). The first row is with o = 10. The second row is with o = 1000.

Additionally, we consider images of a pair of scissors and Homer Simpson. We again use Algorithm 1 with the same
set of parameters as above. Fig. 6 shows transportation between two images with = 10 and o = 1000, respectively. The
computation took 353.00 seconds for &« =10 and 93.96 seconds for o = 1000.

4.2. Primal dual algorithm for UW

We conduct two numerical examples of L! unnormalized optimal transport using Algorithm 2. For UW; experiments,
we use maximum iterations for the stopping condition.
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Fig. 7. Experiment 5. Top left: initial density j1o. Top middle: the terminal density /1. Top right: the solution m of L' unnormalized optimal transportation
with a spatially independent source f(t). The bottom images show the solution of L' unnormalized optimal transportation with f(t,x) using different o
values. Bottom left: @ = 0.1, bottom middle: & = 10, bottom right: & = 100.

4.2.1. Experiment 5
Assume Q = [0, 1] x [0, 1]. Consider the two dimensional problem with the following initial densities:

11 1 1
Mo =N ((X7 Y), (57 5)5 (E7 E))

21 1 1
m1=N ((X, ), (§7 5), (ﬁ’ ﬁ)> ‘1.4

N is the same as the one used in Experiment 3. We chose the parameters as:

Ny =Ny =40,¢ =0.001,1 =0.001, T = 0.1, maximum iterations = 30, 000.

In Fig. 7, the initial densities ©o and wq are shown on the top two plots and the minimizers m’s are plotted for three
different o values in the second row. As a comparison, the top right picture in Fig. 7 shows the result from L! transportation
with a spatially independent source function f(t). This experiment shows the clear difference between L' unnormalized
optimal transport with f(t,x) and with f(t). While the minimizer m from the unnormalized optimal transport with f(t, x)
is nonzero only on the area between two densities, the minimizer from the unnormalized optimal transport with f(t) is
nonzero everywhere. This is because the spatially dependent source function f(t,x) affects the minimizer locally but the
spatially independent source function f(t) affects the minimizer globally. The computation took 2.02 seconds for o =1,
2.74 seconds for o« =10, and 2.67 seconds for o = 100.

4.2.2. Experiment 6
In this experiment, we are interested in UW; distance between two images. Consider the same 2D example as in the
Experiment 4. We use the Algorithm 2 with the following parameters:

Ny =Ny =256,¢ =0.001, A =0.0001, T = 0.01, maximum iterations = 40, 000.

Fig. 8 plots the results of L! unnormalized optimal transport with a spatially dependent source function f(t, x) with different
a values 0.1, 5, and 10 in the second row. As a comparison, the top right picture in Fig. 8 shows the result from L!
transportation with a spatially independent source function f(t). The result is similar to the Experiment 5. The minimizer
m from L' unnormalized optimal transport with f(t) has nonzero values on the surrounding area of the two densities, but
the minimizers from unnormalized optimal transport with f(t,x) are zero on that surrounding area. The computation took
153.07 seconds for o =1, 192.82 seconds for o = 10, and 186.27 seconds for o = 100.
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Fig. 8. Experiment 6. Top left: initial density fto. Top middle: the terminal density £¢1. Top right: the solution m of L' unnormalized optimal transportation
with a spatially independent source f(t). The bottom images show the solution of L' unnormalized optimal transportation with f(t, x) using different o
values. Bottom left: & = 0.1, bottom middle: o = 5, bottom right: o = 10.
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Fig. 9. Initial and terminal densities for Experiment 7.

4.2.3. Experiment 7

In this last experiment, we demonstrate the spatial convergence of Algorithm 2. Assume Q = [0, 1] x [0, 1]. Consider an
initial density to be a circle of radius 0.05 at (0.2, 0.2) with a mass 1 and a terminal density to be a circle of radius 0.05
at (0.8, 0.8) with a mass 1 (Fig. 9). UW; distance between these two densities is 0.8 which equals L' distance. We use the
following parameters:

a =0.001,¢ =0.01, A =0.001, T = 0.01, maximum iterations = 50, 000.

We repeat the experiment with 4 different space discretizations (Nxy = Ny = 16, 32, 64, 128). The table below summarizes
the result of the experiment which shows the algorithm is accurate to order 1 in space.

Ny Ny Time (s) Error

16 16 0.62 5.4 x 1072
32 32 2.39 3.8 x 1072
64 64 9.87 1.4x 1072
128 128 44.14 9.4 x 1073
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5. Discussion

In this paper, we introduced a new class of LP generalized unnormalized optimal transport distance with a spatially de-
pendent source function. We presented new fast algorithms for L' and L? generalized unnormalized optimal transport. For
L' case, we derived the Kantorovich duality and used a primal-dual algorithm which has explicit formulas with low compu-
tational costs. For L% case, we derived the duality formula, the generalized unnormalized Monge problem and corresponding
Monge-Ampére equation. We applied a weighted Laplacian operator L, to formulate the problem into an unconstrained op-
timization. The gradient operator of this unconstrained optimization is precisely the Hamilton-Jacobi equation. We apply the
Nesterov accelerated gradient descent method to solve this minimization problem.

Our algorithm can be applied to general unnormalized/unbalanced optimal transport problems. It is also suitable for
considering general variational mean-field games. In future works, we will derive new formulations for all related LP unbal-
anced or unnormalized mean-field games and design fast numerical algorithms to solve them.
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