
M.A.A. de Cataldo (2021) “Projective Compactification of Dolbeault Moduli Spaces,”
International Mathematics Research Notices, Vol. 2021, No. 5, pp. 3543–3570
Advance Access Publication April 7, 2020
doi:10.1093/imrn/rnaa069

Projective Compactification of Dolbeault Moduli Spaces

Mark Andrea A. de Cataldo∗

Department of Mathematics, Stony Brook University, Stony Brook, NY

11794-3651

∗Correspondence to be sent to: e-mail: mark.decataldo@stonybrook.edu

We construct a relative projective compactification of Dolbeault moduli spaces of Higgs

bundles for reductive algebraic groups on families of projective manifolds that is

compatible with the Hitchin morphism.

1 Introduction

The purpose of this paper is to prove Theorem 3.1.1, which provides a natural projective

compactification of Simpson’s Dolbeault moduli spaces of Higgs bundles for complex

reductive algebraic groups on projective manifolds. The compactification statement

seems to be folklore, but we could not locate a reference in the literature. The

projectivity assertion seems new. Remark 3.1.2 discusses the earlier work we are aware

of; §3.7 discusses in more detail the relation of this work to the work of A. Schmitt.

In the course of proving our main result, we establish some complements that can

be of independent interest. Next, we discuss in more detail the contents of this

paper.

The Dolbeault moduli space for a reductive algebraic group G for a family X/S

of projective manifolds is quasi projective over the base S. The associated Hitchin

morphism is proved to be proper in the case G = GLn by Simpson.

We observe in Proposition 2.2.2 that the Hitchin morphism is proper, in fact

projective, for every reductive algebraic group G. The properness assertion has been
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3544 M. A. A. de Cataldo

independently proved for families of curves in arbitrary characteristic in [1]. The target

of the Hitchin morphism is a global version for the family X/S of the quotient g//G.

In this context, the Chevalley restriction morphism being an isomorphism plays an

important role, albeit not a direct one in this paper. Since we could not locate in

the literature a reference for this fact in the case G reductive algebraic, we offer a

proof in Lemma 2.4.1. Our proof of the properness of the Hitchin morphism consists

of exhibiting it as the 1st link in a factorization of another proper morphism. Since

the 2nd link is of great Lie-theoretic importance, we show it is a finite morphism in

Proposition 2.4.2.

Proposition 2.5.1 constructs a natural complex on the Dolbeault moduli space

that, locally over the base S, is the box product of the intersection complex of a typical

fiber (via the non abelian Hodge theorem, the Dolbeault moduli space is topologically

locally trivial over the base) with the constant sheaf over the base. Once this is done, the

last assertion of the proposition, that is, the vanishing φF = 0 of the vanishing cycle,

follows directly.

The main result of this paper is the compactification Theorem 3.1.1, the proof

of which is spread-out through several subsections of §3. We use Simpson’s compact-

ification Theorem 3.2.1 in the context of suitable Gm-actions, of which we need the

amplification provided by Proposition 3.2.2; this slight improvement also allows to

incorporate the Hitchin morphism in the compactification framework. §3.4 constructs

the desired compactification. Away from the nilpotent cone, that is, the fiber of the

Hitchin morphism over the unique Gm-fixed point of the Hitchin base, the stabilizers

of the natural Gm-action on the Dolbeault moduli space are finite; when the Dolbeault

moduli space is an orbifold (this is rare, but it happens in very interesting cases; see

Remark 2.1.2), Lemma 3.5.1 allows to deduce that the compactification is an orbifold as

well. In this context, we could not locate in the literature a needed technical statement,

hence the lemma, which was suggested to us by M. Brion. §3.6 contains the proof

of our main Theorem 3.1.1. Proposition 3.8.1 contains some topological complements

that our compactification affords when the Dolbeault moduli space is an orbifold (cf.

Theorem 3.1.1.(6)).

As it is pointed out in Remark 3.1.3, Theorem 3.1.1, parts 1–5 holds in the more

general context of �-modules, with � of polynomial type. The proofs are identical. The

case of Higgs sheaves is then a special case, and the one of Dolbeault moduli spaces

is an even more special case. We have decided to write this paper in the context of

Dolbeault moduli spaces because of the extra appeal stemming from the non abelian

Hodge theorem.
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Projective Compactification of Dolbeault Moduli Spaces 3545

1.1 Notation

We work over the field of complex numbers C. A variety is a separated scheme of finite

type over C. All varieties in this paper turn out to be quasi-projective over any chosen

base variety S.

A standard reference for Higgs bundles and Dolbeault moduli spaces is [25,

26]. For the derived category of constructible sheaves, we refer the reader to [7]. For

vanishing cycles, we refer the reader to [10].

2 Dolbeault Moduli Spaces: Review and Complements

In this section, we review Simpson’s Dolbeault moduli spaces. The main reference for

this section is [27] where, among other things, C. Simpson proves the non abelian Hodge

theorem in families over a base S. This section also contains some folklore complements

that do not seem to be documented in the literature we are aware of: projectivity of

the Hitchin morphism for reductive algebraic groups (Proposition 2.2.2), the Chevalley

restriction isomorphism (Lemma 2.4.1), the finiteness assertion of Proposition 2.4.2.

Proposition 2.5.1 constructs a complex on the Dolbeault moduli space for a family of

projective manifolds that restricts to the intersection cohomology complexes on the

fibers, this seems new.

In this section, we place ourselves in the following:

Set-up 2.0.1. Let G be a complex reductive algebraic group. Let X/S be a smooth

projective morphism (family).

Given a point s ∈ S, we denote by Xs the corresponding member of the family.

More generally, a subscript −s, with s ∈ S, indicates the restriction of an object to the

corresponding fiber.

2.1 The Dolbeault moduli space

Let MD(X/S, G)/S be the relative Dolbeault moduli space associated with the reductive

algebraic group G and the family X/S, and let:

πD(X/S, G) : MD(X/S, G) −→ S (1)

be the structural morphism. This moduli space universally corepresents the appropriate

functor. If s ∈ S, then the fiber πD(X/S, G)−1(s) is the Dolbeault moduli space MD(Xs, G)

associated with G and Xs.
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3546 M. A. A. de Cataldo

For the case G = GLn, see [26, pp.16–17] and [25, Theorem 4.7]; the Dolbeault

moduli space is obtained as a good quotient of a parameter space Q by the action of

a special linear group. The morphism πD(X/S, GLn) is quasi-projective (cf. [25, Theorem

4.7]), and the closed points in MD(Xs, GLn) parameterize Jordan equivalence classes of

μ-semistable Higgs bundles of rank n on Xs with vanishing rational Chern classes ci,

∀i > 0; (see [26, p.17]). There is also the construction stemming from [26, Proposition

9.7] and [25, Theorem 4.10], where the Dolbeault moduli space arises in connection

with good and geometric quotients of Dolbeault representation spaces modulo the

action of GLn; this construction is used in the construction of moduli spaces for G

reductive [26, Proposition 9.7], via a closed embedding of G into some GLn. There

is also the construction relating Higgs sheaves to sheaves in the relative cotangent

bundle [26, p.18], which Simpson uses to prove the properness of the Hitchin morphism

for G = GLn.

For G reductive algebraic, the morphism πD(X/S, G) is again quasi-projective:

combine [26, Proposition 9.7], [26, Corollary 9.19], and [29, Tag 0417, Pr. 58.49.2]. The

closed points in MD(Xs, G) parameterize the set of isomorphism classes of principal

Higgs bundles of semiharmonic type on Xs for the reductive algebraic group G (cf. [26,

Proposition 9.7]).

Remark 2.1.1. (Higgs vector bundles over curves) If X/S is a family of smooth

projective curves of genus g ≥ 2 and G = GLn, then, fiberwise over S, the Dolbeault

moduli spaces MD(Xs, G) are integral and normal see [26, Corollary 11.7].

The Dolbeault moduli spaces of a smooth projective variety are seldom non-

singular: the only case I know of is the case G = GL1, where the moduli space is the

cotangent bundle to Pic0.

Remark 2.1.2. (Variant: Higgs vector bundles over curves with degree coprime

to the rank) The following variant of Dolbeault moduli spaces are nonsingular and

connected; moreover, the analogue of the non abelian Hodge theorem holds for them:

X/S is a family of projective connected nonsingular curves of genus g ≥ 2, the reductive

algebraic group G = GLn, SLn, and we consider stable Higgs bundle of degree coprime to

the rank. For G = PGLn one gets the quotient of the SLn-moduli space by the abelian

group scheme Pic0
X/S[n], which is finite over S. See [11] and the references therein

and [27, §6].
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Projective Compactification of Dolbeault Moduli Spaces 3547

2.2 Projectivity of the Hitchin morphism

When G = GLn, the Hitchin morphism

h(X/S, G) : MD(X/S, G) −→ A(X/S, G) (2)

is defined in [27, p.22]. Here, A(X/S, GLn) is the scheme representing the functor sending

S′/S to ⊕n
i=1H0(X ′ := X ×S S′, Symi �1

X ′/S); according to general facts, this representing

scheme is a cone SpecOS
(Q) over S, for a suitable coherent OS-module Q = ⊕iQi (e.g.,

cf. [31, Lemma 3.1.3]). In short: first, one chooses a homogeneous system of generators

(fi)
n
i=1 ⊆ C[gln//G] = C[gln]GLn ⊆ C[gln] of degree i, for example, trace(∧i(−)); then,

given a Higgs bundle (E, φ) on X ′/S′, one combines the fi with the twisted endomorphism

φ to define the sections of Symi �1
X ′/S. In the case where G is reductive algebraic, one

defines the Hitchin morphism in the same way, by choosing a homogeneous system of

generators fj ∈ C[g]G ⊆ C[g] with degrees dj given by the fundamental degrees of g.

Remark 2.2.1. Note that for s ∈ S, we have that A(X/S, G)s = A(Xs, G). Let S be

connected. When dim X/S ≥ 2, the dimensions h0(Xs, Symi�1
Xs

) may jump up, see [23,

§4.2]. These dimensions do not jump when dim X/S = 1, that is, for families of curves.

Regardless of the relative dimension dim X/S of the family X/S, by Hodge theory, these

dimensions do not jump for i = 1.

Proposition 2.2.2. (Projectivity of the Hitchin morphism (2)) The Hitchin morphism

(2)) is projective.

Proof. Since the Dolbeault moduli space structural morphism (1) is quasi-projective,

it is enough to prove that the Hitchin S-morphism (2) is proper.

In the case G = GLn, properness of the Hitchin morphism follows from [26,

Theorem 6.11]. In the case when G is reductive algebraic, we argue as follows. We first

embed G into some GLn as a closed subgroup. We thus obtain the commutative diagram

of S-morphisms:

(3)
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3548 M. A. A. de Cataldo

The morphism h(X/S, GLn)◦ιM is proper (cf. [26, Theorem 6.11 (h is proper) and Corollary

9.15 (ιM is proper), or the more precise Corollary 9.19 (ιM is finite)]). It follows that the

morphism h(X/S, G) in (2) is proper, as predicated. �

Remark 2.2.3. The case of G = GLn and families X/S of arbitrary relative dimension

is due to C. Simpson [26]. Proposition 2.2.2 is a simple complement to Simpson’s proof

of properness. The case of G-semisimple for families of curves is due to G. Faltings [14,

Theorem I.3]. The paper [1] contains a proof of properness for G reductive algebraic for

families of curves in arbitrary characteristic.

Remark 2.2.4. (Complement: ιA is finite) We observe that, as one may expect,

the morphism ιA is finite. Since we could not locate a reference in the literature

for this seemingly well-known fact, we offer a proof in the slightly more general

Proposition 2.4.2.

2.3 Gm-equivariance of the Hitchin morphism

The group Gm acts on the Hitchin S-morphism (2) as follows. It acts trivially on S.

It acts on the Dolbeault moduli space by scalar multiplication of Higgs fields (these

are suitable sections of a twisted adjoint bundle, cf [26, p.49]), and this action covers

the trivial action over S, see [26, p. 17–18 and 62]. It acts on the Hitchin base with

positive weights dj: let Q = ⊕jQj be the coherent sheaf on S whose symmetric OS-

algebra has spectrum representing the Hitchin base (cf. §2.2); we view it as a graded

OS-algebra by setting degQj := dj, then t ∈ Gm acts by multiplication by tdi on each

Qi. This action also covers the trivial action over S. The Hitchin morphism is Gm-

equivariant for the aforementioned actions. Diagram (3) is a diagram of Gm-equivariant

S-morphisms.

Remark 2.3.1. (Weighted projective completion of the Hitchin base) For cones and

their projective completions, see [15, Appendix B5]. The Hitchin base A(X/S, G) is the

affine cone SpecOS
(S := Sym•(Q)) over S. By taking Proj of the associated graded

algebra S[z], with z a free variable of weight 1, and with remaining weigths dj as

specified above, we obtain the relative projective cone completion A(X/S, G) over S of

the Hitchin base. Its fibers over S are weighted projective spaces, with dimensions

varying upper-semicontinuously. It carries a natural Gm-action, compatible with the

one on the affine cone. The divisor at infinity is Cartier and made of Gm-fixed

points.
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Projective Compactification of Dolbeault Moduli Spaces 3549

Remark 2.3.2. (Existence of zero-limits for the Gm-action) An important conse-

quence of the properness of the Hitchin morphism is that, since the Gm-action on

the target of the Hitchin morphism is contracting, the zero-limits for the Gm-action

exist in the Dolbeault moduli spaces MD(Xs, G); these limits are fixed points and they

dwell in the fiber of the Hitchin morphism over the origin (the unique fixed point)

of the target. See [26, Corollary 9.20]. This important consequence allows us to use

Simpson’s compactification technique, amplified in Proposition 3.2.2, in the proof of

our compactification Theorem 3.1.1.

Remark 2.3.3. (Cohomological consequences for contracting Gm-actions) A well-

known consequence of the properness of the Hitchin morphism coupled with the fact

that the Gm-action on the target of the Hitchin morphism is contracting is that, given a

projective manifold X, we have natural isomorphisms:

H∗(MD(X, G),Q) = H∗(h(X, G)−1(o),Q)

between the rational cohomology groups of the Dolbeault moduli space and the one

of the fiber of the Hitchin morphism over the origin (nilpotent cone), the same holds

for IH∗(MD(X, G),Q) = H∗(h(X, G)−1(o), (ICMD(X,G),Q)|h(X,G)−1(o)). See [9, Lemma 6.11 and

Remark 6.12]. In fact, the corresponding Leray spectral sequences are E2-degenerate,

and their E2-pages consist of only one non-zero column, that is, E
0q
2 .

2.4 Complement: minor variation on the Chevalley restriction theorem

The standard formulation of Chevalley’s restriction theorem that we have been able to

locate in the literature [6, 18] is as follows: let G be a complex connected semisimple

algebraic group, let g be the Lie algebra of G, let h be a Cartan subalgebra of g, let W

be the associated Weyl group; then the natural Chevalley restriction morphism g//G →

h/W is an isomorphism. It is well known that the same conclusion holds if we replace

G semisimple and connected with G reductive algebraic. I thank V. Ginzburg and G.

Williamson for suggesting us how to prove it. I thank an anonymous referee for pointing

us to the fact that what follows can also be deduced from [20, Theorem 4.2].

Lemma 2.4.1. Let G be connected and reductive algebraic. Then the Chevalley

restriction morphism g//G → h/W is an isomorphism.

Proof. Let Zo ⊆ G be the identity component of the center of G: it coincides with the

radical of G and it is a torus [22, Theorem 5.1]. The quotient group q : G → G′ := G/Zo is

semisimple [22, Proposition 2.5].
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3550 M. A. A. de Cataldo

Let g denote the Lie algebra of G. Similarly, we have g′ for G′ and z for Zo.

Let T ′ ⊆ G′ be a maximal torus and let t′ be its Lie algebra. Then we have the

root-space decomposition of T ′-modules g′ = t′ ⊕ r′.

The Lie algebra g is a G-module for the (adjoint) action of G and, since Zo acts

trivially on g, the G-action factors through G′.

Since G is reductive algebraic, we have a non-canonical splitting g = z ⊕ g1 of

G-modules, as well as of G′-modules.

The differential dq : g = z⊕g1 → g′ is G′-equivariant and split, and it identifies

g1 and g′ as G′-modules.

Let T ⊆ G be the pre-image of T ′. It is a maximal torus; this can be seen,

for example, as a consequence of the Hofmann–Schereer splitting theorem, which, in

particular, says that the commutator subgroup intersects trivially a suitable torus,

therefore, it intersects trivially the center; this implies T is commutative and, since

Zo is connected, it is also connected; one then shows it is a torus, and a maximal one,

non-canonically isomorphic to Zo × T ′.

We note that the Weyl group W := W(G, T) = N(T)/T maps isomorphically, via q,

onto W ′ := W(G′, T ′) = N(T ′)/T ′.

We thus have the natural commutative diagram of C-algebras:

(4)

where: the horizontal maps are given by restrictions of functions, the vertical ones are

pull-backs of functions and, the l.h.s. one is a morphisms of G′-modules, the r.h.s. one

is a morphisms of W = W ′-modules.

By taking invariants in (4), we have the natural commutative diagram of C-

algebras:

(5)
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Projective Compactification of Dolbeault Moduli Spaces 3551

where: the top horizontal arrow is the Chevalley restriction isomorphism for the

semisimple G′, the vertical arrows map a function f to 1 ⊗ f , the identifications on the

bottom horizontal arrows follow from the splitting of modules constructed above, the

bottom horizontal arrow is the tensor product of the identity on C[z] with the Chevalley

restriction morphism for G′, via the identifications given above.

The desired conclusion follows. �

The following was suggested to us by J. Heinloth. Since we do not know of a

reference, we offer a proof. We thank V. Ginzburg for suggesting the one below. We

thank T. Haines, J. Heinloth, and J.E. Humphreys for helpful discussions.

Proposition 2.4.2. Let G → M be a finite morphism of complex reductive algebraic Lie

groups. Then the natural morphism induced by the adjoint actions:

(6)

is finite.

Proof. Let Go, Mo denote the respective connected components of the identity. There

is the natural commutative diagram of morphism:

(7)

where the vertical arrows are finite and surjective. It follows that if the top horizontal

arrow is finite, then so is the bottom one (properness follows from surjectivity, and

quasi-finiteness is evident), so that we may assume that the reductive algebraic groups

G and M are connected.

Since the morphism G → M is assumed to be finite, the differential g → m is

injective and we may view g as dwelling inside m.

By using the maximality of Cartan subalgebras, we can choose Cartan subalge-

bras h(g) ⊆ h(m). Let W(h(g)) and W(h(m)) be the corresponding Weyl groups.

The morphism g//G = h(g)/W(h(g) → m//M = h(m)/W(h(m) (cf. Lemma 2.4.1)

is finite because the Weyl groups are finite and h(g) ⊆ h(m). �
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3552 M. A. A. de Cataldo

Remark 2.4.3. Even if the given morphism of reductive algebraic groups is a closed

embedding, the morphism (6) may fail to be a closed embedding. Consider the classical

embedding SO(4) ⊆ GL4 (more generally, SO(2n) ⊆ GL2n): then the algebra of invariants

is a polynomial algebra with generators s2, p2, where p2 is the Pfaffian and satisfies

p2
2 = det, the determinant; it follows that, in this case, (6) is 2 : 1 onto its image.

2.5 Vanishing of vanishing cycles

In general, due to the possible singularity of the base S of the family X/S, the

intersection complex of the Dolbeault moduli space over S does not restrict to the

intersection complexes of the Dolbeault moduli spaces of the fibers over s ∈ S. A priori,

even if S is nonsingular, it is not immediately clear that there should be a complex

on the Dolbeault moduli space M/S that restricts to the intersection complexes of the

Dolbeault moduli spaces of the fibers over s ∈ S.

The following proposition is an application of the gluing Lemma [2, Theorem

3.2.4], and it ensures that there is a natural complex on the Dolbeault moduli space M/S

that restricts to the intersection complexes of the Dolbeault moduli spaces of the fibers

over s ∈ S. The vanishing φF = 0 is an amplification of [10, Lemma 4.1.9 and Corollary

4.1.4].

Proposition 2.5.1. (The complex F and the vanishing φF = 0) Let p : M → S be a

morphism of varieties that is topologically locally trivial over the base S. Then there is

a complex F ∈ D(M) that, locally over S, is a box product of the intersection complex of

a typical fiber with the constant sheaf QS. In particular, F restricts to the intersection

complexes of the fibers Ms of M/S. If S is a non-singular curve and s ∈ S is a point, then

the vanishing cycle complex φF = 0.

Proof. We may assume that S is connected. Let M be an algebraic variety that is

a representative of the homeomorphism class of the fibers of M/S. Note that M is

not necessarily irreducible nor connected; the intersection complex of such varieties is

defined to be the direct sum of the intersection complexes of its irreducible components

as in [8], or in [10], where it is also proved that it is a homeomorphism invariant by

reducing to the pure-dimensional case, proved by M. Goresky and R. MacPherson. This

is proved directly by B. Wu in [31]. Let {Sa} be an open covering of S such that the Sa

are contractible and such that M/S is trivialized over the open sets Sa by means of

Sa-homeomorphisms φa : Ma := p−1(Sa)
∼
→ Sa × M. Let qa : Sa × M → M be the

projection.
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Projective Compactification of Dolbeault Moduli Spaces 3553

We set Sab = Sa ∩ Sb = Sb ∩ Sa = Sba. Similarly for triple intersections. We also

have Mab, qab, etc. We denote the restrictions of the φ’s as follows: φa|b := φa|Mab
. We also

have the transition Sab-homeomorphisms φba := φb|a◦φ−1
a|b and their restrictions, denoted

φba|c to triple intersections. The cocycle identities then read as follows: φcb|a ◦ φba|c =

φca|b.

Let I := ICM be the intersection complex of M. By [10, Lemma 4.1.3 and its

proof], I is perverse semisimple and it is characterized by the following conditions being

met: being perverse semisimple; having its simple summands supported precisely on

the irreducible components of M; being the direct sum ⊕ToQTo [dim T] of the constant

sheaves on any Zariski dense open subset To the regular part Treg of each irreducible

component T of M, shifted by the dimension of such component.

Let Fa := φ∗
aq∗

aI ∈ D(Ma). We have the chain of canonical identifications: (1st

Hom in D(Ma), the others in D(M)):

Hom(Fa, Fa[i]) = Hom(I, qa∗φa∗φ
∗
aq∗

aI[i]) = Hom(I, qa∗q∗
aI[i]) = Hom(I, I[i]), (8)

where: the 1st equality holds by the usual adjunction between pull-back and push-

forward; the 2nd equality holds because φa is a homeomorphism; the 3rd equality holds

is by the Vietoris–Begle theorem [19, Proposition 2.7.8], in view of the contractibility of

Sa. Since I is perverse, we have that the last term in (8) vanishes ∀i < 0, and we get that:

Hom(Fa, Fa[i]) = 0, ∀i < 0. (9)

We denote restrictions as follows Fa|b := Fa|Mab
. By adjunction again, we have:

Hom(Fa|b, Fb|a = Hom(I, qab∗φa|b∗
φ∗

b|aq∗
abI). (10)

By the characterization of I, the 2nd argument in the last term is canonically isomorphic

to I. Let ρba ∈ Hom(Fa|b, Fb|a) be the element corresponding to this identification via (10).

It follows that the ρ’s satisfy the cocycle condition.

In view of the gluing lemma [2, Theorem 3.2.4], we have an object F, unique up

to unique isomorphism, that glues the Fa.

The vanishing φF = 0 follows directly from the local triviality of F over S. �

Remark 2.5.2. (Twisting by local systems) Once we have constructed F as in the proof

of Proposition 2.5.1, we can twist it by the pull-back of any rank one local system on S

and obtain other constructible complexes that restrict to the intersection complexes of
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3554 M. A. A. de Cataldo

the fibers. These correspond to modified choices of the gluing data given by the ρ’s in

the aforementioned proof.

Remark 2.5.3. The evident variant of Proposition 2.5.1 in the context of the twisted

Dolbeault spaces of Remark 2.1.2 holds, with the same proof.

3 Projective Compactification of Dolbeault Moduli Spaces

We freely use the Set-up 2.0.1 and the notation and results in §2.

3.1 The projective compactification statement

Denote the Hitchin S-morphism (2) for the smooth projective family X/S and the

reductive algebraic group G simply by:

(11)

The structural S-morphism for M/S is usually not proper: just consider the

Gm-action that rescales the Higgs field so that its image under the Hitchin morphism

escapes to infinity. It is desirable to produce a compactification of M relative to this

morphism that retains many of the properties of M, especially in connection with

the Hitchin morphism. We provide such a compactification in Theorem 3.1.1. In some

special cases, this compactification has some precursors, see Remark 3.1.2.

When dealing with Cartesian diagrams, we denote parallel arrows with the same

symbol. This abuse of notation does not create conflicts in what follows.

Theorem 3.1.1. (Relative projective compactification of Dolbeault moduli spaces)

Let X/S be a smooth projective family, let G be a reductive algebraic group and consider

the Hitchin S-morphism h (11). There is a Cartesian diagram of S-varieties:

(12)

such that:

(1) The S-structural morphisms for the varieties in the left-hand and middle

columns are projective (in general, M and A are not proper over S).
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Projective Compactification of Dolbeault Moduli Spaces 3555

(2) The morphisms h of Hitchin-type are projective.

(3) All morphisms in (12), including the omitted structural morphisms to S, are

Gm-equivariant morphisms of Gm-varieties. The Gm-actions on Z and W are

trivial.

(4) The morphism a and b are complementary closed and open embeddings,

respectively. The varieties W and Z support effective Cartier divisors in M/S

and in A/S, respectively.

(5) The fibers of A/S are non-canonically Gm-equivariantly isomorphic to

weighted projective spaces (cf. Remark 2.2.1).

(6) Assume that vM : M → S and vA : A → S are smooth (see Remark 2.1.2).

Then:

(a) M, A, Z and W are orbifold fibrations over S (:= the fibers are orbifolds);

if, in addition, S is nonsingular, then M, A, Z, and W are orbifolds.

(b) There is an augmented commutative diagram:

(13)

where the morphisms r are “resolution of singularities over S” of Z and

(M, M), respectively, in the sense that vZ̃ : Z̃ → S and v
M̃

: M̃ → S are

smooth and projective, r : M̃ → M is an isomorphism over M, and, for

every s ∈ S, the morphisms rs : Z̃s → Zs and rs : M̃s → Ms are birational

(hence resolution of singularities) (in general it is not possible to resolve,

say, Z and at the same time resolve all the fibers of Z/S); the boundary

M̃ \ M is a simple normal crossing divisor in M̃ over S.

Remark 3.1.2. (Relation to earlier work)

The paper [27] provides a compactification of the de Rham moduli space for

a smooth projective family X/S and a reductive algebraic G; to my knowledge, the

projectivity of this compactification is unknown. The proof of Theorem 3.1.1 is an

adaptation of Simpson’s construction from the de Rham case to the Dolbeault case.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
1
/5

/3
5
4
3
/5

8
1
6
6
7
6
 b

y
 S

to
n
y
 B

ro
o
k
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 1

2
 O

c
to

b
e
r 2

0
2
3



3556 M. A. A. de Cataldo

The paper [21, §4] provides a modular compactification in the set-up or

Remark 2.1.2.

The paper [16] provides a projective compactification of the Hitchin morphism

in the case of a curve of genus at least two and G = SL2, via the method of symplectic

cuts. In the same set-up, the paper [13] provides a birational projective model for the

Dolbeault moduli space in the case G = GLn.

The paper [17, Theorem 1.3.1 and (1.2.3)] provides a compactification of the

Dolbeault moduli space over S = Spec(C) in the twisted case (cf. Remark 2.1.2) of a curve

of genus at least two with G = GLn, SLn, PGLn. In connection with this construction, the

reader can consult [13].

The paper [24] provides a projective and modular compactification of the moduli

of Hitchin pairs on a projective manifold. Roughly speaking, Schmitt’s Hitchin pairs on

a projective manifold share the same definition as Higgs pairs for G = GLn, except

that they are not subject to the integrability condition ϕ ∧ ϕ = 0 on the Higgs field

ϕ, which is automatically satisfied on curves, but is an actual condition in higher

dimensions. Note that this implies that, unlike the case of curves and GLn, in higher

dimension the Hitchin morphism is often not surjective. The reader is referred to the

preprint [5] for a study of the Hitchin morphism in higher dimensions. On a curve,

and for G = GLn, the two are closely related: Schmitt’s compactification compactifies

Simpson’s Dolbeault moduli space. In higher dimensions, Schmitt’s compactification

contains a compactification of Simpson’s as a Zariski closed subvariety. That Schmitt’s

compactification should coincide with the one provided by this paper (and by [17]’s)

should coincide for curves and G = GLn, was suggested to us by Leticia Brambila Paz.

In §3.7, following a suggestion of A. Schmitt, we identify the two compactifications,

Schmitt’s [24, Theorem 7.1] and the one of Theorem 3.1.1, when X is a curve of genus

at least two, and we consider Higgs bundles for the group GLn, with degree coprime to

the rank. Even in this case, the compactification given in this paper, while not modular

in nature, has interesting features, for example, Theorem 3.1.1.(6), which do not seem

readily affordable via the methods in [24].

Remark 3.1.3. (�-modules of polynomial type) The main result of this paper, namely

Theorem 3.1.1, parts 1–5, is stated and proved in the case of Dolbeault moduli spaces for

G reductive algebraic. These results hold, with essentially the same proofs, for moduli

spaces of Higgs sheaves with fixed Hilbert polynomial and, more generally, for moduli

spaces of �-modules with fixed Hilbert polynomial for � a sheaf of rings of differential

operators of polynomial type (cf. [26, §1, 2, 3] for definitions and main results, see also
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Projective Compactification of Dolbeault Moduli Spaces 3557

[26, Theorem 6.11], on the properness of the Hitchin morphism, which also holds in

this context, with the same proof). In fact, the construction of the compactification in

§3.4 relies on the properness of the Hitchin morphism, on the rather general results on

quotients by Gm-actions in §3.2 and on the Gm-linearization results in §3.3, especially

Corollary 3.3.3; all of these results have evident valid counterparts in case of � of

polynomial type.

3.2 A compactification technique due to C. Simpson

In this section, we recall and slightly amplify Simpson’s construction of suitable

compactifications given in [27, §11].

Let S be a variety endowed with the trivial Gm-action. Let V and V ′ be varieties

over S, endowed with a Gm-action covering the trivial Gm-action over S, so that the

structural morphisms V, V ′ → S are Gm-equivariant. Let V → V ′ be a Gm-equivariant

proper S-morphism.

We thank Carlos Simpson for discussions relating to the following issue. We

warmly thank the anonymous referee that brought this issue to the surface. The paper

[27, §11, Theorems 11.1 and 11.2] are missing the seemingly necessary hypothesis that

there exists a Gm-linearization for a relatively ample line bundle on V (and for us in this

paper, also on V ′). In general, a Gm-linearization for a given line bundle may fail to exist

when the underlying variety is not normal, see [4, Introduction and Example 2.15].

We thus make the following additional assumption with respect to [27, §11]. We

assume that V and V ′ carry relatively ample line bundles with respect to the structural

morphism to S, and that these line bundles admit Gm-linearizations; we do not require

any kind of compatibility between the line bundles nor between their Gm-linearizations.

Theorem 3.2.1. ([27, Theorem 11.2]) Assume that V/S carries a relatively ample line

bundle admitting a Gm-linearization. Assume the fixed point set VGm ⊆ V is proper over

S and that 0-limits exist in V. Let U ⊆ V be the subset such that the ∞-limits do not

exist (this subset may be empty; e.g., V/S proper). Then U is open in V and there is a

universal geometric quotient U/Gm. This quotient is separated and proper over S.

Part (1,2) of the following proposition can be proved along the same lines of

the proof of Simpson’s Theorem 3.2.1. We simply note the following: the assumption

(i) on surjectivity implies easily the assumption (ii) on the fixed point set and 0-

limits. One applies Simpson’s technique to V and to V ′ to find the universal geometric

quotients. The descended morphism between the universal geometric quotient arises

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
1
/5

/3
5
4
3
/5

8
1
6
6
7
6
 b

y
 S

to
n
y
 B

ro
o
k
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 1

2
 O

c
to

b
e
r 2

0
2
3



3558 M. A. A. de Cataldo

from the equivariance of the morphism U → U ′. The properness and separateness over

S are proved by Simpson. The properness of the descended morphism follows from the

properness of (U/Gm)/S (all our morphisms of schemes are separated and of finite type).

What needs proof is part (3).

Proposition 3.2.2. Assume that V/S and V ′/S carry relatively ample line bundles

admitting Gm-linearizations. Assume the fixed point set VGm ⊆ V is proper over S.

Assume that 0-limits exist in V. Assume that either: (i) the Gm-equivariant proper S-

morphism V → V ′ is surjective or (ii) the fixed point set V ′Gm ⊆ V ′ is proper over S and

the 0-limits exist in V ′. Let U ⊆ V (U ′ ⊆ V ′, resp.) be the subset such that the ∞-limits

do not exist. Then:

(1) U (U ′, resp,) is open in V (V ′, resp.);

(2) the pre-image of U ′ is U; the proper morphism U → U ′ descends to a

proper S-morphism U/Gm → U ′/Gm between the geometric quotients, both

of which are proper and separated over S;

(3) if the morphism V → V ′ is projective, then so is the descended morphism

U/Gm → U ′/Gm; if, in addition, (U ′/Gm)/S is also projective, then (U/Gm)/S

is projective.

Proof. As it was pointed out before the statement, we only need to prove part (3).

The last part of (3) follows since the composition of projective morphisms is projective

(all our schemes are quasi separated and all our morphisms are quasi compact; here

and in what follows, we make such remarks and the reader can consult either EGA,

or [28], to see that these are the needed conditions for the validity of our assertions).

Let LU be an(U/S)-ample line bundle admitting a Gm-linearization. The (U/S)-ample

LU is automatically (U/U ′)-ample (all our morphisms are quasi compact). Since by

definition U does not contain any Gm-fixed point, all the stabilizers of the Gm-action

on U are finite, hence cyclic. There is an integer τ > 0 such that the Gm-linearization

on L⊗τ
U induced by the one on LU has trivial stabilizers (all our morphisms are of

finite presentation and all our schemes are Noetherian). By Kempf’s descent lemma [12,

Théorème 2.3] (the proof given there for good GIT quotients remains valid in the present

context of a geometric quotient), there is a line bundle L on U/Gm such that it pulls-back

to L⊗τ
U as a Gm-bundle.

We claim that L is ((U/Gm)/(U ′/Gm))-ample. If this were the case, then we would

be done, because then the descended morphism, being proper and quasi projective,

would be projective (all our schemes are quasi compact and quasi separated). In view
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Projective Compactification of Dolbeault Moduli Spaces 3559

of the properness of the descended morphism, in order to argue the desired relative

ampleness, we observe that it is equivalent to the ampleness of L when restricted to

all closed fibers of the descended morphism (cf. EGA III1, 4.7.1). On the other hand,

given any such fiber F[u′] over a point [u′] ∈ U ′/Gm with representative u′ ∈ U ′, the

fiber Uu′ of U → U ′ over u′ maps finitely and surjectively onto F[u′], this map being the

quotient by the finite Gm-stabilizer of u′. The restriction of the (U/U ′)-ample LU to Uu′

is automatically ample. It follows that the pull-back of L|F[u′ ]
via the finite surjective

morphism Uu′ → F[u′] is ample, so that L|F[u′]
is ample as well (see [28, Tag 0B5V]). As

seen above, this implies our claim that L is ((U/Gm)/(U ′/Gm))-ample. �

3.3 Gm-action on M/S and Gm-linearizability of LM

Let X/S be smooth and projective with structural morphism f : X → S, let OX(1) be

an (X/S)-very ample line bundle on X, let P be a Hilbert polynomial, let H be a vector

bundle of finite rank on X, let � := Sym•(H∨) be the symmetric OX-algebra associated

with H∨. In terms of triples (H, δ, γ ) as in [25, p. 82], here we set δ = 0 and γ as in [25, p.

85]. We thus view � as a sheaf of rings of differential operators of polynomial type on

X/S. In what follows, given a scheme S′/S, a superscript −′ denotes an object after the

base change S′/S, for example, X ′/S′, OX ′(1), etc.

Simpson constructs the coarse moduli space M/S that universally corepresents

the functor M# that assigns to S′/S the set of isomorphism classes of p-semistable �-

modules on X ′ with Hilbert polynomial P wrt to OX ′(1) (more precisely, on the closed

fibers X ′
s wrt to OX ′

s
(1)). This moduli space comes equipped with an (M/S)-ample line

bundle. The case of Higgs bundles is the special case H := �1
X/S. The Dolbeault moduli

space is the even more special case discussed in [26, p. 16]. Next, let us summarize the

construction of M/S. For details, we refer the reader to [25, §1, 2, 3]. There are integers

N, m > 0 such that what follows holds.

The polynomial type � = Sym•
OX

(H∨) is Z≥0-graded. The group Gm acts on � by

setting the action of t ∈ Gm to be multiplication by ti in degree i. The part �1 = OX ⊕ H∨

inherits the grading in degrees zero and one and a Gm-action. Let V = CP(N). Simpson

constructs the moduli space M/S as a good quotient (terminology defined in [25, p. 61])

Q//SL(V) of a quasi projective variety Q/S on which the special linear group SL(V) acts,

and which is equipped with a (Q/S)-very ample line bundle LQ. A suitable power L⊗ν
Q

of LQ descends via the good quotient by SL(V) to an (M/S)-ample line bundle on M. If

S′/S is a variety over S, then an S′-point of Q is an equivalence class [q] of quotients

q : V ⊗C �1(−N) → E on X ′, where two quotients are identified if they have the same
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3560 M. A. A. de Cataldo

kernel. The fiber of LQ over this S′-point is the line bundle det f ′
∗E(m). Let u = (u0, u1)

be a graded automorphism of V ⊗C �1(−N). It defines a new equivalence class of

quotients [q(u)], by taking q(u) : V ⊗C �1(−N) → E(u), where q(u) is the quotient of

V ⊗C �1(−N) by u(Ker q). Then u yields an isomorphism ũ : det f ′
∗E(m)

≃
→ det f ′

∗E(u)(m).

Let g ∈ SL(V). Define g = (g0, g1), by setting g0 = g ⊗ 1O(−N) and g1 = g ⊗ 1H∨(−N).

Then g · [q] := [q(u)] defines an SL(V)-action on Q. The construction g̃ defines an SL(V)-

linearization of LQ, that is, an SL(V)-action on the total space T(LQ) of the line bundle

LQ that lifts the SL(V)-action on Q. Given t ∈ Gm, we set t = (t0, t1), with t0 = 1V ⊗1O(−N)

and t1 : 1V ⊗ t1H∨(−N). By repeating what above, we obtain a Gm-action on Q and a lift

of it to LQ. Clearly, since g ◦ t = t ◦ g, the two actions commute with each other, and we

get an action of SL(V) × Gm on Q and an SL(V) × Gm-linearization of LQ. If we repeat

the good quotient construction Q//SL(V) by replacing Q with T(L⊗ν
Q ) and LQ with its

pullback to T(L⊗ν
Q ), we see that the total space T(LM) is the corresponding good quotient

by SL(V) of T(L⊗ν
Q ). Via the universal property of good quotients (they corepresent the

appropriate quotient functor), since the Gm-actions commutes with the SL(V)-action,

the Gm-action on T(L⊗ν
Q ) descends to a Gm-action on T(LM), so that LM finds itself

Gm-linearized.

We have thus proved the following.

Proposition 3.3.1. (Gm-linearization of LM on M) The SL(V) and Gm-linearized (Q/S)-

very ample line bundle LQ on Q descends to an (M/S)-ample line bundle LM on M that

inherits a Gm-linearization from the one of LQ.

Recalling that:

(1) moduli of p-semistable Higgs bundles on X/S with given Hilbert polynomial

with respect to a given OX(1) are the special case H = �1
X/S, and that

Dolbeault moduli spaces are unions of connected components of Higgs

moduli spaces with a special polynomial ([26,p.16, bottom]);

(2) diagram (3) is Gm-equivariant (cf. §2.3), so that we can pull back the Gm-

linearized (M/S)-ample line bundle LM(GLn) via ιM and thus obtain a Gm-

linearized (M(G)/S)-ample line bundle LM(G);

we immediately obtain the following two corollaries.

Corollary 3.3.2. (Gm-linearized M/S-ample line bundle) The Dolbeault moduli space

M/S for a reductive algebraic G, endowed with the classical Gm-action (scalar multi-
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Projective Compactification of Dolbeault Moduli Spaces 3561

plication of Higgs field) admits an (M/S)-ample line bundle LM endowed with a Gm-

linearization. The same is true for moduli spaces of p-semistable Higgs sheaves with

a fixed Hilbert polynomial. The same is true, in the case of � of polynomial type, for

moduli spaces of p-semistable �-modules with a fixed Hilbert polynomial.

Corollary 3.3.3. (Gm-linearized ((M × A
1)/S)-ample line bundle) Let M/S be any of

the three moduli spaces in Corollary 3.3.2. The pull-back LM×A1 of the line bundle L to

M × A
1 via the Gm-equivariant projection morphism M × A

1 → M (see the forthcoming

§3.4) is ((M × A
1)/S)-ample and it inherits via pull-back the Gm-linearization of

LM given by Proposition 3.3.2. The analogous conclusions hold for the restriction

LU of the line bundle LM×A1 to the open Gm-invariant subvariety U ⊆ M × A
1

(cf. §3.4).

3.4 Construction of the compactification of Dolbeault moduli spaces

In this subsection, we use Proposition 3.2.2, and its notation, to construct the desired

relative compactification M/S → A/S as in diagram (12). The proof of Theorem 3.1.1

concerning the properties of this construction can be found in §3.6.

In what follows, we let 0 ∈ A
1 be the origin on the affine line, and, for every

s ∈ S, we let os ∈ As, be the distinguished (the unique Gm-fixed) point in As and we

denote by o : S → A the corresponding section of A → S. Let Mo := S ×A M ⊆ M be

the S-subvariety of M union of all fibers Mos
:= h−1

s (os) ⊆ Ms (the nilpotent cone for

each s).

We let V := M × A
1, with the Gm-action defined by setting t · (m, x) := (t · m, tx).

The Gm-fixed point set in V sits inside M = M × {0} and coincides with the Gm-fixed-

point set on M. It is immediate to verify that, in this situation, due to the properness of

the Hitchin morphism, we have that U = (M × A
1) \ ((M \ Mo) × {0}).

We now repeat what above, by replacing M by A. Let V ′ := A ×A
1, endowed with

the action t · (a, x) := (t · a, tx). The Gm-fixed point set in V ′ sits inside A = A × {0}

and coincides with the Gm-fixed-point set on A, which, in turn, is the image O of the

S-section O : S → A given by the “origins” os ∈ As, ∀s ∈ S. It is immediate to verify that,

in this situation, U ′ = (A × A
1) \ ((A \ O) × {0}).

Let U0 be the S-variety fiber of the evident morphism U → A
1 over 0 ∈ A

1 and

similarly for U ′
0. Let U∗ be the S-variety pre-image in U of Gm ⊆ A

1 and similarly for U ′∗.

Let (a : U0 → U ← U∗ : b) and (a : U0 → U ← U∗ : b) be the resulting complementary

closed and open embeddings. We have the following commutative diagram of DM stacks
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(all stabilizers are finite cyclic) over S:

(14)

where each of the six rectangles with arrows ha = ah and hb = bh is Cartesian.

Note that, by construction, it is clear that M = U∗/Gm and A = U ′∗/Gm. The two

adjacent rectangles on the bottom l.h.s. are defined to be the two adjacent rectangles on

the bottom r.h.s.

3.5 A Gm-variation on Luna slice theorem

We need the following seemingly standard result in the proof of Theorem 3.1.1.(6). We

thank M. Brion for pointing it out to us.

Lemma 3.5.1. (Good orbifold charts) Let X be an integral normal Gm-variety with

finite stabilizers such that the geometric quotient Y := X/Gm exists and is separated.

Then for every point x ∈ X, and with image y ∈ Y, there exists a Gm-stable affine

neighborhood Ux of x in X, an affine neighborhood Vy of y in Y and a commutative
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diagram: (the top horizontal morphism is induced by the Gm-action):

(15)

exhibiting Vy as the geometric quotient of Ux, and where Ŵx ⊆ Gm is the stabilizer of

x and Nx ⊆ Ux is a Ŵx-stable closed integral affine-nonsingular if X is nonsingular-

subvariety of Ux.

Proof. We limit ourselves to constructing Ux and Nx, leaving the remaining standard

details to the reader. By a theorem of H. Sumihiro’s [29, Theorem 1], X is covered by

Gm-invariant open affine subvarieties. Every such subvariety, call it still X, admits a

closed Gm-equivariant embedding into a vector space with a linear action: choose a

finite dimensional vector subspace W ⊆ C[X] of the coordinate ring of X that is Gm-

stable and generates the C-algebra C[X], then the corresponding map from X to the

dual of W is the desired embedding. By considering such an embedding, we are reduced

to the case where X = V is a finite dimensional vector space endowed with a linear

Gm-action. Let V = ⊕iVi be a weight decomposition with weights ni. Let d := g.c.d.{ni}.

Let
∑

i aini = d be any linear combination of the weights yielding d, subject to ai �= 0,

∀i. Since Ŵx is assumed to be finite, x �= 0 ∈ V. Let us first assume that x ∈ V is not

on any coordinate hyperplane Hi (span of the Vj’s with j �= i). Then x =
∑

vi for a

unique collection vi ∈ Vi with vi �= 0, ∀i. Set Ux := V \ ∪iHi: it is a Gm-invariant open

affine neighborhood of x. The vi form a basis of Gm-eigenvectors for V. We define a

function f : Ux → Gm by sending a vector u =
∑

i zivi �→
∏

i zai
i . The function f is Gm-

equivariant, provided we endow the target Gm with the standard weight d Gm-action.

Note that f (x) = 1. Set Nx := f −1(1). If x lies in any multiple intersection of coordinate

hyperplanes, we first project to such multiple intersection and then repeat the argument

given above. �

3.6 Proof of the compactification Theorem 3.1.1

Proof. The desired Cartesian diagram dwells in the bottom l.h.s. corner of (14).

Statement (3) on Gm-equivariance is clear by construction.
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Statement (4) concerning the morphisms a and b is also clear by construction.

Since W is the divisor at infinity of a relative projective completion of a cone, it is Cartier

(cf. [15, Appendix B5]). The same is true for its pre-image Z.

Statement (5) is clear by construction.

We now prove statement (2) to the effect that the morphisms h are projective. It

is enough to show that M/A is projective and, in view of the fact that M/A is proper, it

is enough to produce an (M/A)-ample line bundle (our schemes are quasi compact and

quasi separated). In order to do so, we apply Corollary 3.3.3 and Proposition 3.2.2.(3).

We now prove statement (1) to the effect that the structural morphisms for

M, A, W and Z over S are projective. It is clear that the “relative weighted projective

space” A/S is projective, as it is the Proj of a suitable graded OS-algebra associated with

the symmetric OS-algebra giving A/S, see §2.3. Since M/A is projective by assertion (2),

we have that the compositum M/S is projective (all our schemes are quasi compact and

quasi separated). It follows that W/S and Z/S are projective as well.

As to assertion (6): part (a) follows from Lemma 3.5.1, part (b) follows from

[3, Theorem 1.2]. �

3.7 Comparison with A. Schmitt’s compactification

The goal of this section is to observe that in the special case mentioned in Remark 2.1.2,

that is, when X is a nonsingular projective curve and we take GLn Higgs bundles of

degree coprime to the rank, then the compactification constructed in Theorem 3.1.1,

coincides with the corresponding moduli of Hitchin pairs constructed by A. Schmitt in

[24]. We thank A. Schmitt for providing us with the sketch of the needed argument,

see the proof of Proposition 3.7.1. It seems likely that the two compactifications

coincide more generally for (untwisted) Dolbeault moduli space of families of projective

manifolds of any dimension, we have not verified this.

Let X/C be a nonsingular projective manifold, let OX(1) be an ample line bundle

on X, let L be a line bundle on X, and let P be a polynomial.

In the paper [24], A. Schmitt introduced the notion of Hitchin pairs (E, ǫ, ϕ) of

type (P, L) on X: E is a torsion-free coherent sheaf on X, ϕ : E → E ⊗ L is a twisted

endomorphism, ǫ ∈ C, and P is the Hilbert polynomial of (E,OX(1)).

Note that in the definition of an Hitchin pair, the twisted endomorphism ϕ is

not subject to the Higgs/Simpson-type vanishing condition ϕ ∧ ϕ = 0; in particular,

the (E, ϕ)-component of an Hitchin pair is not necessarily an Higgs sheaf. Since the

aforementioned vanishing condition is automatically satisfied when dim X = 1, in that

case, the component (E, ϕ) of an Hitchin pair yields an Higgs sheaf for the group GLn.
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There are the notions of: equivalent Hitchin pairs, (semi)stable Hitchin pair,

(equivalence classes of) families of Hitchin pairs over a Noetherian scheme S, the

functors M(s)s
L,P of equivalence classes of families of (semi)stable Hitchin pairs of

type (L, P).

The paper [24, Theorem 7.1] shows that there is a projective variety Mss
(L,P)

, whose

closed points naturally correspond to certain equivalence classes (semistable Hitchin

pairs with graded objects that are equivalent Hitchin pairs) of semistable Hitchin pairs

of type (L, P). The open subvariety Ms
(L,P)

⊆ Mss
(L,P)

of stable pairs coarsely represents

the functor Ms
(L,P)

.

There is the natural Gm-action on M := Mss
(L,P)

given by scalar multiplication on

ϕ. The fixed-point set is the union of the part that corresponds to semistable Hitchin

pairs with ϕ = 0 (in which case, we must have ǫ �= 0, by the very definition of stability

of Hitchin pairs), that is, the Gieseker moduli space, the part M∞ that corresponds

to ǫ = 0.

If we denote by M �=0 the Gm-invariant open subvariety corresponding to ǫ �= 0,

then M∞ = M �=0//Gm.

In the remainder of this section, we place ourselves in the situation of

Remark 2.1.2: GLn-Higgs bundles over a projective connected nonsingular curve

X of genus g(X) ≥ 2, of degree coprime to the rank, and the line bundle L is

either the canonical bundle of X or any fixed line bundle of degree bigger that

2g(X) − 2.

Then the corresponding Dolbeault Simpson moduli space M coincides with

Schmitt’s moduli space of Hitchin pairs M �=0 and in either case semistability coincides

with stability (due to the coprimality condition). There are a natural proper Hitchin

morphism for both moduli spaces and they coincide.

The compactification Theorem 3.1.1.(6) applies to M and we obtain the compact-

ification M ⊆ M, with boundary Z = (M \ Mo)/Gm = M//Gm (cf. §3.4).

A. Schmitt has informed us that, as one may expect, one should have a natural

Gm-equivariant identification of (M, Z) with (M,M∞). The resulting identification

identifies the corresponding Hitchin morphisms. See Proposition 3.7.1. This identifi-

cation is not used in this paper.

Schmitt’s construction of the compactification is modular (i.e., it provides

a modular interpretation of the boundary). The compactification provided by

Theorem 3.1.1 has the following extra features: it allows us to prove Theorem 3.1.1.(6)

and the upcoming Proposition 3.8.1 and is valid for all (families of) projective manifolds

and all reductive algebraic groups.
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We thank A. Schmitt for the proof of the following.

Proposition 3.7.1. The two compactifications M and M coincide. The identification is

Gm-equivariant and the Hitchin morphisms correspond.

Proof. The Simpson moduli space M is a GIT quotient of some parameter space R

(see [25, 26]) which, due to the fact that stability coincides with semistability, admits a

universal family (E, ϕ) of stable Higgs bundles over it. This family gives rise to a family

(E, ǫ, ϕ,O) of Hitchin pairs over R ×C in the sense of [24]. The Hitchin pairs in question

are automatically stable over R×C∗, but, in order to have stability, one needs to remove

from R × {0} the closed subset where the twisted endomorphisms are nilpotent.

Since stability and semistability coincide, M is a coarse moduli space for the

functor and, by what above, there is the classifying morphism U → M, where U is a

suitable open subset of R ×C. By construction, the morphism factors through M, hence

a natural morphism M → M, which identifies the two open subsets M �=0 and M.

Let (E, ǫ, ϕ, N) be a family of semistable Hitchin pairs over a Noetherian scheme

S (recall that N is a line bundle on S and ǫ ∈ Ŵ(S, N)).

Let {Ui}I be an open covering of S over which N can be trivialized. By restricting

(E, ϕ) over Ui × X, we obtain morphisms Ui → M. By restricting ǫ and using the

trivializations, we obtain morphisms Ui → C. We thus get morphisms Ui → M × C.

By the definition of semistability of Hitchin pairs (no nilpotent fields are allowed),

the image of such morphisms must lie in the complement of Mo × {0}. We thus obtain

morphisms Ui → M = M ×C//Gm. These morphisms glue and yield a morphism S → M.

By the universal property of M (cf. [24, Theorem 7.1.i)], we obtain a morphism M → M.

This morphism also identifies the two open subsets M and M �=0.

Note that, in general, M is dense in M and that M �=0 is dense in M, in fact, in the

current situation, M and M are in fact irreducible. It follows that the two morphisms

M → M and M → M obtained above, are inverse to each other. They clearly are Gm-

equivariant and also identify Z with M∞. The Hitchin morphism are already identified

on the open sets M and M �=0, hence they are identified after the compactifications. �

3.8 Additional properties of the compactification (13) when M/S is smooth

While it is rare for the Dolbeault moduli spaces to be nonsingular, they are so

in interesting cases, see Remark 2.1.2. The following proposition summarizes some

topological properties of the compactification given by Theorem 3.1.1.(6), when M is

smooth over S.
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Proposition 3.8.1. Assume that S is nonsingular and that M/S is smooth. Let things be

as in diagram (13). Then we have the following properties:

(1) The varieties M, A, Z and W are orbifolds and, for every s ∈ S, so are the

varieties Ms, As, Zs and and Ws.

In particular, for all these varieties, up to the usual dimensional and Tate

shifts, the intersection complexes IC and the dualizing complex ω coincide

with the constant sheaf, for example: (we ignore the Tate shifts)

ICM = QM [dim M], ωM = QM [2 dim M]. (16)

(2) We have the following identities for extraordinary pull-backs:

a!QM = QZ[−2], i!QM = QMs
[−2], i!QZ = QZs

[−2],

i!a!QM = a!i!QM = QZs
[−4]. (17)

so that, up to the appropriate cohomological shift, the complexes in (17) are

perverse semisimple.

(3) Finally, if (S, s) is a nonsingular curve with a distinguished point on it, then

we have the following vanishing property for the resulting vanishing cycle

complexes on Ms, Zs:

φM/S(QM) = 0, φZ/S(a!QM) = 0. (18)

(4) Conclusions (1, 2, 3) holds when M is the moduli of Higgs bundles over

curves with degree coprime to the rank and group G = GLn, SLn, PGLn.

Proof. We prove (1). The 1st assertion on orbifolds is Theorem 3.1.1 part (6a). The

identities (16) are standard for orbifolds.

We prove (2). The assertions (17) are standard as well. For example:

a!QM = a!ωM [−2 dim M] = ωZ[−2 dim M] = QZ[−2].

We prove (3). We prove the vanishing assertion (18) for M. The one for Z can be

proved in the same way. Since M̃/S is smooth, we have φ
M̃

(Q
M̃

) = 0. Since r is proper,

we have φM(r∗QM̃
) = r∗φM̃

(Q
M̃

) = 0. It remains to show that QM is a direct summand

of r∗QM̃
. This follows from the decomposition theorem [2]. Given the special orbifold
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situation, this can also be seen as follows. Consider the adjunction morphisms:

(19)

Since the dualizing sheaves are constant shifted, in view of the identity ωA = g! ωB (valid

for every morphism of varieties g : A → B), and in view of the properness of r (so that

r∗ = r!), we may re-write (19) as:

(20)

Since r is a resolution, the endomorphism x◦y : QM → QM can be viewed as the identity

on a dense open subset, hence it is the identity on the connected M. It follows that QM

is a direct summand of r∗QM̃
, as predicated.

We prove (4). The case when G = GLn, SLn is covered by what above because then

M/S is smooth. The case when G = PGLn follows easily from the case when G = SLn

because the whole picture for PGLn is the quotient of the whole picture for SLn by the

finite group scheme over S of n-torsion points in the relative Jacobian of the family of

curves. �

Remark 3.8.2. Proposition 3.8.1.(3) can be used to study the long exact sequence of

cohomology of the triple (Z, M, M) and generalize, by means of (18), the main result

in [10] in the context of Remark 2.1.2 as follows: the long exact sequence in relative

cohomology for the triple (Z, M, M) takes the form of a long exact sequence of filtered

vector spaces . . . → (H∗−2(Z), P) → (H∗(M), P) → (H∗(M), P) → . . ., where P stands for

the appropriately shifted perverse Leray filtrations This study is carried out in greater

generality in a forthcoming paper.

The example below points to the need of exercising caution in connection with

the vanishing assertion in Proposition 3.8.1.(18).

Example 3.8.3. Let vX̃ : X̃
r

→ X
vX
→ S be such that: X̃/S is the family proper over a

disk S with general member a smooth quadric surface F0 and with special member the

Hirzebruch surface F2; r is the birational contraction of the (−2)-curve in the central

fiber to a point p. We have φX̃(Qℓ) = 0, which implies φX(r∗Qℓ) = 0; since r is small, we

have r∗Qℓ = ICX (the intersection complex of X placed in cohomological degrees [0, 2]),

so that φX(ICX) = 0. Note however that φQX = Qp[−2] �= 0.
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