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We construct a relative projective compactification of Dolbeault moduli spaces of Higgs
bundles for reductive algebraic groups on families of projective manifolds that is

compatible with the Hitchin morphism.

1 Introduction

The purpose of this paper is to prove Theorem 3.1.1, which provides a natural projective
compactification of Simpson's Dolbeault moduli spaces of Higgs bundles for complex
reductive algebraic groups on projective manifolds. The compactification statement
seems to be folklore, but we could not locate a reference in the literature. The
projectivity assertion seems new. Remark 3.1.2 discusses the earlier work we are aware
of; 83.7 discusses in more detail the relation of this work to the work of A. Schmitt.
In the course of proving our main result, we establish some complements that can
be of independent interest. Next, we discuss in more detail the contents of this
paper.

The Dolbeault moduli space for a reductive algebraic group G for a family X/S
of projective manifolds is quasi projective over the base S. The associated Hitchin
morphism is proved to be proper in the case G = GL,, by Simpson.

We observe in Proposition 2.2.2 that the Hitchin morphism is proper, in fact

projective, for every reductive algebraic group G. The properness assertion has been
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3544 M. A. A. de Cataldo

independently proved for families of curves in arbitrary characteristic in [1]. The target
of the Hitchin morphism is a global version for the family X/S of the quotient g//G.
In this context, the Chevalley restriction morphism being an isomorphism plays an
important role, albeit not a direct one in this paper. Since we could not locate in
the literature a reference for this fact in the case G reductive algebraic, we offer a
proof in Lemma 2.4.1. Our proof of the properness of the Hitchin morphism consists
of exhibiting it as the 1st link in a factorization of another proper morphism. Since
the 2nd link is of great Lie-theoretic importance, we show it is a finite morphism in
Proposition 2.4.2.

Proposition 2.5.1 constructs a natural complex on the Dolbeault moduli space
that, locally over the base S, is the box product of the intersection complex of a typical
fiber (via the non abelian Hodge theorem, the Dolbeault moduli space is topologically
locally trivial over the base) with the constant sheaf over the base. Once this is done, the
last assertion of the proposition, that is, the vanishing ¢F = 0 of the vanishing cycle,
follows directly.

The main result of this paper is the compactification Theorem 3.1.1, the proof
of which is spread-out through several subsections of §3. We use Simpson’s compact-
ification Theorem 3.2.1 in the context of suitable G,,-actions, of which we need the
amplification provided by Proposition 3.2.2; this slight improvement also allows to
incorporate the Hitchin morphism in the compactification framework. §3.4 constructs
the desired compactification. Away from the nilpotent cone, that is, the fiber of the
Hitchin morphism over the unique G,,-fixed point of the Hitchin base, the stabilizers
of the natural G,,-action on the Dolbeault moduli space are finite; when the Dolbeault
moduli space is an orbifold (this is rare, but it happens in very interesting cases; see
Remark 2.1.2), Lemma 3.5.1 allows to deduce that the compactification is an orbifold as
well. In this context, we could not locate in the literature a needed technical statement,
hence the lemma, which was suggested to us by M. Brion. §3.6 contains the proof
of our main Theorem 3.1.1. Proposition 3.8.1 contains some topological complements
that our compactification affords when the Dolbeault moduli space is an orbifold (cf.
Theorem 3.1.1.(6)).

As it is pointed out in Remark 3.1.3, Theorem 3.1.1, parts 1-5 holds in the more
general context of A-modules, with A of polynomial type. The proofs are identical. The
case of Higgs sheaves is then a special case, and the one of Dolbeault moduli spaces
is an even more special case. We have decided to write this paper in the context of
Dolbeault moduli spaces because of the extra appeal stemming from the non abelian

Hodge theorem.
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Projective Compactification of Dolbeault Moduli Spaces 3545
1.1 Notation

We work over the field of complex numbers C. A variety is a separated scheme of finite
type over C. All varieties in this paper turn out to be quasi-projective over any chosen
base variety S.

A standard reference for Higgs bundles and Dolbeault moduli spaces is [25,
26]. For the derived category of constructible sheaves, we refer the reader to [7]. For

vanishing cycles, we refer the reader to [10].

2 Dolbeault Moduli Spaces: Review and Complements

In this section, we review Simpson’s Dolbeault moduli spaces. The main reference for
this section is [27] where, among other things, C. Simpson proves the non abelian Hodge
theorem in families over a base S. This section also contains some folklore complements
that do not seem to be documented in the literature we are aware of: projectivity of
the Hitchin morphism for reductive algebraic groups (Proposition 2.2.2), the Chevalley
restriction isomorphism (Lemma 2.4.1), the finiteness assertion of Proposition 2.4.2.
Proposition 2.5.1 constructs a complex on the Dolbeault moduli space for a family of
projective manifolds that restricts to the intersection cohomology complexes on the
fibers, this seems new.

In this section, we place ourselves in the following:

Set-up 2.0.1. Let G be a complex reductive algebraic group. Let X/S be a smooth
projective morphism (family).

Given a point s € S, we denote by X, the corresponding member of the family.
More generally, a subscript —, with s € S, indicates the restriction of an object to the

corresponding fiber.

2.1 The Dolbeault moduli space

Let M, (X/S, G)/S be the relative Dolbeault moduli space associated with the reductive
algebraic group G and the family X/S, and let:

75 (X/S, G) : Mp(X/S,G) —> S (1)

be the structural morphism. This moduli space universally corepresents the appropriate
functor. If s € S, then the fiber 7 (X/S, G)~!(s) is the Dolbeault moduli space Mp(X,, G)

associated with G and X.

€20 1890100 Z| U0 Jasn AsiaAlun Yooug AuolS Ad 9/9918G/€HSE/G/1.Z0Z/B10IME/UIY/WOD dNO"0lWapeoe)/:SARY WO} POPEOJUMOQ



3546 M. A. A. de Cataldo

For the case G = GL,, see [26, pp.16-17] and [25, Theorem 4.7]; the Dolbeault

moduli space is obtained as a good quotient of a parameter space Q by the action of

n’

a special linear group. The morphism 7, (X/S, GL,,) is quasi-projective (cf. [25, Theorem
4.7]), and the closed points in My (X, GL,) parameterize Jordan equivalence classes of
n-semistable Higgs bundles of rank n on X, with vanishing rational Chern classes c;,
Vi > 0; (see [26, p.17]). There is also the construction stemming from [26, Proposition
9.7] and [25, Theorem 4.10], where the Dolbeault moduli space arises in connection
with good and geometric quotients of Dolbeault representation spaces modulo the
action of GL,; this construction is used in the construction of moduli spaces for G
reductive [26, Proposition 9.7], via a closed embedding of G into some GL,. There
is also the construction relating Higgs sheaves to sheaves in the relative cotangent
bundle [26, p.18], which Simpson uses to prove the properness of the Hitchin morphism
for G = GL,,.

For G reductive algebraic, the morphism 7(X/S, G) is again quasi-projective:
combine [26, Proposition 9.7], [26, Corollary 9.19], and [29, Tag 0417, Pr. 58.49.2]. The
closed points in Mp(X,, G) parameterize the set of isomorphism classes of principal
Higgs bundles of semiharmonic type on X for the reductive algebraic group G (cf. [26,

Proposition 9.7]).

Remark 2.1.1. (Higgs vector bundles over curves) If X/S is a family of smooth
projective curves of genus g > 2 and G = GL,, then, fiberwise over S, the Dolbeault

moduli spaces My(X;, G) are integral and normal see [26, Corollary 11.7].

The Dolbeault moduli spaces of a smooth projective variety are seldom non-
singular: the only case I know of is the case G = GL;, where the moduli space is the

cotangent bundle to PicP.

Remark 2.1.2. (Variant: Higgs vector bundles over curves with degree coprime
to the rank) The following variant of Dolbeault moduli spaces are nonsingular and
connected; moreover, the analogue of the non abelian Hodge theorem holds for them:

X/S is a family of projective connected nonsingular curves of genus g > 2, the reductive

algebraic group G = GL,,, SL,,, and we consider stable Higgs bundle of degree coprime to
the rank. For G = PGL,, one gets the quotient of the SL,,-moduli space by the abelian
group scheme Pic?(/s[n], which is finite over S. See [11] and the references therein
and [27, §6].
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Projective Compactification of Dolbeault Moduli Spaces 3547
2.2 Projectivity of the Hitchin morphism

When G = GL,,, the Hitchin morphism
h(X/S,G) : Mp(X/S,G) — A(X/S, G) (2)
is defined in [27, p.22]. Here, A(X/S, GL,,) is the scheme representing the functor sending

S'/S to @ | HOX' := X x5, Sym’' Q, );

scheme is a cone Specy (Q) over S, for a suitable coherent Og-module Q = ®;9; (e.g.,

according to general facts, this representing

cf. [31, Lemma 3.1.3]). In short: first, one chooses a homogeneous system of generators
(), <€ Clgl,//Gl = Clgl,l%" < Clgl,] of degree i, for example, trace(Al(—)); then,

given a Higgs bundle (E, ¢) on X'/S’, one combines the f; with the twisted endomorphism

1
X'/S"

defines the Hitchin morphism in the same way, by choosing a homogeneous system of

¢ to define the sections of Symi Q In the case where G is reductive algebraic, one

generators f; € Clgl® C Clg] with degrees d; given by the fundamental degrees of g.

Remark 2.2.1. Note that for s € S, we have that A(X/S,G); = A(X,,G). Let S be
connected. When dim X/S > 2, the dimensions hO(XS,SymiSZ}(S) may jump up, see [23,
§4.2]. These dimensions do not jump when dim X/S = 1, that is, for families of curves.
Regardless of the relative dimension dim X/S of the family X/S, by Hodge theory, these

dimensions do not jump fori = 1.

Proposition 2.2.2. (Projectivity of the Hitchin morphism (2)) The Hitchin morphism

(2)) is projective.

Proof. Since the Dolbeault moduli space structural morphism (1) is quasi-projective,
it is enough to prove that the Hitchin S-morphism (2) is proper.

In the case G = GL,, properness of the Hitchin morphism follows from [26,
Theorem 6.11]. In the case when G is reductive algebraic, we argue as follows. We first
embed G into some GL,, as a closed subgroup. We thus obtain the commutative diagram

of S-morphisms:

L

My (X/S,G) —2> Mpy(X/S,GL,)

i h(X/S,G) i h(X/S,GLy) (3)

L

AX/S,G) —— A(X/S,GL,).
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3548 M. A. A. de Cataldo

The morphism h(X/S, GL,) oty is proper (cf. [26, Theorem 6.11 (h is proper) and Corollary
9.15 (i is proper), or the more precise Corollary 9.19 (i, is finite)]). It follows that the

morphism h(X/S, G) in (2) is proper, as predicated. |

Remark 2.2.3. The case of G = GL,, and families X/S of arbitrary relative dimension
is due to C. Simpson [26]. Proposition 2.2.2 is a simple complement to Simpson’s proof
of properness. The case of G-semisimple for families of curves is due to G. Faltings [14,
Theorem I.3]. The paper [1] contains a proof of properness for G reductive algebraic for

families of curves in arbitrary characteristic.

Remark 2.2.4. (Complement: ., is finite) We observe that, as one may expect,
the morphism ¢, is finite. Since we could not locate a reference in the literature
for this seemingly well-known fact, we offer a proof in the slightly more general

Proposition 2.4.2.

2.3 Gm-equivariance of the Hitchin morphism

The group G,, acts on the Hitchin S-morphism (2) as follows. It acts trivially on S.
It acts on the Dolbeault moduli space by scalar multiplication of Higgs fields (these
are suitable sections of a twisted adjoint bundle, cf [26, p.49]), and this action covers
the trivial action over S, see [26, p. 17-18 and 62]. It acts on the Hitchin base with
positive weights d;: let Q = @;Q; be the coherent sheaf on S whose symmetric Og-
algebra has spectrum representing the Hitchin base (cf. §2.2); we view it as a graded
Og-algebra by setting deg Q; := d;, then t € G,, acts by multiplication by tdi on each
Q;. This action also covers the trivial action over S. The Hitchin morphism is G, -

equivariant for the aforementioned actions. Diagram (3) is a diagram of G,,,-equivariant

S-morphisms.

Remark 2.3.1. (Weighted projective completion of the Hitchin base) For cones and
their projective completions, see [15, Appendix B5]. The Hitchin base A(X/S, G) is the
affine cone Specy (S := Sym®(Q)) over S. By taking Proj of the associated graded
algebra Slz], with z a free variable of weight 1, and with remaining weigths d; as
specified above, we obtain the relative projective cone completion A(X/S, G) over S of
the Hitchin base. Its fibers over S are weighted projective spaces, with dimensions
varying upper-semicontinuously. It carries a natural G,,-action, compatible with the
one on the affine cone. The divisor at infinity is Cartier and made of G,,-fixed

points.
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Projective Compactification of Dolbeault Moduli Spaces 3549

Remark 2.3.2. (Existence of zero-limits for the G,,-action) An important conse-
quence of the properness of the Hitchin morphism is that, since the G,,-action on
the target of the Hitchin morphism is contracting, the zero-limits for the G,,-action
exist in the Dolbeault moduli spaces My (X, G); these limits are fixed points and they
dwell in the fiber of the Hitchin morphism over the origin (the unique fixed point)
of the target. See [26, Corollary 9.20]. This important consequence allows us to use
Simpson's compactification technique, amplified in Proposition 3.2.2, in the proof of

our compactification Theorem 3.1.1.

Remark 2.3.3. (Cohomological consequences for contracting G,,-actions) A well-
known consequence of the properness of the Hitchin morphism coupled with the fact
that the G,,,-action on the target of the Hitchin morphism is contracting is that, given a

projective manifold X, we have natural isomorphisms:
H*(Mp(X,6), Q) = H(h(X,6) ™' (0), Q)

between the rational cohomology groups of the Dolbeault moduli space and the one
of the fiber of the Hitchin morphism over the origin (nilpotent cone), the same holds
for IH*(Mp(X, G), Q) = H*(h(X, G)"(0), TCyr,x,6),0) hx.c)-1(0)- S€€ [9, Lemma 6.11 and
Remark 6.12]. In fact, the corresponding Leray spectral sequences are E,-degenerate,

and their E,-pages consist of only one non-zero column, that is, qu.
2.4 Complement: minor variation on the Chevalley restriction theorem

The standard formulation of Chevalley's restriction theorem that we have been able to
locate in the literature [6, 18] is as follows: let G be a complex connected semisimple
algebraic group, let g be the Lie algebra of G, let h be a Cartan subalgebra of g, let W
be the associated Weyl group; then the natural Chevalley restriction morphism g//G —
h/W is an isomorphism. It is well known that the same conclusion holds if we replace
G semisimple and connected with G reductive algebraic. I thank V. Ginzburg and G.
Williamson for suggesting us how to prove it. I thank an anonymous referee for pointing
us to the fact that what follows can also be deduced from [20, Theorem 4.2].

Lemma 2.4.1. Let G be connected and reductive algebraic. Then the Chevalley

restriction morphism g//G — h/W is an isomorphism.

Proof. Let Z° C G be the identity component of the center of G: it coincides with the
radical of G and it is a torus [22, Theorem 5.1]. The quotient group q: G — G’ := G/Z° is

semisimple [22, Proposition 2.5].
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3550 M. A. A. de Cataldo

Let g denote the Lie algebra of G. Similarly, we have g’ for G’ and z for Z°.

Let T" € G’ be a maximal torus and let ¢’ be its Lie algebra. Then we have the
root-space decomposition of T’-modules g’ = t' @ r’.

The Lie algebra g is a G-module for the (adjoint) action of G and, since Z° acts
trivially on g, the G-action factors through G'.

Since G is reductive algebraic, we have a non-canonical splitting g = z @ g; of
G-modules, as well as of G’-modules.

The differential dg : g = z® g; — g’ is G’-equivariant and split, and it identifies
g, and g’ as G’-modules.

Let T € G be the pre-image of T’. It is a maximal torus; this can be seen,
for example, as a consequence of the Hofmann-Schereer splitting theorem, which, in
particular, says that the commutator subgroup intersects trivially a suitable torus,
therefore, it intersects trivially the center; this implies T is commutative and, since
Z° is connected, it is also connected; one then shows it is a torus, and a maximal one,
non-canonically isomorphic to Z° x T".

We note that the Weyl group W := W(G, T) = N(T)/T maps isomorphically, via q,
onto W := W(G',T") = N(T")/T'.

We thus have the natural commutative diagram of C-algebras:

Clg'l — CIt']

l i (@)

Clgl —— Clzl,

where: the horizontal maps are given by restrictions of functions, the vertical ones are
pull-backs of functions and, the 1.h.s. one is a morphisms of G'-modules, the r.h.s. one
is a morphisms of W = W’-modules.

By taking invariants in (4), we have the natural commutative diagram of C-

algebras:

Il

Clg'1¢ Clew

l 1®— \L 1®— (5)

’ % 1®- 7 ’
Clz] ® Clg;1¢ = Clgl® = Clgl® — Clzl ®c¢ Clt) ]V =cCi" = cra®,
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Projective Compactification of Dolbeault Moduli Spaces 3551

where: the top horizontal arrow is the Chevalley restriction isomorphism for the
semisimple G/, the vertical arrows map a function f to 1 ® f, the identifications on the
bottom horizontal arrows follow from the splitting of modules constructed above, the
bottom horizontal arrow is the tensor product of the identity on C[z] with the Chevalley
restriction morphism for G/, via the identifications given above.

The desired conclusion follows. [ |

The following was suggested to us by J. Heinloth. Since we do not know of a
reference, we offer a proof. We thank V. Ginzburg for suggesting the one below. We

thank T. Haines, J. Heinloth, and J.E. Humphreys for helpful discussions.

Proposition 2.4.2. Let G — M be a finite morphism of complex reductive algebraic Lie

groups. Then the natural morphism induced by the adjoint actions:

9//G —= m//M (6)

is finite.

Proof. Let G° MP° denote the respective connected components of the identity. There

is the natural commutative diagram of morphism:

9//G® —— m//M°

|

9//G ——= m//M,

where the vertical arrows are finite and surjective. It follows that if the top horizontal
arrow is finite, then so is the bottom one (properness follows from surjectivity, and
quasi-finiteness is evident), so that we may assume that the reductive algebraic groups
G and M are connected.

Since the morphism G — M is assumed to be finite, the differential g — m is
injective and we may view g as dwelling inside m.

By using the maximality of Cartan subalgebras, we can choose Cartan subalge-
bras h(g) € h(m). Let W(h(g)) and W(h(m)) be the corresponding Weyl groups.

The morphism g//G = h(g)/W(h(g) - m//M = h(m)/W(h(m) (cf. Lemma 2.4.1)
is finite because the Weyl groups are finite and h(g) € h(m). |
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3552 M. A. A. de Cataldo

Remark 2.4.3. Even if the given morphism of reductive algebraic groups is a closed
embedding, the morphism (6) may fail to be a closed embedding. Consider the classical
embedding SO(4) € GL, (more generally, SO(2n) C GL,,): then the algebra of invariants
is a polynomial algebra with generators s,,p,, where p, is the Pfaffian and satisfies

p% = det, the determinant; it follows that, in this case, (6) is 2 : 1 onto its image.

2.5 Vanishing of vanishing cycles

In general, due to the possible singularity of the base S of the family X/S, the
intersection complex of the Dolbeault moduli space over S does not restrict to the
intersection complexes of the Dolbeault moduli spaces of the fibers over s € S. A priori,
even if S is nonsingular, it is not immediately clear that there should be a complex
on the Dolbeault moduli space M/S that restricts to the intersection complexes of the
Dolbeault moduli spaces of the fibers over s € S.

The following proposition is an application of the gluing Lemma [2, Theorem
3.2.4], and it ensures that there is a natural complex on the Dolbeault moduli space M/S
that restricts to the intersection complexes of the Dolbeault moduli spaces of the fibers
over s € S. The vanishing ¢F = 0 is an amplification of [10, Lemma 4.1.9 and Corollary
4.1.4].

Proposition 2.5.1. (The complex F and the vanishing ¢F = 0) Let p : M — S be a
morphism of varieties that is topologically locally trivial over the base S. Then there is
a complex F € D(M) that, locally over S, is a box product of the intersection complex of
a typical fiber with the constant sheaf QQg. In particular, F restricts to the intersection
complexes of the fibers M of M/S. If S is a non-singular curve and s € S is a point, then

the vanishing cycle complex ¢F = 0.

Proof. We may assume that S is connected. Let M be an algebraic variety that is
a representative of the homeomorphism class of the fibers of M/S. Note that M is
not necessarily irreducible nor connected; the intersection complex of such varieties is
defined to be the direct sum of the intersection complexes of its irreducible components
as in [8], or in [10], where it is also proved that it is a homeomorphism invariant by
reducing to the pure-dimensional case, proved by M. Goresky and R. MacPherson. This
is proved directly by B. Wu in [31]. Let {S,} be an open covering of S such that the S,
are contractible and such that M/S is trivialized over the open sets S, by means of
S,-homeomorphisms ¢, : M, := p~(S,) - S, x M. Let q, : S, x M — M be the

projection.
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Projective Compactification of Dolbeault Moduli Spaces 3553

We set S, =S, NS, =S, NS, = Sp,. Similarly for triple intersections. We also
have M, g5, etc. We denote the restrictions of the ¢'s as follows: ¢, := ¢, - We also
have the transition S,;-homeomorphisms ¢, := ¢b\ao¢a_\11; and their restrictions, denoted
®pa)c to triple intersections. The cocycle identities then read as follows: ¢gp, © Ppgc =
¢ca\b'

Let I := IC,, be the intersection complex of M. By [10, Lemma 4.1.3 and its
proof], I is perverse semisimple and it is characterized by the following conditions being
met: being perverse semisimple; having its simple summands supported precisely on
the irreducible components of M; being the direct sum @50 Qoldim T] of the constant
sheaves on any Zariski dense open subset T° the regular part T7°8 of each irreducible
component T of M, shifted by the dimension of such component.

Let F, := ¢;q;I € D(M,). We have the chain of canonical identifications: (1st
Hom in D(M,), the others in D(M)):

Hom(F,, F,[i]) = Hom(I, q,,¢,,94q51lil) = Hom(, q,,q}I[il) = Hom(I, I[i]), (8)

where: the 1st equality holds by the usual adjunction between pull-back and push-
forward; the 2nd equality holds because ¢, is a homeomorphism; the 3rd equality holds
is by the Vietoris—Begle theorem [19, Proposition 2.7.8], in view of the contractibility of

S,. Since I is perverse, we have that the last term in (8) vanishes Vi < 0, and we get that:
Hom(F,, F,lil) =0, Vi<O. (9)

We denote restrictions as follows F,, := F,,, . By adjunction again, we have:
Hom(Fyp, Fpq = Hom(, Ggp,Paip, Pbja9anD)- (10)

By the characterization of I, the 2nd argument in the last term is canonically isomorphic
toI. Let pp, € Hom(F,, Fp, ;) be the element corresponding to this identification via (10).
It follows that the p's satisfy the cocycle condition.

In view of the gluing lemma [2, Theorem 3.2.4], we have an object F, unique up
to unique isomorphism, that glues the F,.

The vanishing ¢F = 0 follows directly from the local triviality of F over S. |

Remark 2.5.2. (Twisting by local systems) Once we have constructed F as in the proof
of Proposition 2.5.1, we can twist it by the pull-back of any rank one local system on S

and obtain other constructible complexes that restrict to the intersection complexes of
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3554 M. A. A. de Cataldo

the fibers. These correspond to modified choices of the gluing data given by the p’s in

the aforementioned proof.

Remark 2.5.3. The evident variant of Proposition 2.5.1 in the context of the twisted

Dolbeault spaces of Remark 2.1.2 holds, with the same proof.

3 Projective Compactification of Dolbeault Moduli Spaces

We freely use the Set-up 2.0.1 and the notation and results in §2.

3.1 The projective compactification statement

Denote the Hitchin S-morphism (2) for the smooth projective family X/S and the
reductive algebraic group G simply by:

h:M —— A. (11)

The structural S-morphism for M/S is usually not proper: just consider the
G,,-action that rescales the Higgs field so that its image under the Hitchin morphism
escapes to infinity. It is desirable to produce a compactification of M relative to this
morphism that retains many of the properties of M, especially in connection with
the Hitchin morphism. We provide such a compactification in Theorem 3.1.1. In some
special cases, this compactification has some precursors, see Remark 3.1.2.

When dealing with Cartesian diagrams, we denote parallel arrows with the same

symbol. This abuse of notation does not create conflicts in what follows.

Theorem 3.1.1. (Relative projective compactification of Dolbeault moduli spaces)
Let X/S be a smooth projective family, let G be a reductive algebraic group and consider

the Hitchin S-morphism h (11). There is a Cartesian diagram of S-varieties:

lh lh [ilh (12)

such that:

(1) The S-structural morphisms for the varieties in the left-hand and middle

columns are projective (in general, M and A are not proper over S).
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The morphisms & of Hitchin-type are projective.

All morphisms in (12), including the omitted structural morphisms to S, are
G,,,-equivariant morphisms of G,,-varieties. The G,,-actions on Z and W are
trivial.

The morphism a and b are complementary closed and open embeddings,
respectively. The varieties W and Z support effective Cartier divisors in M/S
and in A/S, respectively.

The fibers of A/S are non-canonically G,,-equivariantly isomorphic to
weighted projective spaces (cf. Remark 2.2.1).

Assume that vj; : M — Sand v, : A — S are smooth (see Remark 2.1.2).
Then:

(a) M,A,Zand W are orbifold fibrations over S (:= the fibers are orbifolds);
if, in addition, S is nonsingular, then M, A, Z, and W are orbifolds.

(b) There is an augmented commutative diagram:

7 M
r J/T
a _ b
Z — M <=— M (13)
s
a _ b
W —— A <— A,

where the morphisms r are “resolution of singularities over S” of Z and
(M, M), respectively, in the sense that v; : Z — Sand Ve M — S are
smooth and projective, r : M — M is an isomorphism over M, and, for
every s € S, the morphisms r, : Z, — Z; and r : 1‘;/[5 — M are birational
(hence resolution of singularities) (in general it is not possible to resolve,
say, Z and at the same time resolve all the fibers of Z/S); the boundary

M \ M is a simple normal crossing divisor in M over S.

Remark 3.1.2. (Relation to earlier work)

The paper [27] provides a compactification of the de Rham moduli space for

a smooth projective family X/S and a reductive algebraic G; to my knowledge, the

projectivity of this compactification is unknown. The proof of Theorem 3.1.1 is an

adaptation of Simpson’s construction from the de Rham case to the Dolbeault case.
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The paper [21, 8§4] provides a modular compactification in the set-up or
Remark 2.1.2.

The paper [16] provides a projective compactification of the Hitchin morphism
in the case of a curve of genus at least two and G = SL,, via the method of symplectic
cuts. In the same set-up, the paper [13] provides a birational projective model for the
Dolbeault moduli space in the case G = GL,,.

The paper [17, Theorem 1.3.1 and (1.2.3)] provides a compactification of the
Dolbeault moduli space over S = Spec(C) in the twisted case (cf. Remark 2.1.2) of a curve
of genus at least two with G = GL,,, SL,,, PGL,,. In connection with this construction, the
reader can consult [13].

The paper [24] provides a projective and modular compactification of the moduli
of Hitchin pairs on a projective manifold. Roughly speaking, Schmitt’'s Hitchin pairs on

a projective manifold share the same definition as Higgs pairs for G = GL,, except

ne
that they are not subject to the integrability condition ¢ A ¢ = 0 on the Higgs field
¢, which is automatically satisfied on curves, but is an actual condition in higher
dimensions. Note that this implies that, unlike the case of curves and GL,, in higher
dimension the Hitchin morphism is often not surjective. The reader is referred to the
preprint [5] for a study of the Hitchin morphism in higher dimensions. On a curve,
and for G = GL,, the two are closely related: Schmitt’s compactification compactifies
Simpson's Dolbeault moduli space. In higher dimensions, Schmitt’s compactification
contains a compactification of Simpson’s as a Zariski closed subvariety. That Schmitt's
compactification should coincide with the one provided by this paper (and by [17]'s)
should coincide for curves and G = GL,,, was suggested to us by Leticia Brambila Paz.
In §3.7, following a suggestion of A. Schmitt, we identify the two compactifications,
Schmitt’s [24, Theorem 7.1] and the one of Theorem 3.1.1, when X is a curve of genus
at least two, and we consider Higgs bundles for the group GL,,, with degree coprime to
the rank. Even in this case, the compactification given in this paper, while not modular
in nature, has interesting features, for example, Theorem 3.1.1.(6), which do not seem
readily affordable via the methods in [24].

Remark 3.1.3. (A-modules of polynomial type) The main result of this paper, namely
Theorem 3.1.1, parts 1-5, is stated and proved in the case of Dolbeault moduli spaces for
G reductive algebraic. These results hold, with essentially the same proofs, for moduli
spaces of Higgs sheaves with fixed Hilbert polynomial and, more generally, for moduli
spaces of A-modules with fixed Hilbert polynomial for A a sheaf of rings of differential

operators of polynomial type (cf. [26, §1, 2, 3] for definitions and main results, see also
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[26, Theorem 6.11], on the properness of the Hitchin morphism, which also holds in
this context, with the same proof). In fact, the construction of the compactification in
§3.4 relies on the properness of the Hitchin morphism, on the rather general results on
quotients by G,,-actions in §3.2 and on the G,,-linearization results in §3.3, especially
Corollary 3.3.3; all of these results have evident valid counterparts in case of A of

polynomial type.

3.2 A compactification technique due to C. Simpson

In this section, we recall and slightly amplify Simpson's construction of suitable
compactifications given in [27, §11].

Let S be a variety endowed with the trivial G,,-action. Let V and V’ be varieties
over S, endowed with a G,,-action covering the trivial G,,-action over S, so that the
structural morphisms V,V’ — S are G,,-equivariant. Let V — V' be a G,,,-equivariant
proper S-morphism.

We thank Carlos Simpson for discussions relating to the following issue. We
warmly thank the anonymous referee that brought this issue to the surface. The paper
[27, 8§11, Theorems 11.1 and 11.2] are missing the seemingly necessary hypothesis that
there exists a G,,,-linearization for a relatively ample line bundle on V (and for us in this
paper, also on V’). In general, a G,,-linearization for a given line bundle may fail to exist
when the underlying variety is not normal, see [4, Introduction and Example 2.15].

We thus make the following additional assumption with respect to [27, §11]. We
assume that V and V' carry relatively ample line bundles with respect to the structural
morphism to S, and that these line bundles admit G,,-linearizations; we do not require

any kind of compatibility between the line bundles nor between their G,,-linearizations.

Theorem 3.2.1. ([27, Theorem 11.2]) Assume that V/S carries a relatively ample line
bundle admitting a G,,-linearization. Assume the fixed point set V¥ C V is proper over
S and that 0-limits exist in V. Let U € V be the subset such that the oco-limits do not
exist (this subset may be empty; e.g., V/S proper). Then U is open in V and there is a

universal geometric quotient U/G,,. This quotient is separated and proper over S.

Part (1,2) of the following proposition can be proved along the same lines of
the proof of Simpson’s Theorem 3.2.1. We simply note the following: the assumption
(i) on surjectivity implies easily the assumption (ii) on the fixed point set and O-
limits. One applies Simpson's technique to V and to V’ to find the universal geometric

quotients. The descended morphism between the universal geometric quotient arises
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from the equivariance of the morphism U — U’. The properness and separateness over
S are proved by Simpson. The properness of the descended morphism follows from the
properness of (U/G,,)/S (all our morphisms of schemes are separated and of finite type).

What needs proof is part (3).

Proposition 3.2.2. Assume that V/S and V’/S carry relatively ample line bundles
admitting G,,-linearizations. Assume the fixed point set VEm C V is proper over S.
Assume that 0-limits exist in V. Assume that either: (i) the G,,-equivariant proper S-
morphism V — V' is surjective or (ii) the fixed point set V/®™ C V' is proper over S and
the 0-limits exist in V'. Let U € V (U’ C V’, resp.) be the subset such that the co-limits

do not exist. Then:

(1) U (U, resp,) is open in V (V’, resp.);

(2) the pre-image of U’ is U; the proper morphism U — U’ descends to a
proper S-morphism U/G,, — U'/G,, between the geometric quotients, both
of which are proper and separated over S;

(3) if the morphism V — V’ is projective, then so is the descended morphism
U/G,, - U'/G,,; if, in addition, (U'/G,,)/S is also projective, then (U/G,,)/S

is projective.

Proof. As it was pointed out before the statement, we only need to prove part (3).
The last part of (3) follows since the composition of projective morphisms is projective
(all our schemes are quasi separated and all our morphisms are quasi compact; here
and in what follows, we make such remarks and the reader can consult either EGA,
or [28], to see that these are the needed conditions for the validity of our assertions).
Let L;; be an(U/S)-ample line bundle admitting a G,,-linearization. The (U/S)-ample
L is automatically (U/U’)-ample (all our morphisms are quasi compact). Since by
definition U does not contain any G,,-fixed point, all the stabilizers of the G,,-action
on U are finite, hence cyclic. There is an integer v > 0 such that the G,,-linearization
on L%T induced by the one on Lj; has trivial stabilizers (all our morphisms are of
finite presentation and all our schemes are Noetherian). By Kempf's descent lemma [12,
Théoréme 2.3] (the proof given there for good GIT quotients remains valid in the present
context of a geometric quotient), there is a line bundle L on U/G,, such that it pulls-back
to LY as a G,,-bundle.

We claim that L is (U/G,,)/(U’/G,,))-ample. If this were the case, then we would
be done, because then the descended morphism, being proper and quasi projective,

would be projective (all our schemes are quasi compact and quasi separated). In view
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of the properness of the descended morphism, in order to argue the desired relative
ampleness, we observe that it is equivalent to the ampleness of L when restricted to
all closed fibers of the descended morphism (cf. EGA III1, 4.7.1). On the other hand,
given any such fiber Fj, over a point [u'] € U'/G,, with representative u’ € U’, the
fiber U,, of U — U’ over u’ maps finitely and surjectively onto F,,, this map being the
quotient by the finite G,,-stabilizer of u’. The restriction of the (U/U’)-ample L;; to U,
is automatically ample. It follows that the pull-back of LIF[u/] via the finite surjective
morphism U,, — F,; is ample, so that L|F[u/] is ample as well (see [28, Tag 0B5V]). As
seen above, this implies our claim that L is (U/G,,)/(U’/G,,))-ample. |

3.3 Gyp-action on M/S and Gy, -linearizability of Ly,

Let X/S be smooth and projective with structural morphism f : X — S, let Ox(1) be
an (X/S)-very ample line bundle on X, let P be a Hilbert polynomial, let H be a vector
bundle of finite rank on X, let A := Sym*(H") be the symmetric Ox-algebra associated
with H". In terms of triples (H,§, y) as in [25, p. 82], here we set § = 0 and y as in [25, p.
85]. We thus view A as a sheaf of rings of differential operators of polynomial type on
X/S. In what follows, given a scheme S'/S, a superscript — denotes an object after the
base change S'/S, for example, X’'/S’, Ox (1), etc.

Simpson constructs the coarse moduli space M/S that universally corepresents
the functor M* that assigns to S'/S the set of isomorphism classes of p-semistable A-
modules on X’ with Hilbert polynomial P wrt to Oy (1) (more precisely, on the closed
fibers X, wrt to Ox (D). This moduli space comes equipped with an (M/S)-ample line
bundle. The case of Higgs bundles is the special case H := -Q;(/s- The Dolbeault moduli
space is the even more special case discussed in [26, p. 16]. Next, let us summarize the
construction of M/S. For details, we refer the reader to [25, §1, 2, 3]. There are integers
N, m > 0 such that what follows holds.

The polynomial type A = Symg, (HY) is Z=°-graded. The group G,, acts on A by
setting the action of ¢t € G,,, to be multiplication by ¢' in degree i. The part A} = Ox @ H"
inherits the grading in degrees zero and one and a G,,-action. Let V = C?™_ Simpson
constructs the moduli space M/S as a good quotient (terminology defined in [25, p. 61])
Q//SL(V) of a quasi projective variety Q/S on which the special linear group SL(V) acts,
and which is equipped with a (Q/S)-very ample line bundle L,. A suitable power Lg’”
of L, descends via the good quotient by SL(V) to an (M/S)-ample line bundle on M. If
S’/S is a variety over S, then an S’-point of Q is an equivalence class [g] of quotients

q:VQg Aj(—N) - £ on X', where two quotients are identified if they have the same
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kernel. The fiber of L, over this S’-point is the line bundle det f,£(m). Let u = (ug, u;)
be a graded automorphism of V ® A;(—N). It defines a new equivalence class of
quotients [g(w)], by taking q(w) : V ®¢ A;(—N) — £(w), where g(u) is the quotient of
V ®c A (—N) by u(Ker g). Then u yields an isomorphism @ : det f,€(m) S detfiE(w)(m).
Let g € SL(V). Define g = (gy,9;), by setting gy = g ® 1oy, and g; = g ® lyv(_p).
Then g - [q] := [q(w)] defines an SL(V)-action on Q. The construction Q defines an SL(V)-
linearization of L, that is, an SL(V)-action on the total space T(L,) of the line bundle
Lq that lifts the SL(V)-action on Q. Given t € G,,, we set t = (fy, t;), with 5 = 1, ® 1y,
and ¢, : 1y ® tlyv_y,. By repeating what above, we obtain a G,,-action on Q and a lift
of it to L. Clearly, since got = t o g, the two actions commute with each other, and we
get an action of SL(V) x G,, on Q and an SL(V) x G,,-linearization of L,. If we repeat
the good quotient construction Q//SL(V) by replacing Q with T(L‘g’”) and L, with its
pullback to T(L%"), we see that the total space T(Ly,) is the corresponding good quotient
by SL(V) of T(Lg’“). Via the universal property of good quotients (they corepresent the
appropriate quotient functor), since the G,,-actions commutes with the SL(V)-action,
the G,,-action on T(L%“) descends to a G,,-action on T(Ly), so that L,, finds itself
G,,-linearized.

We have thus proved the following.

Proposition 3.3.1. (G,,-linearization of L;; on M) The SL(V) and G,,-linearized (Q/S)-
very ample line bundle L, on Q descends to an (M/S)-ample line bundle L;; on M that

inherits a G,,,-linearization from the one of L,.

Recalling that:

(1) moduli of p-semistable Higgs bundles on X/S with given Hilbert polynomial
with respect to a given Ox(1) are the special case H = QI}{/S, and that
Dolbeault moduli spaces are unions of connected components of Higgs
moduli spaces with a special polynomial ([26,p.16, bottom]);

(2) diagram (3) is G,,-equivariant (cf. §2.3), so that we can pull back the G,,-
linearized (M/S)-ample line bundle Ly, ) via ¢, and thus obtain a G,,-

linearized (M(G)/S)-ample line bundle Ly,

we immediately obtain the following two corollaries.

Corollary 3.3.2. (G,,-linearized M/S-ample line bundle) The Dolbeault moduli space

M/S for a reductive algebraic G, endowed with the classical G,,-action (scalar multi-
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plication of Higgs field) admits an (M/S)-ample line bundle L;, endowed with a G, -
linearization. The same is true for moduli spaces of p-semistable Higgs sheaves with
a fixed Hilbert polynomial. The same is true, in the case of A of polynomial type, for

moduli spaces of p-semistable A-modules with a fixed Hilbert polynomial.

Corollary 3.3.3. (G, -linearized ((M x Al)/S)-ample line bundle) Let M/S be any of
the three moduli spaces in Corollary 3.3.2. The pull-back Ly, 41 of the line bundle L to
M x A! via the G,,-equivariant projection morphism M x A! — M (see the forthcoming
§3.4) is (M x Al)/S)-ample and it inherits via pull-back the G,,-linearization of
L,, given by Proposition 3.3.2. The analogous conclusions hold for the restriction
Ly of the line bundle Ly, ,1 to the open G,,-invariant subvariety U € M x Al
(cf. §3.4).

3.4 Construction of the compactification of Dolbeault moduli spaces

In this subsection, we use Proposition 3.2.2, and its notation, to construct the desired
relative compactification M/S — A/S as in diagram (12). The proof of Theorem 3.1.1
concerning the properties of this construction can be found in §3.6.

In what follows, we let 0 € A! be the origin on the affine line, and, for every
s € S, we let o, € A, be the distinguished (the unique G,,-fixed) point in A; and we
denote by 0 : S — A the corresponding section of A — S. Let M, := S x4, M C M be
the S-subvariety of M union of all fibers M, := h;'(o;) € M (the nilpotent cone for
each s).

Welet V := M x Al, with the G,,-action defined by setting t - (m, x) := (¢t - m, tx).
The G,,-fixed point set in V sits inside M = M x {0} and coincides with the G,,-fixed-
point set on M. It is immediate to verify that, in this situation, due to the properness of
the Hitchin morphism, we have that U = (M x Al) \ (M \ M,) x {0}).

We now repeat what above, by replacing M by A. Let V' := A x A!, endowed with
the action t - (a,x) := (¢t - a,tx). The G,,-fixed point set in V' sits inside A = A x {0}
and coincides with the G,,-fixed-point set on A, which, in turn, is the image O of the
S-section O : S — A given by the “origins” o, € A, Vs € S. It is immediate to verify that,
in this situation, U’ = (4 x A1)\ (4 \ 0) x {0}).

Let U, be the S-variety fiber of the evident morphism U — A! over 0 € A! and
similarly for Uj. Let U* be the S-variety pre-image in U of G,, € A! and similarly for U"*.
Let (@: Uy — U < U*:b)and (a: Uy — U < U* : b) be the resulting complementary

closed and open embeddings. We have the following commutative diagram of DM stacks
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(all stabilizers are finite cyclic) over S:

a b
UO U U*
NG |»
a b
Uy, U \U’*
a b
[U,/G,,] U/G,,] U*/G,,]
| | |
b

[U}/Gp] (UG, (UG,

b
Uy/G,, U/G,, U*/G,,

NN\

A = U}/Gyp UG, < U*/G,,

| ~ <
~ <
i

(14)

where each of the six rectangles with arrows ha = ah and hb = bh is Cartesian.

Note that, by construction, it is clear that M = U*/G,,, and A = U*/G,,. The two
adjacent rectangles on the bottom l.h.s. are defined to be the two adjacent rectangles on
the bottom r.h.s.

3.5 A Gy,-variation on Luna slice theorem

We need the following seemingly standard result in the proof of Theorem 3.1.1.(6). We

thank M. Brion for pointing it out to us.

Lemma 3.5.1. (Good orbifold charts) Let X be an integral normal G,,-variety with
finite stabilizers such that the geometric quotient Y := X/G,, exists and is separated.
Then for every point x € X, and with image y € Y, there exists a G,,-stable affine

neighborhood U, of x in X, an affine neighborhood V, of y in Y and a commutative
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diagram: (the top horizontal morphism is induced by the G,,-action):

Ty =
G, x™*N, —> U,

fon | | o (15)

~

N,/T, —= V,,

exhibiting V,, as the geometric quotient of U,, and where I', € G,, is the stabilizer of
x and N, C U, is a I',-stable closed integral affine-nonsingular if X is nonsingular-

subvariety of U,.

Proof. We limit ourselves to constructing U, and N,, leaving the remaining standard
details to the reader. By a theorem of H. Sumihiro’s [29, Theorem 1], X is covered by
G,,-invariant open affine subvarieties. Every such subvariety, call it still X, admits a
closed G,,-equivariant embedding into a vector space with a linear action: choose a
finite dimensional vector subspace W C CI[X] of the coordinate ring of X that is G-
stable and generates the C-algebra C[X], then the corresponding map from X to the
dual of W is the desired embedding. By considering such an embedding, we are reduced
to the case where X = V is a finite dimensional vector space endowed with a linear
G,,-action. Let V = @,V be a weight decomposition with weights n,;. Let d := g.c.d.{n;}.
Let > ;a;n; = d be any linear combination of the weights yielding d, subject to a; # 0,
Vi. Since I', is assumed to be finite, x % 0 € V. Let us first assume that x € V is not
on any coordinate hyperplane H; (span of the V;'s with j # i). Then x = > v; for a
unique collection v; € V; with v; # 0, Vi. Set U, := V \ U;H;: it is a G,,,-invariant open
affine neighborhood of x. The v; form a basis of G,,-eigenvectors for V. We define a
function f : U, — G,, by sending a vector u = > ; z;v; > [[;z;*. The function f is G,,,-
equivariant, provided we endow the target G,, with the standard weight d G,,-action.
Note that f(x) = 1. Set N, := f~!(1). If x lies in any multiple intersection of coordinate
hyperplanes, we first project to such multiple intersection and then repeat the argument

given above. u

3.6 Proof of the compactification Theorem 3.1.1

Proof. The desired Cartesian diagram dwells in the bottom 1.h.s. corner of (14).

Statement (3) on G,,-equivariance is clear by construction.
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Statement (4) concerning the morphisms a and b is also clear by construction.
Since W is the divisor at infinity of a relative projective completion of a cone, it is Cartier
(cf. [15, Appendix B5]). The same is true for its pre-image Z.

Statement (5) is clear by construction.

We now prove statement (2) to the effect that the morphisms h are projective. It
is enough to show that M/A is projective and, in view of the fact that M/A is proper, it
is enough to produce an (M/A)-ample line bundle (our schemes are quasi compact and
quasi separated). In order to do so, we apply Corollary 3.3.3 and Proposition 3.2.2.(3).

We now prove statement (1) to the effect that the structural morphisms for
M,A, W and Z over S are projective. It is clear that the “relative weighted projective
space” A/S is projective, as it is the Proj of a suitable graded Og-algebra associated with
the symmetric Og-algebra giving A/S, see §2.3. Since M/A is projective by assertion (2),
we have that the compositum M/S is projective (all our schemes are quasi compact and
quasi separated). It follows that W/S and Z/S are projective as well.

As to assertion (6): part (a) follows from Lemma 3.5.1, part (b) follows from
[3, Theorem 1.2]. [ |

3.7 Comparison with A. Schmitt’s compactification

The goal of this section is to observe that in the special case mentioned in Remark 2.1.2,
that is, when X is a nonsingular projective curve and we take GL, Higgs bundles of
degree coprime to the rank, then the compactification constructed in Theorem 3.1.1,
coincides with the corresponding moduli of Hitchin pairs constructed by A. Schmitt in
[24]. We thank A. Schmitt for providing us with the sketch of the needed argument,
see the proof of Proposition 3.7.1. It seems likely that the two compactifications
coincide more generally for (untwisted) Dolbeault moduli space of families of projective
manifolds of any dimension, we have not verified this.

Let X/C be a nonsingular projective manifold, let Ox(1) be an ample line bundle
on X, let L be a line bundle on X, and let P be a polynomial.

In the paper [24], A. Schmitt introduced the notion of Hitchin pairs (E, ¢, ¢) of
type (P,L) on X: E is a torsion-free coherent sheaf on X, ¢ : E — E ® L is a twisted
endomorphism, € € C, and P is the Hilbert polynomial of (E, Ox(1)).

Note that in the definition of an Hitchin pair, the twisted endomorphism ¢ is
not subject to the Higgs/Simpson-type vanishing condition ¢ A ¢ = 0; in particular,
the (E, ¢)-component of an Hitchin pair is not necessarily an Higgs sheaf. Since the
aforementioned vanishing condition is automatically satisfied when dim X = 1, in that

case, the component (E, ¢) of an Hitchin pair yields an Higgs sheaf for the group GL,,.
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There are the notions of: equivalent Hitchin pairs, (semi)stable Hitchin pair,
(equivalence classes of) families of Hitchin pairs over a Noetherian scheme S, the
functors MSI)JS of equivalence classes of families of (semi)stable Hitchin pairs of
type (L, P).

The paper [24, Theorem 7.1] shows that there is a projective variety M

ss
&,py’

closed points naturally correspond to certain equivalence classes (semistable Hitchin

whose

pairs with graded objects that are equivalent Hitchin pairs) of semistable Hitchin pairs
of type (L, P). The open subvariety MfL'P) € Mg p of stable pairs coarsely represents
the functor M .

There is the natural G,,-action on M := Mfzyp) given by scalar multiplication on
¢. The fixed-point set is the union of the part that corresponds to semistable Hitchin
pairs with ¢ = 0 (in which case, we must have € # 0, by the very definition of stability
of Hitchin pairs), that is, the Gieseker moduli space, the part M, that corresponds
toe =0.

If we denote by M_, the G,,-invariant open subvariety corresponding to € # 0,
then M = M_//G,.

In the remainder of this section, we place ourselves in the situation of
Remark 2.1.2: GL,-Higgs bundles over a projective connected nonsingular curve
X of genus g(X) > 2, of degree coprime to the rank, and the line bundle L is
either the canonical bundle of X or any fixed line bundle of degree bigger that
29(X) — 2.

Then the corresponding Dolbeault Simpson moduli space M coincides with
Schmitt’s moduli space of Hitchin pairs M_, and in either case semistability coincides
with stability (due to the coprimality condition). There are a natural proper Hitchin
morphism for both moduli spaces and they coincide.

The compactification Theorem 3.1.1.(6) applies to M and we obtain the compact-
ification M € M, with boundary Z = (M \ M,)/G,, = M//G,, (cf. §3.4).

A. Schmitt has informed us that, as one may expect, one should have a natural
G,,-equivariant identification of (M,Z) with (M, M, ). The resulting identification
identifies the corresponding Hitchin morphisms. See Proposition 3.7.1. This identifi-
cation is not used in this paper.

Schmitt's construction of the compactification is modular (i.e., it provides
a modular interpretation of the boundary). The compactification provided by
Theorem 3.1.1 has the following extra features: it allows us to prove Theorem 3.1.1.(6)
and the upcoming Proposition 3.8.1 and is valid for all (families of) projective manifolds

and all reductive algebraic groups.
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We thank A. Schmitt for the proof of the following.

Proposition 3.7.1. The two compactifications M and M coincide. The identification is

G,,-equivariant and the Hitchin morphisms correspond.

Proof. The Simpson moduli space M is a GIT quotient of some parameter space R
(see [25, 26]) which, due to the fact that stability coincides with semistability, admits a
universal family (E, ¢) of stable Higgs bundles over it. This family gives rise to a family
(E,€,9,0) of Hitchin pairs over R x C in the sense of [24]. The Hitchin pairs in question
are automatically stable over R x C*, but, in order to have stability, one needs to remove
from R x {0} the closed subset where the twisted endomorphisms are nilpotent.

Since stability and semistability coincide, M is a coarse moduli space for the
functor and, by what above, there is the classifying morphism U — M, where U is a
suitable open subset of R x C. By construction, the morphism factors through M, hence
a natural morphism M — M, which identifies the two open subsets M#O and M.

Let (E,€,¢,N) be a family of semistable Hitchin pairs over a Noetherian scheme
S (recall that N is a line bundle on S and € € I'(S, N)).

Let {U;}; be an open covering of S over which N can be trivialized. By restricting
(E,p) over U; x X, we obtain morphisms U; — M. By restricting ¢ and using the
trivializations, we obtain morphisms U; — C. We thus get morphisms U; — M x C.
By the definition of semistability of Hitchin pairs (no nilpotent fields are allowed),
the image of such morphisms must lie in the complement of M, x {0}. We thus obtain
morphisms U; - M = M x C//G,,. These morphisms glue and yield a morphism S — M.
By the universal property of M (cf. [24, Theorem 7.1.i)], we obtain a morphism M — M.
This morphism also identifies the two open subsets M and M_,.

Note that, in general, M is dense in M and that M#o is dense in M, in fact, in the
current situation, M and M are in fact irreducible. It follows that the two morphisms
M — M and M — M obtained above, are inverse to each other. They clearly are G,,-
equivariant and also identify Z with M. The Hitchin morphism are already identified

on the open sets M and M_, hence they are identified after the compactifications. W

3.8 Additional properties of the compactification (13) when M/S is smooth

While it is rare for the Dolbeault moduli spaces to be nonsingular, they are so
in interesting cases, see Remark 2.1.2. The following proposition summarizes some
topological properties of the compactification given by Theorem 3.1.1.(6), when M is

smooth over S.
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Proposition 3.8.1. Assume that S is nonsingular and that M/S is smooth. Let things be

as in diagram (13). Then we have the following properties:

(1) The varieties M, A,Z and W are orbifolds and, for every s € S, so are the
varieties M, A, Z; and and W.
In particular, for all these varieties, up to the usual dimensional and Tate
shifts, the intersection complexes IC and the dualizing complex w coincide

with the constant sheaf, for example: (we ignore the Tate shifts)
IC37 = QgldimM],  wg; = Qgl2 dim M]. (16)
(2) We have the following identities for extraordinary pull-backs:

a'Qy = Q-2 I'Qy=Ql-2, iI'Q;=Qz[-2]

i'a'Qgr = a'i'Qgr = Qg [-4l. (17)

so that, up to the appropriate cohomological shift, the complexes in (17) are
perverse semisimple.

(3) Finally, if (S, s) is a nonsingular curve with a distinguished point on it, then
we have the following vanishing property for the resulting vanishing cycle

complexes on M, Z:

¢a1/5(Qap) =0, ¢7/5(a'Qzp) = 0. (18)

(4) Conclusions (1, 2, 3) holds when M is the moduli of Higgs bundles over
curves with degree coprime to the rank and group G = GL,,, SL,,, PGL,,.

Proof. We prove (1). The 1st assertion on orbifolds is Theorem 3.1.1 part (6a). The
identities (16) are standard for orbifolds.

We prove (2). The assertions (17) are standard as well. For example:
a' Qg = a'wgl—2 dim M] = w,[—2 dim M] = Qg[-2l.

We prove (3). We prove the vanishing assertion (18) for M. The one for Z can be
proved in the same way. Since M/S is smooth, we have ¢7(Qs) = 0. Since r is proper,
we have %(T*Qﬁ) = r*%(Qﬁ) = 0. It remains to show that Qz; is a direct summand

of r*Qﬁ. This follows from the decomposition theorem [2]. Given the special orbifold
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situation, this can also be seen as follows. Consider the adjunction morphisms:

X y
nr' Qg Qi . Qg (19)

Since the dualizing sheaves are constant shifted, in view of the identity w, = g' wB (valid
for every morphism of varieties g : A — B), and in view of the properness of r (so that

r, =r,), we may re-write (19) as:

r.Qz= Qur r.Qz (20)

Since r is a resolution, the endomorphism xoy : Qg; — Qg; can be viewed as the identity
on a dense open subset, hence it is the identity on the connected M. It follows that Qa7
is a direct summand of r*Qﬁ, as predicated.

We prove (4). The case when G = GL,,, SL,, is covered by what above because then
M/S is smooth. The case when G = PGL,, follows easily from the case when G = SL,,
because the whole picture for PGL,, is the quotient of the whole picture for SL,, by the
finite group scheme over S of n-torsion points in the relative Jacobian of the family of

curves. |

Remark 3.8.2. Proposition 3.8.1.(3) can be used to study the long exact sequence of
cohomology of the triple (Z,M,M) and generalize, by means of (18), the main result
in [10] in the context of Remark 2.1.2 as follows: the long exact sequence in relative
cohomology for the triple (Z, M, M) takes the form of a long exact sequence of filtered
vector spaces ... — (H*%(2),P) — (H*(M),P) — (H*(M),P) — ..., where P stands for
the appropriately shifted perverse Leray filtrations This study is carried out in greater

generality in a forthcoming paper.

The example below points to the need of exercising caution in connection with

the vanishing assertion in Proposition 3.8.1.(18).

Example 3.8.3. Let vy : X 5 x Z S be such that: X/S is the family proper over a
disk S with general member a smooth quadric surface F, and with special member the
Hirzebruch surface F,; r is the birational contraction of the (—2)-curve in the central
fiber to a point p. We have ¢%(Q,) = 0, which implies ¢y(r,@Q,) = 0; since r is small, we
have r,Q, = ZCx (the intersection complex of X placed in cohomological degrees [0, 2]),
so that ¢x(ZCx) = 0. Note however that ¢Qx = Qp[—z] # 0.
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