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A support theorem for
the Hitchin fibration: The case of GL,, and K¢

By Mark Andrea A. de Cataldo at Stony Brook, Jochen Heinloth at Essen and
Luca Migliorini at Bologna

Abstract. We compute the supports of the perverse cohomology sheaves of the Hitchin
fibration for GL,, over the locus of reduced spectral curves. In contrast to the case of mero-
morphic Higgs fields we find additional supports at the loci of reducible spectral curves. Their
contribution to the global cohomology is governed by a finite twist of Hitchin fibrations for
Levi subgroups. The corresponding summands give non-trivial contributions to the cohomol-
ogy of the moduli spaces for every n > 2. A key ingredient is a restriction result for intersection
cohomology sheaves that allows us to compare the fibration to the one defined over versal
deformations of spectral curves.

1. Introduction

In the study of the geometry of the Hitchin fibration a recurring problem has been to
determine how much of this geometry is determined by the smooth part of the fibration. Ngd’s
support theorem provides a tool to formulate and sometimes to prove a precise version of this
question for general fibrations equipped with an action of a family of polarized abelian group
schemes (see [30]). In particular, for variants of the fibration parameterizing Higgs bundles
with poles, Chaudouard and Laumon in [9] proved that the only perverse cohomology sheaves
appearing in the decomposition of the direct image of the constant sheaf are the intermediate
extensions of the local systems on the smooth locus, that is the perverse cohomology sheaves
are supported over the whole base. In particular, all of the cohomology is determined, in prin-
ciple, by the monodromy of the cohomology of the smooth fibers. As is explained in the last
section of [9], unfortunately, this method does not apply to the original symplectic (no poles)
version of the Hitchin fibration. Motivated by the P = W conjecture [11], one would like to
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understand the perverse filtration of the fibration better and for this it is important to determine
whether this result extends to this case as well. Surprisingly, we do find new supports as well
as new cohomological contributions for any rank n > 2.

Before we explain the general strategy of our approach, let us state our main result. In
order to do this, let us briefly introduce the standard notation that we use, which is recalled in
more detail in Section 2. We fix a smooth projective curve C and denote by /,: M,‘f — Ap
the Hitchin fibration for GL,, and an integer d coprime to n, i.e., M,‘f is the moduli space of
semistable Higgs bundles of rank 7 and degree d on C. The base #4,, is an affine space param-
eterizing spectral curves C, € T*C that are of degree n over the projective curve C. For any
partition n = (n;);=1,...,, of n there is the closed subvariety S, C #4,, closure of the subset
S\ C Sy of reducible nodal curves having smooth irreducible components of degree n; over C
(see Section 2.3). Also we denote by A4 C A, the open subset parameterizing reduced
spectral curves.

The decomposition theorem implies that the complex R#4,,.Q is a direct sum of its
perverse cohomology sheaves 57" (Rh,,Q), which in turn are direct sums of irreducible
perverse sheaves. These summands are thus supported on closed subvarieties of +4, and the
subvarieties that occur in this way are called the supports of R/, Q. Using these notions
our main results can be summarized as follows (note that according to our convention in Sec-
tion 2, the local systems given by the r-th cohomology of the smooth fibers of %, contribute to
PAT (Rhyp«Q), the r-th perverse cohomology sheaf):

Theorem (Proposition 4.1 and Theorem 6.11). Let hy, : ,M,‘f — sy, be the Hitchin map.
The supports of Rhy, +Q on Ay that meet the reduced locus A;fd are exactly the strata Sy.
Moreover, for every partition n of n, the stratum Sy, is a support for all of the sheaves

Pk (Rhy Q) with §*%(n) < k < 2dim s, — 8§ (n),

where §4(n) = Zl-<j nin;j(2g —2) —r + 1 is the dimension of the affine parts of the Picard
group of the spectral curves defined by points of S Z The corresponding perverse summands are
the intermediate extensions of local systems on S; whose stalks can be described explicitly
in terms of the cohomology of the spectral curve and its dual graph.

A more precise statement describing the local systems appearing in the above state-
ment appears in Theorem 6.11, and refined information on the monodromy is given in Corol-
lary 6.20. In particular, it turns out that the local systems corresponding to partitions with
pairwise distinct #; and k maximal have trivial monodromy and therefore these contribute
to H *(M,‘f ) = H*(Rhy,+Q). For n = 2 we describe the contributions of the summands sup-
ported on S(1,1) explicitly (Remark 6.21).

The key idea that allows us to get a hold on the supports of the perverse cohomology
sheaves 2% (Rh,, »Q) of the direct image, is to compare the Hitchin fibration with a “larger”
fibration. In our situation, the description of Higgs bundles as sheaves on spectral curves allows
us to use the fibration of compactified Jacobians for a versal deformation of singular spectral
curves. As is proved in [26], for those families only the full base is a support. To use this, we
then study how the intersection cohomology sheaves on the versal family decompose under
restriction to the Hitchin base. We prove a simple restriction result (Proposition 5.4) which we
can then use for an explicit computation, because the Cattani—Kaplan—Schmid complex gives
a rather explicit combinatorial description of the contribution to the top cohomology sheaves
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in the case of nodal curves. Interestingly, the combinatorial description is related to the bond
matroid of the dual graph of the spectral curve, which luckily had been studied for entirely
different reasons before.

It may be interesting to note that there is a simple geometric explanation for the different
behavior between the Hitchin fibration we consider and the version with poles treated in [9]:
If a € Sy, corresponds to a reducible nodal spectral curve C, with r nonsingular irreducible
components, let V' be the base of its versal deformation. Then the codimension in V' of the stra-
tum V> where all the nodes persist, equals the number of nodes, whereas the codimension of
Sy in the Hitchin base is smaller, it is equal to § aff () which differs from the number of nodes
by r — 1 (Lemma 2.6). In other words, locally around a point a € S,° the family of spectral
curves over the Hitchin base 4, defines a morphism to the base of the versal deformation V,
but the image of this morphism is not transversal to the stratum V' *. This does not happen in
the Hitchin fibration with poles, and it is precisely this lack of transversality which is respon-
sible for the splitting of the restriction of the intersection cohomology sheaves into summands
(Remark 5.2).

An elementary example of this phenomenon may be seen in the deformation of a curve
consisting of two rational components meeting transversally in two nodes. The versal defor-
mation has dimension two, every curve in the family except the central one is irreducible,
and it is easily seen that only the full base is a support. In particular, denoting by R! the
local system of first cohomology on the smooth locus, there is a non-vanishing cohomology
sheaf #1(IC(R')) at the origin, accounting for the extra component. If we restrict this map
to a disc passing through the origin, the total space of the family remains nonsingular but
the restriction of IC(R') splits into two summands, one of which, supported at the origin, is
precisely #1(IC(R')).

The structure of the article is as follows. In Section 2, we set up notation and conven-
tions. In Section 3 we recall the main result from [25], that constrains the potential supports of
our perverse cohomology sheaves in terms of higher discriminants. The symplectic structure
of Hitchin fibrations allows us to describe these in terms of the action of Jacobians of spectral
curves. For this we use that the differential of the Hitchin morphism #,, is dual with respect
to the symplectic form on Mg to the infinitesimal action of the abelian group schemes act-
ing on the fibres. As it is hard to find this property of the Hitchin fibration explicitly in the
literature, we include an algebraic proof in the more general setup of the Hitchin fibration for
complex reductive groups in the appendix (Proposition A.12). See also [13], where this duality
is established for a large class of integrable systems, including our Hitchin fibration for GL,,.
In Section 4, we combine the Ngd support theorem and results on compactified Jacobians to
identify the strata S, as the only potential supports in A4, Next, in Section 5 we prove the
restriction result for IC-sheaves mentioned above (Proposition 5.4) and show that it applies to
the Hitchin fibration by computing the Kodaira—Spencer map for the universal family of spec-
tral curves. In Section 6 we use the Cattani—Kaplan—Schmid complex for the versal family to
translate the problem of determining the generic fibers of the summands supported on S, into
a combinatorial problem that we can then solve (Theorem 6.11). In Section 6.3 we describe
the monodromy of these summands, in order to prove that the new summands contribute to the
global cohomology of the Hitchin fibration for any n > 2.
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2. Notation and setup

Throughout this article we work over the complex numbers C. We will use the analytic
topology in order to work with constructible sheaves of (Q-vector spaces. Readers preferring
the étale topology, could recover all of our results in that topology by using Q-coefficients.

2.1. Conventions on intersection cohomology. We start by recalling the basic results
on intersection cohomology that we need. To reduce the appearance of shifts of complexes in
our results we will employ the following numbering convention for intersection cohomology
sheaves, which differs from the one used in [2]: Let X be an algebraic variety, Y <— X aclosed
subvariety and &£ a local system on a smooth open subset j : Y° < Y. We denote by IC(Y, £)
the intersection cohomology complex with the normalization such that

IC(Y, L))y = £[~codimY].

In particular, a local system on an open subset of X will be put in cohomological degree 0.
With this convention the strong support condition reads

FLIC(Y, &) =0 if | < codimY,
%COdimY(IC(Y, £)) = ]*i,
codim Supp #! (IC(Y, £)) > | for | > codim Y,

i.e., this is the usual t-structure, but shifted by dim X. This will be useful for us, as we will
study restrictions of perverse sheaves to closed subvarieties and we can then avoid to shift the
constant sheaf.

A semisimple perverse sheaf on a complex variety X is a complex of the form

P = @ IC(Ya» La)s
o

where Yy C X are irreducible closed subvarieties and L, are semisimple local systems defined
on dense open subsets of the subvarieties Y. The generic points of the subvarieties Y, are
called the supports of P.

If h: M — X is a proper map between smooth varieties, the decomposition theorem
of [2] says that

Rh.Q ~ @ P (Rh.Q)[—k]
k>0

and in addition for all k the k-th perverse cohomology sheaf 2.7 (R, Q) is a semisimple per-
verse sheaf. The union of supports of the perverse sheaves 2.2k (Rh4Q) is the set of supports
of the map & (see [29, Section 7]).

We say that a semisimple complex

K = 7" RhQ)[A]
k

has no proper supports if X is the only support of K.
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2.2. The Hitchin fibration. We fix a nonsingular, connected, projective curve C of
genus g > 2, an integer n € Z>1, and an integer d € Z such that gcd(n,d) = 1. We denote
by K¢ the canonical bundle of C.

We denote by Higgsg the moduli stack of Higgs bundle of rank n and degree d on C,
i.e., it parametrizes pairs (E, ¢), where E is a vector bundle of rank n and degree d on C and
¢ € H°(C,End(E) ® K¢).

We denote by M g the coarse moduli space of stable Higgs bundles of rank n and degree d,
where as usual, stability is defined by imposing the inequality

deg(F)/rank(F) < deg(E)/rank(E)

for every ¢-invariant proper sub-bundle F C E.

Because of our assumption that n and d are coprime M,‘f is (see [32, Theorem 6.1 and
Proposition 7.4]; for the irreducibility, see [10, Section 2.1]) an irreducible, nonsingular, quasi-
projective variety of dimension

dim(M?) = n2(2g —2) + 2 =: 2d,,.

The cotangent space 7*N.¢ of the moduli space N,¢ of stable rank n and degree d vec-
tor bundles on C is a dense open subvariety of M,‘f . The Hitchin base is defined to be the
vector space

n
An = [ HO(C.KED).
i=1

which has dimension
1
2.1) dim(A,) = - dim(M9) = n?(g — 1)+ 1 = dp,.
The Hitchin morphisms
llff:Higgsg — A, and hg : M,‘f — Ay

assigns to any Higgs bundle (E, ¢), the coefficients of the characteristic polynomial of ¢. The
morphism h,‘f is proper, flat of relative dimension d,, = n%(g — 1) + 1 (e.g., [32, Theorem 6.1]
and [17, Theorem I1.5]), by Stein factorization and the description of the generic fiber of &,
recalled below (Theorem 2.2) it has connected fibers, and it is often called the Hitchin fibration.

Since the degree d does not play any role in what follows, as long as it is coprime to the
rank 7, we will not indicate it from now on, and simply write M, for M ;‘f and h,, for hﬁ.

2.3. Spectral curves and the BNR-correspondence. As the key to the geometry of
the fibers of the Hitchin fibration 4, is their description as compactified Jacobians of spec-
tral curves through the Beauville-Narasimhan—Ramanan (BNR) correspondence ([1]) we also
recall this briefly.

Any closed point a € A, defines a curve C,, called spectral curve, in the total space of
the cotangent bundle 7*C = Totc (K¢ ) by viewing a as a monic polynomial of degree n with
coefficient of the degree n — i term in H°(C, K?i). This defines a flat family C4, — A, of
projective curves. We will denote the fiber over any, not necessarily closed pointa € 4, by C,.
Everything we recall below for spectral curves over closed points holds for these as well, after
base change to the residue field k(a) of a.
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The natural projection & : C, — C, exhibits the spectral curve as a degree n cover of C,
but C, can be singular, non-reduced and reducible. As by construction 7+ Oc, = @;’;é K ? -
the family C 4 is a family of curves of arithmetic genus n2(g — 1) + 1 = d,.

We denote by

» A C A, the subset corresponding to reduced spectral curves,
. eA)i,{“ C Aifd the subset corresponding to integral spectral curves,

» A, C 4, the open subset corresponding to spectral curves whose singularities are at
worst nodes.

For us reducible spectral curves will be of particular interest.
When viewed as an effective divisor on the surface 7*C, any spectral curve C, can be
written uniquely as

-
Ca= )Y mpCa;.
k=1
where the aj are the distinct irreducible factors of the characteristic polynomial and mj their
multiplicities. In particular, the C,, are integral and pairwise distinct curves which are spectral
curves of some degree ny. We then have

,
2.2) n = kank.

k=1

Forn = (ng)r € ZL , we write .
k=1
Then, for n,m € Z”  satistying (2.2), multiplication of polynomials (px)x — [ ] pZ’k defines
a finite morphism
multy, n: An — An

and we denote by Sy, , its image. For our results the case m =1 = (1,...,1) is the most

important one, as in this case the generic point of the image consists of reduced spectral curves.
We will thus abbreviate

SE = Sl’ﬂ and multl = multlaﬂ'

The generic spectral curves defined by points in these subsets are rather simple.

Lemma 2.1. Spectral curves satisfy:
(1) Foreverya € A the spectral curve Cq is connected.

(2) For every n, m satisfying Y myny = n there is a dense open subset
Sma C Sman

such that for a € S, , the reduced curve Ci** C C, is nodal and with nonsingular irre-
ducible components. In particular, since every irreducible component of C, has genus
g > 2, the curves C;ed are stable curves in the sense of Deligne—Mumford [14] for all
aesS, ,.
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Proof. This is a consequence of Bertini’s theorem: The spectral curves
Cop CT*C CP:=Pc(O¢c & Kc)
are defined by general sections of the relative Op (13 ) which has global sections
H°(C,Sym™ (O¢ & K¢)).

In particular, for n; > 1 it induces a morphism to projective space that embeds 7*C and thus
the generic hyperplane section C,, is smooth and connected. For n; = 1 all spectral curves
Ca, are smooth and connected, as C is. Again by positivity of ng the open subset of A,
where the curves intersect transversally is non-empty. |

We will also need to recall the correspondence between Higgs bundles and torsion free
sheaves on spectral curves, that was proved in increasing generality by Hitchin, Beauville—
Narasimhan—Ramanan, and Schaub. Given a Higgs bundle (E, ¢) with h,(E, ¢) = a, we can
consider E as a coherent sheaf on Cy, because sheaves on 7*C can be viewed as ¢ -modules
equipped with an action of the (¢ -algebra EBizo Kcq ® The Cayley—Hamilton theorem then
says that the module ¥ ¢ defined by ¢ is supported on C, and it is a torsion free sheaf of
rank 1 on Cyg, i.e., the restriction map from local sections of g 4 to the preimage in C, of
the generic point of C is injective and at all generic points of C, the sheaf has the same length
as the structure sheaf O¢, (a notion that in the case of non-reduced curves was introduced by
Schaub [33, Définition 1.1 and Définition 1.2]). Conversely given ¥ a torsion free sheaf of
rank 1 on Cg, the sheaf £ = m, ¥ is a vector bundle, because it is a torsion free Q¢ -module
on the smooth curve C, it is of rank 7, because this is the length at the generic point of C and
it comes equipped with a Higgs field ¢ induced from the O¢,-module structure.

These constructions are inverse to each other and work without change for flat families
of sheaves. Since 7: C, — C is a finite morphism, H*(Cy, ¥) =~ H*(C, 7+ ¥ ) and thus the
Euler characteristic of ¥ and the induced Higgs bundle E agree. Denoting by

tf
Cohl’cA — A

the stack of torsion free sheaves of rank 1 on spectral curves, we can summarize this as follows:

Theorem 2.2 ([20], [1], [33, Proposition 2.1]).  The functor (E, $) — FE 4 induces an
equivalence

Higgs,, = Cohtljj Car

Under this equivalence the stack Higgsff is identified with the substack of torsion free sheaves
of rank 1 and Euler characteristic y = d + n(1 — g).

In [33, Théoreme 3.1] (see [9, Remarque 4.2]) it was explained how stability of Higgs
bundles translates into a stability condition for sheaves on spectral curves.

Leta € S, be a point that defines a reducible, reduced spectral curve C, with irreducible
components Cq,,...,Cq,. In this case a torsion-free rank 1 sheaf ¥ on C, defines a stable
Higgs bundle of degree d if and only if for all proper subcurves C; = | J;c; Ca; & C we have

d
1(Fe;) = Zni : (;—l-l—g),

iel
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where y is the Euler characteristic and ¢, is the maximal torsion-free quotient of ¥ |c, . This
coincides with the usual stability condition for Higgs bundles, as

X(Fe,) = deg(maFe,) + Y _ni(1—g).
iel

In [33, Théoreme 3.1] this formula is written in terms of a normalized degree function

degy () = x(¥) — x(Ox),

which simplifies to the above inequality as y(Oc,) = (X_;c; ni)*(1 — g).

Remark 2.3. This notion of stability coincides with a stability notion for compactified
Jacobians (see e.g. [23, Definition 2.11]) with respect to the polarization

)

which is a general polarization as ged(n,d) = 1.
In particular, the restriction of the Hitchin fibration h,: M, — A, to A™d is a fine
relative compactified Jacobian for the family C 4| 4rd in the sense of Esteves [16, Theorem A].

Finally, we recall the §*-invariant of our spectral curves. For any spectral curve C, we
denote by J, := Pic%a the generalized Jacobian of C,, which is the group scheme parameter-
izing line bundles on C, that have degree 0 on all irreducible components of C,. The J, are
the fibers of a group scheme J 4 — #A; over 4 which acts on M.

For every a the connected group scheme J, has a canonical filtration

r0j
0— JM — J, - I -0,

where J ;ff is affine, Jé’roj is projective and both are connected (e.g., [7, Section 9.2, Corol-
lary 11]). One defines
§M(C,) = dim(J ).

Remark 2.4 ([7, Section 9.2, Example 8]). If C, is a reduced, connected curve and
v: C4 — C, is the normalization, then v* defines an isomorphism

JI Pic% and JT = ker(v*).

a

In this case _
§1(C,) = dim H(C, 0 /Oc) + 1 —#(mo(Ca)).

If furthermore the only singularities of C, are nodes, we have
(2.3) §(C,) = #(nodes) + 1 — #(7o(Ca)) = 1 — y(I') = dim H (T,
where I is the dual graph of the curve C,.
The function a — §*T(C,) is upper semicontinuous by [15, X, Remark 8.7], i.e., there

are closed subsets
AZS = (a € A, 5(Cy) = 8) C Ay
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Notation 2.5. For a flat family Cy — Y of projective curves over an irreducible scheme
Y with generic point 7y, we will denote by §(Y) := §41(C,, ) and call it generic §*"-invar-
ianton Y.

Lemma 2.6. Let n be a partition of n and n,, € Sy the generic point then we have
codim S, = §"(Cy,) =: 8" (n)

and

§M(m) =Y ninj2g—2) —r + 1.

i<j

Proof. We know that dim S, = dim A, = Zle(n,-z(g -1 +1).

By Remark 2.1 for a general a = (a;) € +4, the spectral curve C, is a connected curve
which has r smooth components intersecting transversally. As each component is defined by
a polynomial in A,, = Z;l HO(C, K?k) we have

#(Cq; NCq;) =ninj(2g —2).
By Remark 2.4 this implies §*T(n) = Zi<j nin;j(2g —2) —r + 1 and thus we find

dim S, + 8°7(C,) = (Zn?(g - 1)) +r4 Yy 2mn)Eg—1)—r+1
i=1 i<j

=n%(g—1)+ 1 = dim. o

Notation 2.7. For a partition n of n we will denote by I, the dual graph of any spectral
curve given by a point of S,°, i.e., it is the graph with vertices {1, ..., r} corresponding to
the irreducible components of the curve and n;n (2g —2) edges between the vertices i, j,
corresponding to the intersection points of the components.

3. The supports have to be §-loci

In this section, we show that supports of the complex RA,Q can only be irreducible
components of the subschemes A,?S C A, of spectral curves of §* invariant at least §. A result
of this type appears in [9]. Here, we give a different argument, relating the computation of the
higher discriminants of the Hitchin fibration to the §* invariant.

Let us recall the notion of higher discriminants of a map from [25, Section 1.3]:

Definition 3.1. Let f : X — Y be a proper map between complex nonsingular vari-
eties. For any i > 1, the i-th discriminant A’(f) is the locus of y € Y such that there is
no (i — 1)-dimensional subspace of 7y, Y transverse to dfx(TxX) for every x € f~1(y), i.e.,
such that the preimage of an (i — 1)-dimensional disc around y would be nonsingular of
codimension dimY —i + 1.

The i-th discriminants A’( f) form a decreasing sequence of closed subsets and more-
over Al(f) is the discriminant locus of the map f, i.e., the complement of the biggest open
subset of Y where the restriction of the morphism f is a smooth morphism. As explained
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in [24, Section 8], the existence of Whitney stratifications [38, Theorem 4.14] implies that
there is a stratification of «, by smooth locally closed subvarieties such that the preimage
under £ of transversal slices to the strata are smooth and therefore

3.1 codim AK(f) >k forall k.

The relevance of higher discriminants stems from the following:

Theorem 3.2. [25, Theorem B] Let f: X — Y be a projective map between smooth
varieties. Then any support of R fQ that has codimension k in Y has to be an irreducible
component of A*(f).

For the Hitchin fibration, the higher discriminants turn out to be §-loci.

Theorem 3.3. Let hy, : My, — A, be the Hitchin map. The i-th discriminant of hy is
equal to

N (hn) = A7 ={a € Ay 1 8(Cy) = i}
Proof. To prove that A’ (h,,) 2 A,?i let us denote by
act: J 4, X4, My — My

the action given by the tensor product of line bundles with torsion free sheaves. By Proposi-
tion A.12 the differential d act is dual to the differential d &, of h, with respect to the symplectic
form wh;ges O My, i.e., for any point m € M, with hy,(m) = a the differential

dacty,,:Lie(Jg) = TM,

of the action acty,: J, — M, given by act,,(j) = j.m is dual to dhy m: Tin My — Tahy.

For any a € A, we defined §*(C,) to be the dimension of the affine part J3 of the
Jacobian J, = Picg(Ca) and this group scheme acts on the projective fiber hn_l(a) C M.
By Borel’s fixed point theorem there exists a fixed point m = (E, ¢) € h, ' (a) for the action
of the commutative affine group scheme J, ;ff. Therefore Lie(J ;ff) is in the kernel of d act,, and
by the duality this implies thata € A5 (Ca).

Conversely, we know that for any m € hn,~(a) the stabilizer Stab J,(m) is affine (e.g.,
because for a rank 1 torsion free sheaf ¥ on C, and any line bundle £ € J, the pullbacks v* %
and vV*(¥ ® £). to the normalization of C!* can only be isomorphic if v*& is m-torsion for
some m < n). Thus we know that at any point m the kernel of d act is contained in Lie(J2™)
and therefore by duality we have A% (h,) C A, 28 O

Since we have already noted that codim Ak ( f) > k for all k (equation (3.1)), the follow-
ing is an immediate consequence of Theorem 3.3:

Corollary 3.4. Let hy : My, — Ay, be the Hitchin map then the codimension of the
8-loci of the Hitchin base satisfy _
codim A" > i.

In particular, since the relative Picard group of the spectral curve family € 4 is polarizable (see
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[29, Proposition 4.12.1] and [10, Theorem 3.3.1]), the Hitchin map is a §-regular weak abelian
fibration in the sense of Ngo [30, Section 7.1].

Remark 3.5. By Lemma 2.6, the subvarieties S, have codimension equal to their gen-
eric 84 invariant 6T (n). By Theorem 3.3 it follows that they are §* (1)-codimensional compo-
nents of AS"'@ (hy). In view of Theorem 3.2, this makes these subvarieties potential supports
of Rh, +«Q.

4. The supports have to be partition strata

Recall that 4™ is the open subset of A parameterizing reduced spectral curves. The
main result of this section is the following proposition:

Proposition 4.1. [fa subvariety Y C A withY N A™ £ @& is a support of Rh«Q, then
Y = S, for some partition n of n.

The proof of this result will be a simple combination of Ngd’s support theorem with
information on irreducible components of compactified Jacobians. Let us recall these results.
Ngd proved a general result on the supports for the cohomology of a projective morphism
h: X — Y which is a §-regular weak abelian fibration. By Corollary 3.4 this condition is satis-
fied for the Hitchin fibration 4,,: M,, — 4, and in this case the result reads as follows. Recall
that due to the nonsingularity of .M, the constant sheaf Q on it is self-dual, i.e., it coincides
with its own Verdier dual, up to shift.

Theorem 4.2 ([29, Theorem 7.2.1]). IfY C A, is a support of Rh«Qm then the high-
est cohomology sheaf R*Ph,Q contains a summand supported at Y .

For us the main aspect of this theorem is that supports can only appear where the set of
irreducible components of the fibers is not locally constant, more precisely for any stratification
of A;fd such that the restriction of R"P/,Q to every stratum is locally constant, the supports
of RA,Q meeting A7 have to be among the closures of the strata.

By decomposing reduced spectral curves into their irreducible components we know that
A is the union of the images of the maps mult,: ([T, Ag‘; red 5 Ard where n runs
through the partitions of n. As the generic points of these images are the generic points of the
strata Sy, we can prove Proposition 4.1 simply by showing that the restriction of the highest
cohomology sheaf R'P/,Q is locally constant on these images. By proper base change this

follows from the following lemma.

Lemma 4.3. For any partition n of n let mult,: ([T —; Aglli )ed — A be the restric-
tion to Aﬁfd of the morphism given by the multiplication of characteristic polynomials. Then
the sheaf mult; R'Ph,Q is constant.

Proof. As h is flat and proper, the formation of R/,Q = R/ Q commutes with base
change and therefore the stalks of mult, R'*?4,Q = mult, R'P2,Q have a basis indexed by
the irreducible components of the fibers. As explained in Remark 2.3 the BNR-correspondence
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shows that 2~ (A™) — A™ is a fine relative compactified Jacobian for the family of spec-
tral curves which have planar singularities. This property is stable under any base change by
definition. By [23, Corollary 2.20] the subvariety parameterizing locally free sheaves on the
spectral curves is dense in every fiber and therefore the sheaf of irreducible components of
the compactified Jacobian is a subsheaf of the sheaf of components of the Jacobian of the
spectral curve. Moreover, the irreducible components of the Jacobian of a spectral curve are
indexed by the degrees of the restrictions of the line bundles to the irreducible components of
the underlying curve [7, Section 9.3, Corollary 14] and by definition stability is determined by
a numerical condition on these degrees. As the sheaf of irreducible components of C, is con-
stant on ([ ;= A};’; ) we deduce that the sheaf of irreducible components of the Jacobians
of C, is also constant on this space and thus the same is true for the components of the fibers
of h. This shows our claim. m]

5. Comparison with versal families

To check that the strata S, C A,’fd corresponding to reducible and generically reduced
spectral curves are supports, we will compare the family of spectral curves at a general point
of Sy to a versal deformation. For the versal family of nodal curves we know from [26, Theo-
rem 1.8] that the cohomology of the corresponding family of compactified Jacobians has full
support and that the Cattani—Kaplan—Schmid complex allows to compute the fibers of the
corresponding intersection cohomology complexes at every point.

In order to deduce the decomposition also for the Hitchin fibration, we need to con-
trol the behavior of the intersection cohomology complexes under restriction and compute
the Kodaira—Spencer map for the family of spectral curves. These results are proven in this
section.

5.1. Splitting the restriction of an intersection cohomology complex. We begin with
an easy fact concerning restriction of a semisimple intersection cohomology complex under
the hypothesis that the restriction remains semisimple and satisfies a Hard Lefschetz-type sym-
metry. This happens for example if the complex arises from a projective morphism and the
restriction is taken to a closed subvariety with a smooth preimage.

The argument is reminiscent of the characterization of supports as “relevant strata” in
a semismall map in [6, 12]. As in these references we will denote by ch’ (X) the category of
bounded complexes with constructible cohomology sheaves on a variety X. We start with an
easy observation.

Lemma 5.1. Let &£ be a semisimple local system on an open dense subset U C X and
let P = IC(&£) be its intersection cohomology complex. Let 1 : Z — X be a closed subvariety
such that:

(1) U () Z is Zariski dense in Z.
(2) The complex 1* P is perverse semisimple.
Then
P =Piczk £,
k
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where Z* is the union of the irreducible components of Supp #* (P) (\ Z of codimension k
in Z and £k = jek (t* P) on the smooth part of the dense open subset of Z k \where this sheaf
is a local system.

Proof. Recall that, if Q is a perverse semisimple sheaf on Z, then we have a canonical
decomposition

n
0 = Piczk. £,
k=0
where, for every k, Z k is a closed subvariety of Z of codimension k, and £k isa semisimple
local systems on an open set Z k.o of ZK . Note that Z¥ is allowed to be reducible and £¥ may
have different rank on the different components of Z ke,

The subsets Z* and local systems £¥ afford an easy characterization, which follows
immediately from the strong support condition for the intersection cohomology complex (Sec-
tion 2.1), i.e.: for every k, the closed subset Z k is the union of the k-codimensional components
of Supp #*¥(Q) and if x € Z*°, then there is a canonical isomorphism SC]; = H*(0).
Taking Q = * P this proves our claim. o

Remark 5.2. Notice that, by the support condition (see Section 2.1) for the intersection
cohomology complex, we have

codim Supp #*(IC(£)) > k + 1.

Thus, for a sufficiently generic closed subvariety Z we have Supp #*(IC(£)) N Z has codi-
mension at least k + 1 in Z and therefore it cannot contribute a perverse summand. On the
other hand, if codim Supp H*(IC(£)) N Z < k, then t,*IC(&L) is not perverse. So if (*IC(£)
is perverse on Z, then the summands with smaller support occur because Z is not transversal
to the supports of the cohomology sheaves.

In our application the condition of the above lemma will follow from a relative hard
Lefschetz theorem. We formalize this as follows.

Definition 5.3. We write RHL(X) C DIC’ (X) for the collection of semisimple com-
plexes such that there exists an integer m and a decomposition

2m
K =D (K-
i=0
that is RHL symmetric for m in the sense that
Pymti(K) ~ P (K)(—i) foreveryi =0,...,m,

where we denoted the i-th Tate twist by (7).

Using this definition, we can state the main result of this section, which allows to describe
the restriction of a complex K in RHL(X) to a closed subscheme Z in terms of the cohomology
sheaves of K under the condition that the restriction happens to lie in RHL(Z).
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Proposition 5.4. Let X be an algebraic variety of dimension n, K € RHL(X) a com-
plex with no proper supports and U C X a dense open subset small enough to assure that
K >~ @ IC(L;)[—i] for some local systems £; on U. Assume 1 : Z — X is a closed locally
complete intersection subvariety of codimension ¢ in X such that Z N\ U is dense in Z and
with the property that

(*K € RHL(Z).

For every i,k set .
ZK = supp H*(1C(£:) N Z

and let Z lk be the union of the k-codimensional components of Z lk in Z. Then we have

(5.1) PA(FK) = PR (K) = @PIC(z). £F),
k

where
£F = Hkac(e))

on the dense open set of Z lk , where J*(IC(£,)) is a non-zero local system.
Equation (5.1) implies that the restrictions ¢* IC(£;) are again perverse sheaves. In par-
ticular, all irreducible components of Z; ¥ have codimension > k. In the special case k = dim Z

the result can therefore be rephrased as follows.

Corollary 5.5. In the hypotheses above, let p € Z be a closed point. Then p is the
support of a summand in the decomposition (5.1) if and only if H dimZ(IC(éﬁi))p # 0 for
some i.

Proof of Proposition 5.4. By Lemma 5.1 we only need to show that the restriction
PAR(K) s still a perverse sheaf. Applying ¢ times [2, Corollaire 4.1.10], we have that,
for every i,

FPk(K) e Db ()0l

Suppose ko is the biggest integer for which (*?.77 ko(K) is not perverse. By the symmetry
assumption we can assume ko > m. Moreover, as by our semisimplicity assumption

d
FPARK) = D Pjl-]
j=0

for some perverse sheaves P;, a non-zero summand P; with j > 0 would contribute a sum-
mand in 2.727%0+7 (1* K') which violates the RHL symmetry. O

Remark 5.6. In the situation of Proposition 5.4 assume K is pure of weight O so that
by our assumptions (*K is pure of weight O too. Then the local systems J‘if.‘ are pure of
weight i + k. Notice that since £; is of weight 7, by purity we have

weight(H5(IC(£:)))x <i + k,

therefore the local systems iif.‘ are the maximal weight quotients of the cohomology sheaves.
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Remark 5.7. The assumptions of Proposition 5.4 are met when K = R £, Q for a pro-
jective map f: M — X from a smooth variety M such that R f,Q has no proper supports and
Z C X is a local complete intersection such that f~!(Z) is nonsingular, as in this situation
the decomposition theorem and the relative hard Lefschetz theorem apply to both f and its
restriction fj -1z : f~(Z) > Z.

5.2. The Kodaira—Spencer map for spectral curves. We want to apply Remark 5.7 to
compare the cohomology of the Hitchin fibration to the cohomology of relative compactified
Jacobians for versal families of spectral curves. To verify the assumptions that Z is a local
complete intersection, we need to describe the Kodaira—Spencer map for the family of spectral
curves over . (An introduction to Kodaira-Spencer maps can be found in [37, Section 3], for
the general deformation theory see [21, Chapitre III].)

For any point a € A, we denote by Jc, C Or=c the ideal sheaf defining C, C T*C.
Recall that embedded deformations of C, C T*C are described by the cotangent complex

Le,rc =W, /¢, — 0]

which is concentrated in degree —1. Considering the composition C, < T*C — Speck, we
see that the cotangent complex of Cy, is

Le, = [, /9¢, — (Qr=clc,)]:
Now the universal spectral curve over +4, defines a Kodaira—Spencer map
KSy: Tahn — H'(Ca. L) = Ext' (L¢,. Oc,).

We know that the G,,,-action on #,, and the translation action H%(C, K¢ ) x s, — A, lift to
the universal spectral curve C4, — s, and therefore induce trivial deformations of C,. Let
us denote by

n
dmult: H(C,0¢) — Tahn = @ HO(C. KE")
i=1

the derivative of the (G,,-action and by

n
dshift: HO(C, K¢) — Tahn = @ HO(C. KE')
i=1
the derivative of the translation. We will show in Lemma 5.8 below that the span of the image
of these maps is the kernel of the Kodaira—Spencer map.
Let us also recall that S,,; C A, is the locus of spectral curves that are given by the n-th
infinitesimal neighborhood of a section in 7*C.

Lemma 5.8 (Kodaira—Spencer map for C,). The kernel of the Kodaira—Spencer map
can be described as follows.

(1) For any point a € An — Sp,1 the kernel of the Kodaira—Spencer map KS, is the direct
sum of the images of dmult and dshift, i.e., the map KS, factors as

Tan — (Tahn)/(H*(C,0c & K¢)) = H'(Ca, LE,).

(2) Fora € Sy,1 C Ay, the kernel of the Kodaira—Spencer map KS, is equal the image of
dshift, i.e., the map KS, factors as

Tahn — (Tan)/(H*(C. K¢)) <> H'(Ca, LE,).
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Proof.  Let us first describe the sheaves occurring in IL ¢, more explicitly. The cotangent
bundle 7*C is the relative spectrum of the O¢ algebra

o0

Sym* K& ' =P K&
r=0

and the spectral curve C, C T*C is defined by the ideal generated by the image of the mor-
phism K?_n — P, Kg_r defined by @ — « + aja + - -+ + apa. Therefore, denoting by
4. C4 — C the projection, we see that

n—1
ﬂa’*(gca = @K?_r
r=0

and
de,lc, = Jca/Jza = n;K?_n.

The dual of the canonical map

Lc, = [c,/9¢, = Qrclc,)] = e, /I¢, = 0l = Le, ¢

is given by
[0 — (Jc,/9E,)"1 = [Tr=clc, = (U, /9e,)"]
Note that
n
H%(Cq.(Jc,/9E,)Y) = HOC.EP KE") = Tuhn
r=1

is the space of embedded deformations of C, C T*C.
Taking cohomology of the exact triangle of complexes

— [0 — (e, /9 )] = LE, 5 [Trecle, — 0] =,
we obtain a long exact sequence

HO%p) 1
(5.2) 0 —— H(Ca, LY, ) —2> H(Ca, Treclc,) —— H*(Ca, (9, /92.)Y)

KS,
— HY(Cq, Lg) —— -+ .

To conclude, we will compute the dimension of H(C,, Tr+c|c,) and then compare it to the
dimension of the image of dmult and dshift.
Restricting the relative tangent sequence 0 — 7* K¢ — Trxc — n*TC — 0on T*C
to Cq, we get
0— nKc — Treclc, = ;K& — 0.

Applying 7, « and the projection formula, we find

n—1 n—1
0> P KE™” = nax(Trecle,) - PKET™ —o.
r=0 r=0
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In particular, we see that
H°(C,4, Treclc,) = H(Cy, 7wfKc) = HY(C,Kc) @ H°(C,0Oc¢).

Thus we have an exact sequence
(5.3) H® (Cq,m)Kc) = HC.Kc)® H(C.0¢) —> Ty Ay Ka H! (Ca,L¢ ),

where the map § is determined by the differential in the cotangent complex ]LV

Now let us determine the dimension of the image of dmult and dshift. The Gy, action is
given by the action of weight i on H%(C, K ?’ ), so at a the element ¢ € C = Lie(Gyy,) defines
the tangent vector (a; + ia; - €) € TyA, C An(Cle]/(€2)).

Similarly, as a is given by the coefficients of a characteristic polynomial, the translation
by an element w € H°(C, K¢) sends a polynomial p(t) to p(t — w). Thus the derivative at
a=(a;)is(aj — (n—i 4+ l)wa;—1 - €), where we put ag := 1.

In particular, these vector fields are linearly independent unless a; = (—1)’ (’: )a)i , 1.e.,
a € Sp,1. This shows that the kernel of KS, has dimension > g + 1 fora ¢ S,,1. By equation
(5.3) we know that the dimension is < g + 1, so this shows the first claim.

If a is the n-fold multiple of a section, the spectral curve C, admits a continuous family
of automorphisms, given by multiplication of the nilpotent generator therefore H°(C,, ILZ.G)
which is the tangent space to the automorphism group of Cj, is at least one-dimensional. From
the above computation of the image of dshift we know that the image of § has to be at least
g-dimensional. Combining these two observations with the exact sequence (5.2), we see that
both estimates have to be equalities. This implies the second claim. |

Let us now apply this result to the restriction of the Hitchin fibration to the subset of
nodal curves. We denote by .# 4, the stack of stable curves of genus d,, = dim +,. Then by
Remark 2.1 the flat universal family of spectral curves C,4,, induces a morphism

fx:eA),),l( —> %dﬂ

Recall from Remark 2.3 that for any a € A the stability condition for Higgs bundles corre-
sponds to the stability condition for rank 1 torsion free sheaves on the curve C, defined by the

general polarization
d
(2 01-2),
4 n ;

Here n; is the degree of the irreducible component C; of C, over C. The arithmetic genus of
a spectral curve of degree n; is
g(C) =ni(g—=1+1

(see (2.1)) and therefore
g(Ci)—1

g—1
can be expressed in terms of the genus of C;. Similarly, a union of components C; = | J;¢; Ci
defines a spectral curve of degree ny := ) ;; n; over C and therefore we again have

g€ —1
ny =,/ >————.
g—1

l' =
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This allows us to define a compatible family of polarizations on the Zariski open neigh-
borhood U C %gn of fx(+,) parameterizing nodal curves with irreducible components of
arithmetic genus equal to g(Cy) forsome I C {1, ..., r}, as follows. For u € U corresponding
to a curve Cy, with irreducible components (Cj);—1,...; of genus g; = g(Cy;) define

g—1 (4
= \—-—+1-g).
q; g1 (n+ g)

As we have seen above, the terms /£ (gci )1_1 are integers and ¢; is a generic polarization in

the sense of [23] and by construction these polarizations are compatible under deformations of
subcurves as in [23, Definition 5.3].

The following is a consequence of the work of Esteves [16, Theorem A] and Melo,
Rapagnetta and Viviani [23, Theorem C]J.

Proposition 5.9. Over the open neighborhood U C ]gn of fx () defined above
there exists a regular and irreducible Deligne—Mumford stack 7c: J 4 (q) — U that étale locally
is a relative compactified Jacobian parametrizing q-stable rank 1 torsion free sheaves.

Proof. We first observe that it suffices to know that for any point a € U there exists an
étale neighborhood U — U such that a regular and irreducible compactified Jacobian exists
over U. As these spaces are geometric coarse moduli spaces of the algebraic stack of g-stable
rank 1 torsion free sheaves, they are canonically isomorphic on the intersections of these
neighborhoods and therefore define an étale covering of a stack Jq/(¢) — U.

Now by [16, Theorem A], compactified Jacobians exist for any_family of proper reduced
curves, when stability is taken with respect to a polarization induced from a vector bundle over
the family of curves; moreover, any polarization is locally of this form ([23, Remark 2.16]),
because étale locally one can construct vector bundles having specified degrees on the irreduc-
ible components (e.g., one can use direct sums of line bundles defined by suitable local sections
through smooth points of the irreducible components).

The regularity of Jq(¢g) can be checked locally. By [23, Theorem C] for any general
polarization g the relative Cor?lpactiﬁed Jacobians 7Spec R(q) are regular and irreducible when-
ever R is the_complete local ring given by an effective versal deformation of a reduced locally
planar curve and this implies the regularity of J g;(g). O

Combining this result with our computation of the Kodaira—Spencer map for the fam-
ily C4,, (Lemma 5.8), we deduce:

Corollary 5.10. For every non-trivial partition n of n, let a € S, (see Remark 2.1).
Given a subvariety X4 of A, passing through a and intersecting S, transversally, the classi-
fyingmap fx, ¥ — U C %gn is unramified on an open neighborhood of a in 3. Further-
more, we have a cartesian diagram

(5.4) hn ™ (Ba) —— Tu(q) xu Za — Tu(q)

el b

¥y —mMmMmM8 U
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Proof. The strata S, are invariant under the scaling action of G, and the translation
by elements in H°(C, K¢ ). Thus, the tangent space of X, which is assumed to intersects Sy
transversally at a, will be transversal to the kernel of the Kodaira-Spencer map KS, at a by
Lemma 5.8, i.e., fx, is unramified at @ and therefore the same holds in an open neighborhood
of a. |

Corollary 5.11. With the notation and assumptions of Corollary 5.10 we have for
any k € 7,

PIHERhys, Q) = f5, (PIH* (R7.Q)).

Proof. As X, and U are smooth and the map fx, is unramified, it is étale locally
a closed embedding [39, Tag 04HJ] of a smooth variety and therefore it is étale locally a local
complete intersection morphism. As perverse cohomology sheaves can be determined étale
locally, the complexes Rh, s, «Q and R, Q satisfy the RHL condition (Remark 5.7). More-
over, we noted in the beginning of this section that [26, Theorem 1.8] says that the cohomology
of compactified Jacobians over U, which is a versal family of nodal curves, has full support,
so that the restriction result for semisimple complexes (Proposition 5.4, equation (5.1)) thus
applies to fx,: X4 — U. |

6. The partition strata are supports

Our next aim is to use the restriction result of the previous section to show that the
strata S, are supports and to describe the local systems that give rise to the summands supported
on S,. The starting point is the main result of [26] that shows that for a versal family of nodal
curves the corresponding family of compactified Jacobians has full supports and moreover
the corresponding /C complexes have a rather explicit description in terms of the Cattani—
Kaplan—Schmid (CKS) complex. Applying the restriction theorem of the previous section to
this explicit description we reduce the computation to a combinatorial problem, that can be
formulated in terms of matroids and drawing from results on matroids we can then conclude
our main result.

Throughout this section we will consider the following setup. We denote by 7: € — B
a flat projective versal family of locally planar curves and by U C B the open subscheme over
which the morphism 7 is smooth. The local system over U defined by the first cohomology
group of the fibers of 7 will be abbreviated as

R':= R'7,Q)p.

In this setting the main theorem of [26] reads as follows.

Theorem 6.1 ([26, Theorem 5.12]). Let w : € — B be a projective versal family of
curves with locally planar singularities and arithmetic genus g, and let 77 : Je — B be
a relative fine compactified Jacobian. Then we have

R Q = éIC (/\ Rl)[—i],
i=0

i.e., the complex Rm{ Q has no proper supports on B.



60 de Cataldo, Heinloth and Migliorini, A support theorem for the Hitchin fibration

6.1. Description of the IC complexes for families with full support. In order to
use this we now recall the explicit description of IC(/\" R!) in terms of the CKS complex
introduced in [8,22] and described for deformations of nodal curves in [26, Section 3].

Let us first recall the general result. Assume B is a complex manifold of dimension 7,
D C B is a normal crossing divisor D, and £ is a local system on B ~ D with unipotent
monodromies {7;} around the components of D. We work locally, near a point p € D. After
picking a holomorphic chart U C B in a neighborhood of p, we may assume p to be the origin
in a polydisc A" and the divisor D to have equation ]—[ll-:1 z; = 0. Thus

UN(B~D) =~ (A% x A",

where A* is the punctured unit-disc. Up to taking a slice transverse to the stratum of D to which
p belongs, we may assume / = n, and denote i), : {*} — B the closed embedding. The local
system on (A*)" is described by the stalk at a base point, a vector space L, and n commuting
nilpotent endomorphisms N; = log T; : L — L.Givenasubset {iy,...,ix} =1 C{l,...,n},
with 1 <iy <ip <--- <ip <n,weset N = N;j; N;, --- N, , where we remark that the order
of the composition does not matter as the endomorphisms commute. We denote by |/]| the
cardinality of I, and consider the complex

6.1) C*({N;}. L)

= {0 - L — @ Im N; — EB Im Ny — - > Im Ny uy —> O},
[I|=1 |1|=2

where L is in degree zero, and where the differentials are given up to the standard signs by
Ny :ImN; ---Njy = Im N N;y---N;, ifr ¢ {ir,.... i}

If the local system underlies a variation of pure Hodge structures of weight k, C*({N;}, L) is
in a natural way a complex of mixed Hodge structures ([22, Section 4]) isomorphic to i I’,“ IC(L)
(see [22, Corollary 3.4.4]), and its cohomology sheaves " (il’," IC(£)) have a natural mixed
Hodge structure and its weight filtration satisfies

(62) HT (i3 1C(2)) = Wy H (i3 1IC(2)),
see [22, Theorem 4.0.1].
Remark 6.2. The weight filtration used in [22] differs by a shift from the one used

in [8]. The one in [22] gives the statement in the form of (6.2), which is compatible with the
MHS on the fibre via the decomposition theorem, while the one in [8] gives

HT(XIC(L)) = Wi de" (i 1C(L)),

see [8, Corollary 1.13].

We describe the complex of mixed Hodge structures C*({N; }, L) in the case of a family
of relative Jacobians associated with a family of stable curves.

We start from a stable nodal curve Cx, of arithmetic genus g and dual graph I'. We
abbreviate 54 := §2(Cy), which, since Cx is connected, equals dim A (T") by (2.3). Let
D Ex — Cx be the normalization map. Let .7, e € Wg be the moduli stack of semistable
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curves of genus g. Let B be an étale neighborhood of [Cx] € 75, on which there exists
a universal family 7: € — B, and let D be the preimage of the boundary divisor % ~ Mg
in B.

If B is small enough, the irreducible components of D are in natural one-to-one cor-
respondence with the nodes of Cx: given a node e, the general point of the corresponding
irreducible component D, of D corresponds to a curve of the family where the node e persists
while the other nodes are smoothed. On U := B ~ D we have the local system

R':= (R'7.Q)p.

The stalk of R! at a base point n € U is H 1(‘6’,,, @), a rational vector space of dimension
2g(€;) endowed with a family of unipotent commuting endomorphisms: for each node e there
is {T,}e, the monodromy around the component D,. The space H'(€,, Q) is endowed with
the weight filtration

(6.3) Wo=H'(I,Q) C Wy = H'(Cx,Q) C W> = H'(€,,Q),

described as follows: The first inclusion is induced by the short exact sequence of sheaves
on Cyx associated with the normalization map:

0—Qc, —>PxQz. > P @y —o.
p€Nodes(Cx)

which induces the sequence
0— H'(T,Q) - H'(Cx,Q) - H'(Cx,Q) — 0,

giving the weight filtration of the Mixed Hodge structure H!(Cx). The second inclusion in
(6.3) is induced by the exact sequence arising from the specialization sequence that computes
H*(C;, Q) as cohomology of nearby cycles on Cx (see [26, Section 3.0.2]):

0— H'(Cx.Q) > H'(€).Q) — Hi(I.Q)(~1) - 0.
The graded quotients associated with the filtration (6.3) are
Gry H'(€,.Q) = H'(I. Q).
Grl H'(€,,Q) = H'(Cx. Q)
Gry H' (€. Q) = Hi([.Q)(-1).
Here H'(T", Q) and H; (T, Q) are endowed with a pure Hodge—Tate structure of type (0, 0).

More precisely, if E (resp. V) denote the vector space generated by the edges (resp. the
vertices) of the dual graph, choosing an orientation of the edges we obtain the complexes

0-E—-V—->0 0>V*>SE*"—D0,

computing respectively the homology and the cohomology of I', so that we identify H; (", Q)
with a subspace of E and H ! (I, Q) with a quotient of E*. For every node e there is an opera-
tor N :=log(T,): H(€,,Q) - H 1(€,,Q)(—1), which, by the Picard—Lefschetz formula,
factors as

64)  H'(C), Q) — Hi(I,Q)(-1) A HY(T,Q)(=1) C H' (€, Q)(-1),

and is given by

—(e*, t)-e*

(6.5) N, H1(T,Q)(—-1) — E i E* - HYT,Q)(-1),
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where e is an orientated edge e* is its dual element in E* (note that the formula above for N,
is independent of the choice of orientation of e).

Remark 6.3. With every one-dimensional family of nonsingular curves degenerating
to Cx is associated a limit mixed Hodge structure ([34,36]) on the rational cohomology of
a general fibre, more canonically on the cohomology of the nearby fibre. It follows from the
above Picard-Lefschetz formula (equations (6.5) and (6.4)) that the filtration on H 1(‘6,,, Q)
defined above (equation (6.3)) coincides with the weight filtration of the limit mixed Hodge
structure with respect to any smoothing family. The factorization (6.4) corresponds to the fact
that the logarithm of monodromy is an endomorphism of type (—1, —1) on the limit mixed
Hodge structure [34, Theorem 6.16].

The direct image local systems for the relative compactified Jacobian family over U are
the exterior powers ./\i R! fori =0,... ,2g(€y). For every subset I of edges we have the
operators Ny on A\ H 1(€,,Q), induced by the operators N,. The restriction of the inter-
section complex of A’ R! to the point of B that corresponds to the nodal curve Cx is com-
puted by the complex C*({N;}, \' H 1(‘6,,, Q)) (equation (6.1)). The weight filtration on
/\i H'(€,,Q) induced by the one on H!(C,, Q) has a highest weight quotient given by

Gry; (/\ Hl(fn,Q)) = (/\ Hy(T, Q))(—i) fori < &,

and

Grmgaff (/\ ' (€. Q))

8uff i _8aff

= NHiC.Q)(—8)® N H'(Cx.Q) fors™ <i<2g(Cy)— 6"

We recall a key observation from [26], which is a simple linear algebra computation using
the explicit formula for the N,:

Lemma 6.4 ([26, Lemma 3.6]). The vector space Im N; C /\i H(€,,Q)(—|1]) is
non-zero only if |1| <i and T ~ I is connected. In particular, we have that Im Ny = 0 if
|| > 6 = dim HY(T, Q) for everyi.

Moreover, if I' ~ I is connected, the highest weight quotient Grg;,(lm Nr) of Im Ny is
isomorphic to

i—|I|

Gry (Im Ny) = ( /\ Hl(F\I,Q))(—i)

ifi < 5t and

8aff_|1| i_(gaff

Grmgaff(ImNz)z( AN Hl(F\I,Q))(—Sa“m /\ H'(Cx.Q)

ifgaff <i< 2g(Cn) _ Saff'
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Remark 6.5. For 2g(C,) — 8§ <i <2g(C,) the highest weight quotients are most
easily described through the relative hard Lefschetz theorem and Theorem 6.1, as Tate twist of
the i-th exterior power for i’ = 2g(Cy) —i < 8 In this case the highest weight is 28(Cy).

Lemma 6.4 justifies the following definition:

Definition 6.6. Given a connected graph I', with set of edges E, we write €' (I") for the
collection of subsets of E whose removal does not disconnect I". In other words, a subset / C E
belongs to € (I") if and only if I" ~ [ is connected.

Remark 6.7. In the literature (e.g., [4]) the collection % (I") is called the family of
independent subsets in what is known as the bond, or cographic, matroid of the graph I'. The
set €' (I') is partially ordered with respect to inclusions and we denote by |4’ (I")| the associ-
ated simplicial complex, i.e., the complex whose k-dimensional faces are the (k + 1)-tuples of
edges belonging to ¢’ (I").

The rank of €(I') is the cardinality of the complement of a spanning tree, namely
|E| — [V| + 1, which, in the case of the dual graph of a nodal curve Cx equals §*"(Cx), hence
the simplicial complex |4 (I")| is of dimension SﬂCX) — 1. We denote the chain complex
computing the reduced cohomology of €' (I") by €°*(T").

Let us summarize:

Proposition 6.8. Let Cx be a nodal stable curve, let T' be its dual graph and let
§A .= §3T(Cy). Let B be an étale neighborhood of [Cx] € %g on which there exists a uni-
versal family w: € — B and small enough such that the preimage D of the boundary divisor
/_//g ~ Mg in B has irreducible components indexed by the nodes of Cx. Then the fiber of
IC(A\' RY) at the point [Cx] is given by the CKS complex C*({N;}, \' H'(€,,Q)) (equa-
tion (6.1)) and for everyi = 0, ...,2g(€y) we have

(1) H"(C*({N;}. \' H'(€,.Q))) = 0 for r > min{i, §*1}.
(2) For 8 <i < 2g(Cy) — 8% the highest weight quotient of C*({N,}, /\i H(€,,Q))is
given by
i—(S"“H

Gl g € (01 A H € @)) = A\ H@e @) 0 E T8

Proof. The first statement follows from Lemma 6.4, as Im Ny = 0 for |I| > §* and
Ny =0for|l|>1.

To prove (2) we use the description of the highest weight quotient given in Lemma 6.4. As
the differentials in the complex were defined in terms of the operators N, the highest weight
quotient Grmgm(C’({N i} /\i H!(€,,Q))) for > 8T is the tensor product of the corre-
sponding quotient for i = §* with A! =" H1(C «, Q), and it therefore suffices to consider
the case i = 5. ‘

In this case observe that /\8aﬁ H1(T, Q) is one-dimensional, since §* = dim H, (T, Q).
Similarly, for any I € €(I") the space /\3aff_|1|(H1 (I' = 1,Q)) is also one-dimensional. So
for every k, the degree k part of the complex has a basis consisting of the non-disconnecting
cardinality k subsets of the edges set, namely precisely the (k — 1)-cells of |£'(I")|. It is easy
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to check that the boundary maps coincide with the maps of the complex ‘E"\(f) that computes
the reduced cohomology of |%(I")|, which proves ((2)). O

Remark 6.9. As the local system /\i R is a pure local system, the intersection cohom-
ology complex IC( /\i R') is a pure complex and therefore the cohomology sheaves in degree k
are of weight < i + k. Thus the cohomology of the highest weight quotient described in (2)
above is concentrated in the top degree. We will see below (Theorem 6.16, Proposition 6.17)
that results on matroids allow to compute the cohomology of |€(I")| directly and in particular
to deduce that the cohomology in the top degree is non-zero.

6.2. Description of the summands supported on the partition strata. Before we
apply the results let us recall a well-known, elementary estimate:

Lemma 6.10. Let 7w : € — B be a flat projective family of locally planar reduced
curves of arithmetic genus g such that the compactified Jacobian family 7w’ : Je — B rel-
ative to a choice of a fine polarization exists and has nonsingular total space. Let U C B be
a dense open set such that the restriction w: €y — U is smooth, and denote by R' the local
system on U :

R! = RIJT*Q|U.

Then _
Jf’(lc(/\ Rl)) =0 forr>i.

Proof. 1t follows from the decomposition theorem applied to ' Je — B that for
i =0,...,2g(€) the complex IC(/\" R"))[—i] is a direct summand in Rz’ Q:

(6.6) IC(/\ Rl)[—i] c Rz/Q.

Assume H" (IC(/\i RY));, # 0 for b € B and some r > i. It then follows from the relative
Hard Lefschetz theorem that we may assume i > g(€). Taking stalks of the cohomology sheaf
J¢™+ at b in the above equation (6.6), we have

i
0 # J(’(IC(/\ Rl)) c H  (Je),Q),
b
which is a contradiction since r 4+ i > 2i > 2g(€) = 2dim Je(b). m]

We can now prove one of the main results of this paper. To state the result, let us recall
that for a partition n = (ny,...,n,) of n we introduced the stratum S,° C 4, parametrizing
spectral curves with r smooth irreducible components C; of degree n; over C intersecting
transversally inn;n;(2g — 2) nodes (Lemma 2.6) and the dual graph of these curves is denoted
by I';, (Notation 2.7).

Theorem 6.11. Let hy, : My, — Ay be the Hitchin map. For every partition n of n, the
stratum Sy, is a support for all the sheaves

6.7) P (Rhy o Q) with (1) < i < 2dim A, — 87(n).
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More precisely, for every i in the range of (6.7), there is a direct summand in P (Rhy »Q)
which is the intermediate extension of the local system &£; , on the open set Sz C Su, whose
stalk at a point a € S,’ is

l-_(gaff(ﬂ)
(Lin)a = H" O (2T Q") ® N\ H'(Ca.Q)

and underlying a variation of pure Hodge structures of weight i + §*(n).

Remark 6.12. Theorem 6.11 holds in the context of M. Saito’s mixed Hodge mod-
ules (see [13, Appendix]). In particular, the resulting direct summands of the pure Hodge
structures given by the cohomology groups H k(My, Q) (these are pure since they coincide
with the cohomology of the nilpotent cone (fiber of the Hitchin map over the origin), see e.g.
[19, Theorem 1] for a short argument) are pure Hodge substructures.

Remark 6.13. The local systems £; , that determine the summands supported on Sy,
arise as a tensor product. The monodromy of the combinatorial part H 5aﬂ@_1(|<€(Fﬂ)|, Q)
turns out to be finite and we will determine it in Corollary 6.20. The cohomology of C, is the
sum of the cohomology groups of the irreducible components which are the generic spectral
curves for the Hitchin fibration for bundles of rank ny,...,n,, so that the IC complexes of
these local systems appear in the Hitchin fibration for the Levi subgroup [ | GL,; C GL,,.

Proof. We have seen in Proposition 4.1 that either 2.7 (Rh,, »Q) has a summand which
is fully supported at S, or none of its summands intersect S,°, therefore it is enough to consider
a general point a € S, corresponding to a nodal spectral curve C, with 7 smooth components.
Let =, as in Corollary 5.10 be a transversal slice to Syp ata. Since Sy, has codimension §4(n),
we have dim X, = §%(n). Furthermore, by transversality, /2, 1(Z,) is nonsingular, and we
have diagram (5.4). Let U™ C U be the open set where the universal curve 7 : €y — U is
smooth, and denote as before by R! the local system

Rl = RIJT*Q‘usm .
Since the family 7 : €y — U is versal, we have, by [26, Theorem 5.11], which we recalled in

Theorem 6.1, that
2d,

Rr]Q ~ @IC(/\ Rl)[—i].
i=0

By proper base change and the isomorphism in diagram (5.4) we have that

(RhnsQ)s, = R(ha|z,)+Q = f5 (R7] Q)
is split semisimple. From Corollary 5.11 we also know that
_ . i
68) P RhnaQy5,) = P (S5, R71Q) = £, 1C (/\ Rl).

By stratification theory it is clear that S, is a support for P (Rhy, Q) if and only if a is
a support for 27" (Rhn4Qx,). Since dim X, = 8 (n), by Corollary 5.5 and equation (6.8),
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this happens if and only if

Jes* @ (IC(/i\ Rl)) £ 0.
By Lemma 6.10 and the relative hard Lefschetz isomor;hism this is possible only if
8% () < i < 2dim A, — 64 (n).
On the other hand, when this is the case, Proposition 6.8 and Remark 6.9 tell us that
e

(e \&Y)) = A HICo e # T Em] 5,

This gives the claimed formula for the local system &, , and to conclude we only need to
observe that these are non-trivial. We already know that

dim H'(C 4, Q) = 2(g(Ca) — 8T(Cy)) = 2 dim A, — 28 (n)

(Lemma 2.6), so that the contribution of this group is non-trivial for i in the given range.
The non-vanishing of the cohomology of the combinatorial complex € (I',) will be recalled in
Proposition 6.17. O

Corollary 6.14. For every n, and for k = §*(n) or k = 2dim(,) — §*(n), the pull-
back of the local systems Ly , to the preimage AZ of SZ in Ay has trivial monodromy.

Proof. The irreducible components of the Jacobian of the spectral curve C, are indexed
by the degrees of the restriction of the line bundles to the components of C,. Therefore, the
sheaf of irreducible components of C, is constant on AZ. The local system

2 dim oA, —28(n)
aff _ . i
(L2dm(An)—smn)a = H O(ETH. QT m)e N\ H'(C.Q)

appears in the top cohomology of R/, ,Q and it is a subsheaf of the QQ-linearization of the
sheaf of irreducible components (see Lemma 4.3), therefore its pullback to Az is constant.
This is also true for & () , which is isomorphic to it (up to a Tate twist). O

Remark 6.15. The generic Galois group of the finite map mult, : A, — S, is the

subgroup of the symmetric group S, stabilizing the partition 7 of n. Writing n = 1%1 ... p%
i.e., letting «; be the number of elements in n equal to i, this subgroup is

[]Sa <5
i
In particular, the sheaves & sur(,) , and £ 4im 4, —547(n),» are constantif n; # n; foralli # j.

We are now left to compute the rank of the local systems £ , and determine their
monodromy in order to show that some summands do contribute to the cohomology of M.

6.3. The monodromy and the rank of the new local systems. We start by the com-
putation of the cohomology of the complex |€(I',)| appearing in Theorem 6.11. Recall from
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Notation 2.7 that I', is a graph with multiple edges between any two vertices. As we remarked
in Remark 6.7 the poset €(I",) is by definition the collection of independent subsets of the
bond matroid of the graph Iy, (for terminology about matroids see [31], but we will try to spell
out the notions we use in the case we need).

For any matroid M the simplicial complex |In(M )| of its independent subsets has special
properties:

Theorem 6.16 ([4, Theorem 7.3.3, Theorem 7.8.1]). The simplicial complex |In(M)| of
independent subsets associated with a rank § matroid has the homotopy type of a bouquet of
8 — 1-dimensional spheres.

Let us denote by I'; the complete graph on r vertices for r > 2. As before we will denote
by |€'(I',)| the simplicial complex defined by the cographic matroid of I, i.e., its k-simplices
are the subsets of k + 1 edges of [, that do not disconnect the graph.

The following result is a combination of well-known results on matroids and a result
of Stanley.

Proposition 6.17. For any r > 2 the cohomology group H"P(|€(T'})|, Q) has rank
(r — 1)! and, with its natural structure of Sy-module, is isomorphic to the representation
induced by a primitive character of a maximal cyclic subgroup.

To deduce this result, let us introduce the simplicial complex Nspan(I',) of non-spanning
subsets of the graphic matroid of I',, namely the subsets of edges not containing a spanning
tree. Let us denote by Flat(I';) the lattice of partitions of {1,...,r} which in the language
of matroids correspond to the poset of flats of the cographic matroid, because a flat in this
case is a partition into complete subgraphs. To this lattice one attaches the simplicial complex
A(Flat(I';)) whose k-simplices are chains of partitions pgisc < p1 < -+ < pr < Puiv Where
Ddisc 18 the discrete partition and pyy is the trivial partition.

We need the following result which is a general fact on matroids:

Lemma 6.18. Let N = (;) denote the number of edges of I'y. We have natural isomor-
phisms

H'(|€(Ty)], Q) ~ Hy_3—;([Nspan(T;)|, Q)
~ Hy_3—i(|A(Flai(T,))], Q).

The second isomorphism is Sy-equivariant, while in the first isomorphism the S, -representa-
tions differ by the sign character.

Proof. Consider the boundary of the complex of all subsets of the edges of I',. Its
geometric realization is the boundary of an (N — 1)-simplex, i.e., an (N — 2)-dimensional
sphere.

The first isomorphism is the content of [4, Exercise 7.43 on p. 278] and amounts to com-
binatorial Alexander duality, once one notices that 4’ (I';) and Nspan(I",) are Alexander dual
complexes in 9AN 1 (see [5] for a quick proof of Alexander duality which is adapted to this
context). We see that the isomorphism is twisted by the sign representation considering the
action of S, on the top cohomology of the ambient sphere ([35, Theorem 2.4]).
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The second isomorphism, due to Folkman, is [18, Theorem 3.1], using that the set of
edges of I'; forms a crosscut of the partition lattice. To see that this isomorphism is S,-equivar-
iant, we briefly recall Folkman’s argument.

Note that for any edge e the subcomplex L, of A(Flat(I',)) formed by the simplices
that are contained in a simplex that satisfies p; = e is contractible. Moreover, for any non-
spanning subset / of edges the intersection (), L, is contractible to the 0-simplex given by
the partition defined by the subgraph 7 (see [18, Section 3]).

Thus the cohomology of A(Flat(I';)) can be computed from the nerve of the covering
given by the subcomplexes L. and this agrees with the cohomology of |[Nspan(I';)|. O

Proof of Proposition 6.17. Applying the previous lemma, the computation reduces to
the computation of the homology of the lattice of partitions which was determined in [35, Theo-
rem 7.3] to be the representation induced by a primitive character of a maximal cyclic subgroup
tensored with the sign representation. (See [27, Section 6] for a more detailed exposition of
the argument.) O

The dual graph I, of a spectral curve in S, contains a complete graph on the vertices,
but it will have multiple edges between the vertices.

Let us therefore fix some notation. Given a graph " and / a subset of edges, let us denote
by f; the graph obtained by doubling the edges in 7, i.e., for every edge e € I we add an
edge e connecting the same vertices as e.

Proposition 6.19. Let I" be a graph, let I be a non-empty subset of edges. Let |%' ()|
and |6 (L'1)| be the simplicial complexes associated to " and ' ;. Then, for every {, there is
a canonical isomorphism

HY(z ()], Q) =~ HI(€(T), Q).

If a finite group G acts on I preserving 1, the action extends to fI and the isomorphism is
G --equivariant with respect to the induced actions.

Proof. 1t is adirect application of the deletion-contraction sequence: Let us first assume
that / = {e} consists of a single edge. Then the set of faces in CK(/F\ 7) is the disjoint union of
the set of those which contain a doubled edge ¢ and those who do not. The subcomplex of those
faces not containing e is the simplicial complex of the graph r 1 /€ obtained by removing e and
collapsing the vertices joined by e. We therefore get an exact sequence of cochain complexes
(we again denote the reduced cochain complex of %(f) by €°(I"))

0— e () —> €T - € (T;/e) — 0.

Note that the edge e becomes a loop in the graph T; /e, hence |‘€(f1 /e)| is a cone and
has vanishing reduced cohomology.
By induction this shows that the G -equivariant morphism

e*(r) - e*(F))

induced by mapping those faces in T'; that contain all of the doubled edges to its intersection
with I' induces an isomorphism in cohomology. m)
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We will apply this to the graph I',, which can be obtained from the complete graph on r
vertices, by successively doubling subsets of edges that are preserved by the subgroup of S;
that preserves the partition n. Thus the representation of this subgroup on H"P(|¢'(I'y)|, Q) is
the restriction of the representation of S, on the corresponding group for the complete graph
described in Proposition 6.17. Thus we find:

Corollary 6.20. Let n =ny >np > -+->n, = 1% ...n% be a partition of n. The
rank of the local system &L gui(p) i p 1S

: aff
rank &£sair(n) 1, = (1 — 1)! (2(d1m Ani_ 5 (@)).
The monodromy of the (isomorphic) local systems L gai(y) p and £ gim A, —82(n),n IS given by
the restriction to the subgroup [ [; Sa; € Sy of the representation of Sy induced by a primitive
character of a maximal cyclic subgroup. In particular, if n is a partition with pairwise distinct
n; the monodromy of these sheaves is trivial, so that the corresponding summand of Rh;, ,Q
contributes to the cohomology of M.

Remark 6.21. Ifn = 2and I'(; ) is the graph with two vertices joined by 2¢g — 2 edges,
it is immediately seen that |4’ (I'1,1)| is a sphere of dimension 2g — 4. The corresponding repre-
sentation is, for g # 2, the sign representation. Similarly, for g = 2 we have a zero-dimensional
sphere, namely two points, and the relevant representation is the sign representation on reduced
cohomology.

Forn = 2, g > 2 and the partition n = (1, 1) the normalization C, ofa spectral curve C,
inS 6,1) is a disjoint union of two copies of C. Thus we have

HY(C,,Q) = H'(C,Q) ® H'(C,Q)

and the monodromy of the corresponding system is the permutation representation induced
from interchanging the components, i.e., the representation of 7 is the sum of 2g trivial rep-
resentations and 2g sign representations. Therefore for 0 < j < 4g the sign representation
appears in /\’ H 1(6;, Q) and thus &£; (1,1) has non-zero invariant sections for all i satisfying
§M 4+ 1 <i <2dim A, — 84 — 1. In particular, these &L (1,1) contribute non-trivially to the
cohomology of M.

A. Appendix: The derivative of the Hitchin morphism is dual to
the derivative of the action

The duality statement from the title of the section is certainly known, but we could not
find a reference for it. Although we only apply the result for the group GL, it turns out that
the proof is most easily explained in the more general setting of Higgs bundles for reductive
groups. This is because in the case of GL, it is easy to loose track of implicit identifications
between the Lie algebra and its dual.

A.1. Reminder on G-Higgs bundles. We keep working over C and use our fixed
smooth projective curve C. In addition let G be a connected reductive group with Lie algebra
g = Lie(G). We will denote the dual of g by g*.
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Given a G-torsor > — C and a representation p: G — GL(V') with V' a finite-dimen-
sional complex vector space, we will denote by P (V) := £ x V the associated vector bundle.

Of course, if G = GL,,, then the frame bundle # = Isom((O", &) of a vector bundle &
is a GL,-torsor and we get & back by taking IV = C” to be the standard representation. In this
case P(g) = €nd(€) = P(a*).

A G-Higgs bundle on C is a pair (#, ¢), where > — C is G-torsor and

¢ € H'(C.P(g") ® Kc)
is a global section of the coadjoint bundle twisted by K¢ . We denote by
Higgsg 1= ((P.¢) : £ € Bung(C), ¢ € H(C, P(a*) ® K¢))

the stack of G-Higgs bundles over C, which is the cotangent stack to the stack of G-bundles
onC.

Remark A.1. The above definition follows the convention of [3]. In the literature on
G-Higgs bundles it is also common to choose a G-invariant inner product (-,-) on g and use
it to identify g =~ g*. To state the results in an invariant form, it seems to be most convenient
to avoid this choice. As a consequence we will formulate some notions for the dual g* that are
commonly used for g for Higgs bundles, i.e., to use coadjoint orbits instead of adjoint orbits.

Let us recall from [28] how to view G-Higgs bundles as sections of a morphism of stacks.

Lemma A.2. The category of Higgs bundles (P, ¢) on C is equivalent to the category
of 2-commutative diagrams

[37/G x Gl

(P.9) l

C ———— BGy,.
Kc

where BGyy, is the classifying stack of line bundles, K¢ is the map defined by the canonical
bundle on C and [g*/ G X G| is the quotient stack defined by the product of the coadjoint
action of G on g¢* and the standard scaling action of G, on the vector space g*.

Proof. This is not hard to unravel: By definition a G-torsor on C is the same as a map
C — BG = [Spec C/G], so the pair P, K¢ defines a map C — [B(G x G,)]. Now for any
representation p: G x Gy, — GL(V') the associated bundle is the pullback of the morphism
[V/G x G,,] and applying this to the representation on g*, we see that

P(@*) ® K¢ = C XBGxG,y) [87/(G x Gm)].
Therefore the datum of a section of this bundle is equivalent to a section of

[67/G X Gp]
(#.0)
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A.2. Deformations of G-Higgs bundles. As the main aim of the section is to com-
pare derivatives of morphisms from and to Higgs; we need to recall the basic results on
deformations of Higgs bundles.

To a Higgs bundle (£, ¢) we attach the complex of vector bundles on C

.0 = 2@ L2 2% ® Kel.

where ad*: g x g¢* — g* denotes the coadjoint action of g on g*.
Lemma A.3 ([32]). The tangent space of the deformation functor of G-Higgs bundles at

(P, ¢) € Higgsg is given by H'(C, €(P, ¢)) and automorphisms of deformations that extend
the identity of (P, ¢) are given by H°(C, € (P, ¢)).

Proof. The deformation theory argument for the computation of the tangent space to
Higgs; can be found in [32]. In the language of Lemma A.2 we have a cartesian diagram

[ ® Kc/G] ——— [67/G x Gp]

lch |7

c —%<  BG,, = [Speck/Gm]

and Higgs bundles are sections of the map pg,..

Now the tangent stack to any quotient stack [X/G] can be described as the quotient of
the complex of G-vector bundles Lie(G) x X — TX on X, which we think of a complex in
degree [—1, 0].

Therefore the tangent complex to the stack [q* /G| (which lives in degree [—1, 0]) is given
by the G-equivariant complex

ad™

[s — g7
on g* and thus the tangent complex to pg.. over ¢* ® Kc is given by
[a ® Oc — g* ® Kc].
Deformations of (#, ¢) are deformations of the corresponding section
(#.4):C — [g" ® Kc/G]
and the pullback of the tangent complex at this section is

d*()(¢) %
[P(5) ——=> P(g*) ® Kc). o

Remark A.4. For any Higgs bundle (£, ¢) the complex €(P, ¢) is self-dual with
respect to the duality defined by Hom( -, Kc[1]). Therefore Serre-duality induces pairings

H(C,e(P,¢)) x H*(C,€(P,$)) — C

that for i = 1 define the standard 2-form wpjees on Higgsg = T Bung(C).
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A.3. The Hitchin morphism. The Hitchin morphism for G-Higgs bundles is defined
as follows. Denote by y the quotient map

x:g* — g% //G = car”,

where car* = Spec(Sym*® g)©.

Remark A.5. As usual, a choice of homogeneous invariant polynomials would give an
isomorphism car* = Speck|[ f1,..., fr] = A’ identifying car* with an affine space. The map
x is equivariant with respect to the G, action on ¢* and the induced action on Spec(Sym*® g)@,
whose weights are given by the degrees of the invariant polynomials f;.

We denote by car}‘(C = (g* x K¢ //G) — C the corresponding affine bundle and by
Ag = H°(C, carg )

the base of the Hitchin morphism. Again, any choice of invariant polynomials for G defines an
isomorphism g = @, H°(C, K ¢)» but it will be more convenient to avoid such a choice.
The map ¥: [q*/G x G,,] — [car*/G,,] then induces a map

hg:Higgsg — Ag = HO(C,car’;{C),

which is often denoted as hg (P, ¢) =: x(¢).

A.4. The regular centralizer (local version). To define the Hitchin morphism and the
analog of the action of the Jacobian of the spectral curve, we now recall the construction of the
regular centralizer groups from [28].

Let us fix the standard notations. The group G acts on g via the adjoint action, which we
will denote by Ad: G — GL(g), the derivative of this action is denoted ad: ¢ — End(g). Simi-
larly, Ad*: G — GL(g*) denotes the dual action given by Ad*(g)(¢)(_ ) := ¢(Ad(g)~L. ),
so that its derivative is ad*(X) = —ad(X)"’.

For an element ¢ € g* we denote its centralizer in G by

Clp) :=={g € G : Ad™(G)(p) = ¢}
and by
g :={4 € g:ad*(4)(p) = 0}
its Lie algebra. The groups Cg(¢) define a group scheme

Cg+ :={(g.9) € G xg" : Ad*(g)(p) = ¢} — g~

over g*. The set of regular elements g*™¢ C g* is defined to be the subset of those elements
for which dim Cg (¢) = rank(G) is minimal.
The restriction Cgx,reg 0f Cg+ to the space of regular elements descends to a group scheme
Jear= On car® = g* // G, called the regular centralizer. The group scheme Jear+ comes equipped
with a natural map
m: ¥ Jears = Cq+ C G x g*

which is defined to be the unique regular map extending the natural isomorphism

X*Jcar*|g*,reg % Cg*.reg.
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We denote by dm the induced map on Lie algebras

dm: x* Lie(Jear+) — Lie(Cq*) — g x g*.

Notation A.6. As in [28] we will need to keep track of the action of the multiplicative
group G, on our objects. We will denote by C(n) the one-dimensional vector space with
the G, action given by the n-th power of the standard action. For any vector bundle £ with
a G,,-action we will denote by E(n) := E ® C(n).

Remark A.7. On g* the group G, acts by scalar multiplication which induces an action
on car* = g*//G. The action on g* also preserves centralizers and thus induces an action
on Cy~, given by

1.(g.¢) == (g, 19).

In particular, this action preserves g*"*® and thus Cg+.=: even descends to a group J over
[car*/Gy].
Note that the formula for the G, action shows that the derivative

dm: y* Lie(Jearx) > g x g~

is equivariant for the G,,--action that on g x g* is given by the trivial action on the first factor
g and the standard action on the second factor g*. Therefore, identifying g(—1) x g* =~ T*g*,
we can interpret dm as a morphism

dm: y* Lie(Jear)(—1) = T*g*.

The restriction of this map to g* ™2 is injective, as m was injective over g*"€,

Remark A.8. The map y:g* — car* is by definition G-invariant and equivariant with
respect to the G, action, therefore its derivative

dy:g* xg* =Tg* — y*Tcar*
is also equivariant with respect to the induced (G,, action and the restriction
dX|g*,r€g: Tg*,reg — g* X g*,reg — X*Tcar*lg*,reg

is surjective, because the map y: g* — car* admits a section «: car® — g*™8 C g* called the
Kostant section.

The following observation is the group theoretic origin of the duality result for the Hitchin
fibration.

Lemma A.9. The canonical pairing
(+,):Tg" xgx T*g" — C
induces a G x Gy,-equivariant perfect pairing
X Lie(Jears)g2(—1) Xg= x*Tear*|gees — C(0)

and thereby an isomorphism
Lie(J)*(1) = Tcar*.
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Proof. From Remarks A.7 and A.8 we know that y* Lie(Jcar* )| g+ (—1) is a subbundle
of T*g*"™ and y* T car*|q«re is a quotient of 7'g*>"* and both have the same dimension.

As the map y is constant on G-orbits, the tangent space to a G orbit is in the kernel of d y,
i.e., for every ¢ € g*,

d*
Ve :=Im(g 0@, Tog™ = a*) C ker(dy).
If ¢ € g™ is regular we have dim V, = dim g/g® = dim g — dimcar*. As d is surjective
in this case, we find V,, = ker(dy) for ¢ € g* .
Now G-invariance of the pairing (-,-), i.e., (g.¢, g.A) = (¢, A) forall g € G, ¢ € g*,
A € g implies that for all X € g we have

(ad™(X)(¢). 4) = (¢, —ad(X)(4)) = —(ad"(4)(¢). X).

This implies that V(pJ- = g? and this implies our claim. O

Remark A.10. For G = GL, the above can be rephrased in terms of coordinates. In
this case car® =~ A" is the space of characteristic polynomials of matrices. In order to com-
pute the differential dy of the map x: gl,, — car* it is convenient to choose the coordinates

The regular centralizer group scheme can also be described explicitly: For any monic
polynomial p(t) € k[t] we define J), := (k[t]/p(t))* as the unit group of the algebra k[t]/ p(t),
which defines an n-dimensional commutative group scheme J over A”. As a matrix ¢ is reg-
ular if and only if its characteristic polynomial p,, is its minimal polynomial, we see that the
assignment J,, — GL, given by f(t) = f(¢) is injective for regular matrices ¢ and there-
fore identifies Jp, with the centralizer of ¢. By definition of the regular centralizer the map
x*(J) — I C GL, x gl, is given by the unique extension of the canonical map on g[*&. As
the formula f'(¢) — f(¢) is well defined for all ¢, it gives this extension.

We also observe that s € G, acts on car* by p > s.p, where s.p is the polynomial
given by multiplying the coefficient of "~ by s’. This lifts to an action J » — Js.p, given by
t > st and this is compatible with the above map f(z) — f(¢).

Note that

Lie(Jp) = k[r]/(p(2))
(as 1 + €f(¢) is an invertible element of k[e, 1]/ (€2, p(t)) for all f). Finally, the standard basis
1.t,...,t" L of k[t]/ p(t) defines an isomorphism Lie(J) = k™ x car.

Thus for any ¢ the map dm: k" = Lie(J,) — gl,, is given by (a;) — Z;’:—é a;¢'.

Finally, we use the pairing (4, B) := trace(AB) on gl,,. With respect to this form the
dual of the map k" = Lie(J,) — gl,, is therefore given by

X > (trace(¢' X))i=o,...n—1
which is d .

Remark A.11. We can reformulate the above lemma as a duality statement on [g*/G]:
As for any quotient stack, the tangent stack to this quotient is defined by the complex

[g x g* (A,9)>(ad™ (4)(¢).¢)

i.e., the quotient stack of these bundles is the pullback of the tangent stack to g*. This complex
is self-dual up to a shift by 1.
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Considering y as a morphism y: [¢*/G] — car®, the differential becomes the morphism

A, d* (A s 0,d
[g xq* (4,¢)—~>(ad™ (A)(#).9) a* Xg*] 0.dx) [0 — Tcar*].

Similarly, as the morphism y*J — I is G-equivariant (because J was defined by descending
I'|g*.ree), the morphism dm defines a G-equivariant morphism

[x*Lie(J) — 0] ——

[g X q a Xg :|

Lemma A.9 says, that these morphisms are G,,-equivariantly dual to each up to a shift by 1 of
the complex and twisting the action by (1).

A.5. The regular centralizer (global version). Let us recall the global version of
the regular centralizer as explained in [28, Section 4]: We saw that the regular centralizer
defines a group scheme J on [car*/G,,], that we can pull back to a group scheme Jcar;‘(C
on car’;{c = C xpg,, [car*/G,] which we pull back via the tautological map

Ag x C — cark,_

to define a group scheme J 4, on Ag X C.
Similarly, the pullback of the sheaf of centralizers C g4+ on [g*/G X G,,] under the
classifying map Higgsg xC — [q*/G x G,] is denoted Crjges xC - By construction

CHiggs xC = Aut(Eyniv, d)univ)

is identified with the group of G-automorphisms of the universal Higgs bundle (Euniv, Puniv)
that preserve @upiy-
The map y*J — Cq therefore induces a natural morphism

L (h X idc)*JA — AUt(guniv, d)univ)-

Over Ag one defines the group scheme Py, of Jy4,-torsors on C, i.e., at a point
a:C — carg, is given by the torsors of the group scheme of a*J4, on C. Then ¢ induces
an action act: Py, X 4, Higgsg — Higgsg.

A.6. The duality statement. We can now formulate the main result of this section:

Proposition A.12. There exists a canonical isomorphism
Lie(Py, /Ac) = T Ag
such that the morphisms
dact: h* Lie(P 4, /Ag) — T Higgsg

and
dh: T Higgsg — h™ (T Ag)

become dual to each other with respect to the symplectic form wyijggs.
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Proof. The result follows from the local statement Lemma A.9 as follows: The regular
centralizers P, are defined to be a* J 4-torsors, so Lie(P,) = H'(C,Lie(a*J AG))-

For any Higgs bundle (&, ¢) the action of act(g ¢): Lie(Py) — h~1(a) is induced from
t: (h x idC)*J,AG — C(g,d,) C Aut(&/C).

Therefore applying Lie we find that the differential of the action is induced from the
morphism of complexes

(dact,0)

[Lie(a*J4) — 0] ——— [ad(S) M)

ad(8)* ® sz]

after passing to H'!.
By Lemma A.9 we know that this map of complexes is up to tensoring with K¢ [—1] this
map is dual to the map

ad* () (¢)
—

ad(6)* ® K¢

0,d
] —————>( ") [0 — Tcar}c]

[ad(s:)

that induces dh by Remark A.11. Therefore applying Serre-duality to H! of the above com-
plexes we obtain the proposition. O
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