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1. Introduction

Irreducible holomorphic symplectic manifolds are simply connected compact Ké&hler manifolds with a
unique up to scalar holomorphic two-form, which is furthermore symplectic. They are hyper-Kéhler man-
ifolds and are one of the three building blocks for compact Kéhler manifolds with trivial first Chern class
[7,10]. In every even complex dimension, there are two series of known examples of irreducible holomorphic
symplectic manifolds: those that are deformation equivalent to the Hilbert schemes of n-points on a K3
surface, called of K3["-type, and those that are deformation equivalent to generalized Kummer varieties,
called of generalized Kummer type [7,27]. In addition to these, there are two sporadic deformation classes
occurring in dimension 6 and 10 discovered by O’Grady [60,61] as symplectic resolutions of a singular moduli
spaces of sheaves on a K3 surface (in the case of the 10—dimensional example) and on an abelian surface
(in the case of the 6-dimensional example). The class of irreducible holomorphic symplectic manifolds de-
formation equivalent to the 10 dimensional example is denoted by OG10 and manifolds in this deformation
class are said to be of OG10-type. Similarly, for the 6-dimensional example.

The Betti and Hodge numbers of irreducible holomorphic symplectic manifolds of K3[™- type and of
generalized Kummer type are known thanks to Géttsche’s Formula [30,31] (see also [22,23]). The Betti
and Hodge numbers of the deformation class OG6 were calculated in [54]. The purpose of this paper is to
compute the Betti and Hodge numbers of the remaining known deformation class, namely OG10. Previously,
the only known invariants of this class manifolds were the second Betti number by = 24 [64] and the Euler
number e = 176,904 [55,37]. Our first main result is the following theorem:

Theorem A. The odd Betti numbers of the ten-dimensional irreducible symplectic manifolds of OG10-type
are zero and the even ones are:

[bo=1 by=24 by=300 bs=2899 bg=22150 byy=126156. |

The relevant part of the Hodge diamond is as follows:

1
1 22
1 22 254

1 23 276 2299
1 22 276 2531 16490
1 22 254 2299 16490 88024.
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We prove the theorem by comparing the cohomology of an irreducible symplectic variety of OG10-type
with that of an irreducible symplectic variety of K3[l-type. This is done by considering two Lagrangian
fibered irreducible holomorphic symplectic manifolds, denoted M — P% and N — P%, where the first is
of OG10-type and the second is of K3[P-type. These are chosen so that over a dense open subset of the
base the two fibrations are torsors over the same group scheme. In this setting, the crucial ingredient is
Ng6’s Support Theorem, which allows us to exploit the Lagrangian fibration structure and to express the
difference between the cohomology of M and that of N in terms of the cohomology of lower dimensional
irreducible symplectic manifolds.

Let us describe the two Lagrangian fibrations. Let (S, H) be a general polarized K3 surface of genus 2
and let C — P be the universal family of the genus 5 linear system |2H| ~ P5. The relative compactified
Jacobian M — P® of a given even degree of the linear system |2H| is a singular projective symplectic
variety. We let M — M be the blowup of its singular locus (with its reduced induced structure). This is
an irreducible holomorphic symplectic manifold of OG10-type and M — Mis a symplectic resolution. If
instead we consider a relative compactified Jacobian of a given odd degree, we get a smooth projective
irreducible holomorphic symplectic manifold N — P®, deformation equivalent to the Hilbert scheme of 5
points on S. The degree 0 relative Picard variety P — P of the linear system is a group scheme over P°,
and it acts naturally and fiberwise on both spaces. It is important to note that there are dense open subsets
of P® over which the fibrations are torsors over (the restriction of) the group scheme P/P5. Note that the
Lagrangian fibration M — P? is the same used by Mozgovoy in his determination [55] of the Euler number
of OG10. Tt is a degeneration of the Intermediate Jacobian fibration [44,42], which was used in [37].

The starting point of our analysis is that each of the two Lagrangian fibrations, together with the natural
action of P, gives rise to what Ngo calls a d-regular weak Abelian fibration (see §3.4). Before showing this,
we prove in Section §2.3 some general results on weak Abelian fibrations arising from certain Lagrangian
fibrations.

Ngd’s Support Theorem is a topological result concerning the Decomposition Theorem for §-regular weak
Abelian fibrations. Roughly speaking, it states that if in the Decomposition Theorem for the fibration a
subvariety of the target is the support of a direct summand of the derived direct image of the constant sheaf,
then such a subvariety (called a support for the fibration) is the support of a non trivial direct summand
of the top degree direct image sheaf. What makes this theorem powerful is the possibility of restricting the
set of potential supports by only using the top degree direct image sheaf.

To carry out our cohomological computation, we first need to refine the statement of Ngé Support
Theorem. Given a subvariety of the base that is a support for the Decomposition Theorem of a d-regular
weak Abelian fibrations, the refinement consists in identifying the direct summands supported on that
subvariety. We show that they can be expressed in terms of contributions coming from lower dimensional
d-regular weak abelian fibrations that naturally appear in the picture. We call these direct summands Ngo
Strings (see Theorem A.0.3 and Definition A.0.4). We believe this is a result of independent interest. In
addition to this, we need to make sure that a given Ngb String contributes the same pure Hodge structure,
regardless of which weak Abelian fibration it appears in (cf. Remark A.0.5). Since we are not aware of a
reference, we offer some context and a sketch of proof, which involves M. Saito’s mixed Hodge modules.
This is done in Appendix A.

In order to identify which subvarieties of the base appear as supports, we need to study the top-degree
higher direct images for the Lagrangian fibrations M /P3 and N/P5. The determination of these top degree
sheaves is the subject of the Proposition 4.4.3, which is based on the detailed analysis of the moduli spaces of
semi-stable sheaves over the locus parametrizing non-reduced curves in the linear system |2H| (see §4.2-4.3).

In §5 we identify the Ngo Strings of the two fibrations, i.e., we determine the direct summands appearing
in the Decomposition Theorem for M/]P"r’ and N/P5. This is the content of Proposition 5.7.2. Actually, this
is done up to some indeterminacy which is present in both fibrations. Remarkably, these two indeterminacies



128 M.A.A. de Cataldo et al. / J. Math. Pures Appl. 156 (2021) 125-178

cancel out when comparing the Hodge numbers of the two fibrations, and we are thus able to deduce our
main Theorem A in §6.1.

The following observations are key for successfully carrying out this strategy. First of all, the full support
Ngb Strings (i.e., the direct summands whose support is the whole P%) are nothing but natural extensions
to P5 of the local systems associated to the restriction of the fibration to the smooth locus. By our choice
of M /P5 and N/P?, these local systems are the same for the two fibrations and thus the contribution to
the cohomology of M and of N of the full support direct summands is the same. Secondly, we show that
the Ngo Strings of the two fibrations that are supported on proper subvarieties of P appear also in the
Decomposition Theorem for certain lower-dimensional Lagrangian fibrations associated with other moduli
spaces of sheaves on the same K3 surface S. The geometry of these is considerably simpler and their Hodge
numbers are known. It follows that we may express the difference between the Hodge numbers of M and of N
in terms of the (known) Hodge numbers of lower-dimensional irreducible holomorphic symplectic manifolds.

Upgrading these cohomological comparisons to the appropriate Grothendieck group, we express the “dif-
ference” between the pure Hodge structure of M and the pure Hodge structure of N in terms of the pure
Hodge structures of lower dimensional moduli spaces of sheaves on the degree 2 K3 surface S. Thanks to
Goettsche’s formula, these can in turn be expressed as functions of the Hodge structure of S. This gives
Theorem B below, which determines the pure Hodge structure of the manifolds M (which define a codi-
mension 3 locally closed subset in the moduli space of varieties of OG10-type) in terms of the pure Hodge
structure of S.

Theorem B. Let (S, H) be a general polarized K3 surface of genus 2 and let M and N be the irreducible
symplectic manifolds introduced above. Let S(_y be the Schur functors [28, Ch 6]. Let (o) := [—2e](—e). By
abuse of notation, for a projective manifold X, we denote by X also the graded rational polarizable pure
Hodge structure H*(X, Q). Then we have isomorphisms:

=590 [s9-1)]" 05exE)N-10 [s9(-2]" o

I
(1)
8 [Sen($)-2]" e 5@ 5 (-3) & [s¢3)]" ols(-4]

N=50g[s® 5] (-1) [Ses®]™ (-2) @ [5?]

(—3) & S(—4). (2)

Note that (2) above is well-known and it is only included for completeness. Theorem B is here formulated
only for a general genus 2 K3 surface. In Section 6.2 we give the slightly more general statement (Theorem B’
on page 171), as well as its proof.

After our paper appeared, the paper [32] computed the Hodge structure of an irreducible holomorphic
symplectic variety of OG10-type (in fact, the cohomology is even determined as a module over the so-called
Loojenga-Lunts-Verbitsky algebra [48,72]), conditionally to assuming that the odd Betti numbers are zero.
Then the paper [26] appeared, where it is shown that odd Betti numbers of OG10 are trivial. Our methods
and those of [32] are completely different and we view the two papers as complementary.
Acknowledgments. We would like to thank E. Arbarello, K. Hulek, J. de Jong, R. Laza, E. Markman,
L. Maxim, M. McLean, A. Toth, D. Varolin for conversations related to the topic of this paper, as well
as I. Grosse-Brauckmann for pointing out several typos. M. A. de Cataldo, who has been partially sup-
ported by NSF grants DMS 1600515 and 1901975, would like to thank the Max Planck Institute for
Mathematics in Bonn and the Freiburg Research Institute for Advanced Studies for the perfect working
conditions; the research leading to these results has received funding from the People Programme (Marie
Curie Actions) of the European Union Seventh Framework Programme (FP7/2007-2013) under REA grant
agreement n. [609305]. A. Rapagnetta acknowledges the MIUR Excellence Department Project awarded to
the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006 and the project



M.A.A. de Cataldo et al. / J. Math. Pures Appl. 156 (2021) 125-178 129

PRIN2017SSNZAW ‘Moduli Theory and Birational Classification’. G. Sacca acknowledges partial support
from NSF grant DMS-1949812-1801818. We would also like to thank the anonymous referee for many sug-
gestions that have greatly improved the exposition of the paper.

2. Notation and preliminaries
2.1. General notation and facts

We work over the field of complex numbers. A variety is a separated scheme of finite type over C. Unless
otherwise stated, by point we mean a closed point.

We work with the following two categories attached to a variety S: the constructible bounded derived
category D’(S,Q), whose objects are bounded complexes of sheaves on S of rational vector spaces whose
cohomology complexes are constructible with algebraic strata (see [24] for the basics and references); M.
Saito’s bounded derived category D*M H M14(S) of algebraic mixed Hodge modules with rational structure,
which is endowed with the formalism of weights; see [68] for the foundations, and [69] especially §22 and
§23, which contains the basics and references. We call the objects of D* M H Mg,(S) simply “objects.”

If in Theorem A one is interested only in Betti numbers, then it is enough to work with D°(—, Q). If one
is interested in the Hodge numbers, then it seems necessary to work with DM H Mg4(—).

There is the natural functor rat : DYMH My, (S) — D°(S,Q). The functor rat is compatible with the
usual operations (push-forwards, pull-backs, tensor, hom, duality, vanishing/nearby cycles). Via the functor
rat, the standard ¢-structure on the domain corresponds to the middle perversity ¢-structure on the target
(see [24] for the basics on middle perversity and references); in particular, if K € MHMqy;,(S), then rat(K)
is a perverse sheaf on S. There is a second t-structure on D*M H M,;,(S) which corresponds to the standard
t-structure in D°(S, Q) via the functor rat; [68, Remark 4.6.2]. In particular, given a morphism f : X — Y of
varieties, one promotes direct image cohomology shaves R f, K, R' fi K of a complex K in the essential image
of rat to objects in D*M H Ma14(S); by restricting such objects to suitably Zariski dense open subvarieties
of the regular locus of their support, these objects are admissible polarizable variations of mixed Hodge
structures.

The functor rat is neither essentially surjective, nor fully faithful; what is important in this paper is the
evident fact that a splitting of an object K induces a splitting of rat(K). By abuse of notation and for
simplicity, we do not distinguish notationally between an object K and its counterpart rat(K).

If Z C S is a closed irreducible subvariety and L is a polarizable variation of rational pure Hodge
structures of some weight w(L) on some Zariski-dense open subset V' contained in Z"8, then the intersection
cohomology object ICz(L) € M HMq4(S) yields, via rat, the usual intersection cohomology complex of Z
with coefficients the local system underlying L; such a local system must be self-dual, i.e. L ~ LY (—w(L)),
and semi-simple, i.e. L splits into a direct sum of simple objects. One can shrink V', if desired; this is useful
when one desires V' to be subject to certain conditions.

The objects of M HMq;4(S) which are pure of weight w are exactly the ones of the aforementioned form
IC%(L), with L pure of weight w(L) = w — dim Z; they are semisimple, and every simple object has this
form with, L simple as polarizable variation of pure Hodge structures. Note that the corresponding object
IC€ (L) == ICz(L)[—dim Z] in MHMq,,(S)[—dim Z] in D’MHM,,(S) is pure of weight w — dim Z;
the cohomology sheaves of rat(.#% z(L)) are in non-negative degrees, starting at zero. For the geometric
statements, e.g. (64), we use S €, and at times, in order to exploit the simplified bookkeeping stemming
from Poincaré-Verdier and Relative Hard Lefschetz dualities, we use IC, e.g. (65).

Let Z be irreducible and complete and let L (on some V' C Z*8 C Z) be as above, pure of weight
w(L). Then the cohomology groups IH®*(Z,L) := H®*(Z, 9% z(L)) are polarizable pure Hodge structures
of weight w(L) + e. Polarizations are typically not unique, but the pure Hodge structures on IH®*(Z, L)
do not depend on a choice of polarization. The category of rational polarizable pure Hodge structures is
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abelian semisimple: every subobject admits a direct sum complement; the induced splitting does not need
to preserve given polarizations.

An object L as above of weight 2v € Z is said to be of pure Hodge-Tate type (v,v) if the pure Hodge
structure on the stalks is of type (v,v). If the polarizable variation of pure Hodge structures L is of pure
Hodge-Tate type and of weight 2v, then the underlying local system determines the structure of polarizable
variation of pure Hodge structure of weight 2v on L uniquely, i.e. if L, L’ are two polarizable variations of
pure Hodge structures, which are both pure of Hodge-Tate type and of the same weight 2v, and such that
the underlying local systems are isomorphic, then L ~ L’ as objects in M H M_;4(S); this is simply because
the associated Hodge filtration is trivial.

Let f : X — Y be a proper morphism of varieties and let K € MHM_,;4(X) be pure of weight w. E.g.
K = ICx, or even K = Qx|[dim X| when X is irreducible nonsingular; in either case, w = dim X. In
this context, the Decomposition and the Relative Hard Lefschetz Theorems (see [24] for references) give :
Rf.K € D’ MHM,,(Y) is pure of weight w, it splits as the direct sum @, PH’(Rf.K)[—b] of its shifted
perverse cohomology sheaves, and each PH(Rf,K)[—b] is pure semisimple of weight w — b; if in addition,
f is projective and [ is the first Chern class of an ample line bundle on X, then cupping with the powers
of [ induces the Relative Hard Lefschetz isomorphism ¥ : PH=*(Rf,K) ~ PH*(Rf.K), Yk > 0. Of course,
similar statements hold for a shifted K[al, so that, after the evident bookkeeping, they apply, for example,
to S € x (this is defined for not necessarily irreducible nor pure dimensional varieties and is pure of weight
zero as the direct sum of the #%”s of the irreducible components (cf. [21, §5]).

Similar consideration hold for Rf..#%¢ x in D°(X,Q). A statement in D M H M,,(—) may contain Tate
shifts; when considering the resulting statement in D’(—, Q) it is understood that one omits the meaningless
Tate shifts.

If f: X — Y and K are as above, then the closed subvarieties that are the supports of a simple summand
of the direct image R f..#% x are called the supports of f. The notion of support is of paramount importance
in this paper. The determination of the supports of a morphism is a subtle problem. Of course, one can
define the supports of Rf,.K for any object, by taking the supports of the constituents of Rf,K, which is
the unique finite collection of simple perverse sheaves appearing in a Jordan-Hélder decomposition of the
perverse sheaves PH*(Rf.K) for k € Z.

Let f: X — Y be a morphism, let Z C Y be a subvariety. Then we set X := f~1(Z). In particular, if
y €Y is a point, then X, = f~*(y) denotes the fiber.

2.2. The notion of 6-reqular weak abelian fibrations

In [59,15] B.C. Ngé introduced the notion of d-regular weak abelian fibration, which is a notion of
paramount importance in our approach to the proof of Theorem A. For more details on what follows, we
refer to the papers of Ngb quoted above as well as to our Appendix A, which contains the refinement of
Ng6 Support Theorem needed in this paper.

Let g : P — S be a smooth commutative group S-scheme, and let g° : P° — S be its identity component.
Given any Zariski point s in S, there is the canonical Chevalley devissage of the fiber P? of P at s, i.e. a
canonical short exact sequence of connected commutative group schemes 0 — R, — P2 — A; — 0 over the
perfect field k(s), where Ry is affine and connected, and maximal with these properties, and where A is an
abelian variety (cf. e.g.: [53, Thm 10.25, Prop 10.24, Prop 10.5 (and its proof), Prop 10.3].

We introduce the quantity 6(s) := dimy) Rs, which plays an important role in this paper. For example,
if P, is the Jacobian of a reduced projective curve C, then § is the dimension of ker[v* : Pic®(C) —
Pic®(0)] = (V*Og/Oé)/ImHO(C’, OF) where v : C' — C is the normalization morphism (cf. [36, 21.8.5]).
If C is integral with one node or cusp and no other singular point, then § = 1; if C is a curve with two
nodes and no other singularities, then § = 2 when C is irreducible, and § = 1 when C is the union of two
irreducible components. The function § is upper-semicontinuous on S. If Z C S is an irreducible subvariety,
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then one sets §(Z) to be the value §(nz) at the generic point 1z of Z. In this case, we have that §(Z2)
coincides with the value §(z) at a general point z € Z, and also with the minimum of §(—) on the points of
Z. A crucial role is played by the d-loci, which are the locally closed subvarieties S; C S defined by setting:
S; == {s € 5| d(s) =i}. Let d := dim P/S be constant (it is so on the connected components of S). The
Tate module P/S is the object T(P) = T(P/S) := R?*"1g°Qpo(d) in DPMHM (S)ag (cf. [59, §4.12]; the
Tate shift (d) is in the sense of M. Saito’s theory of mixed Hodge modules (cf. §2.1). Given a point s of S,
we have the short exact sequence 0 — T(R,) — T(P?) — T(As) — 0 of rational mixed Hodge structures.
Note that dim T'(Rs) < §(s) and the strict inequality is possible, e.g. a projective rational curve with a cusp.

For a fixed prime ¢, let T ; g, (P/S) be the Q,-adic counterpart to T(P/S) (defined by the analogous
formula, using the étale topology/cohomology formalism). We say that T, g, (P/5) is polarizable if étale-
locally there is a pairing T} g, (P/S) ® T, g,(P/S) — Q,(1) such that, for every point s of S, the null
space of the pairing at s is precisely T_, Q, (Rs).

Definition 2.2.1. (d-regular weak abelian fibration) A weak abelian fibration is a pair of morphisms: (f :
M — S,g: P — S) such that:

(a) f is proper;

(b) P is a smooth commutative group scheme;

(c¢) There is an action a: P xg M — M of P on M over S

(d) f and g have the same pure relative dimension, denoted by d;

(e) the action has affine stabilizers at every point m € M;

(f) the Tate module T, g (P/S) of P/S is polarizable. In context, we abbreviate (f : M — S,g: P — 5)
to (M, S, P).

If, in addition, we also have the following property of P/S:
codim S; > i, Vie 22°, (3)
then we say that (M, S, P) is a 0-regular weak abelian fibration.
Remark 2.2.2. Note that the d-regularity inequality (3) is equivalent to:
codimg Z > 0(Z), for every locally closed integral subvariety Z C S. (4)

Moreover, (3) implies that if (M, S, P) is a d-regular weak abelian fibration, then the general fiber P? is
complete, i.e. it is an Abelian variety.

If P — S is the relative degree—0 Picard scheme of a family of integral curves parametrized by S, then
the fibration is d-regular if and only if for all § > 0, the locus of curves of cogenus § has codimension > 4.
Examples of J-regular weak abelian fibrations will be given in Example 2.3.3 and in §3.3.

Over a perfect field the Chevalley devissage exists and is unique. Since we are working in characteristic
zero, by working with Zariski points on S, one sees that (cf. [59, §7.4.8]), given any integral locally closed
subvariety Z C S, there exists an open and dense subvariety V' C Z and a short exact sequence of smooth
commutative group schemes over V' with connected fibers:

0— Ry — Py, — Ay — 0, (5)

that realizes the Chevalley devissage point-by-point on V. One can shrink V', if needed.
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2.8. Weak abelian fibrations and holomorphic symplectic manifolds

In this section we consider weak abelian fibrations arising from Lagrangian fibrations and we show that
under some assumptions they are d-regular (Proposition 2.3.2). Examples of such Lagrangian fibrations are
given in Example 2.3.3 and §3.

In this section, we fix the following data: let (M,on) be a quasi-projective holomorphic symplectic
manifold of dimension 2d with holomorphic symplectic form ojs; let S be a smooth variety of dimension
d; let f: M — S be a proper Lagrangian fibration, i.e. f is a proper surjective morphism with connected
fibers whose general fiber is a Lagrangian subvariety; let P/S be a smooth commutative group scheme with
connected fibers, acting on M/S.

By [50, Thm 1], every irreducible component of every closed fiber of f is Lagrangian. This means that
for every s € S, the pullback of the symplectic form to a resolution of the singularities of any component
of the fiber M, endowed with the reduced structure, is trivial. In particular, f is equidimensional. By [8,
Prop 1], the morphism f is an algebraic completely integrable system. It follows that the general fiber of f
is a compact complex torus.

As we show in Lemma 2.3.1, the fact that M — S is a Lagrangian fibration has consequences on the
action of P/S on M. This Lemma is then used to prove the d-regularity property. The action of the group
scheme P/S on the Lagrangian fibration M/S defines a commutative diagram with Cartesian squares:

l
M- Pxo M ——= M (6)
4 p2
¢ lf o lpz\ lf
s *p_ 9 >g

where ( : s — es € P (the identity section), ly; : Ms > ms — (es,ms), a is the action, p; the projections.
Note that epr(ms) = es. The dotted arrow £ is not part of the initial data, but is produced, after a suitable
base change, under the hypotheses of Lemma 2.3.1.(2a).

Lemma 2.3.1. (Duality for the action) Let M/S,on, P/S and ap be as above.
1. There is a commutative diagram:

enTps (7)

A\

B df
0 — (Qh5)" T Imdf (C f*Ts) —= 0

7 o 1"
JM\LN MLN ch\L:

* df
0 ——— Q5 Qy Qs

™

%0’

where: €3, Tp|s = f*(*Tp|s is the pull-back via f of the vector bundle on S with fibers the Lie algebras
Lie(Ps); Qzl\/us is torsion free; Kerdf = (Q}\/I\S)v = Homo,, (Q}V[ls,OM) is locally free; the vertical ar-
rows are isomorphisms induced by the symplectic form opr; rows two and three are short exact sequences.
The formation of the diagram is compatible with étale base change S" — S and with restriction to non-
empty, not-necessarily P-invariant, open subsets of M. In particular, Oy is an isomorphism if and only
if it is an isomorphism after base change S’ — S given by an étale covering. The roof of the diagram
depends on all the initial data, while the rest of the diagram depends only on M/S and op;.
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2. Assume in addition that:
(a) either there is an open subset M° C M such that M°/S is a P/S-torsor;
(b) or there are: an open subset S* C S, with codim(S \ S%) > 2, and an open subset M®* C M such
that M%°/S% is a P%/S%-torsor.
Then Oy is an isomorphism. In particular, dacty; and df are dual to each other via the symplectic form
oM, i-e., for every m € M with s := f(m), we have the commutative diagram at the level of fibers at m:

’
O.I\/I,TYLOQA/I~m

Lie(Ps) = Tp, Q5,6 (8)

dacr/}%nn \L \L dfr\v/L

OM,m 1
Qpf -

TM,m -~

Proof. We start by explaining the isomorphism of the two horizontal short exact sequences in (7). Consider
the short exact sequence 0 — f*QL di: 0L, LA Q}wl g — 0. The first morphism is injective because it is
generically injective (f is a dominant generically smooth morphism) and f*Q% is locally free. Dualizing, we
get a short exact sequence 0 — (Q}W‘S)V ’6—v> Ty “@ Imdf — 0, where Im[df : Tpy — f*Ts] C f*Ts. Since f is
Lagrangian, the composition Bo 3" is zero, because it is generically zero and hence zero by torsion-freeness
of the source. This gives, uniquely, an injective o)y, and a surjective o, making the diagram commutative.
Since o7, is a surjective morphism of coherent sheaves of the same rank, it is also generically injective. By
the torsion-freeness of its source o’f; is injective and thus an isomorphism. At this juncture, o, must be an
isomorphism as well.

da”

Ql

PxsM|S

Now we construct the roof of (7). The action a induces a morphism a*Q}wlS
pIQ}D‘S ® p’éQ}wlS. Precomposing with a*3 : a*Q}, — a*Q]lV[lS and postcomposing with the projection
proj : Q%,XSM‘S — p*{Qllj‘S yields a morphism of vector bundles a*Q}, — p’{Q})w, which we dualize: this

gives a morphism pi7Tps — a*Ths, which we pullback via [3,. We obtain a morphism of vector bundles
dacty : Uy piTpis = ey Tpis — Uya™ T = T

Notice that e}, Tp g is the pull-back via f of the vector bundle on S with fibers the Lie algebras of the fibers
of P/S. Notice also that the morphism dacty; deserves its name: by construction, for every s € S and every
m € M with m over s, the fiber (e3,7p|s)m = Lie P, and dact,,(v) = d a,,(v), where a,, : Ps — M, C M
sends p € P to p-m (where - denotes the action of P/S on M/S).

Note that a* and duality commute by the smoothness of a. By construction, d actys factors as e}, Tp| g —

rat (Q}V[ls)v = (Q}wls)v B—v> T, where the first morphism, which we denote by 6y, is %, (proj o da")" :
enTris — (Qy9)"-

Let us also note the following. Assume that the general stabilizer of the action of P/S on M/S is trivial.
Then the morphism dactys, and thus 6y, is injective. If U C M is a P-invariant Zariski-dense open subset
with the property that the stabilizers of its points are trivial, then the restriction 8y is an isomorphism, for
the action of P is free on U.

Let us prove part (2a). There is an étale covering of finite type S’ — S such that (we denote, temporarily,
objects after base change with a prime) the torsor (M°)'/S’ admits a section £ : S — (M°)’. It is enough to
show that 6. is an isomorphism. We may thus assume that the original M° is a trivializable P/S-torsor,
and we drop the primes. Since our aim is to verify that 6, is an isomorphism, we may assume that M
is irreducible. Let 7 : P = M° be the corresponding trivialization: Py > p + p - £(s). The structural
S-morphism of P/S is Lagrangian for the symplectic form op, := 700, so that we have the standard
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natural isomorphism g, : oL = ¢pTp|s, with pull-back g*ue,, , : gL S 9" CpTpis = epTp|s given by
0p' o (03377)_1. Pulling-back via f, gives the isomorphism: f*u,, : f*Q4 = f*(5Tpis = €3 Tp|s-

Claim. ups ; := o), 0000 f*uy, . € End(f*Q) is an isomorphism, so that, since the first and third factors
are isomorphisms, Oy is an isomorphism, and (2a) follows.

Proof of the CLAIM (and end of proof (2a)). Note that the section £ of M°/S also defines a section,
denoted by the same symbol, of M/S, i.e. of f. We now have diagram (6) in its entirety. Using the adjoint
pair (f*, f«), that f o & = Idg, the projection formula, and the fact that f.Opn = Og (f is its own Stein
factorization), we see that the adjunction isomorphism Hom(f*Qk, f*QL) = Hom(Q}, QL) coincides with
£*, and has inverse f*: a morphism ¢ in the former group is the pull-back via f of a unique morphism in the
latter, namely £*p, and, moreover, ¢ is an isomorphism if and only if £*p is an isomorphism. It remains to
show that £*ups , is an isomorphism. Since the first and last factors are isomorphisms, it remains to show
that £*0)s is an isomorphism. This is automatic, since (S) is inside the P-torsor M° and, as it has been
observed above, 00 is an isomorphism.

Let us prove part (2b). Note that (2b) implies (2a), however, for clarity, we have chosen to prove (2a)
first. We apply (2a) to the situation of S We obtain that the morphism 6y, of vector bundles on M is an
isomorphism in codimension two, hence an isomorphism. O

In the next proposition, by abuse of notation, when we write something like T’p_ ., etc., we mean the fiber
of the corresponding vector bundle, not the stalk of the coherent sheaf.

Proposition 2.3.2. (d-regularity) Let (M, S, P) be a weak abelian fibration such that: M and S are nonsin-
gular; M is quasiprojective; M/S is a proper Lagrangian fibration; P/S has connected fibers; there is an
open subset M° C M such that M°/S is a P/S-torsor. Then (M, S, P) is d-reqular (cf. (4)).

Proof. Let Z C S be a locally closed integral subvariety. By shrinking Z if necessary, we have the Chevalley
devissage (5) 0 — Rz — Py — Az — 0 of the identity component Pg in affine and Abelian parts. For a
general point z € Z, dim A, = dim S — §(2).

It is enough to show that for a general point z € Z, we have a surjection:

TA e 7 QlZ,Za (9)

since this implies that d — 6(Z) > dim Z, which is our contention (4).

It is enough to obtain a surjection (9) after an étale base change Z’ — Z with Z’ integral.

Let My — Z be the restriction of M — S over Z. Let 1z € Z be the generic point. Since f is proper,
M, /nz is complete.

Let L/k(nz) be a finite field extension so that My /L has an L-rational point and such that the affine
solvable Ry, is L-split. By the Borel fixed-point theorem [11, §V, Proposition 15.2], M}, admits an L-rational
point that is fixed by Ry. By taking the integral closure Z’ of Z in L, and after shrinking Z’ if necessary,
we obtain a morphism Z’' — Z such that the resulting Mz — Z’ admits a section -corresponding to the
fixed L-rational point found above- fixed by Rz, and such that Z’ — Z is étale. Let @', be the image of
this section.

In view of our objective (9), we may now assume without loss of generality that Z = Z'.

The action of Rz is trivial on Qz. If m € Qz, and z € Z is the point over which m lies, then the
infinitesimal action of P on M at m factors as follows: Lie(P,) — Lie(A,) — Tasm. The compositions
Qz - Z — S and Qz — M — S coincide. By combining this coincidence of compositions, with the
factorization of the infinitesimal actions, and with (8), we obtain the commutative diagram:
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’
T ,m© Ons,m

Lie(A,) <<— Lie(P,) — Qéz lez (10)
\ \L dacty, \L dfv l ~
oM, m
Trtm ——= Qo — Qéz’z.

It follows that the image of Ta_ . in Q) coincides with the injective image of Q .. Hence the desired
surjection (9) at a general point of Z. O

Example 2.3.3. Let (S, H) be a general polarized K3 surface. Let x be an integer, set v = (0, H, x), and
let 7 : M,(S) — |H| be the moduli space of pure dimension 1 sheaves on S with Mukai vector v (see
§3.2). This is a smooth projective irreducible holomorphic symplectic manifold. Let P — |H| be the relative
degree—0 Picard scheme of the family of curves in |H|, which exists as a scheme since the curves in |H|
are reduced an irreducible ([12, Thm 1 §8.2]). Then P/|H| acts on M,(S)/|H| with affine stabilizers (see
the forthcoming Lemma 3.4.1 and 3.4.4), the Tate modules are polarizable (cf. Lemma 3.4.5) so the pair
(M,(S), P) is a weak abelian fibration. Over the open subset U C M, (S) parametrizing line bundles on the
curves of |H|, the action is free. Since the fibers of m are compactifed Jacobians of locally planar integral
curves, the assumption of Proposition 2.3.2 is satisfied (with M° = U/) and the fibration is d-regular.

For more details on the background and context for this example and for other weak abelian fibrations
see §3.3.

3. The manifolds M and N as d-regular weak abelian fibrations

In this section we introduce the Lagrangian fibered irreducible holomorphic symplectic manifolds M and
N, as well as other auxiliary fibrations. We start by assembling some known facts about OG10-type varieties
(§3.1) and about moduli spaces of pure dimension one sheaves (§3.2) that are needed in the paper. Then
we show that the Lagrangian fibrations we have introduced are d-regular weak abelian fibrations (§3.3 and
3.4).

3.1. OG10-type manifolds

Let (S, H) be a polarized K3 surface with Néron-Severi group NS(S) = ZH. We identify vectors v :=
(vo,v2,v4) € Z* with elements in Haez’;“(S,Z), via the obvious identification, and we consider the even
quadratic form v? := v3 H? — 20904 on Hgen (S, Z) induced by the Mukai pairing. A vector v € Hg)s"(S,Z)
is called positive (cf. [73, Def. 0.1] and [5, Def. 5.1]) if v> > —2 and if either: a) vg > 0; or b) vy = 0, v > 0;
or ¢) vg = vg = 0 and vy > 0. We say that a Mukai vector v is primitive if v is not of the form kv’, for
k # £1. For a coherent sheaf F on S we denote by v(F) := ch(F) U /td(S) the Mukai vector of F.

Remark 3.1.1. Conditions a), b) and c¢) are necessary on v for the existence of a coherent sheaf F with
v(F) = v. In [73, Def. 0.1] and [5, Def. 5.1], in case b) it is assumed that v4 # 0 in order to ensure that
for primitive v and generic polarization, semistability implies stability for F. Since this is automatic if
NS(S) ~ Z, we drop this assumption (cf. [63, Rmk 2.6]). However, in the few cases where we deal with K3
surfaces with higher Picard rank (Remark 3.2.3 and Theorem B’), we refer to the notion of positivity for
Mukai vectors given in [73, Def. 0.1] and [5, Def. 5.1].

Let v’ be a primitive and positive Mukai vector, let m > 1, and set v := mv’. What follows is classical
work of several authors [56,73,41,60]. The moduli space M, (S) of Gieseker-semistable pure sheaves on S
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with Mukai vector equal to v is a normal irreducible projective variety of dimension v? + 2 [29, Theorem
0.3] and [41, Theorem 4.4]. The points of M, (S) are the isomorphism classes of polystable sheaves or,
equivalently, the S-equivalence classes of semistable sheaves [39, Theorem 4.3.3]. By [56], the smooth locus
of M, (S) is precisely the locus parametrizing stable sheaves and it admits a holomorphic symplectic form.
It follows that the moduli space is smooth if and only if the locus parametrizing strictly semistable sheaves
is empty. When NS(S) ~ Z, this happens if and only if m = 1, i.e. if and only if v is primitive. If this
is the case, the moduli space is an irreducible holomorphic symplectic manifold deformation equivalent to
the Hilbert scheme of $v? 4 1 points on S [73, Theorem 8.1]. For m > 2, the singular moduli space M, (S)
admits a symplectic resolution if and only if m = 2 and v? = 2 [60,41,47]. In this case, the following result
holds:

Theorem 3.1.2. (OG10-type manifolds) Let v = 2v’, with v’ positive and v'? = 2.

(1) The singular locus of Moy (S) is naturally identified with the 8-dimensional Sym? M, (S).

(2) Locally in the classical topology, the singularities of Ma,(S) do not depend on the choice of v' with
v'2 = 2. Moreover, the blow up Moy (S) — May (S) of May (S) along the singular locus, with its reduced
induced structure, is a symplectic resolution.

(8) The symplectic resolution JT/EJ (S) is an irreducible holomorphic symplectic manifold deformation equiv-
alent to O’Grady’s 10-dimensional exceptional example.

Proof. (1) Follows from the fact that since NS(S) = Z the polystable sheaves with Mukai vector v are of
form Fy & Fs, with v(F;) = ¢'. (2) This is [47, Thms 1.1 and 4.5] (for the rank 2 case, see also [40, Prop
2.2]). (3) This is [62, Thm 1.6]. O

We recall that O’Grady’s original example is J\AJJ(ZO,_Q)(S).
8.2. Pure dimension one sheaves and the manifolds M and N

By Theorem 3.1.2 (3), in order to study the Hodge numbers of OG10-manifolds we are free to choose
any Mukai vector v = 20" € Hgy*" (S, Z) with v’ 2 = 2. To make sure the corresponding projective model
MQqﬂ(S) admits a Lagrangian fibration, we chose for v’ the Mukai vector of a pure dimension 1 sheaves on
S [64].

Recall that a coherent sheaf F on a scheme is said to be of pure dimension d if the support of F, as well
as the support of all non-trivial subsheaves of F, has dimension d [39, §1.1]. Let (S, H) be a polarized K3

surface with NS(S) = ZH and consider the positive Mukai vector:

v=(0,k,x).

Pure sheaves on S with Mukai vector v are of pure dimension 1, have Euler characteristic x and first Chern
class kH. For example, if I € |kH| is a smooth curve and i : I' — S is the closed embedding, then sheaves
with Mukai vector equal to v and support I' are of the form i,L, where L is a line bundle on I" with
x(L) = x.

The Fitting support of a pure dimension one sheaf on S is a pure dimension 1 subscheme on S which
represents the first Chern class of the sheaf and is defined as follows:

Remark 3.2.1. ([45, §2.2], [39, §1.1]) Let F be a pure dimension one sheaf on a smooth projective surface.
Then F has depth one and hence admits a length one resolution

0-ALB—F
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where A and B are vector bundles on of the same rank r. The Fitting support Fitt(F) is defined as the
vanishing subscheme of the induced morphism detj : det A — det B. The scheme thus defined does not
depend on the resolution, it always contains the set theoretic support of F', and it represents ¢;(F). For
example, if C’ € S is a curve in the linear system |H|, F; is the push forward to .S of a rank k vector bundle
on C’ and F; is the push forward to S of a line bundle on C := kC’ € |kH]|, then the Fitting support of F;
and JF» is precisely the curve C.

Using the reduced Hilbert polynomial, we get the following definition of stability for pure dimension one
sheaves.

Definition 3.2.2. (Gieseker stability for pure dimension one sheaves [39, Def. 1.2.3, Prop 1.2.6]) A pure
dimension 1 sheaf F on a polarized surface (X, H) is called Gieseker-(semi)stable with respect to H if and
only if for all proper pure dimension one quotients F — &£ the following inequality holds:

XF)_ _ @)
Cl(f)'H (=) Cl(g)~H.

For example, if the Fitting support of F is integral, then F is the push forward of a rank 1 torsion free
sheaf on an integral curve, so F has no proper quotient and is automatically stable. If F is the pushforward
of line bundle on a curve C, then the only pure dimension 1 proper quotients of F are the restrictions to
the pure dimension one subschemes of C. It follows that F is (semi)-stable if and only if

X(F) _ x(Fp)
C-H= D-H

(11)

for every proper subcurve D C C. In Lemmas 3.3.2 and 4.3.7 and Proposition 4.3.8 we will consider the
stability of pure dimension one sheaves on certain non reduced curves.

Remark 3.2.3. (Non generic polarizations for pure dimension one sheaves) A priori, the notion of stability
depends on the choice of polarization. Since in this paper we are mostly concerned with the case of a Picard
rank one surface, the polarization is unique up to scalars and we omit it from the notation for the moduli
spaces and simply write M, (S). However, since in Theorem B’ we consider moduli spaces of sheaves on K3
surfaces of higher Picard rank, we now recall some facts about this more general setting. Consider a positive
v (cf. Remark 3.1.1). If v is primitive, then there is always a polarization for which there are no strictly
semistable sheaves, i.e., all semistable sheaves are in fact stable; if v = kv’ is not primitive, then there is
always a polarization for which the summands of the polystable sheaves with Mukai vector v have Mukai
vector a multiple of v [39, §4.C], [73]. For a given v, a polarization with these properties is called v-generic.
If v is primitive and L is a v-generic polarization, then the moduli space M, 1 (S) of L-stable sheaves on
S with Mukai vector v is an irreducible holomorphic symplectic manifold of dimension v? + 2, deformation
equivalent to the Hilbert scheme of v?/2 + 1 points on S. The birational class of M, (S) is independent
of L [4]. If v = 20 with (v')?2 = 2 and H is any polarization, then My, ;(S) has a symplectic resolution
MQqﬂ)H(S), which is of OG10-type and whose birational class does not depend on H ([47], [62, Thm 1.6],
[3, Prop 2.5], [51]).

Let g be the genus of the general curve in |kH|, so that |kH| = P9. The Le Potier morphism [45, §2.2],
(46, §2.3]:

w: M,(S) — P9, (12)
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associates with each sheaf its Fitting support. Since the fiber of m over an integral curve is precisely the
degree d compactified Jacobian of the curve itself, by abuse of notation we refer to M,(S) as the relative
compactified Jacobian of degree d := xy + g — 1 of the universal curve over |kH|. Note, however, that if curve
is non—reduced, the locus in a fiber parametrizing line bundles might be empty (cf. Corollary 4.3.9). By
[56,6], the morphism (12) has Lagrangian fibers when restricted to the smooth locus M, (S)™¢.

In order for v = 2v’ with (v/)? = 2 to be the Mukai vector of pure dimension one sheaves, one needs
vo = 0 and H? = 2. To achieve this consider a polarized K3 surface of degree 2, i.e., a surface S realized as
a 2:1 cover:

r: S — P2

ramified along a smooth plane sextic curve. The linear system H := r*Op2(1) is of genus 2, i.e., its general
member is a nonsingular connected curve of genus 2 and |H| = P2. If the smooth sextic curve is general
then NS(S) ~ Z(H) [13]. From now on, unless otherwise stated, we will assume that S is a general in this
sense. The Mukai vector

v = (0,1,%) (13)

2

is positive and satisfies v'# = 2. With these choices, the moduli space M, (S) is a smooth projective

irreducible holomorphic symplectic fourfold, with a Lagrangian fibration
My (S) — |H| = P?, (14)
realizing it as the relative compactified Jacobian of degree d’ := x’ 4+ 1 of the universal curve C'/|H]|.

Remark 3.2.4. For general S as above, the curves in |H| are reduced and irreducible and have only nodes
and (simple) cusps as singularities. Moreover, the rational curves in the linear systems have only nodes [17].
By [65], the fibers of (14) are irreducible of dimension 2.

The linear system |2H]| is base point free and has dimension 5, and its general member is a connected
nonsingular hyperelliptic curve of genus 5 [67], which is a ramified double cover of a plane conic. Consider
the Mukai vector:

20" = (0,2,2Y). (15)

The support morphism My, (S) — |2H| realizes this 10-dimensional singular moduli space as the relative
compactified Jacobian of degree d = 2x’ + 4 of the universal curve C/|2H|. By [50, Thm 1], composing this
morphism with the symplectic resolution gives the structure of Lagrangian fibration (cf. §2.3)

Mgv/(S) — MQU/(S) — |2H| = P5,

on this projective manifold OG10-type. We also consider the moduli space associated with the primitive
Mukai vector:

w = (0,2, %), with y odd. (16)

With this choice of Mukai vector, the moduli space M,,(S) is a smooth irreducible holomorphic symplectic
10-fold of K3Pl-type, with Lagrangian fibration M, (S) — |2H| realizing it as odd-degree x -+ 4 relative
compactified Jacobian of the universal curve C/|2H]|.
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Remark 3.2.5. (The subvarieties A C ¥ C |2H|) The non integral curves in [2H| ~ P are the preimages
under r of the non integral conics. They are parametrized by an irreducible divisor ¥ C |2H|, which is
identified with Sym? |H| ~ Sym? P2. The non-reduced curves are the preimages of the non-reduced conics
(double lines) and they are parametrized by the irreducible 2-dimensional subvariety Az C Sym? |H| C
[2H]|.

The analysis of the irreducible components of the fibers of May (S) — |2H| and M, (S) — |2H| over %
and A plays a crucial role in this paper and will be carried out in Propositions 4.2.1, 4.2.2, and 4.2.4. For
the moment, we review the following general properties.

Remark 3.2.6. (Flatness of the Lagrangian fibrations MQU/(S), M, (S), My (S), and Ma,(S).) The varieties
Mgv/(S), M, (S) and M, (S) are irreducible holomorphic symplectic manifolds. By [50], the Lagrangian
fibrations Ma, (S) — P®, M, (S) — P5, and M, (S) — P2 are equidimensional and therefore flat. The
following three facts concerning the morphism Ma,/(S) — |2H| ~ P° hold true: (i) since Ma,/(S) has a
symplectic resolution, it has canonical singularities, and is thus Cohen-Macaulay (see Theorem 5.10 and
Corollary 5.24 of [43]); (ii) since the fibers of My, (S) — |2H| ~ P® are dominated by the corresponding
fibers of Ma, (S) — P?, they all have the same dimension five; the base of the fibration My, (S) — [2H|
is nonsingular. By [49, Thm 23.1], the morphism M,/ (S) — |2H]| is flat. As a consequence, the fibers of
Mo, (S) — |2H], Mgv/(S) — P5, M,(S) — P®, and M, (S) — P? are Cohen-Macaulay.

For later use, we collect some known results:

Proposition 3.2.7. Let v' = (0,1,X’) and let v = (0,2, x). Denote by S the Hilbert scheme of n points of
the K3 surface S.

1. The birational class of the irreducible holomorphic symplectic manifold M,/ (S) depends on the parity of
X' alone. If x is odd, then M,/ (S) is an irreducible holomorphic symplectic manifold birational to St

2. The birational class of M,(S) depends on the parity of x alone. If x is odd, then M,(S) is an irreducible
holomorphic symplectic manifold birational to SV, If x is even, then M,(S) is singular; blowing up
its singular locus (with its reduced induced structure) produces an irreducible holomorphic symplectic
manifold MU(S) in the deformation class OG10;

3. For odd x' and X, there are isomorphisms of integral Hodge structures H*(M,/(S),Z) = H*(SP, Z)
and H*(M,(S),Z) = H*(SP, 7).

4. The isomorphism class of the integral Hodge structure of MU(S’) is the same for every even x.

Proof. The general curves in the linear systems |H| and |2H| are smooth hyperelliptic, so tensoring a
line bundle supported on a smooth curve with the unique g5 on its support defines birational maps
M9,1,5)(S) == Mg 1,442)(S) and Mg 2y (S) ==+ M0,1,+2)(S). The statement that M, (S) and M,(S),
with x' = x = 1, are birational to the relevant Hilbert scheme is well-known (cf. [8]). Finally, the statements
about the isomorphisms of Hodge structures follow from [38, Thm 2.5 Cor. 2.6]. O

3.8. The group schemes

Recall the definitions (13), (15) and (16) of the Mukai vectors v, 2v’, and w. As we shall see in §3.4,
each of the moduli space M,/ (S), M, (S) and M,/ (S) is part of the data forming a §-regular weak abelian
fibration. We now introduce the relevant group schemes as open subsets:

P'C M1,-1)(S), for M,/ (S), and (17)
PC Myga 5(S),  for My(S) and Mo, (S). (18)
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Lemma 3.3.1. For every Mukai vector v as in (13), (15), and (16), the locus P,(S) C M,(S) parametrizing
stable sheaves that are push forwards of line bundles on their schematic supports is a mon empty Zariski
open subset.

Proof. An application of Nakayama’s Lemma shows that a pure dimension 1 sheaf F on S is a line bundle
on its schematic support if and only if every non zero fiber of F has rank 1. The predicated openness then
follows from the upper semicontinuity of the rank of the fibers of a coherent sheaf, while the non-emptiness
is clear for the general fiber, where the curves are integral. 0O

We remark that while this open set P,(S) intersects non trivially the fibers corresponding to an integral
curve [65], it may not intersect some fibers of the Le Potier morphism over the non-reduced locus (cf.
Corollary 4.3.9).

The following lemma describes the sheaves corresponding to closed point of P,(S) in the cases we are
interested in, i.e. for v = (0,2, x). More general statements along these lines appear in Section 4.3 (cf.
Proposition 4.3.1, Lemma 4.3.7, and Proposition 4.3.8).

Lemma 3.3.2. Let F be a coherent sheaf on S with v(F) = (0,2, x). Assume that F is the push forward of
a line bundle on a curve C € |2H]|.

1. If C =2C" for a curve C' € |H|, then the Euler characteristic x is even, F is stable, and the degree of
the restriction of F to C' is deg(F|cr) = (x/2) + 2.
2. (a) If C = C, + Cy, for C1 # Cy € |H| and x is even, then the sheaf F is stable if and only if
deg(Fic,) = deg(Fic,) = (x/2) + 2.
(b) If C = C1 + Cy, for C1 # Cs € |H|, and X is odd, the sheaf F is stable if and only if deg(Fic,) =
2+ (x +1)/2 and deg(Fic,) =2+ (x — 1)/2 or viceversa.

Proof. Let L be the line bundle on C' whose push forward on S is F. In case 1) let ¢ : C' — C be the
inclusion and let Z be the sheaf of ideals of C” in C. Since L is a line bundle on C' = 2C’, tensoring by L
the exact sequence of O¢-modules 0 = Z — O¢ — i.Oc» — 0 gives the exact sequence

0=ZQ®iLicr = L —isLicr — 0.

Note that since Z2 = 0, 7 is an O¢—module which is isomorphic to wl = Oc/(—C") and has degree —2
on C" (cf. (26)). It follows that x = x(F) = x(L) = 2x(Ljcr) — 2 = 2x(Fjcr) — 2, hence x is even and
X(Fier) = (x/2) + 1. Formula (11) becomes x(F) < 2x(F|cr), so the sheaf F is stable and, since the
arithmetic genus of C’ is 2, we conclude that deg(F|c/) = x(Fjcr) +1 = (x/2) + 2.

In case 2), by formula (11), the sheaf F is stable if and only if x = x(F) < 2x(F|¢,) for i = 1,2.
Using that the arithmetic genus of C' is 5 and the arithmetic genus of C; is 2, the last inequality becomes
deg(F) — 4 < 2(deg(F|¢,) — 1) or equivalently deg(F|¢c,) > (deg(F)/2) — 1. Since deg(F|¢c,) + deg(Fic,) =
deg(F) = x — 4 item (2) follows. O

Corollary 3.3.3. For v = (0,1, —1) (respectively, v = (0,2, —4)), the open set
P,(S) C M,(S)
can be identified with the relative degree-0 Picard scheme Picg//uﬂ of the family C'/|H| of curves of the

linear system |H| (respectively, the relative degree-0 Picard scheme Picg/pH‘ of the family C/|2H| of curves
of the linear system |2H|).
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Proof. We prove the statement for v = (0, 2, —4), since the proof for v = (0,1, —1) is analogous. Since |2H |
is an ample linear system on a K3 surface, for every C' € |2H| the space H°(C,O¢) has dimension 1. This
implies that the family C/|2H]| is cohomologically flat, i.e., in the language of [2], the structure sheaf O¢ of
C is |2H|-simple.

By [2, Cor. 7.6] the étale sheafification of the relative Picard functor of the family C/|2H| is represented
by an algebraic space and the same holds for the étale sheafification of the relative degree-0 Picard functor
by [35, Cor. 15.6.5] or [12, §8.4, Thm 4]. The representing object of the latter functor is, by definition, the
nonsingular algebraic space Picg/pH‘ — |2H|. By [12, §9.3, Cor. 13] closed points of Picg/|2H| correspond to
line bundles on curves of |2C| having degree zero on every integral subcurve. By Lemma 3.3.2 the nonsingular
variety P := P(g 2 _4)(5) parametrizes the same set of line bundles seen as sheaves on S and, since P is an
open subset of Mg o _4)(S), it corepresents the corresponding moduli functor by [39, Thm 4.3.4]. It follows
that there exists a bijective morphism ¢ : Pich /120 = P(0,2,-4)(5); since the algebraic spaces Pic) /|2n| and
Po,2,-4)(S) are smooth, the morphism ¢ is an isomorphism and the algebraic space Picg J|2H| 18 identified
with the scheme Py o _4)(S). O

To fix ideas, in the remainder of the paper we work with the following varieties and morphisms, which
have been introduced in the previous sections:

m' : M/ = M(07171)(S) — B/ = |H|

L= = b m

m: M= Mgz2 — M:= Mg — B:= |2H |

n: N = M(07271) — B (19)

p:P:= Picg/pH‘ — B

p/IP/ :PIC(Oj//‘Hl — |H|

Remark 3.3.4. Everything we say in the remainder of the paper about M , N, and M’ can be formulated
also for any other moduli space with Mukai vector equal to 2v’, w, and v" as in (13), (15), (16), respectively.

8.4. The manifolds M, N, M’ and M@ gs d-reqular weak abelian fibrations

The goal of this section is to prove the forthcoming Proposition 3.4.6, to the effect that the triples listed
there are d-regular weak abelian fibrations as in Definition 2.2.1. Recall the notation (19). We start by lifting
the action of P on M to an action of P on M.

Lemma 3.4.1. (The action of the Picard group) Tensoring a sheaf by a line bundle with the same Fitting
support induces:

1. a group scheme structure on P over B with actions ap; : Pxgp M — M and ay : Pxg N — N, on M
and N, over B,
2. a group scheme structure on P’ over B’ with an action app : P xg M’ — M' on M’ over B’.

Proof. This is a general statement. Tensoring a pure dimension one sheaf whose schematic support is
contained in a curve C by an element of PicO(C’)7 does not change the Euler characteristic of the sheaf itself,
nor of its quotient sheaves. By Definition 3.2.2, (semi)stability is preserved by this operation. The fact that
this set theoretic action is algebraic follows from the fact that the fiber product of the Picard scheme and
the moduli space corepresents the appropriate product functor. O
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The following corollary follows immediately, since b : M — M is the blow up of a locus which is left
invariant by the action of the group scheme.

Corollary 3.4.2. The action P xg M — M lifts to a necessarily unique, action P Xpg M — M.

At this stage it is clear that the requirements (a)—(d) in the Definition 2.2.1 of weak abelian fibration are
met. The following two lemmata ensure that the remaining requirements (e) and (f) are met as well.

Lemma 3.4.3. Let the notation be as in Lemma 3.5.1. The open subsets
P,2.2) C M, respectively P11y C M,

surject onto B, respectively B', and are torsors under the group scheme P, respectively P’. The image of
the open subset P21y C N in B is ¥\ A and P2, is a torsor under the restriction of P to X\ A.
Moreover, there is no open set of N which is a P-torsor.

Proof. The proof uses results proved in the forthcoming §4.2-4.3. Since the curves in |H| are integral (cf.
Remark 3.2.4), the surjectivity of Py 1) — B’ follows from Rego’s result on the irreducibility of the
moduli space of rank 1 torsion free sheaves on an integral locally planar curve [65]. The surjectivity of
Po,2,2) — B follows from Proposition 4.2.2 and Proposition 4.3.10. It is clear that the action of P (and of
P’) on the moduli spaces is free on the open invariant sets parametrizing sheaves that are line bundles on
their scheme theoretic support. The assertion about the image of P(g 21y — B follows from Proposition 4.2.2
and Corollary 4.3.9. The last assertion follows from Remark 4.3.19 and Corollary 4.3.11. O

Lemma 3.4.4. The actions of P on M, M and N, and of P' on M’ and on M'® have affine stabilizers.

Proof. Recall that the action of the group scheme on the moduli spaces of sheaves is given by tensorization.
We start by considering the following case. Let F' be a rank r vector bundle on a smooth projective curve C
and suppose F'= F® L, for L € PicO(C’). Taking determinants, we see that L”™ = O¢ so L belongs to a finite
subgroup of PicO(C’). Now suppose that F' is a pure (see Definition 3.2.2) sheaf on a curve C' = Y C;, where
C; are the irreducible, but possibly non-reduced, components of C. If L € Pic” (C) is such that F2 F® L,
then we have that

Fléged/Tor = F|5Z~ed/T0T ® L) grea,

where j; : 5[ ed — Cred — C; is the normalization of the reduced underlying curve and where Flgrea JTor is

the pullback of F' to 5[ ¢d modulo its torsion. Since F \Grea /Tor is a vector bundle on a smooth curve, we
can apply the previous observation to conclude that there is an integer r; such that L%m ¢ = Ogpea. Hence
we conclude that, up to a finite quotient group, L lies in the kernel of the natural morplhism:

Pic®(C) LA T Pic®(Cye),

which is precisely the affine part of PicO(C’). From these observations it follows that the points of M,
N, or M’ corresponding to stable sheaves all have affine stabilizers. Hence, the points of M’(?) also have
affine stabilizers. The same reasoning, applied to a polystable sheaf F' = I & F5, shows that the points
corresponding to the singular locus of M also have affine stabilizers. Indeed, the stabilizer of a point
corresponding to a polystable sheaf is contained in the automorphism group of the polystable sheaf, which
is a product of affine linear groups. By Corollary 3.4.2 the morphism b : M — M is equivariant, so the
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stabilizer of a point m € M is contained in the stabilizer of b(m) € M. Thus if the points of M have affine
stabilizers, so do the points of M. O

Lemma 3.4.5. (Polarizability of Tate module) The Q,-adic counterparts T, q,(—) of the Tate module T'(—)
associated with P — B —the relative Pic® for C — B-, and with P' — B’ —the relative Pic® for C' — B'— are
polarizable. The same is true if we restrict the families of curves to any subfamily of curves over a locally
closed subvariety of B, or of B'.

Proof. The polarizability result [20, Theorem 3.3.1], which is stated for the family of spectral curves for
the GL,-Hitchin system, is in fact proved for any family of curves obtained via base change from a linear
system of curves on a nonsingular surface. Therefore, the polarizability result holds for the families of curves
' - B andC— B. O

By putting together the preceding contents of this section, we get the following

Proposition 3.4.6. (0-regularity) The triples:

(M, B, P), (N,B,P), (M',B,P'), (M'?,B'2,P'?), (Sym*M’,Sym*B’, Sym*P")

are 0-regular weak abelian fibrations satisfying the assumptions of Theorem A.0.3 (direct image is sum of

Ngé strings). The group schemes in the triples appear in, or are related to, (58).

Proof. In view of Lemma 3.4.1, Corollary 3.4.2, and Lemma 3.4.4, all the triples above are weak abelian
fibrations and we only need to prove d-regularity. In the cases (M ,B, P)and (M’, B, P'), §-regularity follows
from Proposition 2.3.2 and Lemma 3.4.3. In the cases (M’? B2, P'?) and (Sym2M’,Sysz/, Symzp'),
d-regularity follow formally from the d-regularity of (M’, B, P'). In the case (N, B, P) it is not true that
N contains a P-torsor over B, so that this case is not covered directly by Proposition 2.3.2. On the other
hand, d-regularity is a property of the group scheme P, and this has already been established when dealing
with (JTJ,B,P). 0

4. The top direct image sheaf R'° for the Lagrangian fibrations M ,N—B

The comparison of the derived direct images of the constant sheaves of the two fibrations M ,N - B
involves understanding the direct summands of these derived direct images, as well as their supports.
Thanks to Ngo’s Support Theorem, it is often enough to understand the top degree (in this case, degree
10) direct image sheaves. The aim of this section is to prove Proposition 4.4.3, which describes, over certain
relevant subvarieties of B, the top direct image sheaves of the constant sheaf for the two fibrations. This
result will be used in §5 to determine the Decomposition Theorem for the two fibrations. Note that as
a simple consequence of the structure of the symplectic resolution M — M (Fact 4.1.1), Corollary 4.1.4
immediately singles out three subvarieties of B as supports for the Lagrangian fibration M — B. However,
to show that these subvarieties are the only supports of the fibrations and to determine the summands
on each support actually requires Proposition 4.4.3. A first step towards this proposition is to identify
the irreducible components (as well as their monodromy) of the fibers of the equidimensional fibrations
M , N — B. This identification is done in §4.2 and uses the results developed in §4.3.
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4.1. The Decomposition Theorem for the blow up b : M— M
By Theorem 3.1.2 and Remark 3.2.5, we have the following commutative diagram

M/:AM/H-A::AB/:B, (20)

l |

Sing(M) = Sym*’M’ — ¥ := Sym*B’

| |

m: M M B =|2H]|,

where the morphisms m and m are as in (19) and the morphism b is the blow up of M along its singular
locus Sing(M) ~ Sym*M’ (with the reduced induced structure). The study of the local analytic structure
of the singularities of M from [47] gives the following:

Fact 4.1.1. (The symplectic resolution b : M — M ) [47, §4] The morphism b is semismall with irreducible
exceptional divisor E C M. The fibers of E — Sing(M) are as follows:

(a) the morphism Egymzana,, — Sym?(M’) \ Ay is an analytic fiber bundle with fiber P*;
b) the morphism Ea_ ., — Ay is an analytic fiber bundle with fiber a three dimensional smooth quadric.
M

For later use, we highlight the following consequence of diagram (20).

Remark 4.1.2. A point b € X\ A corresponds to two distinct point by,by € B’; the strictly semistable
locus Sing(M), = (Sym?M"), of the fiber M, := m~'(b) is isomorphic to the product Mj < My of the
corresponding fibers of m’ : M’ — B’. In particular, Sing(M), is irreducible of dimension 4.

Analogously, for b € A the strictly semistable locus Sing(M)j of the fiber M;, is isomorphic to Sym?(M’),
(recall the identification A ~ B’). It follows that Sing(M), is irreducible of dimension 4. The strictly
semistable locus of Ma := m~!(A) is the quotient of the fiber product M’ xa M’ by the involution
exchanging the factors. For b € A, the intersection M, NA ;. has a unique irreducible component isomorphic
to My, which is irreducible of dimension 2.

We can now determine the Decomposition Theorem for M — M.

Lemma 4.1.3. (Decomposition Theorem for the blow up b : M — M) There is a canonical isomorphism in
D M HMyy(M) and in D*(M,Q) (turn off the Tate shifts):

Rb.Qy; ~ ICu P Qsymzar [-2(—1) P Qa,,, [-6](-3), (21)

Proof. By combining Fact 4.1.1 with the Decomposition Theorem for semismall morphisms (cf. the survey
[24], and references therein), we obtain a canonical isomorphism:

Rb.Qy; ~ I D I Csymarr [=A(-1) P I Ca,, [-61(=3). (22)

Since M’ is nonsingular, the intersection complexes appearing as the second and third summand are actually
the constant sheaf with the corresponding dimensional shift. O
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Corollary 4.1.4. There is a canonical isomorphism in D°MH Mq4(S) and in D°(S,Q):

R, Qg7 ~ Rm..€ v @ RmuQsyumz e [-2)(—1) D Bm.Qa,,, [-6)(-3). (23)
In particular, the subvarieties B, %, A of B are among the supports of Rm.Qgz; on B.

Proof. Apply Rm., to (22) and obtain (23). Each direct summand in (23) is the direct image of the inter-
section complex of a variety that surjects properly onto B, Y and A, respectively; the statement about the
supports follows from this. 0O

Remark 4.1.5. The forthcoming Proposition 5.7.2 shows that B, and A are the only supports of Rm.Q 3;
on B.

4.2. Irreducible components of the fibers: main results

In view of proving Proposition 4.4.3, which is concerned with the top degree direct image sheaves
R"Ym,Q4; and R'"n,Qy, in this subsection we study the irreducible components of the fibers of the
fibrations M, N — B over the loci ¥ = Sym? |H| and A = Ajg) of B =|2H]|.

The main results are: Proposition 4.2.1, dealing with the components of the fibers of M that arise from
the exceptional divisor E; Proposition 4.2.2, on the structure of the fibers of M and N over the locus B\ A
of reduced curves; and finally Proposition 4.2.4, on the structure of the fibers of M and N over the locus A
of non-reduced curves. The proof of this last proposition rests on Propositions 4.3.10 and 4.3.16, which are
the main results of the forthcoming §4.3.3.

4.2.1. Irreducible components arising from the exceptional divisor
Let mg : E — Sing(M) = Sym? M’ — B be the restriction of m to the exceptional divisor of the

symplectic resolution b: M — M. Set
En:=mp'(A), EA:=b"'(A}), EX:=EAr\EL. (24)
Proposition 4.2.1. (The structure of the exceptional divisor over A).

1. The variety Ea is the union of two projective irreducible varieties of pure dimension 7, namely EIA and
the closure E_g of Eg in Ea;

2. The morphism Ei — A is projective, with irreducible 5-dimensional fibers;

3. The morphism EX — A is flat, surjective, with irreducible 5-dimensional fibers.

Proof. Part (1) follows from parts (2) and (3), which we now prove. (2) By Fact 4.1.1 (b), the morphism
EL — A factors via a 3-dimensional quadric fibration E4 — A = M, followed by the relative compact-
ified Jacobian m' : M" — A = |H| of the genus 2 linear system |H|. As noted in Remark 3.2.4, the curves
in |H| are reduced and irreducible and hence so are the fibers of m’ [65]. (3) By definition of EX, there is
a factorization

EY — Symi (M) \ A(M') = A

where Sym3 (M’) = (Sym?(M’))a is the quotient of the fiber product M’ x A M’ by the involution interchag-
ing the two factors. By Fact 4.1.1 (a), EX — Sym3 (M')\ A(M’) is a fibration in P! and, by Remark 3.2.6,
Sym3 (M) \ A(M') — A is flat surjective with irreducible 4-dimensional fibers. 0O



146 M.A.A. de Cataldo et al. / J. Math. Pures Appl. 156 (2021) 125-178

4.2.2. Irreducible components over reduced curves

For b € B representing a reduced curve, a description of the fibers M, := m~1(b), Ny := n~1(b) and
]\71, :=m~1(b) can be found in [64]. In the following proposition and corollary we collect the result that we
will use in this paper.

Proposition 4.2.2. Consider a point b € B\ A. The fibers M, and N, are reduced, Cohen-Macauley of
dimension 5 and have dense open subsets parametrizing line bundles. The fiber My is irreducible while the
fiber Ny, is irreducible for b € B\ ¥ and has exactly 2 irreducible components for b € ¥\ A.

Proof. By Remark 3.2.6, the morphisms m and n are flat and the fibers are Cohen—Macauly of dimension 5.
For b € B\ A, the points of the fibers M}, and N, represent rank 1 torsion free sheaves on the reduced locally
planar curve C corresponding to b. By Proposition 2.3 (ii) of [52], the loci of M}, and N, representing stable
line bundles are dense in N, and in the stable locus of M, respectively. Since the strictly semistable locus
of M} has dimension 4 (see Remark 4.1.2), and since M, is 5 dimensional and Cohen-Macauley, density of
the line bundle locus holds also in M;. By Proposition 2.8 of [45] the Le Potier morphism is smooth at every
point corresponding to a stable line bundle: hence M, and N, have open dense subsets which are reduced.
Since M, and N, are Cohen-Macauley, they are reduced everywhere.

Finally, using Corollary 13 of Chapter 9 of [12], every connected component I' of the loci of M, or N,
parametrizing stable line bundles is determined by the set of degrees of the restrictions of any line bundle
parametrized by I' to the irreducible components of Cy. If b € B\ 3, then the corresponding curve Cj, as well
as the fibers M), and N, are irreducible [65]. If b € £\ A, the curve Cj, has 2 distinct irreducible components
so by Lemma 3.3.2(2) the fiber M, is irreducible while the fiber N, has two irreducible components. O

Corollary 4.2.3. For b € ¥\ A, the fiber Mb is pure of dimension 5 and has exactly 2 irreducible components.

Proof. By Proposition 4.2.2 the strict transform of M, in Mb is irreducible of dimension 5. By Fact 4.1.1
and Remark 4.1.2 the inverse image of the strictly semistable locus Sing(M); of M, is a P!-bundle over an
irreducible variety of dimension 4. O

4.2.8. Irreducible components over non-reduced curves: the statement

Next, we analyze the irreducible components of the fibers of M, N — B over the points b € A C B
parametrizing non-reduced curves. This analysis divides the sheaves parametrized by the fibers over A into
two types, which we call type I (sheaves defined on the reduction of the curves) and type II (the remaining
ones). Consider the restrictions

NA—)A, MA*)A,

of the morphisms N, M — B to the locus of double curves A C B. The main result of this subsection is
Proposition 4.2.4, which describes the irreducible components of the varieties Nao and Ma, as well as of
their fibers N¢ and Mg over the points C € A. The proof of this proposition uses results from §4.3 on
certain sheaves on non-reduced curves.

Recall from Remark 3.2.5 that every curve C € A C |2H]| is of the form C = 2C’ for a curve C’ € |H]|.
Let us introduce the sheaves of type I and II. The sheaves parametrized by Na and Ma are of pure
dimension 1 on S and their Fitting supports are non-reduced curves C' = 2C" € A. There are two kinds
of such sheaves. The first kind is the sheaves F on S for which the compositum of the natural morphisms
Os = O¢ — Endg(F) factors via the natural surjection Oc — O¢r. We call these the sheaves of type I; in
this case, F is an O¢/-module and can be viewed as a rank 2 torsion free sheaf on the underlying reduced
curve C’; we denote the corresponding loci by M} and NZ and, by letting C vary in A, Mi and Né. We
call the remaining sheaves of type II, and we set
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MY = Mo\ ML, NY :=No\N., MY =M\ ML, NF:=Nx\M;L. (25)

In other words, the sheaves of type II on C = 2C’ are those for which the Fitting support equals the
schematic support. In the following proposition, we consider the varieties and fibers with their reduced
induced structure.

Proposition 4.2.4. (Irreducible components of Ma, No — A)

1. (a) The variety Ma is of pure dimension 7 and has two irreducible components, namely Mi and the
closure M—g of MA.
(b) The morphisms ML, M — A have irreducible 5-dimensional fibers, namely, for C € A, ML and
MY,
2. (a) The variety Na is of pure dimension 7 and has two irreducible components, namely Ni and the
closure N—g of NI
(b) The morphisms NL, N — A have irreducible 5-dimensional fibers, namely, for C € A, N and
NZ.

Proof. The proof uses results from the forthcoming §4.3: by Proposition 4.3.1 the varieties M/, and N} are
irreducible of dimension 5 and M i and N i are irreducible of dimension 7. By Proposition 4.3.10 the variety
Mg = Mc \Mé is irreducible of dimension 5 and, by Proposition 4.3.16, the same holds for N¥ = N¢ \Né
By Remark 3.2.6, the varieties Ma and Na are flat over A. Since the fibers of Mg = Ma \ Mi and
NII'= N \ N} are irreducible of dimension 5, the closure M—g of MI'in M and the closure N—g of N{

in N g are irreducible of dimension 7. O

Remark 4.2.5. The varieties M g , Mg (and their respective closures) are actually reduced but we don’t
need this result.

4.3. The fibers over non-reduced curves

In this section we study sheaves the non-reduced curves of |2H| with the aim of proving Propositions 4.3.1,
4.3.10, and 4.3.16, which were used in the proof of Proposition 4.2.4. First we deal with the simpler case of
the sheaves of type I (§4.3.1), then in §4.3.2-4.3.3 we carry out the more involved study of the sheaves of
type II.

4.8.1. Irreducible components over non-reduced curves: sheaves of type I
Proposition 4.3.1. (Irreducibility of M}, N, M1 and N]) Let C =2C' € A.

1. The locus Mi 18 an irreducible component of Ma and the morphism Mi — A is projective with
irreducible 5—dimensional fibers Mé

2. The locus Ni is an irreducible component of Na and the morphism Ni — A is projective with irreducible
5-dimensional fibers NE.

Proof. The sheaves of type I are O¢/-modules, so by Definition 3.2.2 the loci Mé and Né parametrizing
semistable sheaves of type I on C, with Euler characteristic y, are naturally identified with the moduli
spaces of torsion free slope semistable sheaves on the reduced underlying curve C’, with rank 2 and degree
d' = x — 2x(Oc¢). The latter space is irreducible and projective by [70,66]. By [39, Thm 4.3.7], ML and
N1 are projective over A. The statement about the dimension of the fibers follows from Remark 3.2.6. This
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proves the first assertion. The second one follows, since the morphisms M i, N i — A are proper, surjective
and with irreducible fibers. 0O

As a side remark, we mention that it is a classical result of [58], that for a smooth curve C’ € B’, the
assignment F — det F realizes NJ, (respectively, ML) as a smooth fibration over Jac? (C”), locally trivial in
the étale topology, with fibers transversal complete intersections of two 4-dimensional quadrics (respectively,
P3).

Remark 4.3.2. The strictly semistable locus on N is empty. By Theorem 3.1.2 (1) the locus of strictly
semistable sheaves in M is contained in M.

4.8.2. Preliminary results towards the analysis of type I1

In this subsection we establish some notation, recall some facts, and prove a series of preliminary results
towards Propositions 4.3.10 and 4.3.16 (which describes the fibers of M, NI — A).

For C' € B, let C = 2C" € A be the corresponding double curve. Denote by Z C O¢ the ideal sheaf of
the reduced curve C’ C C. Then:

7?2 =0, Zis an Ogr-module, Z = O (—C') = wg,l, degZ = —2. (26)

Since the genus 2 K3 surface S is general in moduli, any curve C’ € |H| has only nodes and cusps (cf.
Remark 3.2.4) and, moreover, it has at most two singular points. For later use we record the following
standard facts on rank 1 torsion free sheaves on integral curves with nodes or cusps. Let I' be an integral
projective curve with only nodes and cusps and let E be a rank one torsion free sheaf on I'. By [25, Lem
1.4], we can write F = n, L, where n : FT>Tisa partial normalization and where L is a line bundle on T.
Both T and L are uniquely determined by E. Now let £ € Pic(T") be a line bundle. Then F® £ = E if and

~

only if £ € Ker [n* : Pic(T") — Pic(T")] (cf. [8, Lem. 2.1]).
Lemma 4.3.3. (Nodes and cusps) Let I' be as above.

1. Let q € T be any point. Then Ext}gr((Cq, Or) = Ext}gF \ (Cq,Or ) = C. The unique (up to isomorphism)
extension 1is:

0— Or — (my)Y — C, — 0,

obtained by dualizing the standard exact sequence 0 = mg — Op — C4 — 0.

2. Let ¢ € T be a singular point, and let T be the normalization of T' at q. Then Ext}gF(Cq,mq) =
Exténq((cq,mq) = 2. The corresponding 1-dimensional family of isomorphism classes of extensions
is given by considering the natural extension

0—=+mg—=>0r—-C;,—0

and tensoring it with the elements of the one dimensional group Ker[n* : Pic(T') — Pic(T")] (which fizes

myg).

Proof. (1) Since T' is a Gorenstein curve, have dim Extg,_ ,(Cq,0r ) = 1. (2) The first statement follows
from [18, Lem. 2.5.5]. The second statement follows from the considerations before the Lemma, with E = m,
and I" the normalization of I' at ¢. O
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Lemma 4.3.4. ([18, Lem. 2.5.9]) Let T’ be an integral curve, let p € T be a nodal or cuspidal point, and let
F, and K, be rank 1 torsion free Or p-modules. Then

0 if £, or K, is free
Extt  (Fp, K,) = P P ’
Kt p(Fp Ky) { C? if neither F,, nor K, is free.
Lemma 4.3.5. Letn: T — T be a partial normalization of a reduced curve and let L and L' be torsion free
sheaves on I'. Then Homr(n.L,n.L") = Homg(L, L').

Proof. It is clear that a morphism ¢ : L — L’ induces by pushforward a morphism n.p : n,L — n,L’ of
torsion free sheaves. Conversely, if ¢ : n,L — n,L’ is a morphism, by pullback we get a morphism n*n,L —
n*n,L’ — L'. Since L' is torsion free, this morphism necessarily factors via the surjection n*n,L — L which
thus induces a morphism L — L’. Since n is a generic isomorphism, these two assignments are inverses of
each other. O

Lemma 4.3.6. Let E be a pure dimension 1 sheaf on the K3 surface S and let T' C S be the curve
Fitting support of E. Then Extiy(E,Og(-T)) = 0 for i # 1 and there is a functorial isomorphism
Exty(E,05(-T)) = EV where EY := Homr(F, Or). Moreover, E is reflexive, i.e. (EV)Y = E.

Proof. This is [39, Prop 1.1.10] (or can easily be seen using Remark 3.2.1). O

4.8.8. Irreducible components over non-reduced curves: sheaves of type I
We now come back to Mo, No, Ma and Na and turn to sheaves of type II. We follow closely [55, §3.1],
which deals with the case of sheaves with even Euler characteristics (those parametrized by M).

Lemma 4.3.7. Let F be a sheaf of type II supported on a curve C = 2C" € A, let Fio be its restriction to
the reduced curve C', and let F := Fic: /T be the quotient of Fic: by its torsion subsheaf T := Tors(Fic:).
If E is a pure dimension 1 sheaf on S and o : F — E is a surjection which is not an isomorphism, then
E 2 F and « is a non zero multiple of the natural morphism F — F. As a consequence, F is (semi)stable
if and only if

Proof. Let a: F — FE be a surjection onto a pure dimension 1 sheaf E. Then the Fitting support of E is
either C' or C". In the first case, Ker « is supported on points, hence it has to be zero by the purity of F. In
particular, « is an isomorphism. It follows that we can consider only the case when the Fitting support of
E is C'" and hence FE is an O¢/-module of rank one. Restricting o to C’ we get a surjection F' — F, where
F = Fc:/Tors(F|c), which has to be an isomorphism since F' and E are torsion free sheaves of rank 1 on
C'. Using Definition 3.2.2, we conclude the proof. O

Proposition 4.3.8. Let C = 2C" € A C B and let F be a sheaf parametrized by a point in N& or in MY,
i.e., a stable sheaf of type II (cf. Remark 4.3.2). Then F sits in the following exact sequence:

04)F®C/I*>JT'.4)JT'.‘C/ 4)0,
where F := Fio: /T and T := Tors(Fc+) is the torsion subsheaf of Fic:. Furthermore, either T'= 0, which

occurs if x(F) is even (i.e. F € M¥), or T = C,, for some point p € C', which occurs if x(F) is odd (i.e.
FeNF).
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Proof. In the even case, this is [55, Lem. 3.1.6], whose proof we modify below to deal with the case of
arbitrary x. Consider the exact sequence:

FocI—F 5 Fier—0.

Since Z is a nilpotent square zero ideal, F ®o. Z is an O¢/-module, and F @c¢ Z = Fior @0, L. Since F
is not of type I, the restriction map r is not an isomorphism and ker(r) is a non—zero pure O¢-module.
This applies to the upcoming K as well. We see that the sheaves ker(r) and of F|cs have first Chern class
equal to C’, so they are O¢r-modules of rank 1. Let T' := Tors(F|c) be the torsion subsheaf of Fcr. Then
F := Fjc/ /T is torsion free of rank 1. The natural surjective morphism Fjcr ®o., Z — ker(r) factors via
the quotient Ficr ®o,, T — F ®o_, L, determining an isomorphism F Qo _, Z — ker(r) of rank 1 torsion
free sheaves on C’. We can summarize this discussion in the following commutative diagram of short exact
sequences (the zeros are omitted from the vertical ones):

T (27)

|

0—=FRT —=F —= For —=0

| |

F F 0

0 K
T
Using this diagram, together with (26), we get:
X(F) =2x(F) =2+ x(T), (28)

showing that x(F) = x(T') modulo 2. By using Lemma 4.3.7 to check stability, we see that:

M ) (29)

sothat 0 < x(T) < 2. O

Corollary 4.3.9. Let F be a sheaf with Fitting support C = 2C" and odd Euler characteristic. Then F is not
(the push forward of) a line bundle on C.

Proof. If F is of type I, then it is clear that it cannot be a locally free Oc—module. If F is a sheaf of type
II, then by (28), T' # 0 so Fc» is not locally free. O

Proposition 4.3.10. (The case of y even: the structure of M}/ and MI). Let C = 2C" € A C B. The stable
sheaves of type II on C with even Euler characteristic x = 2k are locally free. Restricting a sheaf to the
underlying reduced curve defines a surjective morphism

MY — Pic“T?(C")

which is a Zariski-locally trivial C3-bundle whose fibers are isomorphic to H*(C',T). In particular, MY
is smooth and irreducible. The locally closed subvariety Mg of M can be identified with degree-(2k + 4)
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component Pic*™(Ca/A) of the relative Picard scheme of the family Ca/A of non-reduced curves. In
particular, Mg 18 smooth and irreducible.

Proof. The first step is to use [55, Lemma 3.3.3]. We include the details to set up the notation for the case
of Ng, i.e., when y is odd. Let £ be any sheaf with Fitting support equal to C. Suppose & sits in the
following exact sequence of O¢-modules:

0—-FEy—&—FE;—0

where E7 and Es are torsion free sheaves of rank one on C’. The spectral sequence for the change of
coefficients in the Ext groups [55, Cor.3.2.2] gives:

0 — Extbe (EB1, Es) — Exth(Er, Bs) > Homer (By ® T, By) — Ext2, (Ey, ). (30)

Let ¢ € Ethc(El,Eg) be the class of this extension. By [55, Lem 3.2.2], E; = & ®0, Oc (equivalently,
Ey, =7¢&) if and only if §(¢) : B4y ® T — Es is surjective. Since E; ® Z is torsion free, this is the case if and
only if §(¢) is an isomorphism, which means that Ey = F1 ® Z. Moreover, by [55, Prop 3.2.7] ¢ is surjective
if and only if F4 is locally free.

Now we consider the case of a stable sheave F with Fitting support equal to C' and even Euler charac-
teristic. Then by diagram (27) F is an extension of F' by F'®p Z. So we set F1 = F and Ey = F ®0 Z and
the exact sequence (30) becomes:

0 — Extb (F,F ® T) — ExtL(F, F ® T) > Home/ (F @ T, F @ T) = C.

We conclude that if F is a sheaf in M, then 4 is non zero, so it is surjective and hence F is locally
free. By using Lemma 3.3.1, F is locally free. Conversely, if F is locally free, then Extzc, (FLF®I) =
H?(C'",F¥®@F®TI) =0, so § is surjective and the isomorphism classes of Oc-modules realized as extensions
of F by F ®o,, I are parametrized by the affine space P(Exte(F, F @ T)) \ P(Exts, (F, F ® T)). Since F
is locally free, Exts (F, F @ T) = HY(C',T) = C3. If we set x(F) = 2k, by (27) we get x(F) = k + 1 and
deg(F) =k + 2.

Associating to each JF its restriction F' to the reduced underlying curve defines the morphism M# —
Pic*"2(C’). By the discussion above, the fibers are identified with the affine space P(Exty(F, F @ T)) \
P(Exts, (F, F @ I)) = HY(C',T). Another way of seeing that the fibers of the restriction morphism are
isomorphic to H'(C’,Z) is to consider the short exact sequence 0 — Z — OF — OfF, — 0 and the
corresponding sequence of first cohomology groups.

The last statement follows from the fact, proved above, that F is a locally free Og-module. O

Corollary 4.3.11. LetC' — |H| = A be the family of genus two curves. The kernel of the restriction morphism
Pich/A — Picg//A is an affine group scheme of relative dimension 3, which acts trivially on the points of
Mi and Ni.

Remark 4.3.12. The change of coeflicients exact sequence (30) for the Ext-groups with respect to the closed
embedding C’ C C, remains valid for the closed embedding C' C S, thus giving an inclusion Ext};(El, Es) C
EXtAlg(El, Es). We claim that this is in fact an isomorphism. Indeed, any extension as Og-modules of E; by
FE5 has Fitting support equal to C' and is automatically an O¢-module. Moreover, any such extension is an
extension of O¢-modules.

We now deal with sheaves F of type II with odd Euler characteristic x, i.e. with F € N . The goal is
to prove Proposition 4.3.16, the “y odd” analogue of Proposition 4.3.10.
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Consider a double curve C' € A. In analogy with the case of even Euler characteristic treated earlier,
in order to describe the open subvariety Ng C N¢ we wish to realize every F € Ng as an extension of
Oc-modules by two rank 1 torsion free Oc/-modules. By looking at (27) and (28), we see that any F € NZ
fits into a short exact sequence:

0O=-K—=>F—=F—=0, (31)
with
d:=deg(F) = XTH), deg(K)=d— 1. (32)

As a consequence of Proposition 4.3.8, for each F € N, we find a triple:
(p, F,K) € C'" x Jac'(C") x Jac?~1(C"). (33)

In the proof of Proposition 4.3.16 we will describe explicitly the set of triples occurring as above from a
stable sheaf F of type II and odd Euler characteristic.

We start with the following two lemmata, relating the regularity properties of F' with those of K, and
viceversa. These will only be relevant if the underlying reduced curve C” is singular, since otherwise F' and
K are clearly locally free.

Lemma 4.3.13. Let F € Ng be a stable sheaf of type II with odd Fuler characteristic supported on a curve
C =2C", and let (p, F, K) be the triple (33). If F, is free, then F is locally free on C' and K is locally free
on C"\ p.

Proof. From the first vertical sequence in (27) it follows that K and F are locally isomorphic away from p,
so it is enough to prove the statement involving F'. Suppose F' is locally free at p. Then Exté/(F ,T) =0 so
Fior 2 F @ Cp. Using (27) we get the following commutative diagram, with horizontal and vertical short
exact sequences:

0 FoI T If 0
0 FoT F F&Cp——>0

Cp G

where € := ker[F — C,]. Notice that £, which is a pure sheaf of type II, has even Euler characteristic. By
Lemma 4.3.7 it follows that I = & ¢r /Tors(cr). Using (29) we deduce that x(£) = x(F) —1 < 2x(F) and
hence, by Lemma 4.3.7, £ is stable. We may thus apply the arguments of the proof of Proposition 4.3.10 to
& and deduce that F' is locally free. O

By dualizing, we can reverse the role of F' and K.

Lemma 4.3.14. Let F and (p, F, K) be as in Lemma 4.5.13. If K,, is free, then K is locally free on C', and
F s locally free on C'\ p.
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Proof. The sheaf K is locally free at a point if and only if its dual KV := Home/ (K, O¢r) is locally free
at that point. It is therefore enough to prove the statement for K. Consider the short exact sequence
(31). Tt can be viewed both as sequence of pure O¢ and of Og-modules (cf. Remark 4.3.12). Applying
Homs(—,Os(—C")) and using Lemma 4.3.6 we get:

0 — Eats(F, Og(—C")) = Extg(F, 0s(—C")) — Extg(K,05(—C")) — 0,
where:
Exts(F,05(—C")) = Home: (F,Oc)) =: FY, Exts(K,05(—C") = Home (K,Oc/) := KV, (34)
and:
F' = Eatg(F, 0s(=C")) = Home(F, Oc) @os Os(=C"). (35)
Notice that F’ is a pure sheaf of type II, with odd Euler characteristic. By Lemma 4.3.7, up to multiplication

by a non-zero scalar, the morphism ' — KV is precisely the morphism F' — "C,/Tors( "C,). Using (32)
we find that:

Y(KY)=—=d, x(F¥)=—-d—1, x(F)=x(FY)+x(KY)=—-2d—-1,

so that we have:

X(F')
2

< X(KY),
and by Lemma 4.3.7, F' is stable. By Lemma 4.3.15 below, the triple associated with F’, is precisely
(p, KV, FY).

By applying Lemma 4.3.13 to this triple, we see that if KV is locally free at p, then it is locally free
everywhere. 0O

We remark that in the proof of the lemma above we showed that the sheaf 7’ defined in (35) is a stable
sheaf of type II on C' with odd Euler characteristics. The following lemma describes how the triple (33)
changes when passing from F to F'.

Lemma 4.3.15. Let F be as in Lemma /.5.15. Let F' = Exts(F,Os(—C")) be as in (35). Then the support
of T' := Tors(fl’c,) is the same as the support {p} of T = Tors(F\c). In particular, if (p, F, K) is the
triple (33) associated with F, then (p, KV, F") is the triple (35) associated with a sheaf F' in N& with
X(F') = —=2d(F) — 1.

Proof. We have already observed in the course of proving Lemma 4.3.14 that KV = .7-"|’C, /T and that
FY = ker[F" — KV]. Moreover, since F' is stable of odd Euler characteristic, by Proposition 4.3.8, T" is a
skyscraper sheaf supported at one point of C’. We need to show that Supp(T’) = {p}. To this aim, consider
the short exact sequences 0 - F®Z 3 K - T - 0and 0 - KV ®T % FV S T' =5 0 obtained by
considering the left most column of (27) for the sheaves F and F’. We will show that T" and 7" are supported
on the same point by showing that the morphisms a : F®Z — K and o’ ®id,,_, : K¥ — F¥ ®wcr are dual
to each other. Consider the short exact sequence:
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0— 0g(—=C") L Og = Ocr — 0, (36)
and its dual:
0= Og 1 05(C") = O (C) = wer — 0. (37)

Tensoring (36) by F we a morphism F ®pg Os(—C") — F which by (27) factors as follows:

idr®j
F @0y Og(~C") ™ L F (38)
ic bj\
F®IC - K
Similarly, we can tensor (36) by F’ and get a morphism F’' ®o, Og(—C’) — F’ which factors as:
idzr ®7F
F' ®os Os(-C") —— F' (39)
| d

KY®IC FY

We can also dualize (38) by first applying Ext!(—, Og(—C")) and then tensoring the resulting diagram by
the line bundle Og(—C"). Using (34) and (35) we find:

(idf®j)v®idos(fc"7):/

F' @0y Os(—=C")

bv@idos(c/)i j\CV@idOS(C/)

KY®IC FY

Voo
a ®“i(’)s(—c’)

(40)

Using (36) - (37) we see that (idr ® j)¥ @ idog(—cr) = idr @ j¥ Qidog(—cry = idp @ j. It follows that
diagrams (39) - (40) are two ways of factoring the same morphism into the product of three morphisms.
By the first part of Lemma 4.3.7, the surjective morphism 0¥ ® idpg(—cry : F' ®ogs Os(=C") = KV @1
coincides (up to a scalar) with the morphism ¢ of diagram (39). Since this morphism is surjective, and the
two morphism b’ and ¢V ® idpg(—cr) are injective, we may conclude that av ® idog(—cry = a’ and we are
done. O

We are now in the position to prove the “x odd” analogue of Proposition 4.3.10.

Proposition 4.3.16. (The case of y odd: the structure of N}/ and N¥). Let C = 2C' € A C B. The fiber
Ng is irreducible. More precisely, the reduced underlying variety (Né’)red is an affine bundle of rank 2 over
a 3-dimensional irreducible locally closed subvariety Z C C' x Jac*(C") x Jac® ' (C") parametrizing triples
(p, F, K) that arise from F € N& as in (33). The fiber of this bundle over a point (p, F, K) is given by:

P Exty (F, K) \ P Exté (F, K), (41)

which is isomorphic to C2. Here, the inclusion Exts, (F, K) C Exty(F, K) inducing (41) is given as in (30)
by the change of coefficients exact sequence.
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Proof. By (27), every F € N¥ is obtained as an extension of F by K, so F determines an element in
Exts (F, K). Conversely, the extensions in Extg (F, K) \ Extg, (F, K) (cf. (30)) correspond to stable sheaves
of type II on C with odd Euler characteristics. We now show that Ng , with its reduced induced structure,
is a fibration in affine spaces P Exté (F,K)\P Extlc, (F, K) over an irreducible variety Z parametrizing the
set of possible F' and K.

To see this, we start by computing Extf (F, K) and Extg, (F, K). By Remark 4.3.12, Exty(F, K) =
Extk(F, K). The computations of both of these ext groups depend on the singularities of C’, as well as
on the local behavior of F' and K at p € C’, or at any other singular point of C’. In Lemmata 4.3.13 and
4.3.14, we ruled out some possibilities for the local behavior of the triples arising from a sheaf 7 € NF. In
the proof of this proposition we will rule out one further case. We say that F' (or K) is singular at a point
p € C"if F (respectively, K) is not locally free at p. We denote by Sing(F) C C’ the locus of points where
F is singular, and similarly for K. Throughout, we will use the following fundamental short exact sequence
from (27)

0= F®LI—-K-—>C,—0, (42)

relating F, K, and p, where Z = wy,. Notice that (42) implies that F' and K are locally isomorphic away
from p. Using Lemma 4.3.3 we have the following relations between F' and K in terms of their local behavior
at p. Clearly, if F and K are both locally free, then p has to be a smooth point of C’ and we find:

K=2F®I®O0c(p). (43)
If F' is locally free, but K, is not free, then K is uniquely determined:
K=F®Iom,). (44)
If K is locally free, but Fj, is not free we find:
F2XK®I'®@m,. (45)

If this is the case, then K is not uniquely determined by F' and p. Indeed, by (2) Lemma 4.3.3, there is

whole P! =P Extl((Cp, F ®7) of possible (not mutually isomorphic) K fitting in a short exact sequence as

n (42). The locally free K correspond to open subsets C* C P!, if p is a node, or C C P!, if p is a cusp.
Finally, if neither F},, nor K, are free, then we can write

K =n.G, F=n.L, withG=_L®n"T®0g(p), (46)

and where n : C' — C' is the normalization of C’ at Sing(F) = Sing(K), where L and G are locally free
on C’, and p € n~!(p) C C". In the course of the proof we will show that this last case does not occur if F,
K, and p arise from a stable sheaf of type II.

Lemma 4.3.17. Let F, K and p be as in (33). Then

C? if F or K are locally free on C'\ p

Ext:(F,K) =
xts(F, K) {(C4 otherwise

Proof. The Euler pairing (cf. [39, 6.1.5]) and Serre duality on S yield:

X(F, K) : = dim Homg(F, K) — dim Ext§(F, K) + dim Homg(K, F)
(47)
= —u(F) - v(K)=-C"=-2.
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By (32), deg F = deg K + 1, so Homg(F, K) = Home- (F, K) = 0. To prove the Lemma it is thus enough
to show that dimHome/ (K, F) = 1 if F or K are locally free away from p and dim Home: (K, F) = 2
otherwise. This is done using the expressions of equations (43), (44), (45), and (46). For example, if F is
locally free, then by (43) and (44), we have

Home/ (K, F) = Homer(F @ Z®@my), F) = H(C',.IV @ m,) = C.

A similar computation (using (45)) holds if K is locally free, but F), is not free. If neither F, nor K, are
free, then using (46) and Lemma 4.3.5 we have

Home (K, F) = Homg (L @ n*T © O (p), L) = H(C",n*T" @ Og(—p)).

It follows that if C7 is a curve of arithmetic genus 1 (i.e., F and K are locally free on C'\ p), then
H(C",n*IY ® Og (—p)) = 1, while if C" is a smooth rational curve, then H(C",n*I¥ ® Oz (—p)) =2. O

Lemma 4.3.18. Let F, K and p as in (33). Then

C? if F or K is locally free
Exté (F,K) ={ C® if Sing(F) = Sing(K) = {p}
c* otherwise

Proof. We use the local to global spectral sequence, which yields the long exact sequence
0 — HY(C',Home (F, K)) — Ext (F, K) — HY(C', Exty (F, K)) — H*(C', Home (F,K)) = 0. (48)

We thus have to compute H'(C’, Hom(F, K)) and H°(C’, Extl, (F, K)). Using (43), (44), (45), and (46) we
see that

T® m;,/ if F), or K, is free

Hom(F,K) = { Ny (n*I ® 0(7' (D)) otherwise.

This immediately implies that H'(C’,Hom(F,K)) = H'(C",T @ m)) = C? if F}, or K, is free; that
HY(C', Hom(F, K)) = HY(C",n*T ® Og(p)) = C if Sing(F) = Sing(K) = {p} so C’ is of arithmetic genus
1; and finally that H'(C', Hom(F, K)) = Hl(é\’,n*l’@) Oz (p)) = 0 if #Sing(F) = #Sing(K) = 2 so that
C’ is a smooth rational curve. To compute HO(C', Extl, (F, K)) we use Lemma 4.3.4 to find:

Eate(FK)= P Exty, (Fo,K,)~ @ C° (49)
z€Sing(F) z€Sing(F)

Putting everything together yields the proof of the Lemma. O

As a consequence of these two lemmas we see that the inclusion Ext¢, (F, K) € Exti(F, K) of Re-
mark 4.3.12 is proper, i.e., there is a sheaf of type IT on C’ that is an extension of K by F' if and only if F'
and K are locally free C’ \ p and at most one is not locally free at p. When this is the case, then

dim Exts, (F, K) =2, dimExt(F, K) = 3. (50)
Now let

Z C C' x Jact(C') x Jac?1(C")
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be the set of such triples. The discussion above shows that Z is contained in the open set U C C’ x
Jact(C") x Jac?(C") consisting of points such that F and K are locally free C’\ p and at most one is not
locally free at p. More precisely, we claim that Z is the intersection of U with the graph I'y of the rational
map

C’ x Jacl(C") BA Jact= (")
(p,F)— FRI®m,).

Indeed, the fiber of the projection I' — C’ x Jac?(C") consists of: the sheaf F®Z®m, over the locus where
F is locally free at p; the isomorphism classes of extensions P! = P Extlc,((Cp, F ®1T) over the points where
p € Sing(F) (cf. Lemma 4.3.3). It follows from (43), (44), (45), and from the remarks shortly thereafter,
that Z =T NU. In particular, Z is an irreducible variety of dimension 3.

We are left with showing that the reduced fiber (Ng )red 18 & 2-dimensional affine bundle over Z, with fiber
P Ext(F, K)\P Ext&, (F, K) over a point (p, F, K). To see this, first note that if Fyy is flat family of sheaves
in N¥ parametrized by a reduced scheme W, then we can preform the construction of Proposition 4.3.8 in
families to get W-flat families Fyy and Ky, of rank 1 torsion free sheaves of degree d and d— 1, respectively,
as well as a flat family of degree one skyscraper sheaves Ty,. By the universal property of compactified
Jacobians, these families induce a regular morphism W — C’ x Jac?(C') x Jac?™(C") whose image is
contained in Z. Now choose as W the preimage of Ng in the appropriate Quot scheme, taken with its
reduced induced structure. Then W is such that its quotient by the group action on the Quot scheme is
exactly (N&),ea (cf. [57, (3) p. 29]). The equivariant morphism W — Z factors via the quotient morphism
W — (N¥)req and induces a surjective morphism (N&),eq — Z. By (50), the fibers of this morphism are
affine 2-dimensional spaces.

This ends the proof of Proposition 4.3.16. O

Remark 4.3.19. By [16, Lem. 4.12], the varieties N and NX are non-reduced.
4.4. The top degree direct image sheaves R'© and the local systems &

The purpose of this section is to prove Proposition 4.4.3 which describes the restriction of the sheaves
R%7,Q and R'%n,Q to the locally closed subvarieties B\ ¥, ¥\ A and A of B. The proof of the proposition
uses: the analysis of the irreducible components of the restrictions of M ,M and N to the loci B\ ¥, X\ A
and A and of the corresponding fibers (Proposition 4.2.4); some basic properties of the trace morphism and
of the direct image sheaf in top degree, as summarized in Fact 4.4.1; the general topological Lemma 4.4.2.

Fact 4.4.1. (Trace morphism and direct image in top degree) In this section, we need the following three
sets of facts:

1. The basic properties of the trace morphism Try : R* fiQx(d) — Qr, for a flat morphism f: X — T
of relative dimension d. See [1], especially Exp. XVIII, Théoréme 2.9 (functoriality and compatibility
properties), and Remarque 2.10.1 (the trace morphism is an isomorphism if and only if all the fibers of
f have a unique irreducible component of dimension d).

2. If a flat morphism f : X — T of relative dimension d has reduced fibers, then the sheaf R??f,Qx(d) is
the Q7-linearization of the sheaf of sets of irreducible components of the fibers of f; see [14, Proposition
7.3.2].

3. Let f: X — T be a projective morphism of pure relative dimension d and with irreducible fibers. Let
L% : Qx — Qx[2d] be the morphism induced by the d-th power of the first Chern class of an f-ample
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line bundle L on X. In view of the irreducibility of the fibers, by pushing forward, we get an isomorphism
Lt Qr = def*QX-

Moreover, if U C X is a Zariski open subset intersecting every fiber of f and fy : U — T is the
restriction of f then R* fi1Qx ~ R*f.Qx ~ Qr. In fact, by denoting by fx\y : X \ U — T the
restriction of f, the statement follows from the exact sequence:

R24j,
R f\ . Qx\v =0 — R* f,,Qu — R¥YfQx — 0=R*fv\.1.Qx\v,
where the vanishing statements hold since the fibers of fx\y have at most dimension d — 1.

Lemma 4.4.2. Let X be a variety of pure dimension d+n, let T be a normal irreducible variety of dimension
n and let f: X — T be a projective surjective morphism.

Let ) =XoC X1 CXoC - C X1 C Xy, = X be a filtration of X by closed subvarieties such that,
for0<i<m:

1. Every fiber of the restriction f2: X;\ X;—1 — T of f has dimension d,
2. R2d ’iO!QXi\Xi—l ~ QT.

Then the direct image sheaf in top degree R**f,Qx is the trivial local system of rank m.

Proof. Without loss of generality, we may assume that the X; are reduced. Let f; : X; — T be the restriction

of f.
Claim. The sheaves R*?f,Qx, are local systems of rank i.

We now prove the CLAIM by induction on i. Let ¢ : X;_1 — X; + X; \ X;-1 : j be the closed and
open complementary embeddings. By applying Rf; to the short exact sequence 0 — jiQx,\x, , = Qx, —
1+Qx,_, = 0, we get the following long exact sequence:

2d

R
R 1,Qx, , — R*fiQx,\x,, —> R*fi.Qx, — R*fi_1.Qx,_, —= 0. (51)

By (2), we have that R?*f}Qx,\x, , ~ Q7. By the induction hypothesis, we have that R**f;_1,Qx, , ~
Qép_l. It follows that, if R2?j, is an injective morphism of constructible sheaves, then R?f;,Qx, is a rank
1 local system. In this case, the CLAIM would follow.

Since R4 f5Q X,\X;_, is a local system it suffices to check the desired injectivity on a non-empty open
subset of the irreducible base T'. Shrinking T if necessary, we may assume that X, 1 and X; are flat
over T in this case it makes sense to consider the trace morphisms Tryo - R 1Q X\X;.; — Qr and
Try, : R*f;.Qx, — Q. By [1], Exp. XVIII, Théoréme 2.9 (basic functoriality and compatibility properties),
we have Tryo = Try, o R?%j,. Moreover R?*? iO!Qxi\Xi_l ~ Q7 implies, by base change, that every fiber of
/9 has a unique irreducible component of top dimension d. By [1, Exp. XVIII, Remarque 2.10.1], the trace
morphism Tr o is an isomorphism. We conclude, in particular, that the morphism R?%j, must be injective.
The CLAIM is proved.

The conclusion follows from the fact that the morphism Tr;lgl o Try, splits the short exact sequence
stemming from (51). O

Proposition 4.4.3. (The direct image sheaves in top degree) Let R}? := R'“m,Q, R}\ﬂg = R, Q, and
RY := R, Q. Then we have canonical isomorphisms of constructible sheaves:
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R}\?[\B\A ~Qpys, R}\E}‘A ~ iQ; (52)
10 ~ 10 ~ 052 10 &4

RM|B\2 ~Qp\s, RM|Z\A =~ Quas R]V[\A ~ Q4%

R}\/Q\B\E ~ Qp\x R}\(/)\Z\A ~ Qs\a © Zo\a, R}\Q\A ~ Q%%

where £ is the rank one local system on 3\ A corresponding to the Z /2Z-module of character —1 via the
isomorphism m (X \ A) ~ Z/2Z.

Proof. For ease of notation: if W is a variety, ¢ : W — B is a morphism and Z C B is a subvariety, then
we set Wy := ¢ 1(Z) and R}} := R"¢Qw .

The statements in the first column of (52) follow from the fact that the morphisms in question are flat of
relative dimension five with integral fibers over the indicated loci; see Remark 3.2.6 and Proposition 4.2.2.

Proof that R}«MQ‘Z\A ~ ng A+ Recall from Lemma 4.1.3 and proper base change that

(Rb*QM)\Mz\A = ’]%ME\A D Q(Sysz,)Z\A [_2}' (53)

By [47], the singularities of Mx\a are of type A; quotient singularities, so that we have S € ar,,, , = Qg o
(cf. [31]). Pushing forward (53) via the proper morphism m : Ms\a — X\ A we get:

Rin Qg , = B Bb.Qy_ | = Rm.Qusy, s ® RP2Qsymearya s [-2)

and thus:

Rloﬁl*Qﬂz\A = R""m.Qup, . RgpiQSmeM’Z\A~
By using Fact 4.4.1.(2) and the irreducibility of the five dimensional M, (cf. Proposition 4.2.2) and of the
four dimensional M; (cf. Remark 4.1.2), we see that R'9m.Qus,, , = Qu\a(—5) and RszQSysz,E\A &
Qs\a(—4) and we are done.

Proof that R}\?E\A ~ Qu\a © L\a- The variety Ny is irreducible (cf. [64, Proof of Prop 1.3]), the
morphism Nyya — X\ A is flat, with each of its fibers are reduced and with two irreducible components (cf.
Proposition 4.2.2). The sheaf R]l\(,]z\A is the Q-linearization of the sheaf of sets J of irreducible components
of Nsza/(X\ A). Let V. C Nsy\a be the locus parameterizing line bundles. By Proposition 4.2.2 and its
proof we have that: the morphism V' — ¥\ A is surjective and smooth; V' is dense in each fiber Ny; V}, has
two connected components. It follows that the sheaf of sets J is locally constant, with stalks of cardinality
two. We now examine the monodromy of J and relate it to that of the broken curves. Let b € ¥\ A.
The corresponding curve C, = Ci1p + Cap € |2H| has two irreducible components. The two connected
components of V, parameterize line bundles of bi-degree (2,3) and (3,2) (cf. Lemma 3.3.2). Since ¥ \ A is
nonsingular and connected, the monodromy can be detected on a Zariski dense open subset U C ¥\ A.
We take U := Sym?B’®, where B'° C B’ = |H| is the locus of nonsingular curves. It is clear that looping
in U around the diagonal exchanges the two components of Cy, the same way in which the two lines of the
corresponding broken conic are. It follows that the bidegrees are swapped as well. The desired conclusion
follows.

Proof of the remaining isomorphisms. We now focus on the third column, of (52), i.e. on the situation
over A. By proper base change we need to show that: (a) Rpj, ~ Q3; (b) le\ﬂgA ~ Q}; (c) Ry, ~ Q3.
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We are going to use Lemma 4.4.2 with filtrations of length two in cases (a) and (c) and of length four in
case (b).

We first deal with cases (a) and (c). In case (a) and (c), we choose the first space X; of the filtration
to be the locus of rank two semistable sheaves (cf. Proposition 4.3.1), i.e. in case (a), we set X := M},
in case (c), we set X; := N.. By Proposition 4.3.1, M4 and N} are projective over A with 5-dimensional
irreducible fibers. By Fact 4.4.1.(3), we have that R]l\f)[, ~Qa =~ R]l\?i. Note that with our choice of Xy, we
have that X5 \ X; is, M{ in case (a), N¥ in case (¢). By Proposition 4.2.4 (the irreducibility of the fibers
of M , and NZ,), and by Fact 4.4.1.(1), we are thus in the position of applying Lemma 4.4.2 and reach the
desired conclusion in cases (a) and (c).

In order to prove (b) via an application of Lemma 4.4.2, we consider the following increasing filtration
of M. A into closed subvarieties:

X, :=FELCXy:=FEx C X3:=b""(ML) C X4 :=Ma. (54)

Recall Proposition 4.2.1 and the subvarieties Ex = E4 [[ EX defined in (24). By using that b is an isomor-
phism away from the center Sym?M’ of the blow up, the successive differences are seen to be as follows:

Xo\ X1 =E¥, X3\ Xy =ML\ SymiM', X,\Xz=MIL (55)

As shown in Proposition 4.2.1, the projective variety X; = EX has irreducible fibers of dimension 5 over A:
by Fact 4.4.1.(3) we get REI ~ QAa.

By Proposition 4.2.1, the variety X \ X7 = Eg is flat surjective over A with irreducible fibers. By
Fact 4.4.1.(1), we get that REH\EI ~ QAa.

By Remark 4.1.2, the fibers of M L and of X3\ X, over the points of A are non empty and irreducible
of dimension five. By Fact 4.4.1.(3), we conclude that RM, 1\(Sym? M) Qa.

The morphism Ma — A is flat, so that its restriction to the open subset Mg C Ma is also flat. By
Proposition 4.2.4, the fibers of M& — A are irreducible of dimension five. By Fact 4.4.1.(1), we have that
le\f} 1 =~ Qa. We conclude that (b) holds in view of Lemma 4.4.2. O
Remark 4.4.4. (Properties of .Z in (52)) We record the following elementary properties of .. Let T be
an irreducible normal variety of positive dimension, let %; be the rank one local system on Sym?*T \ Ap
corresponding to the Z/27 module of character —1 via the epimorphism 7 (Sym®T \ Ar) — Z/2Z. Let
j : U — Sym?T \ Ar be any open immersion with U # (), and let i : Sym*T \ Ay — Sym?T be the
evident open immersion. Let v : T — T” be a non constant morphism of irreducible normal varieties.
Let «® : Sym?T — Sym?7” and u @/ : Sym?T \ u® (AT/) — Sym?T" \ Ars be the resulting evident
morphisms. Then:

1. i.¢ =iv.% = Ri.% = Ri,.%;
2. uJ° L = 2
1%
3. gT‘SymZT\U(Q)_l(AT) = U(2) XT"

As to (1): the first = is because there are no local invariants around the diagonal; the second = is because
i is an open immersion; the third equality follows from Verdier duality and the self-duality of .Z. As to (2):
in view of the normality assumption, it is valid for any local system, due to the surjection of fundamental
groups 71 (U, u) — m1(Sym?T \ Az). As to (3): this is because the natural surjection of fundamental groups
above for T factors through the one for T".

Finally, for every integer 0 € Z, when T is irreducible nonsingular, the local system . underlies a unique
structure of polarizable pure Hodge-Tate variation of Hodge structures of type (9,0); see §2.1.
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5. The Ngo strings of several Lagrangian fibrations

The aim of this section is to determine the Ngo strings (cf. Definition A.0.4) of the two Lagrangian
fibrations M ,IN — B as well as of several other auxiliary fibrations. In §5.1 we introduce the Ng6 strings
that will appear in the Decomposition Theorem for M — Band N — B. Then in §5.2 and §5.3 we determine
the Decomposition Theorem for the two universal families of curves of the linear systems |H| and |2H| on
the K3 surface. To prove Theorems A, B, and B/, we need to compute the cohomology of the Ngd strings
appearing the Decomposition Theorem for M ,N — B. We do by realizing them as direct summands of the
Decomposition theorem for other Lagrangian fibrations whose cohomology is known. This is done in this
in §5.4, §5.5, and §5.6. Finally, in §5.7 we prove that the Ngd strings (60) are precisely those appearing in
Decomposition Theorem for the two Lagrangian fibrations. This builds on §5.2 and §5.3.

All decomposition-type results that follow take place in the categories D*MH Mai4(—) and have an
evident counterpart (turn off the Tate shifts) in the corresponding categories D°(—, Q) via the functor rat.
We only state the stronger result in D" M H M,(—).

5.1. Some relevant strings

Let u : € — % be a family of nonsingular projective, not necessarily connected, curves of genus g. Let
v: P — A be the relative Pic% /8- We consider the higher direct image sheaves A% = R*v.Q 4, with
e € [0,2¢]; these are polarizable variations of pure Hodge structures of weight e. By taking into account
Tate twists, we have natural isomorphisms:

R'u,Q¢ = R'0.Qu; A% = A*R'uQe, A% = A% (e). (56)

We come back to our families of curves ¢’ — B’ and C — B over the linear systems B’ = |H| and
B = |2H|. By restricting these two families over the respective sets of regular values B’° and B°, we obtain
families of type u as above, of genus 2 and 5 respectively, and with connected fibers. By first restricting the
family of curves C — B over ¥° := Sym?B’’ \ Ap/, and then by normalizing the total space of the resulting
family, we obtain a family of type u as above, with connected total space, but with disconnected fibers given
by the disjoint union of two curves of genus 2. We thus have (cf. (20)):

Cpo — B, (Clyro = B'°) = (Cho — A°), Cso — 2°, (57)

{A.B = A.BO 10:07 {A.A = A.B/"}:L:m {A.E = A%“ §:O7
where we have dropped some decorations. We also have the following epimorphisms of groups schemes:

P‘Bo ; PngBD/Bo P\/B’D ; Png/AO/Ao, Iglzo —> Png/E\O/EO, (58)
that fiber-by-fiber realize the Chevalley devissages into affine and Abelian parts of the fibers of the corre-
sponding group schemes P, P’, and P again, respectively

Recall that % in §4.4 is a local system on ¥\ A, and that this latter contains ¥°. Let £ := Zs.. Then
we have:

iE"*DE/pO = /"Z\A*g = iE\A!$7 (59)
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where the last equality, is due to the fact that the local monodromy of £ around the diagonal is given by
multiplication by —1.

We introduce the following complexes, viewable in D®M H Mg,(—) or in D¥(—,Q), and we simply call
them strings —we reserve the term Ngb strings for those strings that actually appear in the Decomposition
Theorems A.0.3 and A.0.4:

10 4
Iy =@ IR, Sa= @ IR,
b=0 b=0
: : (60)
S =D IE(AL)[-0), Sy =P I (A @ 2°)[-b],
b=0 b=0

where .Z is described in Proposition 4.4.3. They are all subject to the Relative Hard Lefschetz theorem,
which here boils down to:

A3~ A (o), AL = AP (o), &)
AGT = AG (), AT @27 = AT ®.20(e)

Remark 5.1.1. In the sequel of the paper, we show that the first two and last two summand in each of the
strings in (60) are, when viewed in D®(B, Q), shifted sheaves; see (70), (72) and (78).

Remark 5.1.2. The local systems of type A are endowed with the structure of polarizable variations of pure
Hodge structures they acquire as direct image sheaves. We have the following relations between rational
graded polarizable pure Hodge structures:

H*(N) = H* (SB); see Lemma 3.2.7.

H*(M') = H* (S®) = H*(#A); see Lemmata 3.2.7 and 5.4.1.

H* (Sym2M/) = H*(SF); see Proposition 5.6.1.

H* M’2> = H*(S7)%%? = H* (A7) & H* (S ); see Lemma 5.5.1 and Proposition 5.6.1.
By the forthcoming Proposition 5.7.2, and by Lemma 4.1.3, we have:

G e

H*(M)DIH*(M)2 H*(5) C H*(N). (62)
5.2. The Decomposition Theorem for the genus two universal curve C' — B’

The complete linear system B’ = |H| ~ P? of our genus two curve C on K3 is two dimensional and we
have the universal curve morphism:

v :C” = B2 =|C|. (63)
The total space C’ is nonsingular and three dimensional. The fibers of 4/ are all integral curves. Let B’ C B’
be the open subset of regular values of 4/, and let ig/o : B’ — B’ be the resulting open embedding. Let

R}, be local system restriction of R'y,Q to B’ it coincides with AL := AL, := AL, in (57).

Lemma 5.2.1. (Decomposition Theorem for Ry, Q¢/) The Decomposition Theorem for the direct image com-
plex Rv.Q takes the following form:

RY. Q¢ ~ Qpr @i Ap[—1] & Qp/[-2](-1). (64)
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Proof. For reasons of bookkeeping, we find it more natural to prove the equivalent statement:

Ry, Qe (3] =~ Qp[2][1] @ . AX[2][0] ® Qp[2][-1](-1), (65)

where the summands appear with increasing perverse degree —1,0, 1.
The following is standard (cf. [19, Theorem 1.5.3 and Fact 4.5.4]: the following summands appear in the
Decomposition Theorem for Ry, Q¢ [3]:

Qp[2)[1] ® ICH (Ap)[0] © Qp[2)[-1](-1).
Since the fibers of 4’ are irreducible, we have that Ry, Q = Qp-, hence:
ICE (AB)[0] = ipro, AR [2]. (66)

If in (65) there were other summands than these three above, then, by the Relative Hard Lefschetz symme-
tries, they would need to be in perverse degree zero: else, they would contribute nontrivially to R7v.Q = 0
for some j > 3, a contradiction (the fibers of v are curves).

If there were other summands in perverse degree zero, then they would be of the form I° @ I', where
the exponent refers to the dimension of the support of the intersection complex. An I would contribute
non trivially to R3y.Q = 0, a contradiction. An I* would be a sheaf placed in cohomological degree —1,

and it would thus contribute non trivially to R?v.Q. Since we know that this latter is Qs and is already
accounted for by the summand Qp/[2][—1](—1) on the rhs of (65), we get a contradiction. O

5.83. The Decomposition Theorem for the genus five universal curve C — B

The complete linear system |2C| is five dimensional so that we have the associated universal family of
curves:

v:C% = B®=2C|.

The total space C is nonsingular and six dimensional. The fibers of v are integral curves away from the
integral divisor ¥ := Sym?B’ C B. Let A C ¥ be the diagonal. The fibers of v over ¥ \ A are reduced
and are the union of two irreducible components. The two irreducible components of a fiber over the locus
¥° := Sym>B’° \ A are exchanged by the monodromy action around the diagonal. Let £ be the evident
rank one local system on ¥\ A with monodromy —1 around A (cf. §4.4). We view it as a polarizable
variation of pure Hodge structures of Hodge-Tate type, and of weight zero on ¥\ A. We have:

(R*7,.Qc)sma = (Qs\a @ 2) (—1). (67)

The fibers of v over A are irreducible non-reduced: they are two times a curve in |C| (recall that on our K3
surface S all curves in |C] are integral).

Let B° C B be the open subset of regular values of 7. Let R} be the local system restriction of R'v.Q
to B°; it coincides with AL in (57). Let igo : B — B be the evident open immersion.

Lemma 5.3.1. (Decomposition Theorem for R~,.Q¢) The Decomposition Theorem for Rv.Q takes the fol-
lowing form:

RY.Qc ~ Qp & (ipo Ap[—1] ® is\a,Z[-2](—1)) ® Qp[—2](-1). (68)
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Proof. We prove the equivalent:

R, Qc[6] ~ Qp[5][1] & (ipo.Ap[5] @ is\a L[4)(—1)) [0] & Qp[5][-1](—1), (69)

where the summands are grouped by perversity (—1,0,1).
By looking at the regular part of v, we deduce that the following summands appear in the Decomposition
Theorem for R~,Q¢[6]:

Qs[5][1] & ICE(Ap)[0] & Qp[5][-1](-1).

By the Relative Hard Lefschetz symmetries, any additional summand would need to be in perverse degree
zero: else, they would contribute nontrivially to R7+,Q = 0 for some j > 3, a contradiction (the fibers of
are curves).

The direct summand contribution of ICp(A}L)[0] to R?7.Q is the sheaf H~=*(ICp(AL.)). By the condition
of support for intersection complexes, this sheaf is supported in dimension < 3. Recall that the curves over
the points of the four dimensional 3° have two irreducible components. It follows that there must be a
contribution of ¥, to the Lh.s. of (69), of the form ICx(£)[0], where £ is some rank one local system on
some open dense subset ¥’ of X. Since it contributes to R%7,Q, as a polarizable variation of pure Hodge
structures, the local systems £ are necessarily of pure Hodge-Tate type with weight 2. The intersection
complex ICx(£) has non zero cohomology sheaves in degrees contained in the interval [—4, —1], where
isy : X — B is the evident locally closed embedding. The sheaf H~4(ICx(£)) contributes to R%v,Q. The
remaining cohomology sheaves in degrees in the interval [—3,—1] contribute to R77,Q for j > 3, and
are thus zero. It follows that ICx(£) is the sheaf iy, £ placed in degree —4. The local system £ agrees
with £ where it is defined. Since the two local systems are both of rank one and of Hodge-Tate type,
it follows that £ = .Z(—1), where they are both defined. It follows that ix/, £ = ix\a Z(—1), so that
ICs (L) = is\a, ZL4](-1).

Note that the stalks of R27,Q on A are one dimensional. Note also that is\a,L = is\a,L has zero stalks
on A (no local invariants near the diagonal).

By inspecting the cohomology sheaves of ICp(AL), we deduce that this perverse sheaf is a sheaf placed
in degree —5, hence of the predicated form:

ICB(AY) = igo, Ab.[4] (equivalently, € 5(AL) =ip., AL). O (70)
5.4. The Ngo strings for the Lagrangian fibration p : M’ — B’

Recall that M’ is a four-dimensional moduli space which admits the Lagrangian fibration p : M’ — B’
(19), that we have the local systems of type A (19), the strings (60) and the isomorphisms (61).

Lemma 5.4.1. (Ngo strings for p : M’ — B’) The Decomposition Theorem for p: M' — B’ has the following
form:

Rp.Qu ~ S = Qo @ EP 765 (AY) -0 P Qp [-4](-2), (71)

b=1

where, moreover, the following intersection cohomology complex is a sheaf:

, 11
]%B’(Azil) — ZB"’*R(I:” (—5 :F 5) . (72)
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Proof. By Proposition 3.4.6, the morphism p : M’ — B’ is part of a d-regular weak Abelian fibration. We
can thus apply Theorem A.0.3, so that, in view of the fact that the fibers of p are irreducible (they are the
compactified Jacobians of the integral locally planar curves in B’ [65]), we have that the Decomposition
Theorem has the desired form (71).

Since the general fiber of the group scheme Pic(c), /p 1s the Jacobian of a nonsingular curve of genus two,
by (61) A} ~ A% (1), so that in order to prove (72) it is enough to prove that:

IE€p (Ap) =ipo. (R'Y.Qc)pre)
which follows from (66) and the fact, already observed at the beginning of §5.2, that A} = (R'4,Q¢/)|pro. O
5.5. The Ngé strings for the Lagrangian fibration p?> : M’ x M' — B’ x B’

Let M’ be as in the beginning of §5.4. Given a product with the projections onto the factors, the box
product is the ordinary tensor product of the pull-backs via the projections. We consider the Lagrangian
fibration p? =p x p: M’ x M’ — B’ x B’. Recall (19) that for simplicity, we are denoting A%, , simply by
A% . We denote by A%, A the analogous local systems on B’ x B’ associated with P’ x P" — B’ x B’.

Lemma 5.5.1. The Decomposition Theorem for p? has the following form:

Rp2Q o xnr ~SA R S

8
=P P (f%B/ (AR IC s (AZ')) (=] 73
b=0 b'+b""=b ( )

8
=P I Cpxn (Maxa)l-b.
b=0

Moreover, the following summands are sheaves:

IC s (Nasia)2£2) = Qpxpr, (74)
2 2
ICp (NaA) = @D} I C s (ML) (3 +3) = @ pr)ine. Ay (3+3). (75)
Jj=1 j=1

Proof. For reasons of bookkeeping, we prove the theorem for the shifted Rp?Q asxar [8].

The projections pr; : B’ x B’ are smooth of relative dimension 2, so that the functors pr; [2] preserve
pure Hodge complexes and intersection complexes (the coefficients are the pulled-back coefficients). The
desired conclusions (73) follow by: taking Lemma 5.4.1; applying the Kiinneth formula keeping track of
the perversities; organizing the summands. The identities (74) follow from the isomorphisms AR, , =~
A% A(4) = Qproxpre (use (61) and the irreducibility of the fibers) and the fact that B’ x B’ is nonsingular.
The identities (75) follow from the natural isomorphism (61) A\ A ~ A%, A(3) (the general fiber of the
group scheme is the product of the Jacobians of two nonsingular projective curves of genus two), as well
as (66), with the shift changed from [2] to [4] to take into account that we are pulling back along smooth
morphisms, the projections, of relative dimension 2. 0O

5.6. The Ngé strings for the Lagrangian fibration p® : Sym*M’ — Sym?B’
The morphism M’? : M'? — B’? is equivariant for the action of the symmetric group in two letters, so

that it induces the natural morphism p® : Sym?M’ — Sym?B’ on the two-fold symmetric products. We
have the commutative diagram:
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2

M' x M —~ B'x B' (76)

MR

Sym?M’ LA Sym?B’.

Recall that we have the local systems A% (57) and £° (59) defined on ¥° = Sym®B’° \ Ap/ and the
strings .2 defined in (60).

Proposition 5.6.1. The Decomposition Theorems for the morphisms ¢ and p® take the following form:
Re.Quixnr =% © %5 RpP Qaymeny = S (77)
Moreover, we have that the following terms are sheaves:

ICs(AEEY) = Qx(2 £ 2), ICs(AFE @ L°) = iso, Lp (2 £ 2) = ixe, L (2 £ 2),

(78)
ICs (AF?) =iso A (3£3), IC(AF?®.2°) =iso, (A ®.2°) (3£3).

Proof. Denote by %y the rank one local system on Sym?M’\ Ap, with monodromy —1 around the
diagonal; it is pure of Hodge-Tate type, with weight zero. We have Ra.Qnrrx v = axQurrscnrr = Qgym2 e &
(isym2Mn\A,, )«-Zar - It follows that:

RC*QM’XM’ = Rp>(k2)QSym2M’ D Rp>(’<2)iSym2M’\AM/*°2ﬂM/' (79)

By the functoriality of the direct image, the fact that b is finite and (73), we have Rec. Qs =~
Rb.Rp2Qurrxar = biu(FPA B .ZA). Note that A, being the direct sum of shifted intersection complexes
supported exactly on B’, is determined, via the intermediate extension functor, by its restriction to any
dense open subset of B’. The analogous fact remains true for .#A X .#A on B’ x B’. It follows that the
analogous fact remains true for b, (A X .Sp) ~ RpSKQ)QSysz/ @ Rpg)isysz/\AM,*ng on Sym?B’: in
fact, the morphism b being finite and surjective, the direct image b, sends intersection complexes supported
exactly on B’2 to ones supported exactly on Sym?B’.

It is thus enough to verify the desired assertions (77) concerning (79) on any Zariski-dense open subset
U of Sym?B’. On any such open subset U, (79) takes the form:

(Rp5k2)QSym2M’> v @ (RpiQ)iSmeM’\AM/ *gM') v (80)

We set U := %° := Sym?B’° \ Apso. In view of Remark 4.4.4.(3), recalling that .# is defined on

Sym?B’ \ Aps, and that Lp = p(2)*,,2”, and by using the projection formula, we have that (80) reads as
follows:

(RPiQ)stmQM/)lzo ® <(Rp£2)QSysz’) . ® =-2”|20> ) (81)

=
The proper morphism p(®) is smooth over ¥, so that, by Deligne’s theorem [19, Theorem 1.5.3], i.e. the
Decomposition Theorem for proper smooth morphisms, we have that:

8

(Rpg)QSmeM/)lEO ~ @ (R°p§<2)QSym2M') - [—e] (82)

=0
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Now, the rhs of (82) coincides with 7 ¢ this follows from the fact that the morphism (p?)z0 is a
torsor for the group scheme (58) (Picg; /EO). This can also be seen to follow directly from the Ngo String
Theorem A.0.3.

We have thus proved (77).

All the summands in .} and .%; have been shown to be direct summands of terms of the form
b IC Broxpro(AN, o). Since the direct image functor b, sends sheaves to sheaves, in view of (73) and (75),

the intersection complexes in (78) are shifted sheaves, and thus have the predicated form. O
5.7. Ngé strings for the Lagrangian fibrations M, N — B

This section is devoted to proving Proposition 5.7.2. While it falls short of establishing the exact shape
of the Decomposition Theorem for the complexes Rm.Q y; and Rn.Qy, the fact that this shortcoming is
measured by the same integer € in both expressions (87), is key to proving our main Theorem A in §6.1.

Before embarking in the proof of Proposition 5.7.2, we list some facts we need.

Fact 5.7.1.

1. By the very definition (60), the cohomology sheaf in degree 10 of the string .5 takes the form:
HO(SB) = Qp & &L HI(IEC (A}, ")), where the direct sum ends at 4 by the conditions of support
for intersection complexes. These same conditions tell us that dimsupport H'(£€g(AR, ")) < 4 — i,
for 1 < i < 4. The Relative Hard Lefschetz isomorphism Ak, = AQBO (4), combined with Lemma 5.3.1
(cf. (70)), implies that H!(F € 5(A%.)) = 0. In summary, we have:

HO(IB) = Qp @ SPHA(IEC(AS.)) @ STHA (I E (ML) @ SOHY I EB(AS.)), (83)

where the exponents on the left are the upper bounds on the dimensions of the respective supports.
2. In the same vein, but by using Proposition 5.6.1 in place of Lemma 5.3.1, we have that the cohomology
sheaf in degree 8 of the string Yg -i.e. in degree 0 for Sg— takes the form:

HE(AT) = Qe @ STHA(IC (ML) ® SOHP (I C (ML), (84)

where the exponents on the left are the upper bounds on the dimensions of the respective supports.
This is improved in (91).
3. Similarly, the cohomology sheaf in degree 8 of the string .5 takes the form:

H(Sy) =is\a, LB S H(ICe(AS ® 2°)) & SOH (I E (AT, ® £7)), (85)

where the exponents on the left are the upper bounds on the dimensions of the respective supports.
This is improved to (92).

4. In the same vein, but by using Lemma 5.4.1 in place of Lemma 5.3.1, coupled with the fact, due to the
conditions of support, that H2.#%(£) = 0 for any system of coefficients £ on a surface, we have that
the cohomology sheaf in degree 4 of the string #a reads as follows:

HY(Sa) = Qa (86)

5. The following is clear: if T is an irreducible variety and F' =~ Q?r is a constant sheaf on T', then F' does
not admit a direct summand supported on any proper subvariety.
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6. The local system £ on ¥\ A of Proposition 4.4.3 satisfies the following properties Fact 4.4.4 (cf. the
proof of Proposition 5.3.1): (i) is\a,-Z = ix\a,-Z (because there are no local monodromy invariants
around the diagonal); (IT) for every Zariski dense open subset j:UCX\ A, we have that & = j,j*%
(true for any local system, due to the normality of the varieties involved); (ILi) iy, (Zy) = is\a,-Z on
B (follows immediately from (II) by functoriality).

Proposition 5.7.2. The Decomposition Theorem for Rm.Q g7, Rn.Qx in DbMHMalg (B) takes the following
form:

Rin.Qyp =5 P [-2(-1) @ .72 [—6](-3),

(87)
Bn.Qn =75 @ 5 [-2(-1) 7L [-6](-3).

where €3z = exy =0, or 1.

Proof. By virtue of Proposition 3.4.6 about d-regularity, we can apply Theorem A.0.3 on Ngé strings.

We first deal with Rm.,Q i

By Corollary 4.1.4, the subvarieties B,Y and A are supports; in particular, each one of them must
contribute the associated Ngb string as a direct summand of Rm.Q 3;[10].

By Proposition 4.4.3, the local systems of type L appearing in Theorem A.0.3 applied to each of these
three supports are constant of some strictly positive ranks r and the same is true after the
push-forward (114).

It follows that the direct sum of the Ngd strings associated with these three supports takes the following

M, "y Ao

form:

D751 B

Sy P @ SIS [L9)(<1) @ .7y A [—6](=3), (88)

so that, according to Fact 5.7.1(1,2,4), the combined contribution to the direct image R'%m.,Q 37 Stemming
from the local systems of type L for these three Ngo strings takes the form:

Sl ve Sl e Sy

(QB M,B @ QE M, @QA M,A) (75) (89)

Proposition 4.4.3 implies that Tie = Tiiy = 1 and that 1 < TiLA < 2. Moreover:
1. 737 o = 2 if and only if the combined contribution of the two Ngo strings .5 and 5”; to R]%A, ie.

the direct sum of the Lh.s. of (83) and (84) restricted to A, is exactly QiQ;
2. 1A =1 if and only if the above contribution is exactly Qig’.
We define e5; so that 1 +e5; = TALA

EM = ’/’MAfl. (90)

The Lh.s. of (87) has been established.
Before studying Rn.Qy, we note in passing that the above analysis, Fact 5.7.1.(1,2,5) and Proposi-
tion 4.4.3 imply the following improvements of (83) and of (84):

HI( ) = Qp @ HAIC(AS), HAIC(AS) ~QEF | H3(AD) = Qs, (91)

where €5;° =1 — ;7. Note that r3z , = 1,2, and ri; , =2 iff e;; = L iff €}° = 0.
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We now study Rn.Qy.

By virtue of Proposition 3.4.6 about J-regularity, we can apply Theorem A.0.3 on Ngoé strings. By
Proposition 4.4.3, we have that RJl\(f)IB\Z ~ Qp\n(—5), which, jointly with Corollary A.0.3 on the shape of
Ngo strings and the associated local system contributing to Rﬁg\zv implies that (Rn*QN)u;\E ~ («5”3)|B\2~
It follows that the Ngo string for Rn.Q y associated with B is 5. Moreover, any additional support must
be contained in 3.

As shown earlier, the contribution of .75 to RY is Qp @& H?(F € 5(A%.)), where the second summand
is supported on A. In particular, this contribution restricted to ¥\ A is Qs a, which does not yield the
whole R}\?IZ\A = (Qx\a ® Z)(—5), as it is prescribed by Proposition 4.4.3.

It follows that X is a support and that the local system of type L, defined on a suitable Zariski dense
open subset of ¥, prescribed by Theorem A.0.3 is the restriction of .Z to this open subset. It follows, also
by virtue of Fact 5.7.1.(6), that the associated Ngo string is ./, [—2](—1).

It also follows that the only other possible Ngo strings are supported at closed subvarieties of A. Since
R}\?IA ~ iz(—f)), Corollary A.0.3 and Fact 5.7.1.(6) imply that the only remaining possible support is A.

In particular, the only possible additional Ng6 string is SGABGN, with ey =0, 1.

By combining (85), the first equality in (91), and the sentence following (91), we see that ey = 1 iff
6%8 = 0 iff e5; = 1. In particular, ey = e5; and the r.h.s. of (87) follows, with the same value of € on both
sides.

The proposition is proved. O

Remark 5.7.3. In analogy with (91), we note that the analysis carried out so-far implies that (85) can be
improved to:

H(A) =is\a,Z- (92)
6. Proofs of Theorems A, B and B’

We are now ready to combine the results proved so far with Theorem A.0.3, the refined version of Ngo6’s
Support Theorem. We prove Theorem A, then Theorem B and B’. The statement of Theorem B implies the
statement of Theorem A. We chose however to first prove Theorem A and then Theorem B, as the extra
layer given by the Hodge structures may make the topological arguments yielding Theorem A less clear. We
then prove Theorem B, which implies Theorem B’ thanks to a density argument using the period mapping.

6.1. Proof of the main Theorem A

Fact 6.1.1. Let A be a semisimple Abelian category where every object has finite length and the isomorphism
classes of simple objects form a set &. Recall that by definition the zero object is not simple. Every object
a € A is isomorphic to a unique finite direct sum of simple objects with multiplicities:

a~ @5@”5(“). (93)

s€6

If we have an identity [a] = [b] — [¢] in the Grothendieck group K (A), with a,b,c € A, then
ns(a) = ng(b) — ns(c). (94)

Let ¢ : Obj(A) — 9 be an assignment into a commutative group which is additive in exact sequences,
then, if [a] = [b] — [c] are as above, then

¢(a) = ¢(b) — o(c). (95)
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In the remainder of this section, we let QGPPHS be the category of rational graded polarizable pure
Hodge structures, we let b, denote the graded dimension of the corresponding graded vector spaces (Betti
numbers), and we let h** denote the bi-graded dimension of the corresponding bi-graded vector spaces
(Hodge numbers). If we set A = QGPPHS and ¢ = b,, h**, then we are in the situation of Fact 6.1.1, with
M = ZN, (Z*)N, respectively.

Proposition 6.1.2. (Cut and paste of polarizable graded pure Hodge structures)
b (M) = b.(N) + b ((Sym* M) [-2]) b, ((M)[-2]) + b (M)[-6)); (96)
R (T = B (N) + B (Sym M) [-2)(-1)) — % (M)[2)(-1)) + ™ (M)[-6)(-3)).  (97)

Proof. According to Proposition 5.7.2, to Remarks 5.1.2 and A.0.5, we have isomorphisms of finite dimen-
sional rational graded vector spaces, even of rational polarizable graded pure Hodge structures:

H* (M) ~ H*(Sp) & H*(S5)[-2)(=1) ® H*(Sa) "' [6](-3), (98)
H*(N) ~ H* () ® H* (S5 )[-2](—1) & H*(Sa)®[-6](-3),
H*(M"?) ~ H* () @ H(S).

By working with the Abelian category of finite dimensional graded vector spaces, or even of rational po-
larizable graded pure Hodge structures, we obtain the identities in the corresponding Grothendieck groups:
(note the important fact that the €’s cancel out)

H*(M) = H*(N) + (2H*(sym2M’) —H (M’2)) [~2)(—1) + H* (M) [-6](-3). (99)
It remains to apply the identity (95). O

Proof of Theorem A. It is enough to compute the Betti and Hodge number of M.

The Betti and Hodge numbers of all the varieties appearing on the r.h.s. of (96) and (97), namely, of
N, M’ M'?, and of Sym®M’ are known thanks to Géttsche’s and Macdonald’s formulae [30]. The odd Betti
numbers of these varieties are zero, and their Hodge numbers in even degree are as follows. The Hodge
numbers of M':

1
1 21 1 (100)
121232211

From the Hodge diamond of M’, a direct computation gives the Hodge numbers of M’2:

1
2 42 2
3 84 907 84 3 (101)

2 84 1350 9870 1350 84 2
1 42 907 9870 55596 9870 907 42 1,



M.A.A. de Cataldo et al. / J. Math. Pures Appl. 156 (2021) 125-178 171

and those of Sym? M’

1
1 21 1
2 42 464 42 2 (102)

1 42 675 4935 675 42 1
1 21 464 4935 27914 4935 464 21 1.

The Hodge numbers of N can be recovered from the generating series of [30]":

1
1 21 1
1 22 254 22 1
1 22 276 2277 276 22 1
1 22 276 2530 16469 2530 276 22 1
1 21 254 2277 16469 87560 16469 2277 254 21 1.

(103)

In view of (99), Theorem A now follows by direct calculation.

Remark 6.1.3. The proof of Theorem A combines the determination of the Ngo strings (Proposition 5.7.2)
in D°M H M,,(B) with a cancellation occurring in a Grothendieck group (Proposition 6.1.2). J. Shen and
Q. Yin have informed us that they can obtain the computation of the Hodge numbers as in Theorem A
using the validity of Proposition 5.7.2 in D?(B,Q) (which can be considered the main technical result of
this paper) and without invoking its validity at the level of mixed Hodge modules, and combine it with the
main result in [71]. This approach can then replace the last part of the proof of Theorem A given above.

6.2. The main Theorem B’

Using Remarks 3.1.1 and 3.2.3 we can formulate the following, slightly more general, version of Theorem B:

Theorem B’. Let (S, H) be a polarized K3 surface of genus 2. Let w = (0,2H,x), x odd, and 2v' =
(0,2H,2x") be Mukai vectors (cf. (15) and (16)) which are positive in the sense of Remark 3.1.1. Let L,
resp. L', be a polarization which is w-generic, resp. 2v'-generic (cf. Remark 3.2.3). Finally, let N = M, 1,(S)
be the moduli space of L-stable sheaves on S with Mukai vector w and let M = MQU/,L/(S) be a symplectic
resolution of the moduli space My 1/(S) of L'-semistable sheaves on S with Mukai vector 2v". Then, using
the notation as in the statement of Theorem B, we have isomorphisms:

M = 5O @ [s0(-1)] ? 0 Sea(S)(-1) @ [5©)(-2)] "o
(104)
& [Sen($)(-2] @[50 5) (-3 & [sO(-3)]" @ [5(-4)%;
N=50g[s® 8] (-1)a [So @] (—2) @ [52]%* (=3) & 5(—4). (105)

The graded pure polarizable Hodge structures of all the varieties on the r.h.s. of (99) are known and can
be expressed as follows in terms of the Hodge structure of the underlying K3 surface S. Let V = H*(S) be
the rational Hodge structure of S. Using (19), Lemma 3.2.7, as well as [31] and MacDonald’s formula, we
can write:

! We used the script found at https://pbelmans.ncag.info/blog/2017/11/18 /hodge-numbers-hilb/ to compute these numbers.
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H*(M')=V® g V[-2)(-1) (106)
HM?)=VP ov®gov® o v[-2(-1) eV e V[-4(-2)
H*(Sym® M) = Sym?* VP ¢ VO @ V[-2)(-1) ® VP [-4](-2) (107)
H(N)=VO o V® gV[-2(-1) ®2V @ VP [-4](-2) ® 2V ® V[-6](—3) ® V[-8](—4).

For a partition A of an integer &, we denote by S(,)(—) the corresponding Schur functor. For the notation
and basic properties of Schur functors we refer the reader to [28, Ch. 6]. Let W be a vector space. By [28,
Thm 6.3], the GL(W )-representation W®* decomposes into a sum of irreducible subrepresentations, each
of which is a Schur module Sy)(W). Moreover, if W is a Q-vector space, so are all of its Schur modules.
It is well known that if W is a Q-vector space endowed with a polarizable Hodge structure, then TW®*
as well as each of its irreducible representations, inherit compatible rational polarizable Hodge structures.
This gives a rational polarizable Hodge structures on each of the Schur modules S()(W) which is such that
the decomposition of W®* into the direct sum of irreducible representations is also a decomposition into a

direct sum of Hodge structures.
In what follows, we need the following Lemma.

Lemma 6.2.1. The following isomorphisms of rational polarizable Hodge structures hold:

VARV =Sey(V)ev®

VO oV =Sg,(V)ev®W

VO RVE =Sun(V)®Sey(V)e VW

Sym? (V@) = S9)(V) @ VW
Proof. By the observation on the compatibility of the Hodge structures that proceeds the lemma, it is enough
to prove that these isomorphisms hold as GL(V)—subrepresentations V() for an appropriate integer k. The

first two statements follow then from the formula on page 79 of [28], the second from the formula on page
81 of [28], while the last statement from [28, Ex. 6.16]. O

Using (107) and Lemma 6.2.1 we find the following isomorphism of rational polarizable Hodge structures:

H*(M'?) =S(2,2)(V) @S (V) @Sy (V) @ VI [2](-1)%% & S5,1) (V) [-2](-1)®* @V ?[-4].

(108)
V@ QV(®2) (VARV[-2](-1))92
H*(Sym* M) =V @ S2,2)(V)® VE[-2)(-1) @ Se2,1(V)[=2](-1) aV@[—4)(-2) (109)
Sym?2 V (2) V@ eV[-2)(-1)
H*(N) =V® o VW @S5, (V)[-2(-1) @ VO [-4](-2) @ S (V)[-4](-2) ©
VEQV[—2](~1) (VRV @) [—4](—2))®2 (110)

OV @ V[-6](-3)%? @ V][-8](—4).

Proof of Theorem B’. We first prove the Theorem in the case when the degree two K3 surface S is general in
moduli, i.e., S has Picard rank 1 (this is the statement of Theorem B). Then (99) holds. We thus substitute
formulas (106), (108) (109) and (110), into equation (99) in order to express the Hodge structure of M in
terms of that of S. Since the category of rational polarizable Hodge structures is semisimple, in view of
Fact 6.1.1 we can make cancellations and find:

H* (M) =V® @ VW[-2](-1)®2 @ S 5.5, (V)[-2(-1) & VO [-4](-2)®2 @ S 2.1 (V) [-4](-2)**&
BV QV[—6](=3) & VP[—6](—3)%% @ V[-8](—4)®2.
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This proves the theorem in case the degree two K3 surface S has Picard rank 1.

Before proving the general case we recall that, since birational irreducible holomorphic symplectic mani-
folds have isomorphic integral Hodge structures, we can prove the theorem for any holomorphic symplectic
birational model of N or of M. Thanks to Remark 3.2.3, it is thus sufficient to prove the statement for an
arbitrary symplectic resolution of My, g (S) or of Moy g (S).

Let (So, Hp) be a polarized K3 surface of genus 2. Choose a one-parameter deformation (S, ) of (So, Ho)
parameterized by a disk (D, ) such that the subset of points ¢ € D* such that NS(S;) has rank one is
dense. Let vy = (0,2H;,2x’) be the corresponding Mukai vector. We consider the relative moduli space
M — D, where M; = M, u,(S:). By [62, Prop 2.20], up to shrinking (D, ty), we may assume that, for
every t # to, the polarization H; is vs-generic (cf. Remark 3.2.3). By [62, Prop 2.23 and its proof], by
blowing up the relative moduli space over the punctured disk D* along its singular locus results in a
resolution M p+ — Mp- which is point-by-point ¢ € D* a symplectic resolution. By Remark 3.2.3, M;,
admits a symplectic resolution Mto — M;,. By [42, Thm 0.6, Cor 4.2], up to passing to a branched cover
of (D, tg), we may assume that there is a smooth proper family of projective manifolds M p — D such that
the restriction to D* coincides with the family M, p+ — D* introduced above and such that the central fiber
is birational to ]\ZO.

Consider the two period mappings [33,34] associated with the following two variations of (un-polarized)
graded rational Hodge structures: the graded cohomology of the fibers of M p — D over D; the one on the
r.h.s. of (1) as the K3 surface varies over D. By the first part of the proof, these two holomorphic period
mappings coincide on the dense subset of D seen above where the Néron-Severi of the K3 has rank one, so
that the two mappings coincide on D. O

Appendix A. Hodge-theoretic Ngo strings

The goal of this appendix is to state Theorem A.0.3 (MHM Ngo strings over C), which is a refinement
of the Ngb Support Theorem [59, Théoréme 7.2.1] valid in the Hodge-theoretic context of M. Saito’s mixed
Hodge modules [68,69]. We do not write out a detailed proof since, as it is explained below, it can be
obtained by repeating B.-C. Ngo’s proof, with only two minor additional observations.

Theorem A.0.3 admits several variants: (a) varieties over finite fields and constructible Q,-adic sheaves
for the étale topology; varieties over the complex numbers and: (V') constructible Q ,-sheaves for the étale
topology; (V) constructible Q-sheaves for the classical topology, with algebraic strata; (b"'), i.e. Theo-
rem A.0.3 per se, mixed Hodge modules for the classical topology with algebraic strata. By the standard
spreading out techniques of [9, §6.1], version (a) implies versions (b',b").

Ngd support Theorem [59, Théoreme 7.2.1] is the (a)-version of (114), which roughly speaking, asserts
that a support contributes a direct summand to the sheaf R??f,Qj;. The paper [59] does not mention
explicitly the complete collection of direct summands of Rf,Q, a on S associated with a support Z C S. In
fact, somewhat surprisingly, it seems a bit vague concerning this point; see [59, p. 113, second sentence of last
paragraph]. Even though this is not explicitly mentioned in [59], it is not difficult to make the Ngo Support
Theorem more complete by making precise -building in an essential way on Ngo’s method, especially [59,
Proposition 7.4.10]- all the direct summands supported on a given support appearing in the Decomposition
Theorem for Rf.Q,,,. This leads to the versions (a,¥’,b") of Theorem A.0.3.

In this paper, we need Theorem A.0.3, i.e. the Hodge-theoretic version (b"”'). Again, this is not difficult to
achieve, by repeating B.-C. Ngd’s proof of the support theorem by working in the categories DbMHMalg(—).
There are only two minor points to consider:

Fact A.0.1.

1. The weight argument [59, pp. 120-121] involving the Q,-adic Tate module and Frobenius weights, goes
through on the nose for the Tate module defined as an object in D®M H My,(S) (cf. §2.2 and §2.1): we
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only need to work generically on a support, and the Tate module, being a direct image, is generically
an admissible polarizable variation of mixed Hodge structures, of weights —1 and 0.

2. The “Liberté” statement [59, Proposition 7.4.10]. B.-C. Ngb proves this by using finite fields. Since it
is a topological statement concerning a graded module over a graded algebra in the category of lisse
Q, sheaves in a geometric context, we can use the spreading out techniques mentioned above to carry
over the “Liberté” statement from the algebraic closure of a finite field and graded semisimple lisse
Q,-sheaves, to the situation over the complex numbers and graded semisimple local systems. One then
promotes the “Liberté” statement from the category of graded semisimple local systems, to the category
of graded polarizable variations of pure Hodge structures by using the proof of [59, Lemma 7.4.11], where
the graded object E one obtains there is automatically a graded polarizable variation of pure Hodge
structures.

Let us introduce the principal players in Theorem A.0.3 by first giving the set-up and then by discussing
some related objects.

Set-up A.0.2. Let (M, S, P) be a d-regular weak abelian fibration (Definition 2.2.1) of relative dimension
d := dim(M/S) = dim(P/S), and such that M/S is projective, S is irreducible, and M is a rational
homology manifold (S €y = Q).

We have assumed dim(M/S) = dim(P/S) only to simplify the numerology. In this paper, we apply
Theorem A.0.3 to Lagrangian fibrations, so that the numerology gets simplified even further, since then one
also has d := dim (M/S) = dim (P/S) = dim(S5).

Recall the notation fixed in §2.1. In particular, the supports of Rf.Qjs are the integral subvarieties of
S that support a non-zero direct summand of Rf.Qps. Let o/ be a finite set enumerating the supports of
Rf«Qus, so that the supports are denoted Z, C S, a € &. Let g, : Ay — V, be the Abelian scheme
(5) associated with Pz , where V,, C Z, is a suitable Zariski open and dense subvariety contained in the
regular locus of Z,, and we are free to shrink it if it is useful /necessary. Let 2P be the relative dimension
of Ay/Vy; then §3° = d — §(Z,,). Let A% := R*g,,Qa., 0 < o < 252P: these are polarizable variations of
pure Hodge structures of weight e on V,. Recall that a polarizable variation of pure Hodge structures L
of weight zero and of Hodge-Tate type on a nonsingular subvariety V C S is determined by its underlying
local system, and it gives rise to a pure Hodge module of weight dim(V") on the closure Z of V, namely
IC(L).

We can now state the main result of this appendix.

Theorem A.0.3. (MHM Ngo strings over C) In the Set-up A.0.2, there is an isomorphism in D® M H Mq;,(S)
of pure objects of weight zero:

262P
RfQur = @ { P Gz, (A © La) [=o] [-2(d—6")] (62" —d) ¢, (111)
aced | o=0

where L, is a polarizable variation of pure Hodge structures of weight zero, and of Hodge-Tate type, on V,
(we may need to shrink V,, to achieve this).
Moreover, we have:

1. The identities:

62 = dim(M/S) — dim(S) + dim(Z,), Va € o . (112)



M.A.A. de Cataldo et al. / J. Math. Pures Appl. 156 (2021) 125-178 175

2. Canonical isomorphisms:

62P—e _ 2 5%"+e

NPT =N e), AT @ Lo =AY () ® L.,  V0<e<ob (113)

In addition, one can realize other such isomorphisms, with associated Primitive Lefschetz Decomposi-
tions, via the Relative Hard Lefschetz Theorem for the projective morphisms g,

3. The object R*f.Qnr on S admits the following pure direct summand, where iy, : Vo — Z, is the
natural open immersion, and the equalities are summand-by-summand:

Piv..La(—d) =@ IC 2, (La(—d)). (114)

If the general fiber of M/S is integral and if we take Z = S, with S normal, then iy, L = Qg.

If all the fibers of M/S are integral, then the only support is S and, if S is normal, then iy, L = Qg.
4. By taking degree x cohomology in (111), we have an isomorphism in the category of graded polarizable

mized Hodge structures (polarizable pure Hodge structures if S, hence M, is complete):

252>
H* (M, Q) = @ { @ IH 0225 (2, A, @ L)) (62— d) . V% (115)
et b=0

Proof. Recall that d := dim(M/S) = §(Z,) + d2P. The identity (112) follows by combining the inequality in
[59, Proposition 7.2.2] (which is stated and proved in the étale context over the closure of an algebraically
closed field, and, by [9, §6.1], remains valid for the classical topology over C) taken together with the
d-regularity hypothesis, which is precisely the opposite inequality. This proves (1)

Note that (2) is a statement about polarizable variations of pure Hodge structures (pvphs) The first
canonical isomorphism in (113) is standard and due to Lieberman (see [59, §7.4.4]). Clearly, the second
one follows from the first by twisting by any pvphs. The remaining statements in (2), concerning the Hard
Lefschetz Theorem, are also standard. This proves (2).

We are left with proving (111) and (3) and (4). Recall that we are free to shrink the Zariski-dense open
subset V,, C Z,, if useful/necessary. In what follows, we do so to meet our needs without explicit mention.

The Decomposition Theorem in DM H My, (S) for the projective morphism f : M — S implies that
there is an isomorphism

Ri.Qu~ @ | @ sz (k- (116)
aEgof i€on

where the !, are pvphs of weight i on V,, and where o, > 0 marks the first occurrence of a non-zero direct
summand supported on Z,, and o} > o marks the last.

We fix a € &7

The graded object K, := @;>0K?, lives in degrees in the interval [o;, 0], and has graded weight zero,
i.e. weight ¢ in degree 7.

By [59, Proposition 7.2.2], which (by [9, §6.1], again), remains valid in D®(S,Q), the local system ICZZZ
is a direct summand of (R?!f,Q)v, . It follows that of = 2d; in particular, the last occurrence o is
independent of «.

By combining (116) with the symmetries stemming from Verdier Duality, we deduce easily that o, =
2d—2562P, i.e. the interval [0, 0] = [2d — 262, 2d] has length twice the relative dimension §2° of the abelian
scheme A, /V,.
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The graded object

0 0
i 2520 44 by .
ho= D M= D E*90.Qay, (027)
i=—262P i=—262b

is concentrated in semi-negative degrees in the interval [—262P, 0]; has weight zero (semi-negative weight i
in degree i); has, via Poincaré Duality, as stalks the homology of the fibers of A,/V,; it admits, via the
Pontryagin product operation, a natural structure of graded algebra Af, @ AJ — NPT,

The graded object of pure weight zero

262° 262°
— [ i
Ao =P AL =P R'9..Qa,
=0 =0

ab
is a free graded A,-module generated in degree 262" by A?f‘* ~ Qy, (—62P), via the Pontryagin product
operation which, again via Poincaré Duality, is expressed by operations (recall that x < 0 and e > 0)

AL @A — A+

By [59, Proposition 7.4.10], we have that K, is a free graded A,-module. In fact, to be precise, we need
to make sure that the action A, on I, (cf. [59, pp. 120-121] is defined and free in the category of pvphs on
Va; for this we use Fact A.0.1, parts (1) (action) and (2) (freeness).

Since K, has non trivial entries only in the interval [2d — 262P, 2d], which has length 24,
that, as a graded object, we have K, = (A, ® L, )[—2(d — §2P)], where L, := K24(52P).

At this point, by taking care of the bookkeeping of weights and Tate shifts, (111) follows, and L, is

ab

ab we deduce

as predicated since L,(—d) is a pvphs direct summand of the pvphs (R?*?f,Q M)|v, which, having stalks
generated by the fundamental classes of the irreducible components of the fibers, is pure, of Hodge-Tate
type with weights 2d.

At this point, (3) and (4) follows easily: the latter by taking cohomology; the former by inspecting
the contributions of each support to the top cohomology sheaf R??f,Q,;, and recalling that normality
implies uni-branch, and this latter implies that the sheaf-theoretic direct image of the constant sheaf from
a Zariski-dense open is also constant. O

Definition A.0.4. We call the a-summands in (111) the Ngd strings of Rf.Q ;. If we set:

252P
T = ICz, (A ® La) [-1], (117)
b=0
then we may re-write (111) as follows:
RfQur = (P Fal-2(d — 57)](52" — d). (118)

We also call the .#,’s the Ngo strings of Rf,Q,; these start in cohomological degree zero and are pure of
weight zero.

Each Ngd string in (111) is pure of weight zero and a direct sum of a collection of intersection complexes
supported precisely at Z,, placed in cohomological degree in the interval [2d — 202, 2d]. Up to the twist by
L, the coefficients of the term indexed by e are the direct image A® = R’g,,Q 4, . These latter direct images
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on V,, depend on the group scheme P/S, not on M/S. We record this fact in the following Remark which
plays an important role in our proof of our main Theorems A and B, where it is crucial to be able to relate
the Decomposition Theorem for the J-regular weak abelian fibration structure on M , to the Decomposition
Theorems for the auxiliary d-regular weak abelian fibrations we consider; see Lemmata 5.4.1 and 5.5.1, and
Propositions 5.6.1 and 5.7.2.

Remark A.0.5. As an object in DbMHMalg (S), the Ngb string .7, associated with the support Z, depends
only on the Abelian group scheme A, and on the topological local system L, (because it can be enriched
uniquely to a polarizable variation of Hodge structures of Hodge-Tate type and weight zero). The same holds
for the graded polarizable mixed Hodge structure (pure and polarizable if Z, is complete) H*(Z,,.%).
Clearly, the L,’s do depend on M/S.
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