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r é s u m é

Dans ce papier nous déterminons les nombres de Hodge de la variété hyper-Kähler 
connu sous le nom de O’Grady 10. Pour cela, nous étudions certaines fibrations 
Lagrangiennes à travers un raffinement du théorème du Support de Ngô.
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1. Introduction

Irreducible holomorphic symplectic manifolds are simply connected compact Kähler manifolds with a 

unique up to scalar holomorphic two-form, which is furthermore symplectic. They are hyper-Kähler man-

ifolds and are one of the three building blocks for compact Kähler manifolds with trivial first Chern class 

[7,10]. In every even complex dimension, there are two series of known examples of irreducible holomorphic 

symplectic manifolds: those that are deformation equivalent to the Hilbert schemes of n-points on a K3 

surface, called of K3[n]-type, and those that are deformation equivalent to generalized Kummer varieties, 

called of generalized Kummer type [7,27]. In addition to these, there are two sporadic deformation classes 

occurring in dimension 6 and 10 discovered by O’Grady [60,61] as symplectic resolutions of a singular moduli 

spaces of sheaves on a K3 surface (in the case of the 10–dimensional example) and on an abelian surface 

(in the case of the 6–dimensional example). The class of irreducible holomorphic symplectic manifolds de-

formation equivalent to the 10 dimensional example is denoted by OG10 and manifolds in this deformation 

class are said to be of OG10–type. Similarly, for the 6–dimensional example.

The Betti and Hodge numbers of irreducible holomorphic symplectic manifolds of K3[n]- type and of 

generalized Kummer type are known thanks to Göttsche’s Formula [30,31] (see also [22,23]). The Betti 

and Hodge numbers of the deformation class OG6 were calculated in [54]. The purpose of this paper is to 

compute the Betti and Hodge numbers of the remaining known deformation class, namely OG10. Previously, 

the only known invariants of this class manifolds were the second Betti number b2 = 24 [64] and the Euler 

number e = 176, 904 [55,37]. Our first main result is the following theorem:

Theorem A. The odd Betti numbers of the ten-dimensional irreducible symplectic manifolds of OG10-type 

are zero and the even ones are:

b0 = 1 b2 = 24 b4 = 300 b6 = 2899 b8 = 22150 b10 = 126156.

The relevant part of the Hodge diamond is as follows:

1

1 22

1 22 254

1 23 276 2299

1 22 276 2531 16490

1 22 254 2299 16490 88024.



M.A.A. de Cataldo et al. / J. Math. Pures Appl. 156 (2021) 125–178 127

We prove the theorem by comparing the cohomology of an irreducible symplectic variety of OG10-type 

with that of an irreducible symplectic variety of K3[5]-type. This is done by considering two Lagrangian 

fibered irreducible holomorphic symplectic manifolds, denoted M̃ → P 5 and N → P 5, where the first is 

of OG10-type and the second is of K3[5]-type. These are chosen so that over a dense open subset of the 

base the two fibrations are torsors over the same group scheme. In this setting, the crucial ingredient is 

Ngô’s Support Theorem, which allows us to exploit the Lagrangian fibration structure and to express the 

difference between the cohomology of M̃ and that of N in terms of the cohomology of lower dimensional 

irreducible symplectic manifolds.

Let us describe the two Lagrangian fibrations. Let (S, H) be a general polarized K3 surface of genus 2

and let C → P 5 be the universal family of the genus 5 linear system |2H| ≃ P 5. The relative compactified 

Jacobian M → P 5 of a given even degree of the linear system |2H| is a singular projective symplectic 

variety. We let M̃ → M be the blowup of its singular locus (with its reduced induced structure). This is 

an irreducible holomorphic symplectic manifold of OG10-type and M̃ → M is a symplectic resolution. If 

instead we consider a relative compactified Jacobian of a given odd degree, we get a smooth projective 

irreducible holomorphic symplectic manifold N → P 5, deformation equivalent to the Hilbert scheme of 5

points on S. The degree 0 relative Picard variety P → P 5 of the linear system is a group scheme over P 5, 

and it acts naturally and fiberwise on both spaces. It is important to note that there are dense open subsets 

of P 5 over which the fibrations are torsors over (the restriction of) the group scheme P/P5. Note that the 

Lagrangian fibration M̃ → P 5 is the same used by Mozgovoy in his determination [55] of the Euler number 

of OG10. It is a degeneration of the Intermediate Jacobian fibration [44,42], which was used in [37].

The starting point of our analysis is that each of the two Lagrangian fibrations, together with the natural 

action of P , gives rise to what Ngô calls a δ-regular weak Abelian fibration (see §3.4). Before showing this, 

we prove in Section §2.3 some general results on weak Abelian fibrations arising from certain Lagrangian 

fibrations.

Ngô’s Support Theorem is a topological result concerning the Decomposition Theorem for δ-regular weak 

Abelian fibrations. Roughly speaking, it states that if in the Decomposition Theorem for the fibration a 

subvariety of the target is the support of a direct summand of the derived direct image of the constant sheaf, 

then such a subvariety (called a support for the fibration) is the support of a non trivial direct summand 

of the top degree direct image sheaf. What makes this theorem powerful is the possibility of restricting the 

set of potential supports by only using the top degree direct image sheaf.

To carry out our cohomological computation, we first need to refine the statement of Ngô Support 

Theorem. Given a subvariety of the base that is a support for the Decomposition Theorem of a δ-regular 

weak Abelian fibrations, the refinement consists in identifying the direct summands supported on that 

subvariety. We show that they can be expressed in terms of contributions coming from lower dimensional 

δ-regular weak abelian fibrations that naturally appear in the picture. We call these direct summands Ngô 

Strings (see Theorem A.0.3 and Definition A.0.4). We believe this is a result of independent interest. In 

addition to this, we need to make sure that a given Ngô String contributes the same pure Hodge structure, 

regardless of which weak Abelian fibration it appears in (cf. Remark A.0.5). Since we are not aware of a 

reference, we offer some context and a sketch of proof, which involves M. Saito’s mixed Hodge modules. 

This is done in Appendix A.

In order to identify which subvarieties of the base appear as supports, we need to study the top-degree 

higher direct images for the Lagrangian fibrations M̃/P 5 and N/P 5. The determination of these top degree 

sheaves is the subject of the Proposition 4.4.3, which is based on the detailed analysis of the moduli spaces of 

semi-stable sheaves over the locus parametrizing non-reduced curves in the linear system |2H| (see §4.2-4.3).

In §5 we identify the Ngô Strings of the two fibrations, i.e., we determine the direct summands appearing 

in the Decomposition Theorem for M̃/P 5 and N/P 5. This is the content of Proposition 5.7.2. Actually, this 

is done up to some indeterminacy which is present in both fibrations. Remarkably, these two indeterminacies 
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cancel out when comparing the Hodge numbers of the two fibrations, and we are thus able to deduce our 

main Theorem A in §6.1.

The following observations are key for successfully carrying out this strategy. First of all, the full support 

Ngô Strings (i.e., the direct summands whose support is the whole P 5) are nothing but natural extensions 

to P 5 of the local systems associated to the restriction of the fibration to the smooth locus. By our choice 

of M̃/P 5 and N/P 5, these local systems are the same for the two fibrations and thus the contribution to 

the cohomology of M̃ and of N of the full support direct summands is the same. Secondly, we show that 

the Ngô Strings of the two fibrations that are supported on proper subvarieties of P 5 appear also in the 

Decomposition Theorem for certain lower-dimensional Lagrangian fibrations associated with other moduli 

spaces of sheaves on the same K3 surface S. The geometry of these is considerably simpler and their Hodge 

numbers are known. It follows that we may express the difference between the Hodge numbers of M̃ and of N

in terms of the (known) Hodge numbers of lower-dimensional irreducible holomorphic symplectic manifolds.

Upgrading these cohomological comparisons to the appropriate Grothendieck group, we express the “dif-

ference” between the pure Hodge structure of M̃ and the pure Hodge structure of N in terms of the pure 

Hodge structures of lower dimensional moduli spaces of sheaves on the degree 2 K3 surface S. Thanks to 

Goettsche’s formula, these can in turn be expressed as functions of the Hodge structure of S. This gives 

Theorem B below, which determines the pure Hodge structure of the manifolds M̃ (which define a codi-

mension 3 locally closed subset in the moduli space of varieties of OG10–type) in terms of the pure Hodge 

structure of S.

Theorem B. Let (S, H) be a general polarized K3 surface of genus 2 and let M̃ and N be the irreducible 

symplectic manifolds introduced above. Let S(−) be the Schur functors [28, Ch 6]. Let 〈•〉 := [−2•](−•). By 

abuse of notation, for a projective manifold X, we denote by X also the graded rational polarizable pure 

Hodge structure H∗(X, Q). Then we have isomorphisms:

M̃ = S(5) ⊕
[
S(4)〈−1〉

]⊕2

⊕ S(2,2)(S)〈−1〉 ⊕
[
S(3)〈−2〉

]⊕2

⊕

⊕
[
S(2,1)(S)〈−2〉

]⊕2
⊕ [S ⊗ S] 〈−3〉 ⊕

[
S(2)〈−3〉

]⊕3

⊕ [S〈−4〉]⊕2
;

(1)

N = S(5) ⊕
[
S(3) ⊗ S

]
〈−1〉 ⊕

[
S ⊗ S(2)

]⊕2
〈−2〉 ⊕

[
S2
]⊕2

〈−3〉 ⊕ S〈−4〉. (2)

Note that (2) above is well-known and it is only included for completeness. Theorem B is here formulated 

only for a general genus 2 K3 surface. In Section 6.2 we give the slightly more general statement (Theorem B′

on page 171), as well as its proof.

After our paper appeared, the paper [32] computed the Hodge structure of an irreducible holomorphic 

symplectic variety of OG10-type (in fact, the cohomology is even determined as a module over the so-called 

Loojenga-Lunts-Verbitsky algebra [48,72]), conditionally to assuming that the odd Betti numbers are zero. 

Then the paper [26] appeared, where it is shown that odd Betti numbers of OG10 are trivial. Our methods 

and those of [32] are completely different and we view the two papers as complementary.

Acknowledgments. We would like to thank E. Arbarello, K. Hulek, J. de Jong, R. Laza, E. Markman, 

L. Maxim, M. McLean, A. Toth, D. Varolin for conversations related to the topic of this paper, as well 

as I. Grosse-Brauckmann for pointing out several typos. M. A. de Cataldo, who has been partially sup-

ported by NSF grants DMS 1600515 and 1901975, would like to thank the Max Planck Institute for 

Mathematics in Bonn and the Freiburg Research Institute for Advanced Studies for the perfect working 

conditions; the research leading to these results has received funding from the People Programme (Marie 

Curie Actions) of the European Union Seventh Framework Programme (FP7/2007-2013) under REA grant 

agreement n. [609305]. A. Rapagnetta acknowledges the MIUR Excellence Department Project awarded to 

the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006 and the project 
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PRIN2017SSNZAW ‘Moduli Theory and Birational Classification’. G. Saccà acknowledges partial support 

from NSF grant DMS-1949812-1801818. We would also like to thank the anonymous referee for many sug-

gestions that have greatly improved the exposition of the paper.

2. Notation and preliminaries

2.1. General notation and facts

We work over the field of complex numbers. A variety is a separated scheme of finite type over C. Unless 

otherwise stated, by point we mean a closed point.

We work with the following two categories attached to a variety S: the constructible bounded derived 

category Db(S, Q), whose objects are bounded complexes of sheaves on S of rational vector spaces whose 

cohomology complexes are constructible with algebraic strata (see [24] for the basics and references); M. 

Saito’s bounded derived category DbMHMalg(S) of algebraic mixed Hodge modules with rational structure, 

which is endowed with the formalism of weights; see [68] for the foundations, and [69] especially §22 and 

§23, which contains the basics and references. We call the objects of DbMHMalg(S) simply “objects.”

If in Theorem A one is interested only in Betti numbers, then it is enough to work with Db(−, Q). If one 

is interested in the Hodge numbers, then it seems necessary to work with DbMHMalg(−).

There is the natural functor rat : DbMHMalg(S) → Db(S, Q). The functor rat is compatible with the 

usual operations (push-forwards, pull-backs, tensor, hom, duality, vanishing/nearby cycles). Via the functor 

rat, the standard t-structure on the domain corresponds to the middle perversity t-structure on the target 

(see [24] for the basics on middle perversity and references); in particular, if K ∈ MHMalg(S), then rat(K)

is a perverse sheaf on S. There is a second t-structure on DbMHMalg(S) which corresponds to the standard 

t-structure in Db(S, Q) via the functor rat; [68, Remark 4.6.2]. In particular, given a morphism f : X → Y of 

varieties, one promotes direct image cohomology shaves Rif∗K, Rif!K of a complex K in the essential image 

of rat to objects in DbMHMalg(S); by restricting such objects to suitably Zariski dense open subvarieties 

of the regular locus of their support, these objects are admissible polarizable variations of mixed Hodge 

structures.

The functor rat is neither essentially surjective, nor fully faithful; what is important in this paper is the 

evident fact that a splitting of an object K induces a splitting of rat(K). By abuse of notation and for 

simplicity, we do not distinguish notationally between an object K and its counterpart rat(K).

If Z ⊆ S is a closed irreducible subvariety and L is a polarizable variation of rational pure Hodge 

structures of some weight w(L) on some Zariski-dense open subset V contained in Zreg, then the intersection 

cohomology object ICZ(L) ∈ MHMalg(S) yields, via rat, the usual intersection cohomology complex of Z

with coefficients the local system underlying L; such a local system must be self-dual, i.e. L ≃ L∨(−w(L)), 

and semi-simple, i.e. L splits into a direct sum of simple objects. One can shrink V , if desired; this is useful 

when one desires V to be subject to certain conditions.

The objects of MHMalg(S) which are pure of weight w are exactly the ones of the aforementioned form 

ICZ(L), with L pure of weight w(L) = w − dim Z; they are semisimple, and every simple object has this 

form with, L simple as polarizable variation of pure Hodge structures. Note that the corresponding object 

I C Z(L) := ICZ(L)[− dim Z] in MHMalg(S)[− dim Z] in DbMHMalg(S) is pure of weight w − dim Z; 

the cohomology sheaves of rat(I C Z(L)) are in non-negative degrees, starting at zero. For the geometric 

statements, e.g. (64), we use I C , and at times, in order to exploit the simplified bookkeeping stemming 

from Poincaré-Verdier and Relative Hard Lefschetz dualities, we use IC, e.g. (65).

Let Z be irreducible and complete and let L (on some V ⊆ Zreg ⊆ Z) be as above, pure of weight 

w(L). Then the cohomology groups IH•(Z, L) := H•(Z, I C Z(L)) are polarizable pure Hodge structures 

of weight w(L) + •. Polarizations are typically not unique, but the pure Hodge structures on IH•(Z, L)

do not depend on a choice of polarization. The category of rational polarizable pure Hodge structures is 
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abelian semisimple: every subobject admits a direct sum complement; the induced splitting does not need 

to preserve given polarizations.

An object L as above of weight 2v ∈ Zev is said to be of pure Hodge-Tate type (v, v) if the pure Hodge 

structure on the stalks is of type (v, v). If the polarizable variation of pure Hodge structures L is of pure 

Hodge-Tate type and of weight 2v, then the underlying local system determines the structure of polarizable 

variation of pure Hodge structure of weight 2v on L uniquely, i.e. if L, L′ are two polarizable variations of 

pure Hodge structures, which are both pure of Hodge-Tate type and of the same weight 2v, and such that 

the underlying local systems are isomorphic, then L ≃ L′ as objects in MHMalg(S); this is simply because 

the associated Hodge filtration is trivial.

Let f : X → Y be a proper morphism of varieties and let K ∈ MHMalg(X) be pure of weight w. E.g. 

K = ICX , or even K = QX [dim X] when X is irreducible nonsingular; in either case, w = dim X. In 

this context, the Decomposition and the Relative Hard Lefschetz Theorems (see [24] for references) give : 

Rf∗K ∈ DbMHMalg(Y ) is pure of weight w, it splits as the direct sum ⊕b
pHb(Rf∗K)[−b] of its shifted 

perverse cohomology sheaves, and each pHb(Rf∗K)[−b] is pure semisimple of weight w − b; if in addition, 

f is projective and l is the first Chern class of an ample line bundle on X, then cupping with the powers 

of l induces the Relative Hard Lefschetz isomorphism lk : pH−k(Rf∗K) ≃ pHk(Rf∗K), ∀k ≥ 0. Of course, 

similar statements hold for a shifted K[a], so that, after the evident bookkeeping, they apply, for example, 

to I C X (this is defined for not necessarily irreducible nor pure dimensional varieties and is pure of weight 

zero as the direct sum of the I C ’s of the irreducible components (cf. [21, §5]).

Similar consideration hold for Rf∗I C X in Db(X, Q). A statement in DbMHMalg(−) may contain Tate 

shifts; when considering the resulting statement in Db(−, Q) it is understood that one omits the meaningless 

Tate shifts.

If f : X → Y and K are as above, then the closed subvarieties that are the supports of a simple summand 

of the direct image Rf∗I C X are called the supports of f . The notion of support is of paramount importance 

in this paper. The determination of the supports of a morphism is a subtle problem. Of course, one can 

define the supports of Rf∗K for any object, by taking the supports of the constituents of Rf∗K, which is 

the unique finite collection of simple perverse sheaves appearing in a Jordan-Hölder decomposition of the 

perverse sheaves pHk(Rf∗K) for k ∈ Z.

Let f : X → Y be a morphism, let Z ⊆ Y be a subvariety. Then we set XZ := f−1(Z). In particular, if 

y ∈ Y is a point, then Xy = f−1(y) denotes the fiber.

2.2. The notion of δ-regular weak abelian fibrations

In [59,15] B.C. Ngô introduced the notion of δ-regular weak abelian fibration, which is a notion of 

paramount importance in our approach to the proof of Theorem A. For more details on what follows, we 

refer to the papers of Ngô quoted above as well as to our Appendix A, which contains the refinement of 

Ngô Support Theorem needed in this paper.

Let g : P → S be a smooth commutative group S-scheme, and let go : P o → S be its identity component. 

Given any Zariski point s in S, there is the canonical Chevalley devissage of the fiber P o
s of P at s, i.e. a 

canonical short exact sequence of connected commutative group schemes 0 → Rs → P o
s → As → 0 over the 

perfect field k(s), where Rs is affine and connected, and maximal with these properties, and where As is an 

abelian variety (cf. e.g.: [53, Thm 10.25, Prop 10.24, Prop 10.5 (and its proof), Prop 10.3].

We introduce the quantity δ(s) := dimk(s) Rs, which plays an important role in this paper. For example, 

if Ps is the Jacobian of a reduced projective curve C, then δ is the dimension of ker[ν∗ : Pic0(C) →

Pic0(Ĉ)] = (ν∗O×

Ĉ
/O×

C )/ImH0(Ĉ, O×

Ĉ
) where ν : Ĉ → C is the normalization morphism (cf. [36, 21.8.5]). 

If C is integral with one node or cusp and no other singular point, then δ = 1; if C is a curve with two 

nodes and no other singularities, then δ = 2 when C is irreducible, and δ = 1 when C is the union of two 

irreducible components. The function δ is upper-semicontinuous on S. If Z ⊆ S is an irreducible subvariety, 
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then one sets δ(Z) to be the value δ(ηZ) at the generic point ηZ of Z. In this case, we have that δ(Z)

coincides with the value δ(z) at a general point z ∈ Z, and also with the minimum of δ(−) on the points of 

Z. A crucial role is played by the δ-loci, which are the locally closed subvarieties Si ⊆ S defined by setting: 

Si := {s ∈ S | δ(s) = i}. Let d := dim P/S be constant (it is so on the connected components of S). The 

Tate module P/S is the object T (P ) = T (P/S) := R2d−1go
! QP o(d) in DbMHM(S)alg (cf. [59, §4.12]; the 

Tate shift (d) is in the sense of M. Saito’s theory of mixed Hodge modules (cf. §2.1). Given a point s of S, 

we have the short exact sequence 0 → T (Rs) → T (P o
s ) → T (As) → 0 of rational mixed Hodge structures. 

Note that dim T (Rs) ≤ δ(s) and the strict inequality is possible, e.g. a projective rational curve with a cusp.

For a fixed prime ℓ, let Tet,Qℓ
(P/S) be the Qℓ-adic counterpart to T (P/S) (defined by the analogous 

formula, using the étale topology/cohomology formalism). We say that Tet,Qℓ
(P/S) is polarizable if étale-

locally there is a pairing Tet,Qℓ
(P/S) ⊗ Tet,Qℓ

(P/S) → Qℓ(1) such that, for every point s of S, the null 

space of the pairing at s is precisely Tet,Qℓ
(Rs).

Definition 2.2.1. (δ-regular weak abelian fibration) A weak abelian fibration is a pair of morphisms: (f :

M → S, g : P → S) such that:

(a) f is proper;

(b) P is a smooth commutative group scheme;

(c) There is an action a : P ×S M → M of P on M over S;

(d) f and g have the same pure relative dimension, denoted by d;

(e) the action has affine stabilizers at every point m ∈ M ;

(f) the Tate module Tet,Qℓ
(P/S) of P/S is polarizable. In context, we abbreviate (f : M → S, g : P → S)

to (M, S, P ).

If, in addition, we also have the following property of P/S:

codim Si ≥ i, ∀i ∈ Z≥0, (3)

then we say that (M, S, P ) is a δ-regular weak abelian fibration.

Remark 2.2.2. Note that the δ-regularity inequality (3) is equivalent to:

codimS Z ≥ δ(Z), for every locally closed integral subvariety Z ⊆ S. (4)

Moreover, (3) implies that if (M, S, P ) is a δ-regular weak abelian fibration, then the general fiber P o
s is 

complete, i.e. it is an Abelian variety.

If P → S is the relative degree–0 Picard scheme of a family of integral curves parametrized by S, then 

the fibration is δ-regular if and only if for all δ ≥ 0, the locus of curves of cogenus δ has codimension ≥ δ. 

Examples of δ-regular weak abelian fibrations will be given in Example 2.3.3 and in §3.3.

Over a perfect field the Chevalley devissage exists and is unique. Since we are working in characteristic 

zero, by working with Zariski points on S, one sees that (cf. [59, §7.4.8]), given any integral locally closed 

subvariety Z ⊆ S, there exists an open and dense subvariety V ⊆ Z and a short exact sequence of smooth 

commutative group schemes over V with connected fibers:

0 → RV → P o
|V → AV → 0, (5)

that realizes the Chevalley devissage point-by-point on V . One can shrink V , if needed.
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2.3. Weak abelian fibrations and holomorphic symplectic manifolds

In this section we consider weak abelian fibrations arising from Lagrangian fibrations and we show that 

under some assumptions they are δ-regular (Proposition 2.3.2). Examples of such Lagrangian fibrations are 

given in Example 2.3.3 and §3.

In this section, we fix the following data: let (M, σM ) be a quasi-projective holomorphic symplectic 

manifold of dimension 2d with holomorphic symplectic form σM ; let S be a smooth variety of dimension 

d; let f : M → S be a proper Lagrangian fibration, i.e. f is a proper surjective morphism with connected 

fibers whose general fiber is a Lagrangian subvariety; let P/S be a smooth commutative group scheme with 

connected fibers, acting on M/S.

By [50, Thm 1], every irreducible component of every closed fiber of f is Lagrangian. This means that 

for every s ∈ S, the pullback of the symplectic form to a resolution of the singularities of any component 

of the fiber Ms, endowed with the reduced structure, is trivial. In particular, f is equidimensional. By [8, 

Prop 1], the morphism f is an algebraic completely integrable system. It follows that the general fiber of f

is a compact complex torus.

As we show in Lemma 2.3.1, the fact that M → S is a Lagrangian fibration has consequences on the 

action of P/S on M . This Lemma is then used to prove the δ-regularity property. The action of the group 

scheme P/S on the Lagrangian fibration M/S defines a commutative diagram with Cartesian squares:

M
lM

eM
f

P ×S M

p2

p2

a

r

M

f

S
ζ

ξ

P
g

S,

(6)

where ζ : s 
→ es ∈ Ps (the identity section), lM : Ms ∋ ms 
→ (es, ms), a is the action, pi the projections. 

Note that eM (ms) = es. The dotted arrow ξ is not part of the initial data, but is produced, after a suitable 

base change, under the hypotheses of Lemma 2.3.1.(2a).

Lemma 2.3.1. (Duality for the action) Let M/S, σM , P/S and aM be as above.

1. There is a commutative diagram:

e∗
M TP |S

θM dactM

0 (Ω1
M |S)∨

β∨

≃σ′
M

TM

df

≃σM

Im df(⊆ f∗TS)

≃σ′′
M

0

0 f∗Ω1
S

df∨

Ω1
M

β
Ω1

M |S 0,

(7)

where: e∗
M TP |S = f∗ζ∗TP |S is the pull-back via f of the vector bundle on S with fibers the Lie algebras 

Lie(Ps); Ω1
M |S is torsion free; Ker df = (Ω1

M |S)∨ = HomOM
(Ω1

M |S , OM ) is locally free; the vertical ar-

rows are isomorphisms induced by the symplectic form σM ; rows two and three are short exact sequences.

The formation of the diagram is compatible with étale base change S′ → S and with restriction to non-

empty, not-necessarily P -invariant, open subsets of M . In particular, θM is an isomorphism if and only

if it is an isomorphism after base change S′ → S given by an étale covering. The roof of the diagram 

depends on all the initial data, while the rest of the diagram depends only on M/S and σM .
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2. Assume in addition that:

(a) either there is an open subset M◦ ⊆ M such that M◦/S is a P/S-torsor;

(b) or there are: an open subset S♮ ⊆ S, with codim(S \ S♮) ≥ 2, and an open subset M ♮◦ ⊆ M ♮ such 

that M ♮◦/S♮ is a P ♮/S♮-torsor.

Then θM is an isomorphism. In particular, dactM and df are dual to each other via the symplectic form 

σM , i.e., for every m ∈ M with s := f(m), we have the commutative diagram at the level of fibers at m:

Lie(Ps) = TPs,e

σ′
M,m◦θM,m

≃

dactM,m

Ω1
S,s

df∨
m

TM,m

σM,m

≃
Ω1

M,m.

(8)

Proof. We start by explaining the isomorphism of the two horizontal short exact sequences in (7). Consider 

the short exact sequence 0 → f∗Ω1
S

df∨

→ Ω1
M

β
→ Ω1

M |S → 0. The first morphism is injective because it is 

generically injective (f is a dominant generically smooth morphism) and f∗Ω1
S is locally free. Dualizing, we 

get a short exact sequence 0 → (Ω1
M |S)∨ β∨

→ TM
df
→ Imdf → 0, where Im[df : TM → f∗TS ] ⊂ f∗TS . Since f is 

Lagrangian, the composition βσM β∨ is zero, because it is generically zero and hence zero by torsion-freeness 

of the source. This gives, uniquely, an injective σ′
M and a surjective σ′′

M making the diagram commutative. 

Since σ′′
M is a surjective morphism of coherent sheaves of the same rank, it is also generically injective. By 

the torsion-freeness of its source σ′′
M is injective and thus an isomorphism. At this juncture, σ′

M must be an 

isomorphism as well.

Now we construct the roof of (7). The action a induces a morphism a∗Ω1
M |S

da∨

→ Ω1
P ×SM |S =

p∗
1Ω1

P |S ⊕ p∗
2Ω1

M |S . Precomposing with a∗β : a∗Ω1
M → a∗Ω1

M |S and postcomposing with the projection 

proj : Ω1
P×SM|S → p∗

1Ω1
P|S yields a morphism of vector bundles a∗Ω1

M → p∗
1Ω1

P |S , which we dualize: this 

gives a morphism p∗
1TP |S → a∗TM , which we pullback via l∗

M . We obtain a morphism of vector bundles

d actM : l∗
M p∗

1TP |S = e∗
M TP |S → l∗

M a∗TM = TM

Notice that e∗
M TP |S is the pull-back via f of the vector bundle on S with fibers the Lie algebras of the fibers 

of P/S. Notice also that the morphism d actM deserves its name: by construction, for every s ∈ S and every 

m ∈ M with m over s, the fiber (e∗
MTP |S)m = Lie Ps, and d actm(v) = d am(v), where am : Ps → Ms ⊂ M

sends p ∈ Ps to p · m (where · denotes the action of P/S on M/S).

Note that a∗ and duality commute by the smoothness of a. By construction, d actM factors as e∗
M TP |S −→

l∗
M a∗(Ω1

M |S)∨ = (Ω1
M |S)∨ β∨

−→ TM , where the first morphism, which we denote by θM , is l∗
M (proj ◦ da∨)∨ :

e∗
M TP |S −→ (Ω1

M |S)∨.

Let us also note the following. Assume that the general stabilizer of the action of P/S on M/S is trivial. 

Then the morphism d actM , and thus θM , is injective. If U ⊆ M is a P -invariant Zariski-dense open subset 

with the property that the stabilizers of its points are trivial, then the restriction θU is an isomorphism, for 

the action of P is free on U .

Let us prove part (2a). There is an étale covering of finite type S′ → S such that (we denote, temporarily, 

objects after base change with a prime) the torsor (M◦)′/S′ admits a section ξ : S′ → (M◦)′. It is enough to 

show that θM ′ is an isomorphism. We may thus assume that the original M◦ is a trivializable P/S-torsor, 

and we drop the primes. Since our aim is to verify that θM is an isomorphism, we may assume that M

is irreducible. Let τ : P
∼
→ M◦ be the corresponding trivialization: Ps ∋ p 
→ p · ξ(s). The structural 

S-morphism of P/S is Lagrangian for the symplectic form σP,τ := τ∗σM◦ , so that we have the standard 
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natural isomorphism uσP,τ
: Ω1

S
∼
→ ζ∗

P TP |S , with pull-back g∗uσP,τ
: g∗Ω1

S
∼
→ g∗ζ∗

P TP |S = e∗
P TP |S given by 

θ−1
P ◦ (σ′

P,τ )−1. Pulling-back via f , gives the isomorphism: f∗uσP,τ
: f∗Ω1

S
∼
→ f∗ζ∗

P TP |S = e∗
M TP |S .

Claim. uM,τ := σ′
M ◦ θM ◦ f∗uσP,τ

∈ End(f∗Ω1
S) is an isomorphism, so that, since the first and third factors 

are isomorphisms, θM is an isomorphism, and (2a) follows.

Proof of the CLAIM (and end of proof (2a)). Note that the section ξ of M◦/S also defines a section, 

denoted by the same symbol, of M/S, i.e. of f . We now have diagram (6) in its entirety. Using the adjoint 

pair (f∗, f∗), that f ◦ ξ = IdS , the projection formula, and the fact that f∗OM = OS (f is its own Stein 

factorization), we see that the adjunction isomorphism Hom(f∗Ω1
S , f∗Ω1

S) 
∼
→ Hom(Ω1

S , Ω1
S) coincides with 

ξ∗, and has inverse f∗: a morphism ϕ in the former group is the pull-back via f of a unique morphism in the 

latter, namely ξ∗ϕ, and, moreover, ϕ is an isomorphism if and only if ξ∗ϕ is an isomorphism. It remains to 

show that ξ∗uM,τ is an isomorphism. Since the first and last factors are isomorphisms, it remains to show 

that ξ∗θM is an isomorphism. This is automatic, since ξ(S) is inside the P -torsor M◦ and, as it has been 

observed above, θM◦ is an isomorphism.

Let us prove part (2b). Note that (2b) implies (2a), however, for clarity, we have chosen to prove (2a) 

first. We apply (2a) to the situation of S♮. We obtain that the morphism θM of vector bundles on M is an 

isomorphism in codimension two, hence an isomorphism. �

In the next proposition, by abuse of notation, when we write something like TPs,e, etc., we mean the fiber 

of the corresponding vector bundle, not the stalk of the coherent sheaf.

Proposition 2.3.2. (δ-regularity) Let (M, S, P ) be a weak abelian fibration such that: M and S are nonsin-

gular; M is quasiprojective; M/S is a proper Lagrangian fibration; P/S has connected fibers; there is an 

open subset M◦ ⊆ M such that M◦/S is a P/S-torsor. Then (M, S, P ) is δ-regular (cf. (4)).

Proof. Let Z ⊂ S be a locally closed integral subvariety. By shrinking Z if necessary, we have the Chevalley 

devissage (5) 0 → RZ → P o
Z → AZ → 0 of the identity component P o

Z in affine and Abelian parts. For a 

general point z ∈ Z, dim Az = dim S − δ(Z).

It is enough to show that for a general point z ∈ Z, we have a surjection:

TAz,e ։ Ω1
Z,z, (9)

since this implies that d − δ(Z) ≥ dim Z, which is our contention (4).

It is enough to obtain a surjection (9) after an étale base change Z ′ → Z with Z ′ integral.

Let MZ → Z be the restriction of M → S over Z. Let ηZ ∈ Z be the generic point. Since f is proper, 

MηZ
/ηZ is complete.

Let L/k(ηZ) be a finite field extension so that ML/L has an L-rational point and such that the affine 

solvable RL is L-split. By the Borel fixed-point theorem [11, §V, Proposition 15.2], ML admits an L-rational 

point that is fixed by RL. By taking the integral closure Z ′ of Z in L, and after shrinking Z ′ if necessary, 

we obtain a morphism Z ′ → Z such that the resulting MZ′ → Z ′ admits a section -corresponding to the 

fixed L-rational point found above- fixed by RZ′ , and such that Z ′ → Z is étale. Let Q′
Z be the image of 

this section.

In view of our objective (9), we may now assume without loss of generality that Z = Z ′.

The action of RZ is trivial on QZ . If m ∈ QZ , and z ∈ Z is the point over which m lies, then the 

infinitesimal action of P on M at m factors as follows: Lie(Pz) ։ Lie(Az) → TM,m. The compositions 

QZ → Z → S and QZ → M → S coincide. By combining this coincidence of compositions, with the 

factorization of the infinitesimal actions, and with (8), we obtain the commutative diagram:
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Lie(Az) Lie(Pz)
σ′

M,m◦ θM,m

≃

dactm

Ω1
S,z

df∨

Ω1
Z,z

≃

TM,m

σM,m

≃
Ω1

M,m Ω1
QZ ,z.

(10)

It follows that the image of TAz,e in Ω1
QZ ,z coincides with the injective image of Ω1

Z,z. Hence the desired 

surjection (9) at a general point of Z. �

Example 2.3.3. Let (S, H) be a general polarized K3 surface. Let χ be an integer, set v = (0, H, χ), and 

let π : Mv(S) → |H| be the moduli space of pure dimension 1 sheaves on S with Mukai vector v (see 

§3.2). This is a smooth projective irreducible holomorphic symplectic manifold. Let P → |H| be the relative 

degree–0 Picard scheme of the family of curves in |H|, which exists as a scheme since the curves in |H|

are reduced an irreducible ([12, Thm 1 §8.2]). Then P/|H| acts on Mv(S)/|H| with affine stabilizers (see 

the forthcoming Lemma 3.4.1 and 3.4.4), the Tate modules are polarizable (cf. Lemma 3.4.5) so the pair 

(Mv(S), P ) is a weak abelian fibration. Over the open subset U ⊂ Mv(S) parametrizing line bundles on the 

curves of |H|, the action is free. Since the fibers of π are compactifed Jacobians of locally planar integral 

curves, the assumption of Proposition 2.3.2 is satisfied (with M◦ = U) and the fibration is δ-regular.

For more details on the background and context for this example and for other weak abelian fibrations 

see §3.3.

3. The manifolds M̃ and N as δ-regular weak abelian fibrations

In this section we introduce the Lagrangian fibered irreducible holomorphic symplectic manifolds M̃ and 

N , as well as other auxiliary fibrations. We start by assembling some known facts about OG10-type varieties 

(§3.1) and about moduli spaces of pure dimension one sheaves (§3.2) that are needed in the paper. Then 

we show that the Lagrangian fibrations we have introduced are δ-regular weak abelian fibrations (§3.3 and 

3.4).

3.1. OG10-type manifolds

Let (S, H) be a polarized K3 surface with Néron-Severi group NS(S) = ZH. We identify vectors v :=

(v0, v2, v4) ∈ Z3 with elements in Heven
alg (S, Z), via the obvious identification, and we consider the even 

quadratic form v2 := v2
2H2 − 2v0v4 on Heven

alg (S, Z) induced by the Mukai pairing. A vector v ∈ Heven
alg (S, Z)

is called positive (cf. [73, Def. 0.1] and [5, Def. 5.1]) if v2 ≥ −2 and if either: a) v0 > 0; or b) v0 = 0, v2 > 0;

or c) v0 = v2 = 0 and v4 > 0. We say that a Mukai vector v is primitive if v is not of the form kv′, for 

k �= ±1. For a coherent sheaf F on S we denote by v(F) := ch(F) ∪
√

td(S) the Mukai vector of F .

Remark 3.1.1. Conditions a), b) and c) are necessary on v for the existence of a coherent sheaf F with 

v(F) = v. In [73, Def. 0.1] and [5, Def. 5.1], in case b) it is assumed that v4 �= 0 in order to ensure that 

for primitive v and generic polarization, semistability implies stability for F . Since this is automatic if 

NS(S) ≃ Z, we drop this assumption (cf. [63, Rmk 2.6]). However, in the few cases where we deal with K3 

surfaces with higher Picard rank (Remark 3.2.3 and Theorem B′), we refer to the notion of positivity for 

Mukai vectors given in [73, Def. 0.1] and [5, Def. 5.1].

Let v′ be a primitive and positive Mukai vector, let m ≥ 1, and set v := mv′. What follows is classical 

work of several authors [56,73,41,60]. The moduli space Mv(S) of Gieseker-semistable pure sheaves on S
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with Mukai vector equal to v is a normal irreducible projective variety of dimension v2 + 2 [29, Theorem 

0.3] and [41, Theorem 4.4]. The points of Mv(S) are the isomorphism classes of polystable sheaves or, 

equivalently, the S-equivalence classes of semistable sheaves [39, Theorem 4.3.3]. By [56], the smooth locus 

of Mv(S) is precisely the locus parametrizing stable sheaves and it admits a holomorphic symplectic form. 

It follows that the moduli space is smooth if and only if the locus parametrizing strictly semistable sheaves 

is empty. When NS(S) ≃ Z, this happens if and only if m = 1, i.e. if and only if v is primitive. If this 

is the case, the moduli space is an irreducible holomorphic symplectic manifold deformation equivalent to 

the Hilbert scheme of 1
2v2 + 1 points on S [73, Theorem 8.1]. For m ≥ 2, the singular moduli space Mv(S)

admits a symplectic resolution if and only if m = 2 and v2 = 2 [60,41,47]. In this case, the following result 

holds:

Theorem 3.1.2. (OG10-type manifolds) Let v = 2v′, with v′ positive and v′ 2 = 2.

(1) The singular locus of M2v′(S) is naturally identified with the 8–dimensional Sym2Mv′(S).

(2) Locally in the classical topology, the singularities of M2v′(S) do not depend on the choice of v′ with 

v′ 2 = 2. Moreover, the blow up M̃2v′(S) → M2v′(S) of M2v′(S) along the singular locus, with its reduced 

induced structure, is a symplectic resolution.

(3) The symplectic resolution M̃v(S) is an irreducible holomorphic symplectic manifold deformation equiv-

alent to O’Grady’s 10-dimensional exceptional example.

Proof. (1) Follows from the fact that since NS(S) = Z the polystable sheaves with Mukai vector v are of 

form F1 ⊕ F2, with v(Fi) = v′. (2) This is [47, Thms 1.1 and 4.5] (for the rank 2 case, see also [40, Prop 

2.2]). (3) This is [62, Thm 1.6]. �

We recall that O’Grady’s original example is M̃(2,0,−2)(S).

3.2. Pure dimension one sheaves and the manifolds M̃ and N

By Theorem 3.1.2 (3), in order to study the Hodge numbers of OG10–manifolds we are free to choose 

any Mukai vector v = 2v′ ∈ Heven
alg (S, Z) with v′ 2 = 2. To make sure the corresponding projective model 

M̃2v′(S) admits a Lagrangian fibration, we chose for v′ the Mukai vector of a pure dimension 1 sheaves on 

S [64].

Recall that a coherent sheaf F on a scheme is said to be of pure dimension d if the support of F , as well 

as the support of all non-trivial subsheaves of F , has dimension d [39, §1.1]. Let (S, H) be a polarized K3 

surface with NS(S) = ZH and consider the positive Mukai vector:

v = (0, k, χ).

Pure sheaves on S with Mukai vector v are of pure dimension 1, have Euler characteristic χ and first Chern 

class kH. For example, if Γ ∈ |kH| is a smooth curve and i : Γ → S is the closed embedding, then sheaves 

with Mukai vector equal to v and support Γ are of the form i∗L, where L is a line bundle on Γ with 

χ(L) = χ.

The Fitting support of a pure dimension one sheaf on S is a pure dimension 1 subscheme on S which 

represents the first Chern class of the sheaf and is defined as follows:

Remark 3.2.1. ([45, §2.2], [39, §1.1]) Let F be a pure dimension one sheaf on a smooth projective surface. 

Then F has depth one and hence admits a length one resolution

0 → A
j

→ B → F
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where A and B are vector bundles on of the same rank r. The Fitting support Fitt(F) is defined as the 

vanishing subscheme of the induced morphism det j : det A → det B. The scheme thus defined does not 

depend on the resolution, it always contains the set theoretic support of F , and it represents c1(F). For 

example, if C ′ ∈ S is a curve in the linear system |H|, F1 is the push forward to S of a rank k vector bundle 

on C ′ and F2 is the push forward to S of a line bundle on C := kC ′ ∈ |kH|, then the Fitting support of F1

and F2 is precisely the curve C.

Using the reduced Hilbert polynomial, we get the following definition of stability for pure dimension one 

sheaves.

Definition 3.2.2. (Gieseker stability for pure dimension one sheaves [39, Def. 1.2.3, Prop 1.2.6]) A pure 

dimension 1 sheaf F on a polarized surface (X, H) is called Gieseker-(semi)stable with respect to H if and 

only if for all proper pure dimension one quotients F → E the following inequality holds:

χ(F)

c1(F) · H
<

(=)

χ(E)

c1(E) · H
.

For example, if the Fitting support of F is integral, then F is the push forward of a rank 1 torsion free 

sheaf on an integral curve, so F has no proper quotient and is automatically stable. If F is the pushforward 

of line bundle on a curve C, then the only pure dimension 1 proper quotients of F are the restrictions to 

the pure dimension one subschemes of C. It follows that F is (semi)-stable if and only if

χ(F)

C · H
<

(=)

χ(F|D)

D · H
(11)

for every proper subcurve D ⊂ C. In Lemmas 3.3.2 and 4.3.7 and Proposition 4.3.8 we will consider the 

stability of pure dimension one sheaves on certain non reduced curves.

Remark 3.2.3. (Non generic polarizations for pure dimension one sheaves) A priori, the notion of stability 

depends on the choice of polarization. Since in this paper we are mostly concerned with the case of a Picard 

rank one surface, the polarization is unique up to scalars and we omit it from the notation for the moduli 

spaces and simply write Mv(S). However, since in Theorem B′ we consider moduli spaces of sheaves on K3 

surfaces of higher Picard rank, we now recall some facts about this more general setting. Consider a positive 

v (cf. Remark 3.1.1). If v is primitive, then there is always a polarization for which there are no strictly 

semistable sheaves, i.e., all semistable sheaves are in fact stable; if v = kv′ is not primitive, then there is 

always a polarization for which the summands of the polystable sheaves with Mukai vector v have Mukai 

vector a multiple of v′ [39, §4.C], [73]. For a given v, a polarization with these properties is called v-generic. 

If v is primitive and L is a v-generic polarization, then the moduli space Mv,L(S) of L–stable sheaves on 

S with Mukai vector v is an irreducible holomorphic symplectic manifold of dimension v2 + 2, deformation 

equivalent to the Hilbert scheme of v2/2 + 1 points on S. The birational class of Mv,L(S) is independent 

of L [4]. If v = 2v′ with (v′)2 = 2 and H is any polarization, then M2v′,H(S) has a symplectic resolution 

M̃2v′,H(S), which is of OG10-type and whose birational class does not depend on H ([47], [62, Thm 1.6], 

[3, Prop 2.5], [51]).

Let g be the genus of the general curve in |kH|, so that |kH| ∼= P g. The Le Potier morphism [45, §2.2], 

[46, §2.3]:

π : Mv(S) → P g, (12)
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associates with each sheaf its Fitting support. Since the fiber of π over an integral curve is precisely the 

degree d compactified Jacobian of the curve itself, by abuse of notation we refer to Mv(S) as the relative 

compactified Jacobian of degree d := χ +g −1 of the universal curve over |kH|. Note, however, that if curve 

is non–reduced, the locus in a fiber parametrizing line bundles might be empty (cf. Corollary 4.3.9). By 

[56,6], the morphism (12) has Lagrangian fibers when restricted to the smooth locus Mv(S)reg.

In order for v = 2v′ with (v′)2 = 2 to be the Mukai vector of pure dimension one sheaves, one needs 

v0 = 0 and H2 = 2. To achieve this consider a polarized K3 surface of degree 2, i.e., a surface S realized as 

a 2 : 1 cover:

r : S → P 2,

ramified along a smooth plane sextic curve. The linear system H := r∗OP 2(1) is of genus 2, i.e., its general 

member is a nonsingular connected curve of genus 2 and |H| ∼= P 2. If the smooth sextic curve is general 

then NS(S) ≃ Z〈H〉 [13]. From now on, unless otherwise stated, we will assume that S is a general in this 

sense. The Mukai vector

v′ := (0, 1, χ′) (13)

is positive and satisfies v′ 2 = 2. With these choices, the moduli space Mv′(S) is a smooth projective 

irreducible holomorphic symplectic fourfold, with a Lagrangian fibration

Mv′(S) → |H| = P 2, (14)

realizing it as the relative compactified Jacobian of degree d′ := χ′ + 1 of the universal curve C′/|H|.

Remark 3.2.4. For general S as above, the curves in |H| are reduced and irreducible and have only nodes 

and (simple) cusps as singularities. Moreover, the rational curves in the linear systems have only nodes [17]. 

By [65], the fibers of (14) are irreducible of dimension 2.

The linear system |2H| is base point free and has dimension 5, and its general member is a connected 

nonsingular hyperelliptic curve of genus 5 [67], which is a ramified double cover of a plane conic. Consider 

the Mukai vector:

2v′ = (0, 2, 2χ′). (15)

The support morphism M2v′(S) → |2H| realizes this 10-dimensional singular moduli space as the relative 

compactified Jacobian of degree d = 2χ′ + 4 of the universal curve C/|2H|. By [50, Thm 1], composing this 

morphism with the symplectic resolution gives the structure of Lagrangian fibration (cf. §2.3)

M̃2v′(S) → M2v′(S) → |2H| ∼= P 5,

on this projective manifold OG10-type. We also consider the moduli space associated with the primitive 

Mukai vector:

w = (0, 2, χ), with χ odd. (16)

With this choice of Mukai vector, the moduli space Mw(S) is a smooth irreducible holomorphic symplectic 

10-fold of K3[5]-type, with Lagrangian fibration Mw(S) → |2H| realizing it as odd-degree χ + 4 relative 

compactified Jacobian of the universal curve C/|2H|.
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Remark 3.2.5. (The subvarieties Δ ⊆ Σ ⊆ |2H|) The non integral curves in |2H| ≃ P 5 are the preimages 

under r of the non integral conics. They are parametrized by an irreducible divisor Σ ⊂ |2H|, which is 

identified with Sym2 |H| ≃ Sym2 P 2. The non-reduced curves are the preimages of the non-reduced conics 

(double lines) and they are parametrized by the irreducible 2-dimensional subvariety Δ|H| ⊂ Sym2 |H| ⊂

|2H|.

The analysis of the irreducible components of the fibers of M̃2v′(S) → |2H| and Mw(S) → |2H| over Σ

and Δ plays a crucial role in this paper and will be carried out in Propositions 4.2.1, 4.2.2, and 4.2.4. For 

the moment, we review the following general properties.

Remark 3.2.6. (Flatness of the Lagrangian fibrations M̃2v′(S), Mw(S), Mv′(S), and M2v′(S).) The varieties 

M̃2v′(S), Mw(S) and Mv′(S) are irreducible holomorphic symplectic manifolds. By [50], the Lagrangian 

fibrations M̃2v′(S) → P 5, Mw(S) → P 5, and Mv′(S) → P 2 are equidimensional and therefore flat. The 

following three facts concerning the morphism M2v′(S) → |2H| ≃ P 5 hold true: (i) since M2v′(S) has a 

symplectic resolution, it has canonical singularities, and is thus Cohen-Macaulay (see Theorem 5.10 and 

Corollary 5.24 of [43]); (ii) since the fibers of M2v′(S) → |2H| ≃ P 5 are dominated by the corresponding 

fibers of M̃2v′(S) → P 5, they all have the same dimension five; the base of the fibration M2v′(S) → |2H|

is nonsingular. By [49, Thm 23.1], the morphism M2v′(S) → |2H| is flat. As a consequence, the fibers of 

M2v′(S) → |2H|, M̃2v′(S) → P 5, Mw(S) → P 5, and Mv′(S) → P 2 are Cohen-Macaulay.

For later use, we collect some known results:

Proposition 3.2.7. Let v′ = (0, 1, χ′) and let v = (0, 2, χ). Denote by S[n] the Hilbert scheme of n points of 

the K3 surface S.

1. The birational class of the irreducible holomorphic symplectic manifold Mv′(S) depends on the parity of 

χ′ alone. If χ is odd, then Mv′(S) is an irreducible holomorphic symplectic manifold birational to S[2].

2. The birational class of Mv(S) depends on the parity of χ alone. If χ is odd, then Mv(S) is an irreducible 

holomorphic symplectic manifold birational to S[5]. If χ is even, then Mv(S) is singular; blowing up 

its singular locus (with its reduced induced structure) produces an irreducible holomorphic symplectic 

manifold M̃v(S) in the deformation class OG10;

3. For odd χ′ and χ, there are isomorphisms of integral Hodge structures H∗(Mv′(S), Z) ∼= H∗(S[2], Z)

and H∗(Mv(S), Z) ∼= H∗(S[5], Z).

4. The isomorphism class of the integral Hodge structure of M̃v(S) is the same for every even χ.

Proof. The general curves in the linear systems |H| and |2H| are smooth hyperelliptic, so tensoring a 

line bundle supported on a smooth curve with the unique g1
2 on its support defines birational maps 

M(0,1,χ′)(S) ��� M(0,1,χ′+2)(S) and M(0,2,χ)(S) ��� M(0,1,χ+2)(S). The statement that Mv′(S) and Mv(S), 

with χ′ = χ = 1, are birational to the relevant Hilbert scheme is well-known (cf. [8]). Finally, the statements 

about the isomorphisms of Hodge structures follow from [38, Thm 2.5 Cor. 2.6]. �

3.3. The group schemes

Recall the definitions (13), (15) and (16) of the Mukai vectors v′, 2v′, and w. As we shall see in §3.4, 

each of the moduli space Mv′(S), Mw(S) and M̃2v′(S) is part of the data forming a δ-regular weak abelian 

fibration. We now introduce the relevant group schemes as open subsets:

P ′ ⊆ M(0,1,−1)(S), for Mv′(S), and (17)

P ⊆ M(0,2,−4)(S), for Mw(S) and M̃2v′(S). (18)
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Lemma 3.3.1. For every Mukai vector v as in (13), (15), and (16), the locus Pv(S) ⊂ Mv(S) parametrizing 

stable sheaves that are push forwards of line bundles on their schematic supports is a non empty Zariski 

open subset.

Proof. An application of Nakayama’s Lemma shows that a pure dimension 1 sheaf F on S is a line bundle 

on its schematic support if and only if every non zero fiber of F has rank 1. The predicated openness then 

follows from the upper semicontinuity of the rank of the fibers of a coherent sheaf, while the non-emptiness 

is clear for the general fiber, where the curves are integral. �

We remark that while this open set Pv(S) intersects non trivially the fibers corresponding to an integral 

curve [65], it may not intersect some fibers of the Le Potier morphism over the non-reduced locus (cf. 

Corollary 4.3.9).

The following lemma describes the sheaves corresponding to closed point of Pv(S) in the cases we are 

interested in, i.e. for v = (0, 2, χ). More general statements along these lines appear in Section 4.3 (cf. 

Proposition 4.3.1, Lemma 4.3.7, and Proposition 4.3.8).

Lemma 3.3.2. Let F be a coherent sheaf on S with v(F) = (0, 2, χ). Assume that F is the push forward of 

a line bundle on a curve C ∈ |2H|.

1. If C = 2C ′ for a curve C ′ ∈ |H|, then the Euler characteristic χ is even, F is stable, and the degree of 

the restriction of F to C ′ is deg(F|C′) = (χ/2) + 2.

2. (a) If C = C1 + C2, for C1 �= C2 ∈ |H| and χ is even, then the sheaf F is stable if and only if 

deg(F|C1
) = deg(F|C2

) = (χ/2) + 2.

(b) If C = C1 + C2, for C1 �= C2 ∈ |H|, and χ is odd, the sheaf F is stable if and only if deg(F|C1
) =

2 + (χ + 1)/2 and deg(F|C2
) = 2 + (χ − 1)/2 or viceversa.

Proof. Let L be the line bundle on C whose push forward on S is F . In case 1) let i : C ′ → C be the 

inclusion and let I be the sheaf of ideals of C ′ in C. Since L is a line bundle on C = 2C ′, tensoring by L

the exact sequence of OC-modules 0 → I → OC → i∗OC′ → 0 gives the exact sequence

0 → I ⊗ i∗L|C′ → L → i∗L|C′ → 0.

Note that since I2 = 0, I is an OC′–module which is isomorphic to ω∨
C′

∼= OC′(−C ′) and has degree −2

on C ′ (cf. (26)). It follows that χ = χ(F) = χ(L) = 2χ(L|C′) − 2 = 2χ(F|C′) − 2, hence χ is even and 

χ(F|C′) = (χ/2) + 1. Formula (11) becomes χ(F) < 2χ(F|C′), so the sheaf F is stable and, since the 

arithmetic genus of C ′ is 2, we conclude that deg(F|C′) = χ(F|C′) + 1 = (χ/2) + 2.

In case 2), by formula (11), the sheaf F is stable if and only if χ = χ(F) < 2χ(F|Ci
) for i = 1, 2. 

Using that the arithmetic genus of C is 5 and the arithmetic genus of Ci is 2, the last inequality becomes 

deg(F) − 4 < 2(deg(F|Ci
) − 1) or equivalently deg(F|Ci

) > (deg(F)/2) − 1. Since deg(F|C1
) + deg(F|C2

) =

deg(F) = χ − 4 item (2) follows. �

Corollary 3.3.3. For v = (0, 1, −1) (respectively, v = (0, 2, −4)), the open set

Pv(S) ⊂ Mv(S)

can be identified with the relative degree-0 Picard scheme Pic0
C′/|H| of the family C′/|H| of curves of the 

linear system |H| (respectively, the relative degree-0 Picard scheme Pic0
C/|2H| of the family C/|2H| of curves 

of the linear system |2H|).



M.A.A. de Cataldo et al. / J. Math. Pures Appl. 156 (2021) 125–178 141

Proof. We prove the statement for v = (0, 2, −4), since the proof for v = (0, 1, −1) is analogous. Since |2H|

is an ample linear system on a K3 surface, for every C ∈ |2H| the space H0(C, OC) has dimension 1. This 

implies that the family C/|2H| is cohomologically flat, i.e., in the language of [2], the structure sheaf OC of 

C is |2H|-simple.

By [2, Cor. 7.6] the étale sheafification of the relative Picard functor of the family C/|2H| is represented 

by an algebraic space and the same holds for the étale sheafification of the relative degree-0 Picard functor 

by [35, Cor. 15.6.5] or [12, §8.4, Thm 4]. The representing object of the latter functor is, by definition, the 

nonsingular algebraic space Pic0
C/|2H| → |2H|. By [12, §9.3, Cor. 13] closed points of Pic0

C/|2H| correspond to 

line bundles on curves of |2C| having degree zero on every integral subcurve. By Lemma 3.3.2 the nonsingular 

variety P := P(0,2,−4)(S) parametrizes the same set of line bundles seen as sheaves on S and, since P is an 

open subset of M(0,2,−4)(S), it corepresents the corresponding moduli functor by [39, Thm 4.3.4]. It follows 

that there exists a bijective morphism ϕ : Pic0
C/|2H| → P(0,2,−4)(S); since the algebraic spaces Pic0

C/|2H| and 

P(0,2,−4)(S) are smooth, the morphism ϕ is an isomorphism and the algebraic space Pic0
C/|2H| is identified 

with the scheme P(0,2,−4)(S). �

To fix ideas, in the remainder of the paper we work with the following varieties and morphisms, which 

have been introduced in the previous sections:

m′ : M ′ := M(0,1,1)(S) −→ B′ := |H|

m̃ : M̃ := M̃(0,2,2)
b

−→ M := M(0,2,2)
m

−→ B := |2H|

n : N := M(0,2,1) −→ B

p : P := Pic0
C/|2H| −→ B

p′ : P ′ := Pic0
C′/|H| −→ |H|.

(19)

Remark 3.3.4. Everything we say in the remainder of the paper about M̃ , N , and M ′ can be formulated 

also for any other moduli space with Mukai vector equal to 2v′, w, and v′ as in (13), (15), (16), respectively.

3.4. The manifolds M̃, N, M ′ and M ′(2)
as δ-regular weak abelian fibrations

The goal of this section is to prove the forthcoming Proposition 3.4.6, to the effect that the triples listed 

there are δ-regular weak abelian fibrations as in Definition 2.2.1. Recall the notation (19). We start by lifting 

the action of P on M to an action of P on M̃ .

Lemma 3.4.1. (The action of the Picard group) Tensoring a sheaf by a line bundle with the same Fitting 

support induces:

1. a group scheme structure on P over B with actions aM : P ×B M → M and aN : P ×B N → N , on M

and N , over B,

2. a group scheme structure on P ′ over B′ with an action aM ′ : P ′ ×B′ M ′ → M ′ on M ′ over B′.

Proof. This is a general statement. Tensoring a pure dimension one sheaf whose schematic support is 

contained in a curve C by an element of Pic0(C), does not change the Euler characteristic of the sheaf itself, 

nor of its quotient sheaves. By Definition 3.2.2, (semi)stability is preserved by this operation. The fact that 

this set theoretic action is algebraic follows from the fact that the fiber product of the Picard scheme and 

the moduli space corepresents the appropriate product functor. �
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The following corollary follows immediately, since b : M̃ → M is the blow up of a locus which is left 

invariant by the action of the group scheme.

Corollary 3.4.2. The action P ×B M → M lifts to a necessarily unique, action P ×B M̃ → M̃ .

At this stage it is clear that the requirements (a)–(d) in the Definition 2.2.1 of weak abelian fibration are 

met. The following two lemmata ensure that the remaining requirements (e) and (f) are met as well.

Lemma 3.4.3. Let the notation be as in Lemma 3.3.1. The open subsets

P(0,2,2) ⊂ M̃, respectively P(0,1,1) ⊂ M ′,

surject onto B, respectively B′, and are torsors under the group scheme P , respectively P ′. The image of 

the open subset P(0,2,1) ⊂ N in B is Σ \ Δ and P(0,2,1) is a torsor under the restriction of P to Σ \ Δ. 

Moreover, there is no open set of N which is a P -torsor.

Proof. The proof uses results proved in the forthcoming §4.2-4.3. Since the curves in |H| are integral (cf. 

Remark 3.2.4), the surjectivity of P(0,1,1) → B′ follows from Rego’s result on the irreducibility of the 

moduli space of rank 1 torsion free sheaves on an integral locally planar curve [65]. The surjectivity of 

P(0,2,2) → B follows from Proposition 4.2.2 and Proposition 4.3.10. It is clear that the action of P (and of 

P ′) on the moduli spaces is free on the open invariant sets parametrizing sheaves that are line bundles on 

their scheme theoretic support. The assertion about the image of P(0,2,1) → B follows from Proposition 4.2.2

and Corollary 4.3.9. The last assertion follows from Remark 4.3.19 and Corollary 4.3.11. �

Lemma 3.4.4. The actions of P on M̃ , M and N , and of P ′ on M ′ and on M ′ (2) have affine stabilizers.

Proof. Recall that the action of the group scheme on the moduli spaces of sheaves is given by tensorization. 

We start by considering the following case. Let F be a rank r vector bundle on a smooth projective curve C

and suppose F ∼= F ⊗L, for L ∈ Pic0(C). Taking determinants, we see that Lr ∼= OC so L belongs to a finite 

subgroup of Pic0(C). Now suppose that F is a pure (see Definition 3.2.2) sheaf on a curve C =
∑

Ci, where 

Ci are the irreducible, but possibly non-reduced, components of C. If L ∈ Pic0(C) is such that F ∼= F ⊗ L, 

then we have that

F|C̃red
i

/Tor ∼= F|C̃red
i

/Tor ⊗ L|C̃red
i

,

where ji : C̃red
i → Cred

i → Ci is the normalization of the reduced underlying curve and where F|C̃red
i

/Tor is 

the pullback of F to C̃red
i , modulo its torsion. Since F|C̃red

i
/Tor is a vector bundle on a smooth curve, we 

can apply the previous observation to conclude that there is an integer ri such that Lri

|C̃red
i

∼= OC̃red
i

. Hence 

we conclude that, up to a finite quotient group, L lies in the kernel of the natural morphism:

Pic0(C)
∏

j∗
I−→
∏

Pic0(C̃red
i ),

which is precisely the affine part of Pic0(C). From these observations it follows that the points of M , 

N , or M ′ corresponding to stable sheaves all have affine stabilizers. Hence, the points of M ′ (2) also have 

affine stabilizers. The same reasoning, applied to a polystable sheaf F = F1 ⊕ F2, shows that the points 

corresponding to the singular locus of M also have affine stabilizers. Indeed, the stabilizer of a point 

corresponding to a polystable sheaf is contained in the automorphism group of the polystable sheaf, which 

is a product of affine linear groups. By Corollary 3.4.2 the morphism b : M̃ → M is equivariant, so the 
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stabilizer of a point m ∈ M̃ is contained in the stabilizer of b(m) ∈ M . Thus if the points of M have affine 

stabilizers, so do the points of M̃ . �

Lemma 3.4.5. (Polarizability of Tate module) The Qℓ-adic counterparts Tet,Qℓ
(−) of the Tate module T (−)

associated with P → B –the relative Pic0 for C → B–, and with P ′ → B′ –the relative Pic0 for C′ → B′– are 

polarizable. The same is true if we restrict the families of curves to any subfamily of curves over a locally 

closed subvariety of B, or of B′.

Proof. The polarizability result [20, Theorem 3.3.1], which is stated for the family of spectral curves for 

the GLn-Hitchin system, is in fact proved for any family of curves obtained via base change from a linear 

system of curves on a nonsingular surface. Therefore, the polarizability result holds for the families of curves 

C′ → B′ and C → B. �

By putting together the preceding contents of this section, we get the following

Proposition 3.4.6. (δ-regularity) The triples:

(M̃, B, P ), (N, B, P ), (M ′, B, P ′),
(
M ′ 2, B′ 2, P ′ 2

)
,
(
Sym2M ′, Sym2B′, Sym2P ′

)

are δ-regular weak abelian fibrations satisfying the assumptions of Theorem A.0.3 (direct image is sum of 

Ngô strings). The group schemes in the triples appear in, or are related to, (58).

Proof. In view of Lemma 3.4.1, Corollary 3.4.2, and Lemma 3.4.4, all the triples above are weak abelian 

fibrations and we only need to prove δ-regularity. In the cases (M̃, B, P ) and (M ′, B, P ′), δ-regularity follows 

from Proposition 2.3.2 and Lemma 3.4.3. In the cases 
(
M ′ 2, B′ 2, P ′ 2

)
and 

(
Sym2M ′, Sym2B′, Sym2P ′

)
, 

δ-regularity follow formally from the δ-regularity of (M ′, B, P ′). In the case (N, B, P ) it is not true that 

N contains a P -torsor over B, so that this case is not covered directly by Proposition 2.3.2. On the other 

hand, δ-regularity is a property of the group scheme P , and this has already been established when dealing 

with 
(

M̃, B, P
)

. �

4. The top direct image sheaf R10 for the Lagrangian fibrations M̃, N → B

The comparison of the derived direct images of the constant sheaves of the two fibrations M̃, N → B

involves understanding the direct summands of these derived direct images, as well as their supports. 

Thanks to Ngô’s Support Theorem, it is often enough to understand the top degree (in this case, degree 

10) direct image sheaves. The aim of this section is to prove Proposition 4.4.3, which describes, over certain 

relevant subvarieties of B, the top direct image sheaves of the constant sheaf for the two fibrations. This 

result will be used in §5 to determine the Decomposition Theorem for the two fibrations. Note that as 

a simple consequence of the structure of the symplectic resolution M̃ → M (Fact 4.1.1), Corollary 4.1.4

immediately singles out three subvarieties of B as supports for the Lagrangian fibration M̃ → B. However, 

to show that these subvarieties are the only supports of the fibrations and to determine the summands 

on each support actually requires Proposition 4.4.3. A first step towards this proposition is to identify 

the irreducible components (as well as their monodromy) of the fibers of the equidimensional fibrations 

M̃, N → B. This identification is done in §4.2 and uses the results developed in §4.3.
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4.1. The Decomposition Theorem for the blow up b : M̃ → M

By Theorem 3.1.2 and Remark 3.2.5, we have the following commutative diagram

M ′ = ΔM ′ Δ := ΔB′ = B′

Sing(M) = Sym2M ′ Σ := Sym2B′

m̃ : M̃
b

M
m

B = |2H|,

(20)

where the morphisms m̃ and m are as in (19) and the morphism b is the blow up of M along its singular 

locus Sing(M) ≃ Sym2M ′ (with the reduced induced structure). The study of the local analytic structure 

of the singularities of M from [47] gives the following:

Fact 4.1.1. (The symplectic resolution b : M̃ → M) [47, §4] The morphism b is semismall with irreducible 

exceptional divisor E ⊂ M̃ . The fibers of E → Sing(M) are as follows:

(a) the morphism ESym2(M ′)\ΔM′ → Sym2(M ′) \ ΔM ′ is an analytic fiber bundle with fiber P 1;

(b) the morphism EΔM′ → ΔM ′ is an analytic fiber bundle with fiber a three dimensional smooth quadric.

For later use, we highlight the following consequence of diagram (20).

Remark 4.1.2. A point b ∈ Σ \ Δ corresponds to two distinct point b1, b2 ∈ B′; the strictly semistable 

locus Sing(M)b = (Sym2M ′)b of the fiber Mb := m−1(b) is isomorphic to the product M ′
b1

× M ′
b2

of the 

corresponding fibers of m′ : M ′ → B′. In particular, Sing(M)b is irreducible of dimension 4.

Analogously, for b ∈ Δ the strictly semistable locus Sing(M)b of the fiber Mb is isomorphic to Sym2(M ′)b

(recall the identification Δ ≃ B′). It follows that Sing(M)b is irreducible of dimension 4. The strictly 

semistable locus of MΔ := m−1(Δ) is the quotient of the fiber product M ′ ×Δ M ′ by the involution 

exchanging the factors. For b ∈ Δ, the intersection Mb ∩ΔM ′ has a unique irreducible component isomorphic 

to M ′
b, which is irreducible of dimension 2.

We can now determine the Decomposition Theorem for M̃ → M .

Lemma 4.1.3. (Decomposition Theorem for the blow up b : M̃ → M) There is a canonical isomorphism in 

DbMHMalg(M) and in Db(M, Q) (turn off the Tate shifts):

Rb∗Q
M̃

≃ I C M

⊕
QSym2M ′ [−2](−1)

⊕
QΔM′ [−6](−3), (21)

Proof. By combining Fact 4.1.1 with the Decomposition Theorem for semismall morphisms (cf. the survey 

[24], and references therein), we obtain a canonical isomorphism:

Rb∗Q
M̃

≃ I C M

⊕
I C Sym2M ′ [−2](−1)

⊕
I C ΔM′ [−6](−3). (22)

Since M ′ is nonsingular, the intersection complexes appearing as the second and third summand are actually 

the constant sheaf with the corresponding dimensional shift. �
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Corollary 4.1.4. There is a canonical isomorphism in DbMHMalg(S) and in Db(S, Q):

Rm̃∗Q
M̃

≃ Rm∗I C M

⊕
Rm∗QSym2M ′ [−2](−1)

⊕
Rm∗QΔM′ [−6](−3). (23)

In particular, the subvarieties B, Σ, Δ of B are among the supports of Rm̃∗Q
M̃

on B.

Proof. Apply Rm∗ to (22) and obtain (23). Each direct summand in (23) is the direct image of the inter-

section complex of a variety that surjects properly onto B, Σ and Δ, respectively; the statement about the 

supports follows from this. �

Remark 4.1.5. The forthcoming Proposition 5.7.2 shows that B, Σ and Δ are the only supports of Rm̃∗Q
M̃

on B.

4.2. Irreducible components of the fibers: main results

In view of proving Proposition 4.4.3, which is concerned with the top degree direct image sheaves 

R10m̃∗Q
M̃

and R10n∗QN , in this subsection we study the irreducible components of the fibers of the 

fibrations M, N → B over the loci Σ = Sym2 |H| and Δ = Δ|H| of B = |2H|.

The main results are: Proposition 4.2.1, dealing with the components of the fibers of M̃ that arise from 

the exceptional divisor E; Proposition 4.2.2, on the structure of the fibers of M and N over the locus B \ Δ

of reduced curves; and finally Proposition 4.2.4, on the structure of the fibers of M and N over the locus Δ

of non-reduced curves. The proof of this last proposition rests on Propositions 4.3.10 and 4.3.16, which are 

the main results of the forthcoming §4.3.3.

4.2.1. Irreducible components arising from the exceptional divisor

Let m̃E : E → Sing(M) = Sym2 M ′ → B be the restriction of m̃ to the exceptional divisor of the 

symplectic resolution b : M̃ → M . Set

EΔ := m̃−1
E (Δ), EI

Δ := b−1(Δ′
M ), EII

Δ := EΔ \ EI
Δ. (24)

Proposition 4.2.1. (The structure of the exceptional divisor over Δ).

1. The variety EΔ is the union of two projective irreducible varieties of pure dimension 7, namely EI
Δ and 

the closure EII
Δ of EII

Δ in EΔ;

2. The morphism EI
Δ → Δ is projective, with irreducible 5-dimensional fibers;

3. The morphism EII
Δ → Δ is flat, surjective, with irreducible 5-dimensional fibers.

Proof. Part (1) follows from parts (2) and (3), which we now prove. (2) By Fact 4.1.1 (b), the morphism 

EI
Δ → Δ factors via a 3–dimensional quadric fibration EI

Δ → ΔM ′ = M ′, followed by the relative compact-

ified Jacobian m′ : M ′ → Δ = |H| of the genus 2 linear system |H|. As noted in Remark 3.2.4, the curves 

in |H| are reduced and irreducible and hence so are the fibers of m′ [65]. (3) By definition of EII
Δ , there is 

a factorization

EII
Δ → Sym2

Δ(M ′) \ Δ(M ′) → Δ

where Sym2
Δ(M ′) = (Sym2(M ′))Δ is the quotient of the fiber product M ′×ΔM ′ by the involution interchag-

ing the two factors. By Fact 4.1.1 (a), EII
Δ → Sym2

Δ(M ′) \ Δ(M ′) is a fibration in P 1 and, by Remark 3.2.6, 

Sym2
Δ(M ′) \ Δ(M ′) → Δ is flat surjective with irreducible 4–dimensional fibers. �
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4.2.2. Irreducible components over reduced curves

For b ∈ B representing a reduced curve, a description of the fibers Mb := m−1(b), Nb := n−1(b) and 

M̃b := m̃−1(b) can be found in [64]. In the following proposition and corollary we collect the result that we 

will use in this paper.

Proposition 4.2.2. Consider a point b ∈ B \ Δ. The fibers Mb and Nb are reduced, Cohen-Macauley of 

dimension 5 and have dense open subsets parametrizing line bundles. The fiber Mb is irreducible while the 

fiber Nb is irreducible for b ∈ B \ Σ and has exactly 2 irreducible components for b ∈ Σ \ Δ.

Proof. By Remark 3.2.6, the morphisms m and n are flat and the fibers are Cohen–Macauly of dimension 5. 

For b ∈ B \Δ, the points of the fibers Mb and Nb represent rank 1 torsion free sheaves on the reduced locally 

planar curve Cb corresponding to b. By Proposition 2.3 (ii) of [52], the loci of Mb and Nb representing stable 

line bundles are dense in Nb and in the stable locus of Mb, respectively. Since the strictly semistable locus 

of Mb has dimension 4 (see Remark 4.1.2), and since Mb is 5 dimensional and Cohen-Macauley, density of 

the line bundle locus holds also in Mb. By Proposition 2.8 of [45] the Le Potier morphism is smooth at every 

point corresponding to a stable line bundle: hence Mb and Nb have open dense subsets which are reduced. 

Since Mb and Nb are Cohen-Macauley, they are reduced everywhere.

Finally, using Corollary 13 of Chapter 9 of [12], every connected component Γ of the loci of Mb or Nb

parametrizing stable line bundles is determined by the set of degrees of the restrictions of any line bundle 

parametrized by Γ to the irreducible components of Cb. If b ∈ B \Σ, then the corresponding curve Cb as well 

as the fibers Mb and Nb are irreducible [65]. If b ∈ Σ \Δ, the curve Cb has 2 distinct irreducible components 

so by Lemma 3.3.2(2) the fiber Mb is irreducible while the fiber Nb has two irreducible components. �

Corollary 4.2.3. For b ∈ Σ \Δ, the fiber M̃b is pure of dimension 5 and has exactly 2 irreducible components.

Proof. By Proposition 4.2.2 the strict transform of Mb in M̃b is irreducible of dimension 5. By Fact 4.1.1

and Remark 4.1.2 the inverse image of the strictly semistable locus Sing(M)b of M̃b is a P 1-bundle over an 

irreducible variety of dimension 4. �

4.2.3. Irreducible components over non-reduced curves: the statement

Next, we analyze the irreducible components of the fibers of M, N → B over the points b ∈ Δ ⊆ B

parametrizing non-reduced curves. This analysis divides the sheaves parametrized by the fibers over Δ into 

two types, which we call type I (sheaves defined on the reduction of the curves) and type II (the remaining 

ones). Consider the restrictions

NΔ → Δ, MΔ → Δ,

of the morphisms N, M → B to the locus of double curves Δ ⊆ B. The main result of this subsection is 

Proposition 4.2.4, which describes the irreducible components of the varieties NΔ and MΔ, as well as of 

their fibers NC and MC over the points C ∈ Δ. The proof of this proposition uses results from §4.3 on 

certain sheaves on non-reduced curves.

Recall from Remark 3.2.5 that every curve C ∈ Δ ⊆ |2H| is of the form C = 2C ′ for a curve C ′ ∈ |H|. 

Let us introduce the sheaves of type I and II. The sheaves parametrized by NΔ and MΔ are of pure 

dimension 1 on S and their Fitting supports are non-reduced curves C = 2C ′ ∈ Δ. There are two kinds 

of such sheaves. The first kind is the sheaves F on S for which the compositum of the natural morphisms 

OS → OC → EndS(F) factors via the natural surjection OC → OC′ . We call these the sheaves of type I; in 

this case, F is an OC′-module and can be viewed as a rank 2 torsion free sheaf on the underlying reduced 

curve C ′; we denote the corresponding loci by M I
C and N I

C and, by letting C vary in Δ, M I
Δ and N I

Δ. We 

call the remaining sheaves of type II, and we set
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M II
C := MC \ M I

C , N II
C := NC \ N I

C , M II
C := MΔ \ M I

Δ, N II
C := NΔ \ M I

Δ. (25)

In other words, the sheaves of type II on C = 2C ′ are those for which the Fitting support equals the 

schematic support. In the following proposition, we consider the varieties and fibers with their reduced 

induced structure.

Proposition 4.2.4. (Irreducible components of MΔ, NΔ → Δ)

1. (a) The variety MΔ is of pure dimension 7 and has two irreducible components, namely M I
Δ and the 

closure M II
Δ of M II

Δ .

(b) The morphisms M I
Δ, M II

Δ → Δ have irreducible 5–dimensional fibers, namely, for C ∈ Δ, M I
C and 

M II
C .

2. (a) The variety NΔ is of pure dimension 7 and has two irreducible components, namely N I
Δ and the 

closure N II
Δ of N II

Δ .

(b) The morphisms N I
Δ, N II

Δ → Δ have irreducible 5–dimensional fibers, namely, for C ∈ Δ, N I
C and 

N II
C .

Proof. The proof uses results from the forthcoming §4.3: by Proposition 4.3.1 the varieties M I
C and N I

C are 

irreducible of dimension 5 and M I
Δ and N I

Δ are irreducible of dimension 7. By Proposition 4.3.10 the variety 

M II
C = MC \M I

C is irreducible of dimension 5 and, by Proposition 4.3.16, the same holds for N II
C = NC \N I

C . 

By Remark 3.2.6, the varieties MΔ and NΔ are flat over Δ. Since the fibers of M II
Δ = MΔ \ M I

Δ and 

N II
Δ = NΔ \ N I

Δ are irreducible of dimension 5, the closure M II
Δ of M II

Δ in M II
Δ and the closure N II

Δ of N II
Δ

in N II
Δ are irreducible of dimension 7. �

Remark 4.2.5. The varieties M II
Δ , M II

C (and their respective closures) are actually reduced but we don’t 

need this result.

4.3. The fibers over non-reduced curves

In this section we study sheaves the non-reduced curves of |2H| with the aim of proving Propositions 4.3.1, 

4.3.10, and 4.3.16, which were used in the proof of Proposition 4.2.4. First we deal with the simpler case of 

the sheaves of type I (§4.3.1), then in §4.3.2-4.3.3 we carry out the more involved study of the sheaves of 

type II.

4.3.1. Irreducible components over non-reduced curves: sheaves of type I

Proposition 4.3.1. (Irreducibility of M I
C , N I

C , M I
Δ and N I

Δ) Let C = 2C ′ ∈ Δ.

1. The locus M I
Δ is an irreducible component of MΔ and the morphism M I

Δ → Δ is projective with 

irreducible 5–dimensional fibers M I
C .

2. The locus N I
Δ is an irreducible component of NΔ and the morphism N I

Δ → Δ is projective with irreducible 

5–dimensional fibers N I
C .

Proof. The sheaves of type I are OC′-modules, so by Definition 3.2.2 the loci M I
C and N I

C parametrizing 

semistable sheaves of type I on C, with Euler characteristic χ, are naturally identified with the moduli 

spaces of torsion free slope semistable sheaves on the reduced underlying curve C ′, with rank 2 and degree 

d′ := χ − 2χ(OC′). The latter space is irreducible and projective by [70,66]. By [39, Thm 4.3.7], M I
Δ and 

N I
Δ are projective over Δ. The statement about the dimension of the fibers follows from Remark 3.2.6. This 
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proves the first assertion. The second one follows, since the morphisms M I
Δ, N I

Δ → Δ are proper, surjective 

and with irreducible fibers. �

As a side remark, we mention that it is a classical result of [58], that for a smooth curve C ′ ∈ B′, the 

assignment F 
→ det F realizes N I
C (respectively, M I

C) as a smooth fibration over Jacd′

(C ′), locally trivial in 

the étale topology, with fibers transversal complete intersections of two 4-dimensional quadrics (respectively, 

P 3).

Remark 4.3.2. The strictly semistable locus on N is empty. By Theorem 3.1.2 (1) the locus of strictly 

semistable sheaves in MΔ is contained in M I
Δ.

4.3.2. Preliminary results towards the analysis of type II

In this subsection we establish some notation, recall some facts, and prove a series of preliminary results 

towards Propositions 4.3.10 and 4.3.16 (which describes the fibers of M II
Δ , N II

Δ → Δ).

For C ′ ∈ B′, let C = 2C ′ ∈ Δ be the corresponding double curve. Denote by I ⊂ OC the ideal sheaf of 

the reduced curve C ′ ⊂ C. Then:

I2 = 0, I is an OC′ -module, I ∼= OC′(−C ′) ∼= ω−1
C′ , deg I = −2. (26)

Since the genus 2 K3 surface S is general in moduli, any curve C ′ ∈ |H| has only nodes and cusps (cf. 

Remark 3.2.4) and, moreover, it has at most two singular points. For later use we record the following 

standard facts on rank 1 torsion free sheaves on integral curves with nodes or cusps. Let Γ be an integral 

projective curve with only nodes and cusps and let E be a rank one torsion free sheaf on Γ. By [25, Lem 

1.4], we can write E = n∗L, where n : Γ̂ → Γ is a partial normalization and where L is a line bundle on Γ̂. 

Both Γ̂ and L are uniquely determined by E. Now let L ∈ Pic(Γ) be a line bundle. Then E ⊗ L ∼= E if and 

only if L ∈ Ker [n∗ : Pic(Γ) → Pic(Γ̂)] (cf. [8, Lem. 2.1]).

Lemma 4.3.3. (Nodes and cusps) Let Γ be as above.

1. Let q ∈ Γ be any point. Then Ext1
OΓ

(Cq, OΓ) = Ext1
OΓ,q

(Cq, OΓ,q) = C. The unique (up to isomorphism) 

extension is:

0 → OΓ → (mq)∨ → Cq → 0,

obtained by dualizing the standard exact sequence 0 → mq → OΓ → Cq → 0.

2. Let q ∈ Γ be a singular point, and let Γ̂ be the normalization of Γ at q. Then Ext1
OΓ

(Cq, mq) =

Ext1
OΓ,q

(Cq, mq) = 2. The corresponding 1-dimensional family of isomorphism classes of extensions 

is given by considering the natural extension

0 → mq → OΓ → Cq → 0

and tensoring it with the elements of the one dimensional group Ker[n∗ : Pic(Γ) → Pic(Γ̂)] (which fixes 

mq).

Proof. (1) Since Γ is a Gorenstein curve, have dim Ext1
OΓ,q

(Cq, OΓ,q) = 1. (2) The first statement follows 

from [18, Lem. 2.5.5]. The second statement follows from the considerations before the Lemma, with E = mq

and Γ̂ the normalization of Γ at q. �
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Lemma 4.3.4. ([18, Lem. 2.5.9]) Let Γ be an integral curve, let p ∈ Γ be a nodal or cuspidal point, and let 

Fp and Kp be rank 1 torsion free OΓ,p-modules. Then

Ext1
Γ,p(Fp, Kp) =

{
0 if Fp, or Kp is free,

C2 if neither Fp, nor Kp is free.

Lemma 4.3.5. Let n : Γ̂ → Γ be a partial normalization of a reduced curve and let L and L′ be torsion free 

sheaves on Γ̂. Then HomΓ(n∗L, n∗L′) = HomΓ̂(L, L′).

Proof. It is clear that a morphism ϕ : L → L′ induces by pushforward a morphism n∗ϕ : n∗L → n∗L′ of 

torsion free sheaves. Conversely, if ψ : n∗L → n∗L′ is a morphism, by pullback we get a morphism n∗n∗L →

n∗n∗L′ → L′. Since L′ is torsion free, this morphism necessarily factors via the surjection n∗n∗L → L which 

thus induces a morphism L → L′. Since n is a generic isomorphism, these two assignments are inverses of 

each other. �

Lemma 4.3.6. Let E be a pure dimension 1 sheaf on the K3 surface S and let Γ ⊆ S be the curve 

Fitting support of E. Then Exti
S(E, OS(−Γ)) = 0 for i �= 1 and there is a functorial isomorphism 

Ext1
S(E, OS(−Γ)) ∼= E∨ where E∨ := HomΓ(F, OΓ). Moreover, E is reflexive, i.e. (E∨)∨ ∼= E.

Proof. This is [39, Prop 1.1.10] (or can easily be seen using Remark 3.2.1). �

4.3.3. Irreducible components over non-reduced curves: sheaves of type II

We now come back to MC , NC , MΔ and NΔ and turn to sheaves of type II. We follow closely [55, §3.1], 

which deals with the case of sheaves with even Euler characteristics (those parametrized by M).

Lemma 4.3.7. Let F be a sheaf of type II supported on a curve C = 2C ′ ∈ Δ, let F|C′ be its restriction to 

the reduced curve C ′, and let F := F|C′/T be the quotient of F|C′ by its torsion subsheaf T := Tors(F|C′). 

If E is a pure dimension 1 sheaf on S and α : F → E is a surjection which is not an isomorphism, then 

E ∼= F and α is a non zero multiple of the natural morphism F → F . As a consequence, F is (semi)stable 

if and only if

χ(F)

2
<

(=)
χ(F ).

Proof. Let α : F → E be a surjection onto a pure dimension 1 sheaf E. Then the Fitting support of E is 

either C or C ′. In the first case, Ker α is supported on points, hence it has to be zero by the purity of F . In 

particular, α is an isomorphism. It follows that we can consider only the case when the Fitting support of 

E is C ′ and hence E is an OC′ -module of rank one. Restricting α to C ′ we get a surjection F → E, where 

F := F|C′/Tors(F|C′), which has to be an isomorphism since F and E are torsion free sheaves of rank 1 on 

C ′. Using Definition 3.2.2, we conclude the proof. �

Proposition 4.3.8. Let C = 2C ′ ∈ Δ ⊆ B and let F be a sheaf parametrized by a point in N II
C or in M II

C , 

i.e., a stable sheaf of type II (cf. Remark 4.3.2). Then F sits in the following exact sequence:

0 → F ⊗C′ I → F → F|C′ → 0,

where F := F|C′/T and T := Tors(F|C′) is the torsion subsheaf of F|C′ . Furthermore, either T = 0, which 

occurs if χ(F) is even (i.e. F ∈ M II
C ), or T = Cp, for some point p ∈ C ′, which occurs if χ(F) is odd (i.e. 

F ∈ N II
C ).
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Proof. In the even case, this is [55, Lem. 3.1.6], whose proof we modify below to deal with the case of 

arbitrary χ. Consider the exact sequence:

F ⊗C I → F
r

→ F|C′ → 0.

Since I is a nilpotent square zero ideal, F ⊗OC
I is an OC′-module, and F ⊗C I ∼= F|C′ ⊗OC′ I. Since F

is not of type I, the restriction map r is not an isomorphism and ker(r) is a non–zero pure OC′-module. 

This applies to the upcoming K as well. We see that the sheaves ker(r) and of F|C′ have first Chern class 

equal to C ′, so they are OC′-modules of rank 1. Let T := Tors(F|C′) be the torsion subsheaf of F|C′ . Then 

F := F|C′/T is torsion free of rank 1. The natural surjective morphism F|C′ ⊗OC′ I → ker(r) factors via 

the quotient F|C′ ⊗OC′ I → F ⊗OC′ I, determining an isomorphism F ⊗OC′ I → ker(r) of rank 1 torsion 

free sheaves on C ′. We can summarize this discussion in the following commutative diagram of short exact 

sequences (the zeros are omitted from the vertical ones):

T

0 F ⊗ I F F|C′ 0

0 K F F 0

T

(27)

Using this diagram, together with (26), we get:

χ(F) = 2χ(F ) − 2 + χ(T ), (28)

showing that χ(F) ≡ χ(T ) modulo 2. By using Lemma 4.3.7 to check stability, we see that:

χ(F)

2
< χ(F ), (29)

so that 0 ≤ χ(T ) < 2. �

Corollary 4.3.9. Let F be a sheaf with Fitting support C = 2C ′ and odd Euler characteristic. Then F is not 

(the push forward of) a line bundle on C.

Proof. If F is of type I, then it is clear that it cannot be a locally free OC–module. If F is a sheaf of type 

II, then by (28), T �= 0 so F|C′ is not locally free. �

Proposition 4.3.10. (The case of χ even: the structure of M II
C and M II

Δ ). Let C = 2C ′ ∈ Δ ⊆ B. The stable 

sheaves of type II on C with even Euler characteristic χ = 2k are locally free. Restricting a sheaf to the 

underlying reduced curve defines a surjective morphism

M II
C → Pick+2(C′)

which is a Zariski-locally trivial C3-bundle whose fibers are isomorphic to H1(C ′, I). In particular, M II
C

is smooth and irreducible. The locally closed subvariety M II
Δ of M̃ can be identified with degree-(2k + 4)



M.A.A. de Cataldo et al. / J. Math. Pures Appl. 156 (2021) 125–178 151

component Pic2k+4(CΔ/Δ) of the relative Picard scheme of the family CΔ/Δ of non-reduced curves. In 

particular, M II
Δ is smooth and irreducible.

Proof. The first step is to use [55, Lemma 3.3.3]. We include the details to set up the notation for the case 

of N II
C , i.e., when χ is odd. Let E be any sheaf with Fitting support equal to C. Suppose E sits in the 

following exact sequence of OC-modules:

0 → E2 → E → E1 → 0

where E1 and E2 are torsion free sheaves of rank one on C ′. The spectral sequence for the change of 

coefficients in the Ext groups [55, Cor.3.2.2] gives:

0 → Ext1
C′(E1, E2) → Ext1

C(E1, E2)
δ

→ HomC′(E1 ⊗ I, E2) → Ext2
C′(E1, E2). (30)

Let ε ∈ Ext1
C(E1, E2) be the class of this extension. By [55, Lem 3.2.2], E1 = E ⊗OC

OC′ (equivalently, 

E2 = IE) if and only if δ(ε) : E1 ⊗ I → E2 is surjective. Since E1 ⊗ I is torsion free, this is the case if and 

only if δ(ε) is an isomorphism, which means that E2
∼= E1 ⊗ I. Moreover, by [55, Prop 3.2.7] δ is surjective 

if and only if E1 is locally free.

Now we consider the case of a stable sheave F with Fitting support equal to C and even Euler charac-

teristic. Then by diagram (27) F is an extension of F by F ⊗O I. So we set E1 = F and E2 = F ⊗O I and 

the exact sequence (30) becomes:

0 → Ext1
C′(F, F ⊗ I) → Ext1

C(F, F ⊗ I)
δ

→ HomC′(F ⊗ I, F ⊗ I) = C.

We conclude that if F is a sheaf in M II
Δ , then δ is non zero, so it is surjective and hence F is locally 

free. By using Lemma 3.3.1, F is locally free. Conversely, if F is locally free, then Ext2
C′(F, F ⊗ I) =

H2(C ′, F ∨ ⊗F ⊗I) = 0, so δ is surjective and the isomorphism classes of OC-modules realized as extensions 

of F by F ⊗OC′ I are parametrized by the affine space P (Ext1
C(F, F ⊗ I)) \ P (Ext1

C′(F, F ⊗ I)). Since F

is locally free, Ext1
C′(F, F ⊗ I) ∼= H1(C ′, I) = C3. If we set χ(F) = 2k, by (27) we get χ(F ) = k + 1 and 

deg(F ) = k + 2.

Associating to each F its restriction F to the reduced underlying curve defines the morphism M II
C →

Pick+2(C′). By the discussion above, the fibers are identified with the affine space P (Ext1
C(F, F ⊗ I)) \

P (Ext1
C′(F, F ⊗ I)) ∼= H1(C ′, I). Another way of seeing that the fibers of the restriction morphism are 

isomorphic to H1(C ′, I) is to consider the short exact sequence 0 → I → O×
C → O×

C′ → 0 and the 

corresponding sequence of first cohomology groups.

The last statement follows from the fact, proved above, that F is a locally free OC -module. �

Corollary 4.3.11. Let C′ → |H| = Δ be the family of genus two curves. The kernel of the restriction morphism 

Pic0
C∆/Δ → Pic0

C′/Δ is an affine group scheme of relative dimension 3, which acts trivially on the points of 

M I
Δ and N I

Δ.

Remark 4.3.12. The change of coefficients exact sequence (30) for the Ext-groups with respect to the closed 

embedding C ′ ⊆ C, remains valid for the closed embedding C ⊂ S, thus giving an inclusion Ext1
C(E1, E2) ⊂

Ext1
S(E1, E2). We claim that this is in fact an isomorphism. Indeed, any extension as OS-modules of E1 by 

E2 has Fitting support equal to C and is automatically an OC-module. Moreover, any such extension is an 

extension of OC-modules.

We now deal with sheaves F of type II with odd Euler characteristic χ, i.e. with F ∈ N II
Δ . The goal is 

to prove Proposition 4.3.16, the “χ odd” analogue of Proposition 4.3.10.
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Consider a double curve C ∈ Δ. In analogy with the case of even Euler characteristic treated earlier, 

in order to describe the open subvariety N II
C ⊂ NC we wish to realize every F ∈ N II

C as an extension of 

OC-modules by two rank 1 torsion free OC′-modules. By looking at (27) and (28), we see that any F ∈ N II
C

fits into a short exact sequence:

0 → K → F → F → 0, (31)

with

d := deg(F ) =
χ + 3

2
, deg(K) = d − 1. (32)

As a consequence of Proposition 4.3.8, for each F ∈ N II
C , we find a triple:

(p, F, K) ∈ C ′ × J̄acd(C ′) × J̄acd−1(C ′). (33)

In the proof of Proposition 4.3.16 we will describe explicitly the set of triples occurring as above from a 

stable sheaf F of type II and odd Euler characteristic.

We start with the following two lemmata, relating the regularity properties of F with those of K, and 

viceversa. These will only be relevant if the underlying reduced curve C ′ is singular, since otherwise F and 

K are clearly locally free.

Lemma 4.3.13. Let F ∈ N II
C be a stable sheaf of type II with odd Euler characteristic supported on a curve 

C = 2C ′, and let (p, F, K) be the triple (33). If Fp is free, then F is locally free on C ′ and K is locally free 

on C ′ \ p.

Proof. From the first vertical sequence in (27) it follows that K and F are locally isomorphic away from p, 

so it is enough to prove the statement involving F . Suppose F is locally free at p. Then Ext1
C′(F, T ) = 0 so 

F|C′
∼= F ⊕ Cp. Using (27) we get the following commutative diagram, with horizontal and vertical short 

exact sequences:

0 F ⊗ I E F 0

0 F ⊗ I F F ⊕ Cp 0

Cp Cp

where E := ker[F → Cp]. Notice that E , which is a pure sheaf of type II, has even Euler characteristic. By 

Lemma 4.3.7 it follows that F ∼= E|C′/Tors(E|C′). Using (29) we deduce that χ(E) = χ(F) − 1 < 2χ(F ) and 

hence, by Lemma 4.3.7, E is stable. We may thus apply the arguments of the proof of Proposition 4.3.10 to 

E and deduce that F is locally free. �

By dualizing, we can reverse the role of F and K.

Lemma 4.3.14. Let F and (p, F, K) be as in Lemma 4.3.13. If Kp is free, then K is locally free on C ′, and 

F is locally free on C ′ \ p.
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Proof. The sheaf K is locally free at a point if and only if its dual K∨ := HomC′(K, OC′) is locally free 

at that point. It is therefore enough to prove the statement for K∨. Consider the short exact sequence 

(31). It can be viewed both as sequence of pure OC and of OS-modules (cf. Remark 4.3.12). Applying 

HomS(−, OS(−C ′)) and using Lemma 4.3.6 we get:

0 → Ext1
S(F, OS(−C ′)) → Ext1

S(F , OS(−C ′)) → Ext1
S(K, OS(−C ′)) → 0,

where:

Ext1
S(F, OS(−C ′)) = HomC′(F, OC′) =: F ∨, Ext1

S(K, OS(−C ′) = HomC′(K, OC′) := K∨, (34)

and:

F ′ := Ext1
S(F , OS(−C ′)) ∼= HomC(F , OC) ⊗OS

OS(−C ′). (35)

Notice that F ′ is a pure sheaf of type II, with odd Euler characteristic. By Lemma 4.3.7, up to multiplication 

by a non-zero scalar, the morphism F ′ → K∨ is precisely the morphism F ′ → F ′
|C′/Tors(F ′

|C′). Using (32)

we find that:

χ(K∨) = −d, χ(F ∨) = −d − 1, χ(F ′) = χ(F ∨) + χ(K∨) = −2d − 1,

so that we have:

χ(F ′)

2
< χ(K∨),

and by Lemma 4.3.7, F ′ is stable. By Lemma 4.3.15 below, the triple associated with F ′, is precisely

(p, K∨, F ∨).

By applying Lemma 4.3.13 to this triple, we see that if K∨ is locally free at p, then it is locally free 

everywhere. �

We remark that in the proof of the lemma above we showed that the sheaf F ′ defined in (35) is a stable 

sheaf of type II on C with odd Euler characteristics. The following lemma describes how the triple (33)

changes when passing from F to F ′.

Lemma 4.3.15. Let F be as in Lemma 4.3.13. Let F ′ = Ext1
S(F , OS(−C ′)) be as in (35). Then the support 

of T ′ := Tors(F ′
|C′) is the same as the support {p} of T = Tors(F|C′). In particular, if (p, F, K) is the 

triple (33) associated with F , then (p, K∨, F ∨) is the triple (33) associated with a sheaf F ′ in N II
C with 

χ(F ′) = −2d(F ) − 1.

Proof. We have already observed in the course of proving Lemma 4.3.14 that K∨ = F ′
|C′/T ′ and that 

F ∨ = ker[F ′ → K∨]. Moreover, since F ′ is stable of odd Euler characteristic, by Proposition 4.3.8, T ′ is a 

skyscraper sheaf supported at one point of C ′. We need to show that Supp(T ′) = {p}. To this aim, consider 

the short exact sequences 0 → F ⊗ I
a

→ K → T → 0 and 0 → K∨ ⊗ I
a′

→ F ∨ → T ′ → 0 obtained by 

considering the left most column of (27) for the sheaves F and F ′. We will show that T and T ′ are supported 

on the same point by showing that the morphisms a : F ⊗ I → K and a′ ⊗ idωC′ : K∨ → F ∨ ⊗ ωC′ are dual 

to each other. Consider the short exact sequence:
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0 → OS(−C ′)
j

→ OS → OC′ → 0, (36)

and its dual:

0 → OS
j∨

→ OS(C ′) → OC′(C ′) ∼= ωC′ → 0. (37)

Tensoring (36) by F we a morphism F ⊗OS
OS(−C ′) → F which by (27) factors as follows:

F ⊗OS
OS(−C ′)

c

idF ⊗j
F

F ⊗ I
a

K

b

(38)

Similarly, we can tensor (36) by F ′ and get a morphism F ′ ⊗OS
OS(−C ′) → F ′ which factors as:

F ′ ⊗OS
OS(−C ′)

c′

idF′ ⊗j
F ′

K∨ ⊗ I
a′

F ∨

b′

(39)

We can also dualize (38) by first applying Ext1(−, OS(−C ′)) and then tensoring the resulting diagram by 

the line bundle OS(−C ′). Using (34) and (35) we find:

F ′ ⊗OS
OS(−C ′)

b∨⊗idOS (−C′)

(idF ⊗j)∨⊗idOS (−C′)

F ′

K∨ ⊗ I
a∨⊗idOS (−C′)

F ∨

c∨⊗idOS (−C′)

(40)

Using (36) - (37) we see that (idF ⊗ j)∨ ⊗ idOS(−C′) = idF ′ ⊗ j∨ ⊗ idOS(−C′) = idF ′ ⊗ j. It follows that 

diagrams (39) - (40) are two ways of factoring the same morphism into the product of three morphisms. 

By the first part of Lemma 4.3.7, the surjective morphism b∨ ⊗ idOS(−C′) : F ′ ⊗OS
OS(−C ′) → K∨ ⊗ I

coincides (up to a scalar) with the morphism c′ of diagram (39). Since this morphism is surjective, and the 

two morphism b′ and c∨ ⊗ idOS(−C′) are injective, we may conclude that a∨ ⊗ idOS(−C′) = a′ and we are 

done. �

We are now in the position to prove the “χ odd” analogue of Proposition 4.3.10.

Proposition 4.3.16. (The case of χ odd: the structure of N II
C and N II

Δ ). Let C = 2C ′ ∈ Δ ⊆ B. The fiber 

N II
C is irreducible. More precisely, the reduced underlying variety (N II

C )red is an affine bundle of rank 2 over 

a 3-dimensional irreducible locally closed subvariety Z ⊂ C ′ × J̄acd(C ′) × J̄acd−1(C ′) parametrizing triples 

(p, F, K) that arise from F ∈ N II
C as in (33). The fiber of this bundle over a point (p, F, K) is given by:

P Ext1
C(F, K) \ P Ext1

C′(F, K), (41)

which is isomorphic to C2. Here, the inclusion Ext1
C′(F, K) ⊂ Ext1

C(F, K) inducing (41) is given as in (30)

by the change of coefficients exact sequence.
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Proof. By (27), every F ∈ N II
C is obtained as an extension of F by K, so F determines an element in 

Ext1
C(F, K). Conversely, the extensions in Ext1

C(F, K) \ Ext1
C′(F, K) (cf. (30)) correspond to stable sheaves 

of type II on C with odd Euler characteristics. We now show that N II
C , with its reduced induced structure, 

is a fibration in affine spaces P Ext1
C(F, K) \ P Ext1

C′(F, K) over an irreducible variety Z parametrizing the 

set of possible F and K.

To see this, we start by computing Ext1
C(F, K) and Ext1

C′(F, K). By Remark 4.3.12, Ext1
C(F, K) =

Ext1
S(F, K). The computations of both of these ext groups depend on the singularities of C ′, as well as 

on the local behavior of F and K at p ∈ C ′, or at any other singular point of C ′. In Lemmata 4.3.13 and 

4.3.14, we ruled out some possibilities for the local behavior of the triples arising from a sheaf F ∈ N II
C . In 

the proof of this proposition we will rule out one further case. We say that F (or K) is singular at a point 

p ∈ C ′ if F (respectively, K) is not locally free at p. We denote by Sing(F ) ⊂ C ′ the locus of points where 

F is singular, and similarly for K. Throughout, we will use the following fundamental short exact sequence 

from (27)

0 → F ⊗ I → K → Cp → 0, (42)

relating F , K, and p, where I ∼= ω∨
C′ . Notice that (42) implies that F and K are locally isomorphic away 

from p. Using Lemma 4.3.3 we have the following relations between F and K in terms of their local behavior 

at p. Clearly, if F and K are both locally free, then p has to be a smooth point of C ′ and we find:

K ∼= F ⊗ I ⊗ OC′(p). (43)

If F is locally free, but Kp is not free, then K is uniquely determined:

K ∼= F ⊗ I ⊗ m∨
p . (44)

If K is locally free, but Fp is not free we find:

F ∼= K ⊗ I∨ ⊗ mp. (45)

If this is the case, then K is not uniquely determined by F and p. Indeed, by (2) Lemma 4.3.3, there is 

whole P 1 = P Ext1(Cp, F ⊗ I) of possible (not mutually isomorphic) K fitting in a short exact sequence as 

in (42). The locally free K correspond to open subsets C∗ ⊂ P 1, if p is a node, or C ⊂ P 1, if p is a cusp.

Finally, if neither Fp nor Kp are free, then we can write

K = n∗G, F = n∗L, with G = L ⊗ n∗I ⊗ O
Ĉ′(p̂), (46)

and where n : Ĉ ′ → C ′ is the normalization of C ′ at Sing(F ) = Sing(K), where L and G are locally free 

on Ĉ ′, and p̂ ∈ n−1(p) ⊂ Ĉ ′. In the course of the proof we will show that this last case does not occur if F , 

K, and p arise from a stable sheaf of type II.

Lemma 4.3.17. Let F , K and p be as in (33). Then

Ext1
S(F, K) =

{
C3 if F or K are locally free on C ′ \ p

C4 otherwise

Proof. The Euler pairing (cf. [39, 6.1.5]) and Serre duality on S yield:

χ(F, K) : = dim HomS(F, K) − dim Ext1
S(F, K) + dim HomS(K, F )

= −v(F ) · v(K) = −C ′2 = −2.
(47)
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By (32), deg F = deg K + 1, so HomS(F, K) = HomC′(F, K) = 0. To prove the Lemma it is thus enough 

to show that dim HomC′(K, F ) = 1 if F or K are locally free away from p and dim HomC′(K, F ) = 2

otherwise. This is done using the expressions of equations (43), (44), (45), and (46). For example, if F is 

locally free, then by (43) and (44), we have

HomC′(K, F ) = HomC′(F ⊗ I ⊗ m∨
p , F ) = H0(C ′, I∨ ⊗ mp) = C.

A similar computation (using (45)) holds if K is locally free, but Fp is not free. If neither Fp nor Kp are 

free, then using (46) and Lemma 4.3.5 we have

HomC′(K, F ) = Hom
Ĉ′(L ⊗ n∗I ⊗ O

Ĉ′(p̂), L) = H0(Ĉ ′, n∗I∨ ⊗ O
Ĉ′(−p̂)).

It follows that if Ĉ ′ is a curve of arithmetic genus 1 (i.e., F and K are locally free on C ′ \ p), then 

H0(Ĉ ′, n∗I∨ ⊗O
Ĉ′(−p̂)) = 1, while if Ĉ ′ is a smooth rational curve, then H0(Ĉ ′, n∗I∨ ⊗O

Ĉ′(−p̂)) = 2. �

Lemma 4.3.18. Let F , K and p as in (33). Then

Ext1
C′(F, K) =

⎧
⎪⎨
⎪⎩

C2 if F or K is locally free

C3 if Sing(F ) = Sing(K) = {p}

C4 otherwise

Proof. We use the local to global spectral sequence, which yields the long exact sequence

0 → H1(C ′, HomC′(F, K)) → Ext1
C′(F, K) → H0(C ′, Ext1

C′(F, K)) → H2(C ′, HomC′(F, K)) = 0. (48)

We thus have to compute H1(C ′, Hom(F, K)) and H0(C ′, Ext1
C′(F, K)). Using (43), (44), (45), and (46) we 

see that

Hom(F, K) =

{
I ⊗ m∨

p if Fp or Kp is free

n∗(n∗I ⊗ O
Ĉ′(p̂)) otherwise.

This immediately implies that H1(C ′, Hom(F, K)) = H1(C ′, I ⊗ m∨
p ) = C2 if Fp or Kp is free; that 

H1(C ′, Hom(F, K)) = H1(Ĉ ′, n∗I ⊗ O
Ĉ′(p̂)) = C if Sing(F ) = Sing(K) = {p} so Ĉ ′ is of arithmetic genus 

1; and finally that H1(C ′, Hom(F, K)) = H1(Ĉ ′, n∗I ⊗ O
Ĉ′(p̂)) = 0 if #Sing(F ) = #Sing(K) = 2 so that 

Ĉ ′ is a smooth rational curve. To compute H0(C ′, Ext1
C′(F, K)) we use Lemma 4.3.4 to find:

Ext1
C′(F, K) =

⊕

x∈Sing(F )

Ext1
OC′,x

(Fx, Kx) ≃
⊕

x∈Sing(F )

C2. (49)

Putting everything together yields the proof of the Lemma. �

As a consequence of these two lemmas we see that the inclusion Ext1
C′(F, K) ⊂ Ext1

S(F, K) of Re-

mark 4.3.12 is proper, i.e., there is a sheaf of type II on C ′ that is an extension of K by F if and only if F

and K are locally free C ′ \ p and at most one is not locally free at p. When this is the case, then

dim Ext1
C′(F, K) = 2, dim Ext1

S(F, K) = 3. (50)

Now let

Z ⊂ C ′ × J̄acd(C ′) × J̄acd−1(C ′)
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be the set of such triples. The discussion above shows that Z is contained in the open set U ⊂ C ′ ×

J̄acd(C ′) × J̄acd−1(C ′) consisting of points such that F and K are locally free C ′ \ p and at most one is not 

locally free at p. More precisely, we claim that Z is the intersection of U with the graph Γψ of the rational 

map

C ′ × J̄acd(C ′)
ψ
��� J̄acd−1(C ′)

(p, F ) 
−→ F ⊗ I ⊗ m∨
p .

Indeed, the fiber of the projection Γ → C ′ × J̄acd(C ′) consists of: the sheaf F ⊗I ⊗m∨
p over the locus where 

F is locally free at p; the isomorphism classes of extensions P 1 = P Ext1
C′(Cp, F ⊗ I) over the points where 

p ∈ Sing(F ) (cf. Lemma 4.3.3). It follows from (43), (44), (45), and from the remarks shortly thereafter, 

that Z = Γ ∩ U . In particular, Z is an irreducible variety of dimension 3.

We are left with showing that the reduced fiber (N II
C )red is a 2–dimensional affine bundle over Z, with fiber 

P Ext1
S(F, K) \P Ext1

C′(F, K) over a point (p, F, K). To see this, first note that if FW is flat family of sheaves 

in N II
C , parametrized by a reduced scheme W , then we can preform the construction of Proposition 4.3.8 in 

families to get W -flat families FW and KW , of rank 1 torsion free sheaves of degree d and d −1, respectively, 

as well as a flat family of degree one skyscraper sheaves TW . By the universal property of compactified 

Jacobians, these families induce a regular morphism W → C ′ × J̄acd(C ′) × J̄acd−1(C ′) whose image is 

contained in Z. Now choose as W the preimage of N II
C in the appropriate Quot scheme, taken with its 

reduced induced structure. Then W is such that its quotient by the group action on the Quot scheme is 

exactly (N II
C )red (cf. [57, (3) p. 29]). The equivariant morphism W → Z factors via the quotient morphism 

W → (N II
C )red and induces a surjective morphism (N II

C )red → Z. By (50), the fibers of this morphism are 

affine 2–dimensional spaces.

This ends the proof of Proposition 4.3.16. �

Remark 4.3.19. By [16, Lem. 4.12], the varieties N II
C and N II

Δ are non-reduced.

4.4. The top degree direct image sheaves R10 and the local systems L

The purpose of this section is to prove Proposition 4.4.3 which describes the restriction of the sheaves 

R10m̃∗Q and R10n∗Q to the locally closed subvarieties B\Σ, Σ \Δ and Δ of B. The proof of the proposition 

uses: the analysis of the irreducible components of the restrictions of M̃, M and N to the loci B \ Σ, Σ \ Δ

and Δ and of the corresponding fibers (Proposition 4.2.4); some basic properties of the trace morphism and 

of the direct image sheaf in top degree, as summarized in Fact 4.4.1; the general topological Lemma 4.4.2.

Fact 4.4.1. (Trace morphism and direct image in top degree) In this section, we need the following three 

sets of facts:

1. The basic properties of the trace morphism Trf : R2df!QX(d) → QT , for a flat morphism f : X → T

of relative dimension d. See [1], especially Exp. XVIII, Théorème 2.9 (functoriality and compatibility 

properties), and Remarque 2.10.1 (the trace morphism is an isomorphism if and only if all the fibers of 

f have a unique irreducible component of dimension d).

2. If a flat morphism f : X → T of relative dimension d has reduced fibers, then the sheaf R2df!QX(d) is 

the QT -linearization of the sheaf of sets of irreducible components of the fibers of f ; see [14, Proposition 

7.3.2].

3. Let f : X → T be a projective morphism of pure relative dimension d and with irreducible fibers. Let 

Ld : QX → QX [2d] be the morphism induced by the d-th power of the first Chern class of an f -ample 
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line bundle L on X. In view of the irreducibility of the fibers, by pushing forward, we get an isomorphism 

Ld : QT
∼
→ R2df∗QX .

Moreover, if U ⊂ X is a Zariski open subset intersecting every fiber of f and fU : U → T is the 

restriction of f then R2dfU !QX ≃ R2df∗QX ≃ QT . In fact, by denoting by fX\U : X \ U → T the 

restriction of f , the statement follows from the exact sequence:

R2d−1fX\U∗QX\U = 0 R2dfU !QU

R2dj!

≃
R2df∗QX 0 = R2dfX\U∗QX\U ,

where the vanishing statements hold since the fibers of fX\U have at most dimension d − 1.

Lemma 4.4.2. Let X be a variety of pure dimension d +n, let T be a normal irreducible variety of dimension 

n and let f : X → T be a projective surjective morphism.

Let ∅ = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xm−1 ⊂ Xm = X be a filtration of X by closed subvarieties such that, 

for 0 < i ≤ m:

1. Every fiber of the restriction f0
i : Xi \ Xi−1 → T of f has dimension d,

2. R2df0
i!QXi\Xi−1

≃ QT .

Then the direct image sheaf in top degree R2df∗QX is the trivial local system of rank m.

Proof. Without loss of generality, we may assume that the Xi are reduced. Let fi : Xi → T be the restriction 

of f .

Claim. The sheaves R2dfi!QXi
are local systems of rank i.

We now prove the CLAIM by induction on i. Let ι : Xi−1 → Xi ← Xi \ Xi−1 : j be the closed and 

open complementary embeddings. By applying Rfi! to the short exact sequence 0 → j!QXi\Xi−1
→ QXi

→

i∗QXi−1
→ 0, we get the following long exact sequence:

R2d−1fi−1∗QXi−1
R2df0

i!QXi\Xi−1

R2dj!

R2dfi∗QXi
R2dfi−1∗QXi−1

0. (51)

By (2), we have that R2df0
i!QXi\Xi−1

≃ QT . By the induction hypothesis, we have that R2dfi−1∗QXi−1
≃

Qi−1
T . It follows that, if R2dj! is an injective morphism of constructible sheaves, then R2dfi∗QXi

is a rank 

i local system. In this case, the CLAIM would follow.

Since R2df0
i!QXi\Xi−1

is a local system it suffices to check the desired injectivity on a non-empty open 

subset of the irreducible base T . Shrinking T if necessary, we may assume that Xi−1 and Xi are flat 

over T : in this case it makes sense to consider the trace morphisms Trf0
i

: R2df0
i!QXi\Xi−1

→ QT and 

Trfi
: R2dfi∗QXi

→ QT . By [1], Exp. XVIII, Théorème 2.9 (basic functoriality and compatibility properties), 

we have Trf0
i

= Trfi
◦ R2dj!. Moreover R2df0

i!QXi\Xi−1
≃ QT implies, by base change, that every fiber of 

f0
i! has a unique irreducible component of top dimension d. By [1, Exp. XVIII, Remarque 2.10.1], the trace 

morphism Trf0
i

is an isomorphism. We conclude, in particular, that the morphism R2dj! must be injective. 

The CLAIM is proved.

The conclusion follows from the fact that the morphism Tr−1
f0

i
◦ Trfi

splits the short exact sequence 

stemming from (51). �

Proposition 4.4.3. (The direct image sheaves in top degree) Let R10
M := R10m∗Q, R10

M̃
:= R10m̃∗Q, and 

R10
N := R10n∗Q. Then we have canonical isomorphisms of constructible sheaves:
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R10
M |B\Δ ≃ QB\Σ, R10

M |Δ ≃ Q⊕2
Δ ;

R10
M̃ |B\Σ

≃ QB\Σ, R10
M̃ |Σ\Δ

≃ Q⊕2
Σ\Δ, R10

M̃ |Δ
≃ Q⊕4

Δ ;

R10
N |B\Σ ≃ QB\Σ R10

N |Σ\Δ ≃ QΣ\Δ ⊕ LΣ\Δ, R10
N |Δ ≃ Q⊕2

Δ ,

(52)

where L is the rank one local system on Σ \ Δ corresponding to the Z/2Z-module of character −1 via the 

isomorphism π1(Σ \ Δ) ≃ Z/2Z.

Proof. For ease of notation: if W is a variety, ϕ : W → B is a morphism and Z ⊂ B is a subvariety, then 

we set WZ := ϕ−1(Z) and R10
W := R10ϕ!QW .

The statements in the first column of (52) follow from the fact that the morphisms in question are flat of 

relative dimension five with integral fibers over the indicated loci; see Remark 3.2.6 and Proposition 4.2.2.

Proof that R10
M̃ |Σ\Δ

≃ Q⊕2
Σ\Δ. Recall from Lemma 4.1.3 and proper base change that

(Rb∗Q
M̃

)|MΣ\∆
≃ I C MΣ\∆

⊕ Q(Sym2M ′)Σ\∆
[−2]. (53)

By [47], the singularities of MΣ\Δ are of type A1 quotient singularities, so that we have I C MΣ\∆
∼= QMΣ\∆

(cf. [31]). Pushing forward (53) via the proper morphism m : MΣ\Δ → Σ \ Δ we get:

Rm̃∗Q
M̃Σ\∆

= Rm∗Rb∗Q
M̃Σ\∆

= Rm∗QMΣ\∆
⊕ Rp2

∗Q(Sym2M ′)Σ\∆
[−2],

and thus:

R10m̃∗Q
M̃Σ\∆

= R10m∗QMΣ\∆
⊕ R8p2

∗QSym2M ′
Σ\∆

.

By using Fact 4.4.1.(2) and the irreducibility of the five dimensional Mb (cf. Proposition 4.2.2) and of the 

four dimensional M ′
b (cf. Remark 4.1.2), we see that R10m∗QMΣ\∆

= QΣ\Δ(−5) and R8p2
∗QSym2M ′

Σ\∆

∼=

QΣ\Δ(−4) and we are done.

Proof that R10
NΣ\∆

≃ QΣ\Δ ⊕ LΣ\Δ. The variety NΣ\Δ is irreducible (cf. [64, Proof of Prop 1.3]), the 

morphism NΣ\Δ → Σ \Δ is flat, with each of its fibers are reduced and with two irreducible components (cf. 

Proposition 4.2.2). The sheaf R10
NΣ\∆

is the Q-linearization of the sheaf of sets I of irreducible components 

of NΣ\Δ/(Σ \ Δ). Let V ⊆ NΣ\Δ be the locus parameterizing line bundles. By Proposition 4.2.2 and its 

proof we have that: the morphism V → Σ \ Δ is surjective and smooth; V is dense in each fiber Nb; Vb has 

two connected components. It follows that the sheaf of sets I is locally constant, with stalks of cardinality 

two. We now examine the monodromy of I and relate it to that of the broken curves. Let b ∈ Σ \ Δ. 

The corresponding curve Cb = C1,b + C2,b ∈ |2H| has two irreducible components. The two connected 

components of Vb parameterize line bundles of bi-degree (2, 3) and (3, 2) (cf. Lemma 3.3.2). Since Σ \ Δ is 

nonsingular and connected, the monodromy can be detected on a Zariski dense open subset U ⊆ Σ \ Δ. 

We take U := Sym2B′ o, where B′ o ⊆ B′ = |H| is the locus of nonsingular curves. It is clear that looping 

in U around the diagonal exchanges the two components of Cb, the same way in which the two lines of the 

corresponding broken conic are. It follows that the bidegrees are swapped as well. The desired conclusion 

follows.

Proof of the remaining isomorphisms. We now focus on the third column, of (52), i.e. on the situation 

over Δ. By proper base change we need to show that: (a) R10
M∆

≃ Q2
Δ; (b) R10

M̃∆
≃ Q4

Δ; (c) R10
N∆

≃ Q2
Δ.
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We are going to use Lemma 4.4.2 with filtrations of length two in cases (a) and (c) and of length four in 

case (b).

We first deal with cases (a) and (c). In case (a) and (c), we choose the first space X1 of the filtration 

to be the locus of rank two semistable sheaves (cf. Proposition 4.3.1), i.e. in case (a), we set X1 := M I
Δ, 

in case (c), we set X1 := N I
Δ. By Proposition 4.3.1, M I

Δ and N I
Δ are projective over Δ with 5-dimensional 

irreducible fibers. By Fact 4.4.1.(3), we have that R10
MI

∆
≃ QΔ ≃ R10

NI
∆

. Note that with our choice of X1, we 

have that X2 \ X1 is, M II
Δ in case (a), N II

Δ in case (c). By Proposition 4.2.4 (the irreducibility of the fibers 

of M II
C′ and N II

C′), and by Fact 4.4.1.(1), we are thus in the position of applying Lemma 4.4.2 and reach the 

desired conclusion in cases (a) and (c).

In order to prove (b) via an application of Lemma 4.4.2, we consider the following increasing filtration 

of M̃Δ into closed subvarieties:

X1 := EI
Δ ⊆ X2 := EΔ ⊆ X3 := b−1(M I

Δ) ⊆ X4 := M̃Δ. (54)

Recall Proposition 4.2.1 and the subvarieties EΔ = EI
Δ

∐
EII

Δ defined in (24). By using that b is an isomor-

phism away from the center Sym2M ′ of the blow up, the successive differences are seen to be as follows:

X2 \ X1 = EII
Δ , X3 \ X2 = M I

Δ \ Sym2
ΔM ′, X4 \ X3 = M II

Δ (55)

As shown in Proposition 4.2.1, the projective variety X1 = EI
Δ has irreducible fibers of dimension 5 over Δ: 

by Fact 4.4.1.(3) we get R10
EI

∆
≃ QΔ.

By Proposition 4.2.1, the variety X2 \ X1 = EII
Δ is flat surjective over Δ with irreducible fibers. By 

Fact 4.4.1.(1), we get that R10
EII

∆ \EI
∆

≃ QΔ.

By Remark 4.1.2, the fibers of M I
Δ and of X3 \ X2 over the points of Δ are non empty and irreducible 

of dimension five. By Fact 4.4.1.(3), we conclude that R10
MI

∆\(Sym2M ′)∆
≃ QΔ.

The morphism MΔ → Δ is flat, so that its restriction to the open subset M II
Δ ⊂ MΔ is also flat. By 

Proposition 4.2.4, the fibers of M II
Δ → Δ are irreducible of dimension five. By Fact 4.4.1.(1), we have that 

R10
MII

∆
≃ QΔ. We conclude that (b) holds in view of Lemma 4.4.2. �

Remark 4.4.4. (Properties of L in (52)) We record the following elementary properties of L . Let T be 

an irreducible normal variety of positive dimension, let LT be the rank one local system on Sym2T \ ΔT

corresponding to the Z/2Z module of character −1 via the epimorphism π1(Sym2T \ ΔT ) ։ Z/2Z. Let 

j : U → Sym2T \ ΔT be any open immersion with U �= ∅, and let i : Sym2T \ ΔT → Sym2T be the 

evident open immersion. Let u : T → T ′ be a non constant morphism of irreducible normal varieties. 

Let u(2) : Sym2T → Sym2T ′ and u(2)′
: Sym2T \ u(2)−1

(ΔT ′) → Sym2T ′ \ ΔT ′ be the resulting evident 

morphisms. Then:

1. i∗L = i!L = Ri!L = Ri∗L ;

2. j∗j∗L = L ;

3. LT |Sym2T \u(2)−1(ΔT ) = u(2)′∗
LT ′ .

As to (1): the first = is because there are no local invariants around the diagonal; the second = is because 

i is an open immersion; the third equality follows from Verdier duality and the self-duality of L . As to (2): 

in view of the normality assumption, it is valid for any local system, due to the surjection of fundamental 

groups π1(U, u) → π1(Sym2T \ ΔT ). As to (3): this is because the natural surjection of fundamental groups 

above for T factors through the one for T ′.

Finally, for every integer d ∈ Z, when T is irreducible nonsingular, the local system L underlies a unique 

structure of polarizable pure Hodge-Tate variation of Hodge structures of type (d, d); see §2.1.
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5. The Ngô strings of several Lagrangian fibrations

The aim of this section is to determine the Ngô strings (cf. Definition A.0.4) of the two Lagrangian 

fibrations M̃, N → B as well as of several other auxiliary fibrations. In §5.1 we introduce the Ngô strings 

that will appear in the Decomposition Theorem for M̃ → B and N → B. Then in §5.2 and §5.3 we determine 

the Decomposition Theorem for the two universal families of curves of the linear systems |H| and |2H| on 

the K3 surface. To prove Theorems A, B, and B′, we need to compute the cohomology of the Ngô strings 

appearing the Decomposition Theorem for M̃, N → B. We do by realizing them as direct summands of the 

Decomposition theorem for other Lagrangian fibrations whose cohomology is known. This is done in this 

in §5.4, §5.5, and §5.6. Finally, in §5.7 we prove that the Ngô strings (60) are precisely those appearing in 

Decomposition Theorem for the two Lagrangian fibrations. This builds on §5.2 and §5.3.

All decomposition-type results that follow take place in the categories DbMHMalg(−) and have an 

evident counterpart (turn off the Tate shifts) in the corresponding categories Db(−, Q) via the functor rat. 

We only state the stronger result in DbMHMalg(−).

5.1. Some relevant strings

Let u : C → B be a family of nonsingular projective, not necessarily connected, curves of genus g. Let 

v : P → B be the relative Pic0
C/B. We consider the higher direct image sheaves Λ•

B
:= R•v∗QP , with 

• ∈ [0, 2g]; these are polarizable variations of pure Hodge structures of weight •. By taking into account 

Tate twists, we have natural isomorphisms:

R1u∗QC = R1v∗QP ; Λ•
B

= ∧•R1u∗QC , Λg−•
B

= Λg+•
B

(•). (56)

We come back to our families of curves C′ → B′ and C → B over the linear systems B′ = |H| and 

B = |2H|. By restricting these two families over the respective sets of regular values B′ o and Bo, we obtain 

families of type u as above, of genus 2 and 5 respectively, and with connected fibers. By first restricting the 

family of curves C → B over Σo := Sym2B′o \ ΔB′ , and then by normalizing the total space of the resulting 

family, we obtain a family of type u as above, with connected total space, but with disconnected fibers given 

by the disjoint union of two curves of genus 2. We thus have (cf. (20)):

CBo → Bo, (C′
B′ o → B′ o) = (C′

Δo → Δo), ĈΣo → Σo,

{Λ•
B := Λ•

Bo}10
•=0, {Λ•

Δ := Λ•
B′ o}4

•=0, {Λ•
Σ := Λ•

Σo}8
•=0,

(57)

where we have dropped some decorations. We also have the following epimorphisms of groups schemes:

P|Bo

=
Pic0

CBo /Bo P ′
|B′ o

=
Pic0

C′
∆o /Δo , P|Σo Pic0

ĈΣo /Σo , (58)

that fiber-by-fiber realize the Chevalley devissages into affine and Abelian parts of the fibers of the corre-

sponding group schemes P , P ′, and P again, respectively

Recall that L in §4.4 is a local system on Σ \ Δ, and that this latter contains Σo. Let L o := L|Σo . Then 

we have:

iΣo ∗L
o = iΣ\Δ∗

L = iΣ\Δ!
L , (59)
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where the last equality, is due to the fact that the local monodromy of L around the diagonal is given by 

multiplication by −1.

We introduce the following complexes, viewable in DbMHMalg(−) or in Db(−, Q), and we simply call 

them strings –we reserve the term Ngô strings for those strings that actually appear in the Decomposition 

Theorems A.0.3 and A.0.4:

SB :=

10⊕

b=0

I C B(Λb
B)[−b], SΔ :=

4⊕

b=0

I C Δ(Λb
Δ)[−b],

S
+
Σ :=

8⊕

b=0

I C Σ(Λb
Σ)[−b], S

−
Σ :=

8⊕

b=0

I C Σ(Λb
Σ ⊗ L

o)[−b],

(60)

where L is described in Proposition 4.4.3. They are all subject to the Relative Hard Lefschetz theorem, 

which here boils down to:

Λ5−•
B ≃ Λ5+•

B (•), Λ2−•
Δ ≃ Λ2+•

Δ (•),

Λ4−•
Σ ≃ Λ4+•

Σ (•), Λ4−•
Σ ⊗ L

o ≃ Λ4+•
Σ ⊗ L

o(•)
(61)

Remark 5.1.1. In the sequel of the paper, we show that the first two and last two summand in each of the 

strings in (60) are, when viewed in Db(B, Q), shifted sheaves; see (70), (72) and (78).

Remark 5.1.2. The local systems of type Λ are endowed with the structure of polarizable variations of pure 

Hodge structures they acquire as direct image sheaves. We have the following relations between rational 

graded polarizable pure Hodge structures:

1. H∗(N) = H∗
(
S[5]
)
; see Lemma 3.2.7.

2. H∗(M ′) = H∗
(
S[2]
)

= H∗(SΔ); see Lemmata 3.2.7 and 5.4.1.

3. H∗
(
Sym2M ′

)
= H∗(S +

Σ ); see Proposition 5.6.1.

4. H∗
(

M ′2
)

= H∗(SΔ)⊗2 = H∗(S +
Σ ) ⊕ H∗(S −

Σ ); see Lemma 5.5.1 and Proposition 5.6.1.

5. By the forthcoming Proposition 5.7.2, and by Lemma 4.1.3, we have:

H∗(M̃) ⊇ IH∗(M) ⊇ H∗(SB) ⊆ H∗(N). (62)

5.2. The Decomposition Theorem for the genus two universal curve C′ → B′

The complete linear system B′ = |H| ≃ P 2 of our genus two curve C on K3 is two dimensional and we 

have the universal curve morphism:

γ′ : C′3 → B′ 2 = |C|. (63)

The total space C′ is nonsingular and three dimensional. The fibers of γ′ are all integral curves. Let B′o ⊆ B′

be the open subset of regular values of γ′, and let iB′ o : B′o → B′ be the resulting open embedding. Let 

R1
C′ be local system restriction of R1γ′

∗Q to B′o; it coincides with Λ1
Δ := Λ1

B′ := Λ1
B′o in (57).

Lemma 5.2.1. (Decomposition Theorem for Rγ′
∗QC′) The Decomposition Theorem for the direct image com-

plex Rγ′
∗Q takes the following form:

Rγ′
∗QC′ ≃ QB′ ⊕ i∗Λ1

Δ[−1] ⊕ QB′ [−2](−1). (64)
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Proof. For reasons of bookkeeping, we find it more natural to prove the equivalent statement:

Rγ′
∗QC′ [3] ≃ QB′ [2][1] ⊕ i∗Λ1

Δ[2][0] ⊕ QB′ [2][−1](−1), (65)

where the summands appear with increasing perverse degree −1, 0, 1.

The following is standard (cf. [19, Theorem 1.5.3 and Fact 4.5.4]: the following summands appear in the 

Decomposition Theorem for Rγ′
∗QC′ [3]:

QB′ [2][1] ⊕ ICB′(Λ1
Δ)[0] ⊕ QB′ [2][−1](−1).

Since the fibers of γ′ are irreducible, we have that R2γ′
∗Q = QB′ , hence:

ICB′(Λ1
B′)[0] = iB′o ∗Λ1

B′ [2]. (66)

If in (65) there were other summands than these three above, then, by the Relative Hard Lefschetz symme-

tries, they would need to be in perverse degree zero: else, they would contribute nontrivially to Rjγ′
∗Q = 0

for some j ≥ 3, a contradiction (the fibers of γ are curves).

If there were other summands in perverse degree zero, then they would be of the form I0 ⊕ I1, where 

the exponent refers to the dimension of the support of the intersection complex. An I0 would contribute 

non trivially to R3γ′
∗Q = 0, a contradiction. An I1 would be a sheaf placed in cohomological degree −1, 

and it would thus contribute non trivially to R2γ′
∗Q. Since we know that this latter is QB′ and is already 

accounted for by the summand QB′ [2][−1](−1) on the rhs of (65), we get a contradiction. �

5.3. The Decomposition Theorem for the genus five universal curve C → B

The complete linear system |2C| is five dimensional so that we have the associated universal family of 

curves:

γ : C6 → B5 = |2C|.

The total space C is nonsingular and six dimensional. The fibers of γ are integral curves away from the 

integral divisor Σ := Sym2B′ ⊆ B. Let Δ ⊆ Σ be the diagonal. The fibers of γ over Σ \ Δ are reduced 

and are the union of two irreducible components. The two irreducible components of a fiber over the locus 

Σo := Sym2B′ o \ Δ are exchanged by the monodromy action around the diagonal. Let L be the evident 

rank one local system on Σ \ Δ with monodromy −1 around Δ (cf. §4.4). We view it as a polarizable 

variation of pure Hodge structures of Hodge-Tate type, and of weight zero on Σ \ Δ. We have:

(R2γ∗QC)|Σ\Δ =
(
QΣ\Δ ⊕ L

)
(−1). (67)

The fibers of γ over Δ are irreducible non-reduced: they are two times a curve in |C| (recall that on our K3

surface S all curves in |C| are integral).

Let Bo ⊆ B be the open subset of regular values of γ. Let R1
C be the local system restriction of R1γ∗Q

to Bo; it coincides with Λ1
B in (57). Let iBo : Bo → B be the evident open immersion.

Lemma 5.3.1. (Decomposition Theorem for Rγ∗QC) The Decomposition Theorem for Rγ∗Q takes the fol-

lowing form:

Rγ∗QC ≃ QB ⊕
(
iB0 ∗Λ1

B [−1] ⊕ iΣ\Δ∗
L [−2](−1)

)
⊕ QB [−2](−1). (68)
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Proof. We prove the equivalent:

Rγ∗QC[6] ≃ QB [5][1] ⊕
(
iB0 ∗Λ1

B [5] ⊕ iΣ\Δ∗
L [4](−1)

)
[0] ⊕ QB [5][−1](−1), (69)

where the summands are grouped by perversity (−1, 0, 1).

By looking at the regular part of γ, we deduce that the following summands appear in the Decomposition 

Theorem for Rγ∗QC [6]:

QB [5][1] ⊕ ICB(Λ1
B)[0] ⊕ QB [5][−1](−1).

By the Relative Hard Lefschetz symmetries, any additional summand would need to be in perverse degree 

zero: else, they would contribute nontrivially to Rjγ∗Q = 0 for some j ≥ 3, a contradiction (the fibers of γ

are curves).

The direct summand contribution of ICB(Λ1
B)[0] to R2γ∗Q is the sheaf H−4(ICB(Λ1

Bo)). By the condition 

of support for intersection complexes, this sheaf is supported in dimension ≤ 3. Recall that the curves over 

the points of the four dimensional Σo have two irreducible components. It follows that there must be a 

contribution of Σ, to the l.h.s. of (69), of the form ICΣ(L)[0], where L is some rank one local system on 

some open dense subset Σ′ of Σ. Since it contributes to R2γ∗Q, as a polarizable variation of pure Hodge 

structures, the local systems L are necessarily of pure Hodge-Tate type with weight 2. The intersection 

complex ICΣ(L) has non zero cohomology sheaves in degrees contained in the interval [−4, −1], where 

iΣ′ : Σ → B is the evident locally closed embedding. The sheaf H−4(ICΣ(L)) contributes to R2γ∗Q. The 

remaining cohomology sheaves in degrees in the interval [−3, −1] contribute to Rjγ∗Q for j ≥ 3, and 

are thus zero. It follows that ICΣ(L) is the sheaf iΣ′ ∗L placed in degree −4. The local system L agrees 

with L where it is defined. Since the two local systems are both of rank one and of Hodge-Tate type, 

it follows that L = L (−1), where they are both defined. It follows that iΣ′ ∗L = iΣ\Δ∗
L (−1), so that 

ICΣ(L) = iΣ\Δ∗
L [4](−1).

Note that the stalks of R2γ∗Q on Δ are one dimensional. Note also that iΣ\Δ∗
L = iΣ\Δ!

L has zero stalks 

on Δ (no local invariants near the diagonal).

By inspecting the cohomology sheaves of ICB(Λ1
B), we deduce that this perverse sheaf is a sheaf placed 

in degree −5, hence of the predicated form:

ICB(Λ1
B) = iBo ∗Λ1

Bo [4] (equivalently, I C B(Λ1
B) = iBo ∗Λ1

B). � (70)

5.4. The Ngô strings for the Lagrangian fibration p : M ′ → B′

Recall that M ′ is a four-dimensional moduli space which admits the Lagrangian fibration p : M ′ → B′

(19), that we have the local systems of type Λ (19), the strings (60) and the isomorphisms (61).

Lemma 5.4.1. (Ngô strings for p : M ′ → B′) The Decomposition Theorem for p : M ′ → B′ has the following 

form:

Rp∗QM ′ ≃ SΔ = QB′

⊕ 3⊕

b=1

I C B′(Λb
Δ)[−b]

⊕
QB′ [−4](−2), (71)

where, moreover, the following intersection cohomology complex is a sheaf:

I C B′(Λ2±1
Δ ) = iB′o ∗R1

C′

(
−

1

2
∓

1

2

)
. (72)
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Proof. By Proposition 3.4.6, the morphism p : M ′ → B′ is part of a δ-regular weak Abelian fibration. We 

can thus apply Theorem A.0.3, so that, in view of the fact that the fibers of p are irreducible (they are the 

compactified Jacobians of the integral locally planar curves in B′ [65]), we have that the Decomposition 

Theorem has the desired form (71).

Since the general fiber of the group scheme Pic0
C′/B′ is the Jacobian of a nonsingular curve of genus two, 

by (61) Λ1
Δ ≃ Λ3

Δ(1), so that in order to prove (72) it is enough to prove that:

I C B′(Λ1
Δ) = iB′o ∗

(
(R1γ′

∗QC′)|B′o

)
,

which follows from (66) and the fact, already observed at the beginning of §5.2, that Λ1
Δ = (R1γ′

∗QC′)|B′o . �

5.5. The Ngô strings for the Lagrangian fibration p2 : M ′ × M ′ → B′ × B′

Let M ′ be as in the beginning of §5.4. Given a product with the projections onto the factors, the box 

product is the ordinary tensor product of the pull-backs via the projections. We consider the Lagrangian 

fibration p2 = p × p : M ′ × M ′ → B′ × B′. Recall (19) that for simplicity, we are denoting Λ•
B′ o simply by 

Λ•
Δ. We denote by Λ•

Δ×Δ the analogous local systems on B′ o × B′ o associated with P ′ × P ′ → B′ × B′.

Lemma 5.5.1. The Decomposition Theorem for p2 has the following form:

Rp2
∗QM ′×M ′ ≃SΔ ⊠ SΔ

=

8⊕

b=0

⊕

b′+b′′=b

(
I C B′(Λb′

Δ) ⊠ I C B′(Λb′′

Δ )
)

[−b]

=
8⊕

b=0

I C B′×B′(Λb
Δ×Δ)[−b].

(73)

Moreover, the following summands are sheaves:

I C B′×B′(Λ4±4
Δ×Δ)(2 ± 2) = QB′×B′ , (74)

I C B′×B′(Λ4±3
Δ×Δ) =

2⊕

j=1

pr∗
jI C B′(Λ1

Δ)(3 ± 3) =
2⊕

j=1

pr∗
j iB′o ∗Λ1

B′ o(3 ± 3). (75)

Proof. For reasons of bookkeeping, we prove the theorem for the shifted Rp2
∗QM ′×M ′ [8].

The projections prj : B′ × B′ are smooth of relative dimension 2, so that the functors pr∗
j [2] preserve 

pure Hodge complexes and intersection complexes (the coefficients are the pulled-back coefficients). The 

desired conclusions (73) follow by: taking Lemma 5.4.1; applying the Künneth formula keeping track of 

the perversities; organizing the summands. The identities (74) follow from the isomorphisms Λ0
Δ×Δ ≃

Λ8
Δ×Δ(4) ≃ QB′o×B′o (use (61) and the irreducibility of the fibers) and the fact that B′ ×B′ is nonsingular. 

The identities (75) follow from the natural isomorphism (61) Λ1
Δ×Δ ≃ Λ7

Δ×Δ(3) (the general fiber of the 

group scheme is the product of the Jacobians of two nonsingular projective curves of genus two), as well 

as (66), with the shift changed from [2] to [4] to take into account that we are pulling back along smooth 

morphisms, the projections, of relative dimension 2. �

5.6. The Ngô strings for the Lagrangian fibration p(2) : Sym2M ′ → Sym2B′

The morphism M ′ 2 : M ′ 2 → B′ 2 is equivariant for the action of the symmetric group in two letters, so 

that it induces the natural morphism p(2) : Sym2M ′ → Sym2B′ on the two-fold symmetric products. We 

have the commutative diagram:
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M ′ × M ′
p2

a
c

B′ × B′

b

Sym2M ′
p(2)

Sym2B′.

(76)

Recall that we have the local systems Λ•
Σ (57) and L o (59) defined on Σo = Sym2B′ o \ ΔB′ and the 

strings S ±
Σ defined in (60).

Proposition 5.6.1. The Decomposition Theorems for the morphisms c and p(2) take the following form:

Rc∗QM ′×M ′ = S
+
Σ ⊕ S

−
Σ ; Rp

(2)
∗ QSym2M ′ ≃ S

+
Σ . (77)

Moreover, we have that the following terms are sheaves:

I C Σ(Λ4±4
Σ ) = QΣ(2 ± 2), I C Σ(Λ4±4

Σ ⊗ L
o) = iΣo ∗LB′(2 ± 2) = iΣo !LB′(2 ± 2),

I C Σ

(
Λ4±3

Σ

)
= iΣo ∗Λ4±3

Σ (3 ± 3), I C Σ(Λ4±3
Σ ⊗ L

o) = iΣo ∗

(
Λ4±3

Σ ⊗ L
o
)

(3 ± 3).
(78)

Proof. Denote by LM ′ the rank one local system on Sym2M ′ \ ΔB′ with monodromy −1 around the 

diagonal; it is pure of Hodge-Tate type, with weight zero. We have Ra∗QM ′×M ′ = a∗QM ′×M ′ = QSym2M ′ ⊕

(iSym2M ′\ΔM′ )∗LM ′ . It follows that:

Rc∗QM ′×M ′ = Rp
(2)
∗ QSym2M ′ ⊕ Rp

(2)
∗ iSym2M ′\ΔM′ ∗

LM ′ . (79)

By the functoriality of the direct image, the fact that b is finite and (73), we have Rc∗QM ′×M ′ ≃

Rb∗Rp2
∗QM ′×M ′ = b∗(SΔ ⊠ SΔ). Note that SΔ, being the direct sum of shifted intersection complexes 

supported exactly on B′, is determined, via the intermediate extension functor, by its restriction to any 

dense open subset of B′. The analogous fact remains true for SΔ ⊠ SΔ on B′ × B′. It follows that the 

analogous fact remains true for b∗(SΔ ⊠ SΔ) ≃ Rp
(2)
∗ QSym2M ′ ⊕ Rp

(2)
∗ iSym2M ′\ΔM′ ∗

LM ′ on Sym2B′: in 

fact, the morphism b being finite and surjective, the direct image b∗ sends intersection complexes supported 

exactly on B′ 2 to ones supported exactly on Sym2B′.

It is thus enough to verify the desired assertions (77) concerning (79) on any Zariski-dense open subset 

U of Sym2B′. On any such open subset U , (79) takes the form:

(
Rp

(2)
∗ QSym2M ′

)
|U

⊕
(

Rp
(2)
∗ iSym2M ′\ΔM′ ∗

LM ′

)
|U

. (80)

We set U := Σo := Sym2B′ o \ ΔB′ o . In view of Remark 4.4.4.(3), recalling that L is defined on 

Sym2B′ \ ΔB′ , and that LB′ = p(2)∗
L , and by using the projection formula, we have that (80) reads as 

follows:

(
Rp

(2)
∗ QSym2M ′

)
|Σo

⊕

((
Rp

(2)
∗ QSym2M ′

)
|Σo

⊗ L|Σo

)
. (81)

The proper morphism p(2) is smooth over Σo, so that, by Deligne’s theorem [19, Theorem 1.5.3], i.e. the 

Decomposition Theorem for proper smooth morphisms, we have that:

(
Rp

(2)
∗ QSym2M ′

)
|Σo

≃
8⊕

•=0

(
R•p

(2)
∗ QSym2M ′

)
|Σo

[−•] (82)
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Now, the rhs of (82) coincides with S +
Σ |U : this follows from the fact that the morphism (p(2))|Σo is a 

torsor for the group scheme (58) (Pic0
ĈΣo /Σo). This can also be seen to follow directly from the Ngô String 

Theorem A.0.3.

We have thus proved (77).

All the summands in S
+
Σ and S

−
Σ have been shown to be direct summands of terms of the form 

b∗I C B′ o×B′ o(Λ•
Δ×Δ). Since the direct image functor b∗ sends sheaves to sheaves, in view of (73) and (75), 

the intersection complexes in (78) are shifted sheaves, and thus have the predicated form. �

5.7. Ngô strings for the Lagrangian fibrations M̃, N → B

This section is devoted to proving Proposition 5.7.2. While it falls short of establishing the exact shape 

of the Decomposition Theorem for the complexes Rm̃∗Q
M̃

and Rn∗QN , the fact that this shortcoming is 

measured by the same integer ǫ in both expressions (87), is key to proving our main Theorem A in §6.1.

Before embarking in the proof of Proposition 5.7.2, we list some facts we need.

Fact 5.7.1.

1. By the very definition (60), the cohomology sheaf in degree 10 of the string SB takes the form: 

H10(SB) = QB ⊕ ⊕4
i=1Hi(I C B(Λ10−i

Bo )), where the direct sum ends at 4 by the conditions of support 

for intersection complexes. These same conditions tell us that dim support Hi(I C B(Λ10−i
Bo )) ≤ 4 − i, 

for 1 ≤ i ≤ 4. The Relative Hard Lefschetz isomorphism Λ1
Bo = Λ9

Bo(4), combined with Lemma 5.3.1

(cf. (70)), implies that H1(I C B(Λ9
Bo)) = 0. In summary, we have:

H10(SB) = QB ⊕ ≤2H2(I C B(Λ8
Bo)) ⊕ ≤1H3(I C B(Λ7

Bo)) ⊕ ≤0H4(I C B(Λ6
Bo)), (83)

where the exponents on the left are the upper bounds on the dimensions of the respective supports.

2. In the same vein, but by using Proposition 5.6.1 in place of Lemma 5.3.1, we have that the cohomology 

sheaf in degree 8 of the string S +
Σ -i.e. in degree 0 for S+

Σ - takes the form:

H8(S +
Σ ) = QΣ ⊕ ≤1H2(I C Σ(Λ6

Σo)) ⊕ ≤0H3(I C B(Λ5
Σo)), (84)

where the exponents on the left are the upper bounds on the dimensions of the respective supports. 

This is improved in (91).

3. Similarly, the cohomology sheaf in degree 8 of the string S −
Σ takes the form:

H8(S −
Σ ) = iΣ\Δ∗

L ⊕ ≤1H2(I C Σ(Λ6
Σo ⊗ L

o)) ⊕ ≤0H3(I C B(Λ5
Σo ⊗ L

o)), (85)

where the exponents on the left are the upper bounds on the dimensions of the respective supports. 

This is improved to (92).

4. In the same vein, but by using Lemma 5.4.1 in place of Lemma 5.3.1, coupled with the fact, due to the 

conditions of support, that H2I C (L) = 0 for any system of coefficients L on a surface, we have that 

the cohomology sheaf in degree 4 of the string SΔ reads as follows:

H4(SΔ) = QΔ (86)

5. The following is clear: if T is an irreducible variety and F ≃ Q⊕r
T is a constant sheaf on T , then F does 

not admit a direct summand supported on any proper subvariety.
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6. The local system L on Σ \ Δ of Proposition 4.4.3 satisfies the following properties Fact 4.4.4 (cf. the 

proof of Proposition 5.3.1): (i) iΣ\Δ∗
L = iΣ\Δ!

L (because there are no local monodromy invariants 

around the diagonal); (II) for every Zariski dense open subset j : U ⊆ Σ \ Δ, we have that L = j∗j∗L

(true for any local system, due to the normality of the varieties involved); (IIi) iU ∗(L|U ) = iΣ\Δ∗
L on 

B (follows immediately from (II) by functoriality).

Proposition 5.7.2. The Decomposition Theorem for Rm̃∗Q
M̃

, Rn∗QN in DbMHMalg(B) takes the following 

form:

Rm̃∗Q
M̃

≃SB

⊕
S

+
Σ [−2](−1)

⊕
S

⊕(1+ǫ
M̃

)

Δ [−6](−3),

Rn∗QN ≃SB

⊕
S

−
Σ [−2](−1)

⊕
S

⊕ǫN

Δ [−6](−3),
(87)

where ǫ
M̃

= ǫN = 0, or 1.

Proof. By virtue of Proposition 3.4.6 about δ-regularity, we can apply Theorem A.0.3 on Ngô strings.

We first deal with Rm̃∗Q
M̃

.

By Corollary 4.1.4, the subvarieties B, Σ and Δ are supports; in particular, each one of them must 

contribute the associated Ngô string as a direct summand of Rm̃∗Q
M̃

[10].

By Proposition 4.4.3, the local systems of type L appearing in Theorem A.0.3 applied to each of these 

three supports are constant of some strictly positive ranks r
M̃,B

, r
M̃,Σ

, r
M̃,Δ

, and the same is true after the 

push-forward (114).

It follows that the direct sum of the Ngô strings associated with these three supports takes the following 

form:

S
⊕r

M̃,B

B ⊕ S
+
Σ

⊕r
M̃,Σ [−2](−1) ⊕ S

⊕r
M̃,∆

Δ [−6](−3), (88)

so that, according to Fact 5.7.1(1,2,4), the combined contribution to the direct image R10m̃∗Q
M̃

stemming 

from the local systems of type L for these three Ngô strings takes the form:

(
Q

⊕r
M̃,B

B ⊕ Q
⊕r

M̃,Σ

Σ ⊕ Q
⊕r

M̃,∆

Δ

)
(−5). (89)

Proposition 4.4.3 implies that r
M̃,B

= r
M̃,Σ

= 1 and that 1 ≤ r
M̃,Δ

≤ 2. Moreover:

1. r
M̃,Δ

= 2 if and only if the combined contribution of the two Ngô strings SB and S +
Σ to R10

M̃ |Δ
, i.e. 

the direct sum of the l.h.s. of (83) and (84) restricted to Δ, is exactly Q⊕2
Δ ;

2. r
M̃,Δ

= 1 if and only if the above contribution is exactly Q⊕3
Δ .

We define ǫ
M̃

so that 1 + ǫ
M̃

= r
M̃,Δ

:

ǫ
M̃

:= r
M̃,Δ

− 1. (90)

The l.h.s. of (87) has been established.

Before studying Rn∗QN , we note in passing that the above analysis, Fact 5.7.1.(1,2,5) and Proposi-

tion 4.4.3 imply the following improvements of (83) and of (84):

H10(SB) = QB ⊕ H2(I C B(Λ8
Bo)), H2(I C B(Λ8

Bo)) ≃ Q
⊕ǫ2,8

B

Δ , H8(S +
Σ ) = QΣ, (91)

where ǫ2,8
B = 1 − ǫ

M̃
. Note that r

M̃,Δ
= 1, 2, and r

M̃,Δ
= 2 iff ǫ

M̃
= 1 iff ǫ2,8

B = 0.
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We now study Rn∗QN .

By virtue of Proposition 3.4.6 about δ-regularity, we can apply Theorem A.0.3 on Ngô strings. By 

Proposition 4.4.3, we have that R10
N |B\Σ ≃ QB\Σ(−5), which, jointly with Corollary A.0.3 on the shape of 

Ngô strings and the associated local system contributing to R10
|B\Σ, implies that (Rn∗QN )|B\Σ ≃ (SB)|B\Σ. 

It follows that the Ngô string for Rn∗QN associated with B is SB . Moreover, any additional support must 

be contained in Σ.

As shown earlier, the contribution of SB to R10
N is QB ⊕ H2(I C B(Λ8

Bo)), where the second summand 

is supported on Δ. In particular, this contribution restricted to Σ \ Δ is QΣ\Δ, which does not yield the 

whole R10
N |Σ\Δ = (Q|Σ\Δ ⊕ L )(−5), as it is prescribed by Proposition 4.4.3.

It follows that Σ is a support and that the local system of type L, defined on a suitable Zariski dense 

open subset of Σ, prescribed by Theorem A.0.3 is the restriction of L to this open subset. It follows, also 

by virtue of Fact 5.7.1.(6), that the associated Ngô string is S −
Σ [−2](−1).

It also follows that the only other possible Ngô strings are supported at closed subvarieties of Δ. Since 

R10
N |Δ ≃ Q⊕2

Δ (−5), Corollary A.0.3 and Fact 5.7.1.(6) imply that the only remaining possible support is Δ.

In particular, the only possible additional Ngô string is S⊕ǫN

Δ , with ǫN = 0, 1.

By combining (85), the first equality in (91), and the sentence following (91), we see that ǫN = 1 iff 

ǫ2,8
B = 0 iff ǫ

M̃
= 1. In particular, ǫN = ǫ

M̃
and the r.h.s. of (87) follows, with the same value of ǫ on both 

sides.

The proposition is proved. �

Remark 5.7.3. In analogy with (91), we note that the analysis carried out so-far implies that (85) can be 

improved to:

H8(S −
Σ ) = iΣ\Δ∗

L . (92)

6. Proofs of Theorems A, B and B′

We are now ready to combine the results proved so far with Theorem A.0.3, the refined version of Ngô’s 

Support Theorem. We prove Theorem A, then Theorem B and B′. The statement of Theorem B implies the 

statement of Theorem A. We chose however to first prove Theorem A and then Theorem B, as the extra 

layer given by the Hodge structures may make the topological arguments yielding Theorem A less clear. We 

then prove Theorem B, which implies Theorem B′ thanks to a density argument using the period mapping.

6.1. Proof of the main Theorem A

Fact 6.1.1. Let A be a semisimple Abelian category where every object has finite length and the isomorphism 

classes of simple objects form a set S. Recall that by definition the zero object is not simple. Every object 

a ∈ A is isomorphic to a unique finite direct sum of simple objects with multiplicities:

a ≃
⊕

s∈S

s
⊕ns(a). (93)

If we have an identity [a] = [b] − [c] in the Grothendieck group K(A), with a, b, c ∈ A, then

ns(a) = ns(b) − ns(c). (94)

Let φ : Obj(A) → M be an assignment into a commutative group which is additive in exact sequences, 

then, if [a] = [b] − [c] are as above, then

φ(a) = φ(b) − φ(c). (95)
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In the remainder of this section, we let QGPPHS be the category of rational graded polarizable pure 

Hodge structures, we let b∗ denote the graded dimension of the corresponding graded vector spaces (Betti 

numbers), and we let h•⋆ denote the bi-graded dimension of the corresponding bi-graded vector spaces 

(Hodge numbers). If we set A = QGPPHS and φ = b∗, h•⋆, then we are in the situation of Fact 6.1.1, with 

M = ZN , (Z2)N , respectively.

Proposition 6.1.2. (Cut and paste of polarizable graded pure Hodge structures)

b∗(M̃) = b∗(N) + b∗

(
(Sym2M ′)⊕2[−2]

)
− b∗

(
(M ′2)[−2]

)
+ b∗ ((M ′)[−6]) ; (96)

h•⋆(M̃) = h•⋆(N) + h•⋆
(
(Sym2M ′)⊕2[−2](−1)

)
− h•⋆

(
(M ′2)[−2](−1)

)
+ h•⋆ ((M ′)[−6](−3)) . (97)

Proof. According to Proposition 5.7.2, to Remarks 5.1.2 and A.0.5, we have isomorphisms of finite dimen-

sional rational graded vector spaces, even of rational polarizable graded pure Hodge structures:

H∗(M̃) ≃ H∗(SB) ⊕ H∗(S +
Σ )[−2](−1) ⊕ H∗(SΔ)⊕1+ǫ[−6](−3),

H∗(N) ≃ H∗(SB) ⊕ H∗(S −
Σ )[−2](−1) ⊕ H∗(SΔ)⊕ǫ[−6](−3),

H∗(M ′2) ≃ H∗(S +
Σ ) ⊕ H∗(S −

Σ ).

(98)

By working with the Abelian category of finite dimensional graded vector spaces, or even of rational po-

larizable graded pure Hodge structures, we obtain the identities in the corresponding Grothendieck groups: 

(note the important fact that the ǫ’s cancel out)

H∗(M̃) = H∗(N) +
(

2H∗(Sym2M ′) − H∗
(

M ′2
))

[−2](−1) + H∗ (M ′) [−6](−3). (99)

It remains to apply the identity (95). �

Proof of Theorem A. It is enough to compute the Betti and Hodge number of M̃ .

The Betti and Hodge numbers of all the varieties appearing on the r.h.s. of (96) and (97), namely, of 

N, M ′, M ′ 2, and of Sym2M ′ are known thanks to Göttsche’s and Macdonald’s formulae [30]. The odd Betti 

numbers of these varieties are zero, and their Hodge numbers in even degree are as follows. The Hodge 

numbers of M ′:

1

1 21 1

1 21 232 21 1

(100)

From the Hodge diamond of M ′, a direct computation gives the Hodge numbers of M ′ 2:

1

2 42 2

3 84 907 84 3

2 84 1350 9870 1350 84 2

1 42 907 9870 55596 9870 907 42 1,

(101)
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and those of Sym2 M ′:

1

1 21 1

2 42 464 42 2

1 42 675 4935 675 42 1

1 21 464 4935 27914 4935 464 21 1.

(102)

The Hodge numbers of N can be recovered from the generating series of [30]1:

1

1 21 1

1 22 254 22 1

1 22 276 2277 276 22 1

1 22 276 2530 16469 2530 276 22 1

1 21 254 2277 16469 87560 16469 2277 254 21 1.

(103)

In view of (99), Theorem A now follows by direct calculation.

Remark 6.1.3. The proof of Theorem A combines the determination of the Nĝo strings (Proposition 5.7.2) 

in DbMHMalg(B) with a cancellation occurring in a Grothendieck group (Proposition 6.1.2). J. Shen and 

Q. Yin have informed us that they can obtain the computation of the Hodge numbers as in Theorem A

using the validity of Proposition 5.7.2 in Db(B, Q) (which can be considered the main technical result of 

this paper) and without invoking its validity at the level of mixed Hodge modules, and combine it with the 

main result in [71]. This approach can then replace the last part of the proof of Theorem A given above.

6.2. The main Theorem B′

Using Remarks 3.1.1 and 3.2.3 we can formulate the following, slightly more general, version of Theorem B:

Theorem B′. Let (S, H) be a polarized K3 surface of genus 2. Let w = (0, 2H, χ), χ odd, and 2v′ =

(0, 2H, 2χ′) be Mukai vectors (cf. (15) and (16)) which are positive in the sense of Remark 3.1.1. Let L, 

resp. L′, be a polarization which is w-generic, resp. 2v′-generic (cf. Remark 3.2.3). Finally, let N = Mw,L(S)

be the moduli space of L-stable sheaves on S with Mukai vector w and let M̃ = M̃2v′,L′(S) be a symplectic 

resolution of the moduli space M2v′,L′(S) of L′-semistable sheaves on S with Mukai vector 2v′. Then, using 

the notation as in the statement of Theorem B, we have isomorphisms:

M̃ = S(5) ⊕
[
S(4)〈−1〉

]⊕2

⊕ S(2,2)(S)〈−1〉 ⊕
[
S(3)〈−2〉

]⊕2

⊕

⊕
[
S(2,1)(S)〈−2〉

]⊕2
⊕ [S ⊗ S] 〈−3〉 ⊕

[
S(2)〈−3〉

]⊕3

⊕ [S〈−4〉]⊕2
;

(104)

N = S(5) ⊕
[
S(3) ⊗ S

]
〈−1〉 ⊕

[
S ⊗ S(2)

]⊕2
〈−2〉 ⊕

[
S2
]⊕2

〈−3〉 ⊕ S〈−4〉. (105)

The graded pure polarizable Hodge structures of all the varieties on the r.h.s. of (99) are known and can 

be expressed as follows in terms of the Hodge structure of the underlying K3 surface S. Let V = H∗(S) be 

the rational Hodge structure of S. Using (19), Lemma 3.2.7, as well as [31] and MacDonald’s formula, we 

can write:

1 We used the script found at https://pbelmans .ncag .info /blog /2017 /11 /18 /hodge -numbers -hilb/ to compute these numbers.
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H∗(M ′) = V (2) ⊕ V [−2](−1) (106)

H∗(M ′ 2) = V (2) ⊗ V (2) ⊕ 2V (2) ⊗ V [−2](−1) ⊕ V ⊗ V [−4](−2)

H∗(Sym2 M ′) = Sym2 V (2) ⊕ V (2) ⊗ V [−2](−1) ⊕ V (2)[−4](−2)

H∗(N) = V (5) ⊕ V (3) ⊗ V [−2](−1) ⊕ 2V ⊗ V (2)[−4](−2) ⊕ 2V ⊗ V [−6](−3) ⊕ V [−8](−4).

(107)

For a partition λ of an integer k, we denote by S(λ)(−) the corresponding Schur functor. For the notation 

and basic properties of Schur functors we refer the reader to [28, Ch. 6]. Let W be a vector space. By [28, 

Thm 6.3], the GL(W )–representation W ⊗k decomposes into a sum of irreducible subrepresentations, each 

of which is a Schur module S(λ)(W ). Moreover, if W is a Q–vector space, so are all of its Schur modules. 

It is well known that if W is a Q–vector space endowed with a polarizable Hodge structure, then W ⊗k, 

as well as each of its irreducible representations, inherit compatible rational polarizable Hodge structures. 

This gives a rational polarizable Hodge structures on each of the Schur modules S(λ)(W ) which is such that 

the decomposition of W ⊗k into the direct sum of irreducible representations is also a decomposition into a 

direct sum of Hodge structures.

In what follows, we need the following Lemma.

Lemma 6.2.1. The following isomorphisms of rational polarizable Hodge structures hold:

V (2) ⊗ V = S(2,1)(V ) ⊕ V (3)

V (3) ⊗ V = S(3,1)(V ) ⊕ V (4)

V (2) ⊗ V (2) = S(2,2)(V ) ⊕ S(3,1)(V ) ⊕ V (4)

Sym2(V (2)) = S(2,2)(V ) ⊕ V (4)

Proof. By the observation on the compatibility of the Hodge structures that proceeds the lemma, it is enough 

to prove that these isomorphisms hold as GL(V )–subrepresentations V (k), for an appropriate integer k. The 

first two statements follow then from the formula on page 79 of [28], the second from the formula on page 

81 of [28], while the last statement from [28, Ex. 6.16]. �

Using (107) and Lemma 6.2.1 we find the following isomorphism of rational polarizable Hodge structures:

H∗(M ′ 2) = S(2,2)(V ) ⊕ S(3,1)(V ) ⊕ S(4)(V )
︸ ︷︷ ︸

V (2)⊗V (2)

⊕ V (3)[−2](−1)⊕2 ⊕ S(2,1)(V )[−2](−1)⊕2

︸ ︷︷ ︸
(V (2)⊗V [−2](−1))⊕2

⊕V ⊗2[−4].
(108)

H∗(Sym2 M ′) = V (4) ⊕ S(2,2)(V )
︸ ︷︷ ︸

Sym2 V (2)

⊕ V (3)[−2](−1) ⊕ S(2,1(V )[−2](−1)
︸ ︷︷ ︸

V (2)⊗V [−2](−1)

⊕V (2)[−4](−2)
(109)

H∗(N) = V (5) ⊕ V (4) ⊕ S(3,1(V )[−2](−1)
︸ ︷︷ ︸

V (3)⊗V [−2](−1)

⊕ V (3)[−4](−2) ⊕ S(2,1(V )[−4](−2)
︸ ︷︷ ︸

(V ⊗V (2)[−4](−2))⊕2

⊕

⊕ V ⊗ V [−6](−3)⊕2 ⊕ V [−8](−4).

(110)

Proof of Theorem B′. We first prove the Theorem in the case when the degree two K3 surface S is general in 

moduli, i.e., S has Picard rank 1 (this is the statement of Theorem B). Then (99) holds. We thus substitute 

formulas (106), (108) (109) and (110), into equation (99) in order to express the Hodge structure of M̃ in 

terms of that of S. Since the category of rational polarizable Hodge structures is semisimple, in view of 

Fact 6.1.1 we can make cancellations and find:

H∗(M̃) = V (5) ⊕ V (4)[−2](−1)⊕2 ⊕ S(2,2)(V )[−2](−1) ⊕ V (3)[−4](−2)⊕2 ⊕ S(2,1)(V )[−4](−2)⊕2⊕

⊕ V ⊗ V [−6](−3) ⊕ V (2)[−6](−3)⊕3 ⊕ V [−8](−4)⊕2.
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This proves the theorem in case the degree two K3 surface S has Picard rank 1.

Before proving the general case we recall that, since birational irreducible holomorphic symplectic mani-

folds have isomorphic integral Hodge structures, we can prove the theorem for any holomorphic symplectic 

birational model of N or of M̃ . Thanks to Remark 3.2.3, it is thus sufficient to prove the statement for an 

arbitrary symplectic resolution of Mw,H(S) or of M2v′,H(S).

Let (S0, H0) be a polarized K3 surface of genus 2. Choose a one-parameter deformation (S, H) of (S0, H0)

parameterized by a disk (D, t0) such that the subset of points t ∈ D∗ such that NS(St) has rank one is 

dense. Let vt = (0, 2Ht, 2χ′) be the corresponding Mukai vector. We consider the relative moduli space 

M → D, where Mt = Mvt,Ht
(St). By [62, Prop 2.20], up to shrinking (D, t0), we may assume that, for 

every t �= t0, the polarization Ht is vt-generic (cf. Remark 3.2.3). By [62, Prop 2.23 and its proof], by 

blowing up the relative moduli space over the punctured disk D∗ along its singular locus results in a 

resolution M̃D∗ → MD∗ which is point-by-point t ∈ D∗ a symplectic resolution. By Remark 3.2.3, Mto

admits a symplectic resolution M̃t0
→ Mt0

. By [42, Thm 0.6, Cor 4.2], up to passing to a branched cover 

of (D, t0), we may assume that there is a smooth proper family of projective manifolds M̃D → D such that 

the restriction to D∗ coincides with the family M̃D∗ → D∗ introduced above and such that the central fiber 

is birational to M̃t0
.

Consider the two period mappings [33,34] associated with the following two variations of (un-polarized) 

graded rational Hodge structures: the graded cohomology of the fibers of M̃D → D over D; the one on the 

r.h.s. of (1) as the K3 surface varies over D. By the first part of the proof, these two holomorphic period 

mappings coincide on the dense subset of D seen above where the Néron-Severi of the K3 has rank one, so 

that the two mappings coincide on D. �

Appendix A. Hodge-theoretic Ngô strings

The goal of this appendix is to state Theorem A.0.3 (MHM Ngô strings over C), which is a refinement 

of the Ngô Support Theorem [59, Théorème 7.2.1] valid in the Hodge-theoretic context of M. Saito’s mixed 

Hodge modules [68,69]. We do not write out a detailed proof since, as it is explained below, it can be 

obtained by repeating B.-C. Ngô’s proof, with only two minor additional observations.

Theorem A.0.3 admits several variants: (a) varieties over finite fields and constructible Qℓ-adic sheaves 

for the étale topology; varieties over the complex numbers and: (b′) constructible Qℓ-sheaves for the étale 

topology; (b′′) constructible Q-sheaves for the classical topology, with algebraic strata; (b′′′), i.e. Theo-

rem A.0.3 per se, mixed Hodge modules for the classical topology with algebraic strata. By the standard 

spreading out techniques of [9, §6.1], version (a) implies versions (b′, b′′).

Ngô support Theorem [59, Théorème 7.2.1] is the (a)-version of (114), which roughly speaking, asserts 

that a support contributes a direct summand to the sheaf R2df∗QM . The paper [59] does not mention 

explicitly the complete collection of direct summands of Rf∗QℓM on S associated with a support Z ⊆ S. In 

fact, somewhat surprisingly, it seems a bit vague concerning this point; see [59, p. 113, second sentence of last 

paragraph]. Even though this is not explicitly mentioned in [59], it is not difficult to make the Ngô Support 

Theorem more complete by making precise -building in an essential way on Ngô’s method, especially [59, 

Proposition 7.4.10]- all the direct summands supported on a given support appearing in the Decomposition 

Theorem for Rf∗QℓM . This leads to the versions (a, b′, b′′) of Theorem A.0.3.

In this paper, we need Theorem A.0.3, i.e. the Hodge-theoretic version (b′′′). Again, this is not difficult to 

achieve, by repeating B.-C. Ngô’s proof of the support theorem by working in the categories DbMHMalg(−). 

There are only two minor points to consider:

Fact A.0.1.

1. The weight argument [59, pp. 120-121] involving the Qℓ-adic Tate module and Frobenius weights, goes 

through on the nose for the Tate module defined as an object in DbMHMalg(S) (cf. §2.2 and §2.1): we 
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only need to work generically on a support, and the Tate module, being a direct image, is generically 

an admissible polarizable variation of mixed Hodge structures, of weights −1 and 0.

2. The “Liberté” statement [59, Proposition 7.4.10]. B.-C. Ngô proves this by using finite fields. Since it 

is a topological statement concerning a graded module over a graded algebra in the category of lisse 

Qℓ sheaves in a geometric context, we can use the spreading out techniques mentioned above to carry 

over the “Liberté” statement from the algebraic closure of a finite field and graded semisimple lisse 

Qℓ-sheaves, to the situation over the complex numbers and graded semisimple local systems. One then 

promotes the “Liberté” statement from the category of graded semisimple local systems, to the category 

of graded polarizable variations of pure Hodge structures by using the proof of [59, Lemma 7.4.11], where 

the graded object E one obtains there is automatically a graded polarizable variation of pure Hodge 

structures.

Let us introduce the principal players in Theorem A.0.3 by first giving the set-up and then by discussing 

some related objects.

Set-up A.0.2. Let (M, S, P ) be a δ-regular weak abelian fibration (Definition 2.2.1) of relative dimension 

d := dim(M/S) = dim(P/S), and such that M/S is projective, S is irreducible, and M is a rational 

homology manifold (I C M = QM ).

We have assumed dim(M/S) = dim(P/S) only to simplify the numerology. In this paper, we apply 

Theorem A.0.3 to Lagrangian fibrations, so that the numerology gets simplified even further, since then one 

also has d := dim (M/S) = dim (P/S) = dim(S).

Recall the notation fixed in §2.1. In particular, the supports of Rf∗QM are the integral subvarieties of 

S that support a non-zero direct summand of Rf∗QM . Let A be a finite set enumerating the supports of 

Rf∗QM , so that the supports are denoted Zα ⊆ S, α ∈ A . Let gα : Aα → Vα be the Abelian scheme 

(5) associated with P|Zα
, where Vα ⊆ Zα is a suitable Zariski open and dense subvariety contained in the 

regular locus of Zα, and we are free to shrink it if it is useful/necessary. Let δab
α be the relative dimension 

of Aα/Vα; then δab
α = d − δ(Zα). Let Λ•

α := R•gα∗QAα
, 0 ≤ • ≤ 2δab

α ; these are polarizable variations of 

pure Hodge structures of weight • on Vα. Recall that a polarizable variation of pure Hodge structures L

of weight zero and of Hodge-Tate type on a nonsingular subvariety V ⊆ S is determined by its underlying 

local system, and it gives rise to a pure Hodge module of weight dim(V ) on the closure Z of V , namely 

ICZ(L).

We can now state the main result of this appendix.

Theorem A.0.3. (MHM Ngô strings over C) In the Set-up A.0.2, there is an isomorphism in DbMHMalg(S)

of pure objects of weight zero:

Rf∗QM ≃
⊕

α∈A

⎧
⎨
⎩

2δab
α⊕

•=0

I C Zα
(Λ•

α ⊗ Lα) [−•]
[
−2
(
d − δab

α

)] (
δab

α − d
)
⎫
⎬
⎭ , (111)

where Lα is a polarizable variation of pure Hodge structures of weight zero, and of Hodge-Tate type, on Vα

(we may need to shrink Vα to achieve this).

Moreover, we have:

1. The identities:

δab
α = dim(M/S) − dim(S) + dim(Zα), ∀α ∈ A . (112)
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2. Canonical isomorphisms:

Λ
δab

α −•
Aα

= Λ
δab

α +•
Aα

(•), Λ
δab

α −•
Aα

⊗ Lα = Λ
δab

α +•
Aα

(•) ⊗ Lα, ∀ 0 ≤ • ≤ δab
α . (113)

In addition, one can realize other such isomorphisms, with associated Primitive Lefschetz Decomposi-

tions, via the Relative Hard Lefschetz Theorem for the projective morphisms gα.

3. The object R2df∗QM on S admits the following pure direct summand, where iVα
: Vα → Zα is the 

natural open immersion, and the equalities are summand-by-summand:

⊕

α

iVα ∗Lα(−d) =
⊕

α

I C Zα
(Lα(−d)). (114)

If the general fiber of M/S is integral and if we take Z = S, with S normal, then iVS ∗L = QS.

If all the fibers of M/S are integral, then the only support is S and, if S is normal, then iVS ∗L = QS.

4. By taking degree ⋆ cohomology in (111), we have an isomorphism in the category of graded polarizable 

mixed Hodge structures (polarizable pure Hodge structures if S, hence M , is complete):

H⋆(M, Q) ≃
⊕

α

⎧
⎨
⎩

2δab
α⊕

b=0

IH⋆−b−2d+2δab
α (Zα, Λb

α ⊗ Lα))(δab
α − d)

⎫
⎬
⎭ , ∀ ⋆ . (115)

Proof. Recall that d := dim(M/S) = δ(Zα) + δab
α . The identity (112) follows by combining the inequality in 

[59, Proposition 7.2.2] (which is stated and proved in the étale context over the closure of an algebraically 

closed field, and, by [9, §6.1], remains valid for the classical topology over C) taken together with the 

δ-regularity hypothesis, which is precisely the opposite inequality. This proves (1)

Note that (2) is a statement about polarizable variations of pure Hodge structures (pvphs) The first 

canonical isomorphism in (113) is standard and due to Lieberman (see [59, §7.4.4]). Clearly, the second 

one follows from the first by twisting by any pvphs. The remaining statements in (2), concerning the Hard 

Lefschetz Theorem, are also standard. This proves (2).

We are left with proving (111) and (3) and (4). Recall that we are free to shrink the Zariski-dense open 

subset Vα ⊆ Zα if useful/necessary. In what follows, we do so to meet our needs without explicit mention.

The Decomposition Theorem in DbMHMalg(S) for the projective morphism f : M → S implies that 

there is an isomorphism

Rf∗QM ≃
⊕

α∈A

⎛
⎝

o+
α⊕

i∈o−
α

I CZα
(Ki

α)[−i],

⎞
⎠ (116)

where the Ki
α are pvphs of weight i on Vα, and where o−

α ≥ 0 marks the first occurrence of a non-zero direct 

summand supported on Zα, and o+
α ≥ o−

α marks the last.

We fix α ∈ A .

The graded object Kα := ⊕i≥0Ki
α lives in degrees in the interval [o−

α , o+
α ], and has graded weight zero, 

i.e. weight i in degree i.

By [59, Proposition 7.2.2], which (by [9, §6.1], again), remains valid in Db(S, Q), the local system K
o+

α
α

is a direct summand of (R2df∗QM )|Vα
. It follows that o+

α = 2d; in particular, the last occurrence o+
α is 

independent of α.

By combining (116) with the symmetries stemming from Verdier Duality, we deduce easily that o−
α =

2d −2δab
α , i.e. the interval [o−

α , o+
α ] = [2d −2δab

α , 2d] has length twice the relative dimension δab
α of the abelian 

scheme Aα/Vα.
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The graded object

∧α =

0⊕

i=−2δab
α

∧i
α :=

0⊕

i=−2δab
α

R2δab
α +igα∗QAVα

(δab
α ) :

is concentrated in semi-negative degrees in the interval [−2δab
α , 0]; has weight zero (semi-negative weight i

in degree i); has, via Poincaré Duality, as stalks the homology of the fibers of Aα/Vα; it admits, via the 

Pontryagin product operation, a natural structure of graded algebra ∧i
α ⊗ ∧j

α → ∧i+j
α .

The graded object of pure weight zero

Λα :=

2δab
α⊕

i=0

Λi
α :=

2δab
α⊕

i=0

Rigα∗QAα

is a free graded ∧α-module generated in degree 2δab
α by Λ

2δab
α

α ≃ QVα
(−δab

α ), via the Pontryagin product 

operation which, again via Poincaré Duality, is expressed by operations (recall that ⋆ ≤ 0 and • ≥ 0)

∧⋆
α ⊗ Λ•

α → Λ•+⋆
α .

By [59, Proposition 7.4.10], we have that Kα is a free graded ∧α-module. In fact, to be precise, we need 

to make sure that the action ∧α on Kα (cf. [59, pp. 120-121] is defined and free in the category of pvphs on 

Vα; for this we use Fact A.0.1, parts (1) (action) and (2) (freeness).

Since Kα has non trivial entries only in the interval [2d − 2δab
α , 2d], which has length 2δab

α , we deduce 

that, as a graded object, we have Kα = (Λα ⊗ Lα)[−2(d − δab
α )], where Lα := K2d

α (δab
α ).

At this point, by taking care of the bookkeeping of weights and Tate shifts, (111) follows, and Lα is 

as predicated since Lα(−d) is a pvphs direct summand of the pvphs (R2df∗QM )|Vα
which, having stalks 

generated by the fundamental classes of the irreducible components of the fibers, is pure, of Hodge-Tate 

type with weights 2d.

At this point, (3) and (4) follows easily: the latter by taking cohomology; the former by inspecting 

the contributions of each support to the top cohomology sheaf R2df∗QM , and recalling that normality 

implies uni-branch, and this latter implies that the sheaf-theoretic direct image of the constant sheaf from 

a Zariski-dense open is also constant. �

Definition A.0.4. We call the α-summands in (111) the Ngô strings of Rf∗QM . If we set:

Sα :=

2δab
α⊕

b=0

I C Zα

(
Λb

α ⊗ Lα

)
[−b] , (117)

then we may re-write (111) as follows:

Rf∗QM ≃
⊕

α

Sα[−2(d − δab
α )](δab

α − d). (118)

We also call the Sα’s the Ngô strings of Rf∗QM ; these start in cohomological degree zero and are pure of 

weight zero.

Each Ngô string in (111) is pure of weight zero and a direct sum of a collection of intersection complexes 

supported precisely at Zα, placed in cohomological degree in the interval [2d − 2δab
α , 2d]. Up to the twist by 

Lα, the coefficients of the term indexed by • are the direct image Λ•
α = Rbgα∗QAα

. These latter direct images 
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on Vα depend on the group scheme P/S, not on M/S. We record this fact in the following Remark which 

plays an important role in our proof of our main Theorems A and B, where it is crucial to be able to relate 

the Decomposition Theorem for the δ-regular weak abelian fibration structure on M̃ , to the Decomposition 

Theorems for the auxiliary δ-regular weak abelian fibrations we consider; see Lemmata 5.4.1 and 5.5.1, and 

Propositions 5.6.1 and 5.7.2.

Remark A.0.5. As an object in DbMHMalg(S), the Ngô string Sα associated with the support Zα depends 

only on the Abelian group scheme Aα and on the topological local system Lα (because it can be enriched 

uniquely to a polarizable variation of Hodge structures of Hodge-Tate type and weight zero). The same holds 

for the graded polarizable mixed Hodge structure (pure and polarizable if Zα is complete) H⋆(Zα, Sα). 

Clearly, the Lα’s do depend on M/S.
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