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Abstract

We initiate and develop a framework to handle the specialisation morphism as a filtered
morphism for the perverse, and for the perverse Leray filtration, on the cohomology with
constructible coefficients of varieties and morphisms parameterised by a curve. As an appli-
cation, we use this framework to carry out a detailed study of filtered specialisation for
the Hitchin morphisms associated with the compactification of Dolbeault moduli spaces in
[de 2018].
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1. Introduction, notation and preliminaries

Let v : Y → S be a morphism into a connected nonsingular curve, let s ∈ S be a point, let
G ∈ Db

c (Y ) be a bounded constructible complex, let t ∈ S be a suitably general point (in a
more algebraic set-up, the geometric generic point of the curve, or of an Henselian trait), let
Ys and Yt be the corresponding fibers.

It is natural, and of fundamental importance, to compare the cohomology groups
H j (Ys, G |Ys ) and H j (Yt , G |Yt ). One classical example, is the study of Lefschetz pen-
cils. Similarly, if X → Y is an S-morphism, then it is equally important to compare, for
F ∈ Db

c (X), the cohomology groups H j (Xs, F|Xs ) → H j (X t , F|X t ).
When it is defined, the specialisation morphism H j (Ys, G |Ys ) → H j (Yt , G |Yt ), and

similarly for Xs and X t , is a key tool for this comparison.
The paper [de-Ma 2018] studies the Hitchin S-morphism f : X → Y for a smooth and

projective family X /S and establishes that the resulting specialisation morphisms in inter-
section cohomology exist, and that they are filtered isomorphisms for the respective perverse
Leray filtrations. The two authors realised that there seems to be no available discussion in
the literature of the specialisation morphism as a filtered morphism, so that they developed
a criterion for having such a filtered isomorphism that worked in the context of the Hitchin
morphism associated with a family of smooth varieties over a base.
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In this paper, we initiate and develop a general framework to study the specialisation
morphism as a filtered morphism for the perverse (Leray) filtration. We then apply such a
framework to a more detailed study of the Hitchin morphism.

1·1. Motivation and outline of the results

Let us consider the toy model situation in Remark 3·5·7 based on the Set-up 3·4·1, where
we start with a smooth morphism f : X o → Y o over a a smooth curve S, and we compactify
f by adding divisors Z and W , to get f : X o ∪ Z = X → Y = Y o ∪ W , so that all resulting
morphisms are smooth and proper, except for X o and Y o over S. Then the morphisms of
long exact sequences (69) for the relative singular cohomology of the pairs (X t,s, X o

t,s) and
(Yt,s, Y o

t,s) relating any two point s, t ∈ S, is a filtered isomorphisms for the Leray spectral
sequences for the morphisms ft : X t → Yt and fs : Xs → Ys .

What happens when the morphisms are not proper, the varieties are singular, we take
coefficients in an arbitrary bounded constructible complex of sheaves in Db

c (X), and we
consider the perverse Leray filtration? This is the question addressed in this paper.

First of all, why the perverse Leray filtration? The middle perversity t-structure is more
suitable to study singularities, so we focus on the perverse (Leray) filtration, instead of
the Grothendieck (Leray) filtration. In principle the Leray filtration can be studied with the
methods of this paper, but the results I can think of are much weaker, essentially due to
the fact that the vanishing/nearby cycle functors have several important perverse t-exactness
properties, without having a counterpart for the usual standard t-structure.

Let us focus on an arbitrary situation X/Y/S with K ∈ Db
c (X), with s ∈ S a point and

t ∈ S a suitably general point (the geometric generic point of the curve/Henselian trait, if the
reader prefers that language). In this general context, the specialisation morphism (“from a
special point to a general point”) H ∗(Xs, K|Xs ) → H ∗(X t , K|X t ) is not even defined. This is
due to the failure of the relevant base-change morphisms to be isomorphisms. Even when
the specialisation morphism is defined, its perverse filtered counterpart may fail to be well-
defined.

The purpose of this paper is to develop a framework where these questions can be studied
systematically. What follows is a list of some of the outcomes of this study, presented in
a weaker and less complete form with respect to what is found in the body of the paper,
so that the reader may get an idea of the techniques introduced and of the results that are
proved.

Let us start with some of the preparatory results in Section 2. In the set up of morphisms
X → Y → S and of the specialisation to a point s on the curve S, the fibers Xs and Ys

over the special point are Cartier divisor. A key point is to study, in the more general set-
up of a Cartier divisor T ′ inside a variety T , the failure of commutativity of the perverse
truncation functors pτ≤k with the restriction i∗ to T ′, when applied to a complex G ∈ D(T ).
This is codified in the failure to be isomorphisms of a certain morphisms that we introduce
and denote by δ (22). Proposition 2·1·5 says that the δ are isomorphisms when G has no
constituents (e.g. no non-trivial direct summands) supported on the divisor T ′. Lemma 2·2·1,
which is placed in the context of specialisation, gives a criterion for the δ to be isomorphisms
in terms of the vanishing φG = 0 of the vanishing cycles of the complex G. Proposition
2·3·2 is another criterion for the δ being isomorphisms for a complex f∗F , when we are in a
projective morphism f : X → Y situation (not necessarily over a curve S), where a Cartier
divisor on X , pulled back from Y , has suitable transversality conditions with respect to the
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complex F on X : essentially, one requires the complex F on X to be semisimple and to
stay semisimple after restriction to the Cartier divisor. Corollary 2·4·2 shows that this kind
of transversality can be achieved in a simple normal crossing singularities situation, where
the restriction does not stay semisimple.

As it may be clear by now, the main goal of this paper is to identify conditions that
ensure that specialisation morphisms are defined, and, when they are defined, that they are
isomorphisms, and, in the filtered context, that they are filtered isomorphisms.

Following the preparation in Section 2, concerning the morphisms δ, we zero in on the
problem by defining the perverse filtered version of the specialisation morphism (when it
exists), and by offering some criteria in the main section, Section 3 of this paper.

Let me know state a version of the main Theorem 3·3·7 which is a list of different criteria
for having well defined specialisation filtered isomorphisms. Let us stress that when v is not
proper, without additional constraints on the situation, the specialisation morphism may fail
to be well-defined. We are in the situation f : X → Y, v : Y → S, F ∈ Db

c (X). In order to try
to convey the flavor of the theorem, we offer two different sets of conditions, each of which
is a sufficient set of conditions: f and v are proper, and φ(F) = 0; f proper, F semisimple
and φ(F) = 0.

We apply these results to a compactification of the morphism f as above, i.e. as in Set-up
3·4·1. In this case, we prove Theorem 3·5·4, i.e that, under suitable sets of hypotheses, the
situation of the toy model discussed at the beginning of this section can be reproduced in
its entirety: the specialisation morphisms for Xs, X t , X o

s , X o
t and Zs, Z t are filtered isomor-

phisms compatibly with the restriction and Gysin morphisms (which one needs to show are
well-defined) stemming from the inclusions.

Finally, Theorem 4·4·2 is our application of the methods of this paper, and especially of
Theorem 3·5·4, to the compactification of Dolbeault moduli spaces constructed in [de 2018],
thus showing that the various criteria developed in this paper can actually be implemented
in a highly non-trivial and geometrically interesting situation. Perhaps surprisingly, this is
true whether we consider intersection cohomology, or singular cohomology.

1·2. More precise outline of the contents of the paper

Section 1 includes this introduction Section 1·1, lists the general notation Section 1·3
and then discusses the formalism of the vanishing/nearby cycles functors; more precisely:
Section 1·4 summarises the parts of the formalism of vanishing/nearby cycles functors that
we need in this paper; in particular, Fact 1·4·6, and (13) are of key importance; Section 1·5
explains in some detail the geometric intuition behind the nearby cycle functor.

Section 2 is preparatory in nature: it introduces and discusses the morphisms of type δ;
these are key to this paper since their being isomorphisms is necessary to the specialisation
morphisms being filtered isomorphisms for the perverse (Leray) filtration. The heart of this
paper, i.e. the discussion of the specialisation morphism as a filtered morphism for the per-
verse Leray filtration, is Section 3. In order to carry out that discussion we need to measure
the failure of the restriction-to-the-special-fiber functor to commute with perverse trunca-
tion. This failure is measured by the morphisms of type δ, which are defined in Lemma 2·1·2
and Remark 2·1·3, in the more general context of effective Cartier divisors (the special fiber
being one such). Proposition 2·1·5 gives a sufficient condition for the morphisms of type
δ to be isomorphisms. Lemma 2·2·1 establishes the key facts we need when dealing with
the morphisms of type δ together with the vanishing/nearby cycle functors; in particular,
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the vanishing of the vanishing cycle functor gives a sufficient condition for the morphisms
of type δ being isomorphisms. Proposition 2·3·2 provides another such criterion under the
assumption that certain relative hard Lefschetz symmetries are in place; Corollary 2·4·2
ensures that if we are in a simple normal crossing divisor situation, then such symmetries
are in place.

The aforementioned framework is developed in Section 3. We refer to the beginning of
that section for a more detailed account of its contents. Here we simply list the main points.
The set-up is the one of an S-morphism X → Y , where S is a nonsingular connected curve,
and s ∈ S is a point, the “special” point. The definition of the specialisation morphism as
a filtered morphism for the perverse Leray filtration is contained in Definition 3·3·3. The
main Theorem of this paper is Theorem 3·3·7, which establishes various criteria for this
morphisms to exist and to be a filtered isomorphism. On of the main themes here is to work
with non proper structural morphisms X → S and Y → S, for in this case, the base change
morphisms are not isomorphisms in general. Compactifying the situation is one traditional
way to circumvent this issue; this introduces additional base change issues, and Proposition
3·4·2 provides criteria to resolve them. Once a compactification is in place, one has the
long exact sequence of the resulting triple (boundary, compactification, original space), and
Theorem 3·5·4 provides three criteria ensuring that the resulting three specialisation mor-
phisms gives rise to an isomorphism of filtered long exact sequences associated with the
special and general triples.

Section 4 applies the abstract framework developed in Section 3 in the case of the
Hitchin morphisms arising from the compactification of Dolbeault moduli spaces intro-
duced in [de 2018]. We refer to the beginning of that section for a detailed outline of the
contents of this section. The main result is Theorem 4·4·2, to the effect that we get the
desired isomorphism of filtered long exact sequences associated with the special and general
triples stemming from the particular compactification [de 2018]. Certain preliminary results
concerning descending certain properties along Gm-quotients, which could be of general
independent interest, are established along the way.

Remark 1·2·1. (Other algebraically closed fields, generic geometric points vs general

points). We have chosen to work with vanishing/nearby cycles with respect to a morphism
into a nonsingular curve, over the field of complex numbers, with the classical topology, and
with finite algebraic Whitney stratifications (which play a role only in the background, by
merely existing and having the usual properties). While this is mostly a matter of expository
style, we also work in a more global (not over a curve/Henselian trait) context in parts of
Section 2. By complementing the references given in Section 1·4 with [Il 1994, Section 4],
which also deals with vanishing/nearby cycles and the perverse t-structure, the exposition
and the results of this paper remain valid, mutatis mutandis, for varieties over algebraically
closed fields of characteristic zero and for the étale cohomology with coefficients in Qℓ, for
any prime ℓ; for example, the role played in this paper by a suitably general point t on a
nonsingular curve S is now played by the geometric generic point of S, or by the geometric
generic point of an Henselian trait. Similarly, except for Section 4, where in the application
to the compactification of the Hitchin morphism we need to consider quotients by finite
groups on which we have little control, the results remain valid over an algebraically closed
field of positive characteristic and Qℓ-coefficients, with ℓ not dividing the characteristic of
the field.
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1·3. Notation

By variety, we mean a separated scheme of finite type over the field of complex numbers
C. By point, we mean a closed point. See [de-Mi 2009] for a quick introduction and for
standard references concerning the constructible derived category and other concepts in this
subsection.

Given a variety Y, we denote by Db
c (Y ) the constructible bounded derived category

of sheaves of rational vector spaces on Y, and by DF(Y ) its filtered variant [Il 1971,
Be-Be-De 1982]. We endow Db

c (Y ) with the middle perversity t-structure. A functor that
is exact with respect to this t-structure is said to be t-exact. The full subcategory of per-
verse sheaves is denoted by P(Y ). We employ the following standard notation for the
objects associated with this t-structure: the full subcategories pD≤ j (Y ) and pD≥ j (Y ), ∀ j ∈

Z, and pD[ j,k](Y ) := pD≥ j (Y ) ∩ pD≤k(Y ), ∀ j ≤ k ∈Z, of Db
c (Y ); the truncation functors

pτ≤ j : Db
c (Y ) → pD≤ j (Y ) and pτ≥ j : Db

c (Y ) → pD≥ j (Y ); the perverse cohomology functors
pH j : Db

c (Y ) → P(Y ). We denote derived functors using the un-derived notation, e.g. if
f : X → Y is a morphism of varieties, then the derived direct image (push-forward) functor
R f∗ : Db

c (X) → Db
c (Y ) is denoted by f∗, etc. Distinguished triangles in Db

c (Y ) are denoted
G ′ → G → G ′′

�. At times, we drop the space variable Y from the notation.
The following operations preserve constructibility of complexes: ordinary and extraor-

dinary push-forward and pull-backs, hom and tensor product, Verdier duality, nearby and
vanishing cycles.

When we write a Cartesian diagram of morphisms of varieties:

X ′ g ��

f

��

X

f

��
Y ′ g �� Y,

(1)

the ambiguities arising by having denoted different arrows by the same symbol, are automat-
ically resolved by the context in which they are used; e.g. when we write the base change
morphism of functors, the expression g∗ f∗ → f∗g∗ is unambiguous.

The kth (hyper)cohomology groups of Y with coefficients in G ∈ Db
c (Y ) are denoted by

H k(Y, G). The complex computing this cohomology is denoted by RŴ(Y, G) and it lives
in the bounded derived category Db

c (pt) whose objects are complexes of vector spaces with
cohomology given by finite dimensional rational vector spaces.

The filtrations we consider are finite and increasing. A sequence of morphism G• :=

(· · · → Gn → Gn+1 → · · · ) in Db
c (Y ) subject to G i = 0 ∀i ≪ 0, and to G i

∼
→ G i+1 ∀i ≫

0, gives rise to objects (G, F ) ∈ DF(Y ) and (RŴ(Y, G), F ) ∈ Db
c (pt). We call such a

sequence of morphisms a system in Db
c (Y ). There is the evident notion of morphism of sys-

tems G• → G ′
• and, for each such, the resulting morphisms (G, F ) → (G ′, F ) in DF(Y ),

and (RŴ(Y, G), F ) → (RŴ(Y, G ′), F ) in DF(pt). Given G ∈ Db
c (Y ) we have the sys-

tem of perverse truncation morphisms: · · · → pτ≤nG → pτ≤n+1G → · · · → G. A morphism
G → G ′ in Db

c (Y ) gives rise to a morphism of systems pτ≤•G → pτ≤•G ′, which gives rise
to a morphisms of filtered objects:

(RŴ(Y, G), P)) −→ (RŴ(Y, G ′), P)) in DF(pt). (2)
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The filtration P is called the perverse filtration. There is also the evident notion of systems
of functors; e.g. the truncation functors.

Let f : X → Y be a morphism of varieties, let F ∈ Db
c (X) and let G = f∗F . Then we have

the filtered objects (RŴ(X, F), P) �= (RŴ(X, F), P f ) := (RŴ(Y, f∗F), P). The filtration
P f is called the perverse Leray filtration associated with f. Given a morphism F → F ′

in Db
c (X), the analogue of (2) holds. We have the corresponding objects P f

j H k(X, F),

GrP f

j H k(X, F).
If a statement is valid for every value of an index, e.g. the degree of a cohomology group,

or the step of a filtration, then we denote such an index by a bullet-point symbol, or by a star
symbol, e.g. H •(X, F), P•, pτ≤•, P⋆ H •(X, F), Gr

P f
⋆ H •(X, F).

We employ the following convention for shifts of filtered increasing filtrations:

F ( j)• := F•− j . (3)

We have the evident and equivalent relations between truncations and shifts:

[⋆] ◦ pτ≤• = pτ≤•−⋆ ◦ [⋆], pτ≤• ◦ [⋆] = [⋆] ◦ pτ≤•+⋆, (4)

which are valid for pτ≥• and pH • as well.
The category P(Y ) of perverse sheaves on Y is Abelian and Artinian, so that the Jordan-

Holder theorem holds in it. The constituents of a non-zero perverse sheaf G ∈ P(Y ) are the
isomorphisms classes of the perverse sheaves appearing in the unique and finite collection
of non-zero simple perverse sheaves appearing as the quotients in a Jordan–Holder filtration
of G. The constituents of a non-zero complex G ∈ Db

c (Y ) are defined to be the constituents
of all of its non-zero perverse cohomology sheaves.

In general, we drop decorations (indices, parentheses, space variables, etc.) if it seems
harmless in the context.

Given a morphism of varieties X → Y and a point y ∈ Y , we denote by X y the fiber over
y in X .

We are going to use the nearby/vanishing cycle functors. See Section 1·4 for the basic
facts.

For what follows, namely the Decomposition Theorem, see: [Be-Be-De 1982],
[Sa 1988], [de-Mi 2005], [Mo 2007, Sa 2005]. For a discussion, further references, and a
generalization of [Mo 2007] to the proper case with rational coefficients see [de 2017].

THEOREM 1·3·1 (Decomposition and Relative Hard Lefschetz theorems). Let f :

X → Y be a proper morphism of varieties and let F ∈ P(X) be semisimple. Then f∗F is
semisimple.

If f is projective, then the Relative Hard Lefschetz holds: the choice of an f -ample line

bundle induces isomorphisms pH−•( f∗F)
≃
→ pH •( f∗(F).

We define the intersection complex I CT of a variety T as the direct sum of the intersec-
tion complexes of its irreducible components T j : I CT := ⊕ j I CT j . Then, as it is shown in
[de 2012]: I CT ∈ P(T ) is a semisimple perverse sheaf; it is the intermediate extension from
the smooth locus of T of the direct sum of the constant sheaves on each component shifted
by its dimension (see [Wu 2019] for a topological characterisation); the decomposition the-
orem, relative hard lefschetz theorem, and allied Hodge–theoretic facts hold for it and its
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cohomology. The complex I CT underlies a polarizable Hodge module. The simple objects
in P(Y ) are the intersection complexes I CT (L), where T ⊆ Y is closed and irreducible and
L is an irreducible local systems on some Zariski dense open subset T o ⊆ T reg.

We define the topologist’s intersection complex as follows: ICT := ⊕ j I CT j [dim T j ].
We define the intersection cohomology groups by setting IH •(T ) := H •(T, I CT ); they

start in degree − dim T . We define the topologist’s intersection cohomology groups by
setting IH

•
(T ) := H •(T, ICT ); they start in degree zero. E.g. for T = o

∐
� the disjoint

union of a point and a line, we have: QT =Qo ⊕Q�; I CT =Qo ⊕Q�[1]; ICT =Qo ⊕Q�;
IH

•
(T ) = H •(QT ) = H •(o) ⊕ H •(�); IH •(T ) = H •(o) ⊕ H •+1(T ).

In order to avoid repeating naturality-type statements, we employ systematically the fol-
lowing notation. The symbol “=” denotes either equality, or a canonical isomorphism. The
symbol

≃
→ and denotes the fact that a canonical arrow is, in the context where it appears,

an isomorphism. The symbol ∼= denotes an isomorphism; if the direction of the arrow is
relevant, we write

≃
→. E.g.: the base change canonical isomorphism reads: g! f∗ = f∗g!; the

proper base change isomorphism for f proper reads: g∗ f∗
≃
→ f∗g∗.

1·4. The vanishing and nearby cycles formalism

This section is an expanded version of [de-Ma 2018, Section 2·2]. Standard references
for this section are [De 1972, XIII, XIV] and [Ka-Sc 1990, 8,10]. See also [Il 1994] (cf.
Remark 1·2·1).

Let v = vY : Y → S be a morphism of varieties, where S is a nonsingular curve. Let s ∈ S
be a point, usually called the special point.

We have the exact functors of triangulated categories:

i∗, i !, ψ = ψv, φ = φv : Db
c (Y ) −→ D(Ys), (5)

where, i : Ys → Y is the closed embedding of the (special) fiber of v over s, φ is the vanishing
cycle functor and ψ is the nearby cycle functor. The functors φ and ψ depend on v; e.g.
[El-Lê-Mi 2010, example 2·0·5]; this is not an issue in this paper.

We have the two, Verdier dual, canonical distinguished triangle of functors: (we often
write σ instead of σ ∗ and σ !)

i∗[−1] −→
σ ∗

ψ[−1] −→
can

φ �������� , φ −→
var

ψ[−1] −→
σ !

i ![1] �������� . (6)

Fact 1·4·1 (t-exactness for ψ[−1] and φ). The functors ψ[−1] and φ are t-exact and
commute with Verdier duality. We thus have the following canonical identifications:

pτ≤•φ = φ pτ≤•;
pτ≤•ψ[−1] = ψ[−1] pτ≤•; ditto for pτ≥• and pH •. (7)

The following is a key property of the vanishing cycle functor.

Fact 1·4·2 (Smooth morphisms and vanishing of φ). If v : Y → S is smooth over a
neighborhood of s, and G ∈ Db

c (Y ) has locally constant cohomology sheaves near s, then
φ G = 0 ∈ D(Ys). See [De 1972, XIII, 2·1·5]. In the special case where v = idS , this implies
that a complex G ∈ D(S) has constant cohomology sheaves near s if and only if φG = 0.
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We recall, for later use, the following simple

LEMMA 1·4·3 (Vanishing of φ implies no constituents). Let G ∈ Db
c (Y ). If φG = 0,

then no constituent of G is supported on Ys .

Proof. See [de-Ma 2018, lemma 3·1·5]

Remark 1·4·4. The converse to Lemma 1·4·3 is false; see [Ka-Sc 1990, VIII·14] (Lefschetz
degeneration to an ordinary double point).

Fact 1·4·5. The composition i∗[−1] → ψ[−1] → i ![1] yields a natural morphism of func-
tors Db

c (Y ) → D(Ys):

ν : i∗[−1] �� i ![1]. (8)

The morphism ν coincides with the morphism obtained via Verdier’s specialisation functor,
(cf. [Sc 2003], for example), so that it depends only on the closed embedding Ys → Y, i.e. it
is independent of v. If φG = 0, then σ ∗(G), σ !(G) and ν(G) are isomorphisms.

Fact 1·4·6. (Base change diagrams for ψ and φ). Let f : X → Y be an S-morphism and let
vX = vY ◦ f : X → S be the structural morphism. The various base change natural transfor-
mation associated with i and f give rise to functorial morphisms of distinguished triangles
as follows. See [De 1972, XIII, 2·1·7].

(i) The one in D(Xs) stemming from the morphism of functors i∗ f ! → f !i∗, and from
the isomorphism of functors f ∗i∗ =

→ i∗ f ∗, respectively: (we write φY instead of φvY ,

etc.)

i∗[−1] f !
σ◦ f !

��

��

ψX [−1] f ! ��

��

φX f !

��

�������� i∗[−1] f ∗
σ◦ f ∗

�� ψX [−1] f ∗ �� φX f ∗ ��������

f !i∗[−1]
σ◦ f !

�� f !ψY [−1] �� f !φY
�������� , f ∗i∗[−1]

σ◦ f !

��

=

��

f ∗ψY [−1] ��

��

f ∗φY

��

�������� .

(9)

When f is étale, so that f ∗ = f !, the two resulting morphisms of triangles are
isomorphisms, inverse to each other.

(ii) The one in D(Ys) stemming from the base change morphism of functors i∗ f∗ → f∗i∗,

and from the base change isomorphism f!i∗ =
→ i∗ f! :

i∗[−1] f∗
σ ◦ f∗ ��

��

ψY [−1] f∗ ��

��

φY f∗

��

�������� i∗[−1] f!
σ ◦ f! �� ψY [−1] f! �� φY f! ��������

f∗i∗[−1]
f∗◦ σ �� f∗ψX [−1] �� f∗φX

�������� , f!i
∗[−1]

f!◦ σ ��

=

��

f!ψX [−1] ��

��

f!φX

��

�������� .

(10)

When f is proper, so that f!
≃
→ f∗, the two resulting morphisms of triangles are

isomorphisms, inverse to each other.

https://doi.org/10.1017/S0305004121000293 Published online by Cambridge University Press



Perverse Leray filtration and specialisation 451

(iii) We dualise the four diagrams associated in (9) and (10), and obtain the four analogous
diagrams:

φX f ∗ �� ψX [−1] f ∗
σ◦ f ∗

�� i ![1] f ∗ �������� φX f ! ��

��

ψX [−1] f !
σ◦ f !

��

��

i ![1] f !

=

��

��������

f ∗φY
��

��

f ∗ψY [−1]
f ∗◦σ ��

��

f ∗i ![1] ��������

��

, f !φY
�� f !ψY [−1]

f !◦σ �� f !i ![1] �������� ,

(11)

which are isomorphisms inverse to each other when f is étale, and

φY f! �� ψY [−1] f!
σ◦ f! �� i ![1] f! �������� φY f∗ ��

��

ψY [−1] f∗
σ◦ f∗ ��

��

i ![1] f∗

=

��

��������

f!φX
��

��

f!ψX [−1]
f!◦σ ��

��

f!i
![1]

��

�������� , f∗φX
�� f∗ψY [−1]

f∗◦σ �� f∗i ![1] �������� ,

(12)

which are isomorphisms inverse to each other when f is proper.
(iv) by combining the l.h.s. square commutative diagram in (10) with the r.h.s. square

commutative diagram in (12), we obtain the following commutative diagram of
morphisms of functors:

i∗[−1] f∗

��

�� ψ[−1] f∗ ��

��

i ![1] f∗

=

��
f∗i∗[−1] �� f∗ψ[−1] �� f∗i ![1],

(13)

where the compositions of the horizontal arrows are given by the corresponding
morphims (8), suitably pre/post-composed with f∗.

1·5. Nearby cycle functor and nearby points

Even if logically not necessary, it maybe helpful to the intuition to clarify the use of the
word “nearby.”

Let t ∈ S be any point. By abuse of notation, denote by t : t → S, t : X t → X and t : Yt →

Y the resulting closed embeddings. There is the morphism (8) of functors D(−) → D(−t) :

t∗[−1] −→ t ![1]. (14)

Let us start with the following:

Fact 1·5·1. For what follows, see [de-Ma 2018, fact 2·2·7]. Given a finite collection G ∈

Db
c (Y ) of complexes, there is a Zariski-dense open subset So(G) ⊆ S such that: the direct

images v∗
pτ≤•G have locally constant cohomology sheaves, and their formation commutes

with arbitrary base change; the pτ≤•G have no constituent supported on any of the fibers
of the morphisms v over So(G); the strata on Y, of a stratification with respect to which G
-hence the pτ≤•G- are constructible, are smooth over So(G).

Definition 1·5·2. We say that t ∈ S is general for G if t ∈ So(G) as in fact 1·5·1.
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Fact 1·5·3. Let G ∈ Db
c (Y ). Let t ∈ So(G) be a general point for G. Then:

(i) The natural morphism t∗[−1]G → t ![1]G is an isomorphism in D(Yt). See
[de-Ma 2018, Fact 2·2·5].

(ii) We have the identifications of [de-Ma 2018, fact 2·2·6]:

t∗[−1] pτ≤•G = pτ≤•t∗[−1]G, t ![1] pτ≤•G = pτ≤•t ![1]G, ditto for pτ≥• and pH •.
(15)

Remark 1·5·4. In the special case where vY : Y → S is the identity on S, we have that
i∗, i !, ψ, φ : D(S) → D(s) and that t∗, t ! : D(S) → D(t). In general, we have canonical
identifications D(s) = D(pt) = D(t), where pt is just a point, so that all three categories
are naturally equivalent to the bounded derived category of finite dimensional rational vec-
tor spaces. Similarly, in the filtered case: DF(s) = DF(pt) = DF(t). We use the catch-all
notation Db

c (pt) and DF(pt).

Given G ∈ Db
c (Y ) and s ∈ S our special point, we want to think: of the points t ∈ So(G)

as the points nearby s; of the nearby vanishing cycle as capturing the complex G at points t
nearby s. The following important fact makes this precise.

Fact 1·5·5. (Fundamental isomorphism). For what follows, see the fundamental identity
[De 1972, XIV, 1·3·3·1]. Let v : Y → S be the identity, let G ∈ Db

c (Y ), let t ∈ So(G) be a
general point for G. Choose a disk � ⊆ S centered at s and passing through t, such that
�∗ := � \ {s} ⊆ So(G). Choose an universal covering of �∗ and a point t̃ on it over t. This
choice of data gives rise to isomorphisms:

t∗[−1]G −→∼ ψ[−1]G −→∼ t ![1]G, in D(pt), (16)

where the composition is (14), hence it is independent of the choices made above, but the
indicated morphisms depend on the choice of data made above. Note that (16) is Verdier
self-dual. Changing the choice of data changes the two individual arrows by the monodromy
automorphism induced by an appropriate element in π1(So(G), t).

Let v : Y → S be any morphism and let G ∈ Db
c (Y ). Then:

(i) by taking v∗G ∈ D(S) in (16), we get collections of isomorphisms:

ψv∗G −→∼ t∗v∗G = v∗t∗G = RŴ(Yt , t∗G), in D(pt), (17)

where any two such identifications
∼
→ differ by the action induced by an element of

π1(So(G), t) on the r.h.s. The second = sign is clear. The first can be seen by using
the base change properties relative to the general point t expounded in Section 1·4
as follows. The choice of t general for G, made in Definition 1·5·2, allows us to:
replace ψ with t∗ (cf. (16)); use the identification t∗v∗ = v∗t∗. One cannot select a
point t ∈ S that is general for every G ∈ Db

c (Y ). Because of this it is preferable to
work with ψ : D(S) → D(s) instead of with a general point t ∈ S. When working
with finitely many complexes in Db

c (Y ), or with a family of complexes constructible
with respect to an arbitrary fixed stratification, we can always choose a point t ∈ S
that is general for all of them,
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(ii) by taking v∗
pτ≤•G ∈ D(S) and v∗

pτ≤• f∗F ∈ D(S) in (16), we reach conclusions
analogous to part (1), namely, we obtain isomorphisms:

(ψv∗G, P)
∼ �� (RŴ(Yt , t∗G), P), in DF(pt); (18)

(ψv∗ f∗F, P)
∼ �� (RŴ(X t , t∗F), P), in DF(pt). (19)

2. The morphisms of type δ

This section is a necessary technical interlude on the way to Section 3, where we study
the behavior of the perverse filtration relative to the specialisation morphism.

The distinguished triangles (6) and the t-exactness of the functors φ and ψ[−1] suggest
the need to quantify the failure of t-exactness for the functors i∗[−1] and i ![1].

In this section we quantify this failure by introducing the morphisms of functors of type
δ (27) which play an important role starting with Section 3, diagram (49). When the mor-
phisms of type δ are evaluated against a complex G ∈ Db

c (Y ), they are isomorphisms if
and only if perverse truncations and perverse cohomology commute with the appropriately
shifted pull-backs.

The special fiber Ys in Y is an effective Cartier divisor. We introduce the morphisms of
type δ in the more general context of embedded effective Cartier divisors in (22). For easier
bookkeeping, we use the shifted version (24).

Proposition 2·1·5 is a criterion, in the general context of Cartier divisors (i.e. when
we are not necessarily working over a curve S), for the morphisms of type δ to be
isomorphisms, hence it is a criterion for the aforementioned commutativity of perverse
truncations/cohomology with shifted pullbacks. It states that if a complex has no con-
stituents supported on an effective Cartier divisor, then the resulting morphisms of type δ

are isomorphisms.
Lemma 2·2·1 yields, in the context of the vanishing/nearby cycle functors (here we are

working over a curve S, and the Cartier divisor in question is the fiber over the special point
s) the important diagram (28) of morphisms of distinguished triangles of functors involving
the morphisms of type δ needed in this paper. In particular, Lemma 2·2·1.(3) combines
Lemma 1·4·3 (if φG = 0, then G has no constituents on Ys) with Proposition 2·1·5 (“if no
constituents, then the δ’s are isomorphisms).

Proposition 2·3·2 is another general (i.e not necessarily related to a situation over a curve)
criterion of a different flavor for the δ’s to be isomorphisms in the context of a complex
G = f∗F being a direct image under a projective morphism f . It replaces the assumptions on
constituents and/or on the vanishing of the vanishing cycle functor, with the assumptions that
both F and i∗F[−1] are semisimple; the proof uses the Relative Hard Lefschetz Theorem.

2·1. Pull-back to Cartier divisors and truncations: the morphisms δ

In the context of the vanishing cycle functor, i.e. v : Y → S and s ∈ S, the special fiber
Ys is a Cartier divisor in the total space Y. The vanishing cycle functor φ and the shifted
nearby cycle functor ψ[−1] are t-exact. It is important to study the defect of t-exactness of
the shifted restriction to the special fiber functors i∗[−1] and i ![1].

In this section, which amplifies [de-Ma 2018, section 3·1] to meet the needs of this paper,
we introduce, in the general context of the closed embedding of an effective Cartier divisor,
morphisms of functors that measure the aforementioned defect. We define the morphisms
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of type δ in the context of embeddings of Cartier divisors in Lemma 2·1·2, and we prove a
criterion for when these morphisms δ are isomorphisms in Proposition 2·1·5.

Let us emphasise that in this section we work with varieties and not with S-varieties.
We start by listing the needed general t-exactness properties related to embeddings of

effective Cartier divisors on varieties.

LEMMA 2·1·1 (Inequalities for embeddings of Cartier divisors). Let ι : T ′ → T be a
closed embedding of varieties such that the open embedding T \ T ′ is an affine morphism
(e.g. T ′ is an effective Weil divisor supporting an effective Cartier divisor). Then: (we omit
the space variables)

(i) the functor ι∗ is right t-exact and the functor ι! is left t-exact:

ι∗ : pD≤• −→ pD≤•, ι! : pD≥• −→ pD≥•. (20)

(ii) the functor ι∗[−1] is left t-exact and the functor ι![1] is right t-exact:

ι∗ : pD≥• −→ pD≥•−1, ι! : pD≤• −→ pD≤•+1. (21)

In particular, we have that: ι∗ P(T ) ⊆ pD[−1,0](T ′) and ι! P(T ) ⊆ pD[0,1](T ′).

Proof. See [de-Ma 2018, lemma 3·1·1].

The following lemma extends [de-Ma 2018, Lemma 3·1·2] in the direction needed in this
paper.

We denote by γ≤• : pτ≤•−1 → pτ≤• and γ≥• : pτ≤• → pτ≤•+1 the natural morphisms. They
are Verdier dual to each other. We set:

γ ∗
≤• := γ≤•ι

∗, γ !
≤• := γ≤•ι

!, γ ∗
≥• := γ≥•ι

∗, γ !
≥• := γ≥•ι

!.

The entries of each of the two pairs (γ ∗
≤•, γ !

≥•) and (γ ∗
≥•, γ !

≤•) are exchanged by Verdier
duality.

LEMMA 2·1·2 (The morphisms δ). There are natural morphisms of distinguished
triangles of functors:

pτ≤•−1ι
∗

γ ∗
≤•

��

��

δ∗
≤•

��

ι∗

=

��

�� pτ≥•ι
∗

δ∗
≥•

��
γ ∗
≥•

��

���������� pτ≤•−1ι
!

γ !
≤•

��

��

ǫ!
≤•

��

ι!

=

��

�� pτ≥•ι
!

ǫ!
≥•

��
γ !
≥•

��

����������

ι∗ pτ≤•
��

ǫ∗
≤•

��

ι∗

��

=

��

�� ι∗ pτ≥•+1

ǫ∗
≥•

��

�������� ι! pτ≤•−1
��

δ!
≤•

��

ι!

��

=

��

�� ι! pτ≥•

δ!
≥•

��

����������

pτ≤•ι
∗ �� ι∗ ��

��

pτ≥•+1ι
∗ �������� , pτ≤•ι

! �� ι! ��

��

pτ≥•+1ι
! �������� ,

(22)

which are exchanged by Verdier duality.
By iteration, the morphisms in (22) induce natural morphisms:

δ∗
• : pH •−1[− • +1]ι∗ −→ ι∗ pH •[−•], δ!

• : ι! pH •[−•] −→ pH •+1[− • −1]ι!, (23)

which are exchanged by Verdier duality.
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Proof. We prove the lemma for the l.h.s. of (22). The r.h.s. follows by Verdier duality.
Consider the l.h.s. diagram of (22), but with the arrows of type δ and ǫ removed. By

applying [Be-Be-De 1982, Propagation 1·1·9, p.23], whose hypotheses are met by virtue of
the inequalities (20) and (21), we see that we can fill in the diagram and make it commutative
with unique arrows. The compositions ǫδ of the vertical arrows give the desired arrows of
type γ because in any t-structure the structural morphism pτ≤•−1 → Id factors uniquely
through the structural morphism pτ≤• → Id via γ≤• : pτ≤•−1 → pτ≤•.

The morphism on the l.h.s. of (23) arises by composing truncation applied to δ∗, with δ∗

applied to the truncation:

pτ≥•−1
pτ≤•−1ι

∗
pτ≥•−1δ

∗
≤• �� pτ≥•−1ι

∗ pτ≤•

δ∗
≥•−1

pτ≤• �� pτ≥•−1ι
∗ pτ≤•.

The morphism on the r.h.s. is obtained in a similar fashion and the verification that the two
arrows in (23) are Verdier dual is left to the reader.

Remark 2·1·3.

(i) By virtue of the identity (4) concerning truncations and shifts, the morphisms of type
δ in (22) and (23) may be re-written as follows:

δ∗
≤• : pτ≤•ι

∗[−1] �� ι∗[−1] pτ≤•, δ!
≤• : ι![1] pτ≤•

�� pτ≤•ι
![1], (24)

δ∗
≥• : pτ≥•ι

∗[−1] �� ι∗[−1] pτ≥• δ!
≥• : ι![1] pτ≥•

�� pτ≥•ι
![1],

δ∗
• : pH •−1ι∗ �� ι∗[−1]pH •, δ!

• : ι![1]pH • �� pH •+1ι!.

where Verdier duality exchanges the morphisms along the two diagonals of the first
two rows, and exchanges the two terms in the third row.

(ii) By looking at (22), and by virtue of Verdier duality, we deduce that for a given
G ∈ D(T ) we have that: δ∗

≤•(G) is an isomorphism if and only if δ∗
≥•(G) is an iso-

morphism if and only if δ!
≤•(G

∨) is an isomorphism if and only if δ!
≥•(G

∨) is an
isomorphism.

(iii) The same example in Remark 2·2·2.(2) shows that for a given G ∈ D(T ), having
δ∗
≤•(G) an isomorphism does not imply that δ!

≤•(G) is an isomorphism.
(iv) Proposition 2·1·5 gives a criterion for all six morphisms of type δ to be isomorphisms.

When the morphisms (24) are isomorphisms, we may say that in that case “perverse
truncation/cohomology commutes up to a suitable shift with restriction to the Cartier
divisor”. While standard truncation commutes with such an un-shifted restriction -in
fact with any pull-back-, in general perverse truncation does not.

Remark 2·1·4. In view of the l.h.s. inequality in (21), the r.h.s. vertex of the distinguished
triangle in the middle row of the l.h.s. of (22) satisfies the inequality ι∗ pτ≥•+1 : D → pD≥•.
By taking the long exact sequence of perverse cohomology sheaves of said distinguished
triangle, the aforementioned inequality yields the natural isomorphism of functors:

pτ≤•−1ι
∗ pτ≤• −→≃ pτ≤•−1ι

∗. (25)
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PROPOSITION 2·1·5 (If no constituents, then the δ’s are isomorphisms). Let ι : T ′ → T
be as in Lemma 2·1·1. If G ∈ D(T ) has no constituent supported on T ′, then the morphisms
of type δ in (24) are isomorphisms.

Proof. This is [de-Ma 2018, proposition 3·1·4]. For the reader’s convenience, we include it
here.

We prove the conclusion for δ∗
≤•(G). We have that pτ≤•G ∈ pD≤•, so that, by (20), we

have that ι∗ pτ≤•G ∈ pD≤•, and then, clearly, we have that:

ι∗ pτ≤•G = pτ≤•ι
∗ pτ≤•G. (26)

In view of (26) and of (25), and by considering the truncation triangle pτ≤•−1 → pτ≤• →
pH •[−•]� applied to ι∗ pτ≤•G, in order to prove the desired conclusion, it is necessary and
sufficient to show that pH •(ι∗ pτ≤•G) = 0.

This can be argued as follows. By taking the long exact sequence of perverse coho-
mology of the distinguished triangle ι∗ pτ≤•−1G → ι∗ pτ≤•G → ι∗ pH •G[−•]�, we see that
it is necessary and sufficient to show that ι∗ pH •G[−•] ∈ pD≤•−1, or, equivalently, that
ι∗ pH •G ∈ pD≤−1.

By [Be-Be-De 1982, 4·1·10·ii], we have the distinguished triangle pH−1

(ι∗ pH •G)[1] → ι∗ pH •G → pH 0(ι∗ pH •G)� and an epimorphism pH •G → pH 0(ι∗ pH •G).
Since G is assumed to not have constituents supported at Ys , we must have
pH 0(ι∗ pH •G) = 0, so that ι∗ pH •G[−•] ∈ pD≤•−1, as requested.

We have proved that if G has no constituents supported on T ′, then δ∗
≤•(G) is an

isomorphism. By Remark 2·1·3, we have that δ∗
≥•(G) is an isomorphism as well.

Note that G has no constituents supported on T ′ if and only if the same is true for pτ≤•G.
We thus have that δ∗

≤•(
pτ≤•G) and δ∗

≥•(
pτ≤•G) are isomorphisms.

Now, δ∗
• is the composition of two isomorphisms, namely pτ≥•(δ

∗
≤•(G)), followed by

δ∗
≥•(

pτ≤•G).
We have proved that the morphisms of type δ∗ are isomorphisms.
Note that G has no constituents supported on T ′ if and only if the same is true for G∨. By

Remark 2·1·3.(2), it follows that the morphisms of type δ∗ for G∨ are isomorphisms, so that
so are the morphisms of type δ! for G.

The proposition is proved.
Alternatively, one could also retrace the proof given in detail above for the morphisms of

type δ∗ and give a proof for the morphisms of type δ!.

Proposition 2·1·5 can be informally summarised as follows: under special circumstances,
the perverse truncation and restriction to a “non-special” Cartier divisor commute with each
other. One can also say that we can slide one functor across the other.

2·2. The morphisms δ and vanishing/nearby cycles

Lemma 2·1·2 is about a Cartier divisor on a variety. Let us specialize to the case when the
Cartier divisor is the special fiber in the context of the vanishing and nearby cycle functors
as in Section 1·4. In particular, we work over a nonsingular connect curve S and we fix a
point s ∈ S.
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LEMMA 2·2·1. (Morphisms of type δ for ψ and φ).

(i) We have natural morphisms of distinguished triangles:

pτ≤•ψ[−1]

γ
ψ
≤•

��

��

δ
ψ
≤•≃

��

ψ[−1]

=

��

�� pτ≥•+1ψ[−1]

δ
ψ
≥•≃

��
γ

ψ
≥•

��

�������� pτ≤•φ

γ
φ
≤•

��

��

δ
φ
≤•≃

��

φ

=

��

�� pτ≥•φ

δ
φ
≥•≃

��
γ

φ
≥•

��

��������

ψ[−1] pτ≤•
��

ǫ
ψ
≤•

��

ψ[−1]

��

=

��

�� ψ[−1] pτ≥•+1

ǫ
ψ
≥•

��

�������� φ pτ≤•
��

ǫ
φ
≤•

��

φ

��

=

��

�� φ pτ≥•

ǫ
φ
≥•

��

��������

pτ≤•+1ψ[−1] �� ψ[−1] ��

��

pτ≥•+2ψ[−1] �������� , pτ≤•+1φ �� φ ��

��

pτ≥•+2φ �������� ,

(27)

where each diagram is self-dual.
(ii) If we denote by i∗[−1] and i ![1] the two diagrams (22) (after having replaced i∗ with

i∗[−1] and i ! with i ![1]; see Remark 2·1·3.(1)), and if we denote by ψ[−1] and by φ

the two diagrams in (27), then there are morphism of diagrams i∗[−1] → ψ[−1] →

i ![1], in the sense that all the corresponding square diagrams are commutative. In
particular, we have the commutative diagram:

i∗[−1] pτ≤•
�� ψ[−1] pτ≤•

δ
ψ
≤•≃

��

�� i ![1] pτ≤•

δ!
≤•

��
pτ≤•i∗[−1] ��

δ∗
≤•

��

pτ≤•ψ[−1] ��

��

pτ≤•i ![1].

(28)

Similarly, for pτ≥• and pH •. The resulting diagrams are exchanged -in the case of
truncations- or preserved -in the case of perverse cohomology- by Verdier Duality.

(iii) Let G ∈ Db
c (Y ) be such that φG = 0. Then all the vertical arrows in (28), and in its

variants involving pτ≥• and pH •, evaluated at G, are isomorphisms. In particular, all
the arrows of type δ evaluated at G in (24) are isomorphisms.

(iv) Let G ∈ Db
c (Y ) be such that G has no constituents supported on Ys . Then all the

vertical arrows in (28), and in its variants involving pτ≥• and pH •, evaluated at G
are isomorphisms. In particular, all the arrows of type δ evaluated at G in (24) are
isomorphisms.

Proof. (i) The proof that there are the natural diagrams (27) is the same as the one of Lemma
2·1·2. The fact that the arrows of type δψ and δφ in (27) are isomorphisms simply translates
the t-exactness of ψ[−1] and φ.

(ii) Once we note that the dual to i∗ is i !, and that ψ[−1] and φ are self-dual, hence the
self-duality of (27), there is nothing left to prove.

(iii) That the horizontal arrows in (28) are isomorphisms is an immediate consequence
of the distinguished triangles (6) and the hypothesis φG = 0. Once the horizontal arrows
are isomorphisms, since one of the vertical arrows is an isomorphism, so are the remaining
vertical ones.

(iv) Follows from Proposition 2·1·5.

Remark 2·2·2.

(i) We have the following two implications: (a) if φ(G) = 0, then G has no constituents
on the special fiber (Lemma 1·4·3); (b) if G has no constituents on the special fiber,
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then the morphisms of type δ in (28) are isomorphisms. These two implications
are combined in Lemma 2·2·1.(3), which is an amplified version of [de-Ma 2018,
proposition 3·1·5].

(ii) Both the implication (a) and (b) directly above, as well the implication in Lemma
2·2·1.(3), cannot be reversed. For a), see the counterexample in Remark 1·4·4. For
2), as well as for Lemma 2·2·1.(3), consider the following counterexample: take ι to
be the embedding of the origin s into a disk �, and G to be j!Q[1] ∈ P(�). Then
G admits Qs as a constituent and φG = 0. On the other hand i∗ j! = 0, so that the
morphisms of type δ∗ are trivially isomorphisms of zero objects.

(iii) The fact that G has no constituents supported on Ys does not prevent the following
phenomenon: the number of constituents of t∗G may be strictly smaller than the num-
ber of constituents of i∗G. Consider a family X → Y → S, where X/S is a family
of K3 surfaces fibered onto curves, where the general member has irreducible fibers,
while a special member has some reducible fibers. Then G := f∗Q will exhibit this
kind of behaviour. I thank Giulia Saccà, Antonio Rapagnetta and Junliang Shen for
helping me sort this out.

2·3. Relative hard Lefschetz and morphisms of type δ

The aim of this section is to prove Proposition 2·3·2 which is a slight generaliza-
tion of [Mi-Sh 2018, corollary 3·8], and yields another criterion, this time involving the
Relative Hard Lefschetz Theorem (RHL), for the morphisms of type δ to be isomorphisms.
Proposition 2·3·2 is used in the proofs of Theorems 3·3·7 and 3·5·4.

Proposition 2·3·2.(ii) is the special case of Proposition 2·3·2.(i) when the Cartier divisor
is the special fiber in the context of the vanishing/nearby cycle functors. We thus start with a
variety X and a complex F ∈ P(X) perverse and semisimple such that it stays perverse and
semisimple after restriction and shift by [1] to the pre-image X ′ on X of a Cartier divisor
Y ′ on Y. This condition on the restriction should be thought as some kind of weakened
transversality condition of the divisor Y ′ on Y, with respect to the morphism, and to the
semisimple perverse sheaf F.

Remark 2·3·1. The hypotheses of the upcoming Proposition 2·3·2 are met, for example,
when the morphism f is projective, the varieties X and X ′ are irreducible orbifolds and
F =QX [dim X ]. Note also that in this section, we do not assume that X, Y , etc., are varieties
over S.

PROPOSITION 2·3·2. (RHL criterion for the morphisms δ being isomorphisms).

(i) Let f : X → Y be a projective morphism of varieties. Let ι : Y ′ → Y be a closed
embedding of pure codimension one such that the resulting open embedding Y \

Y ′ → Y is affine and let:

X ′

f

��

ι �� X

f

��
Y ′ ι �� Y

(29)

be the resulting Cartesian diagram. Let F ∈ Db
c (X) be perverse semisimple and such

that ι!F[1] ∈ D(X ′) (resp. ι∗F[−1]) is perverse semisimple.
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Then we have the following identities:

pτ≤•

(
f∗ι

!F[1]
)
=

(
ι! pτ≤• f∗F

)
[1], (resp. pτ≤• ( f∗ι

∗F[−1]) =
(
ι∗ pτ≤• f∗F

)
[−1]),

(30)
and similarly if pτ≤• is replaced by pτ≥•, or by pH •.
The complex f∗F has no constituent supported on Y ′.
The morphisms of type δ in (24) associated with f∗F are isomorphisms.

(ii) Assume, in addition, that f is an S-morphism of S-varieties, where S is a nonsingular
curve, that s ∈ S is a point and that Y ′ = Ys .
Then the morphisms of type δ in (24), (27) and (28) associated with f∗F are
isomorphisms.
The complex f∗F has no constituent supported on the special fiber Ys .

Proof. Since part (ii) is a special case of part (i), it is enough to prove part (i). We do so in
the case of ι!F[1]; the case of ι∗F[−1] can be proved in the same way.

We prove the identities (30) for ι!. By the Decomposition and Relative Hard Lefschetz
Theorems 1·3·1, we have isomorphisms:

f∗F −→
∼= ⊕

•
pH •( f∗F)[−•], f∗ι!F[1] −→

∼= ⊕
•

pH •( f∗ι!F[1])[−•], (31)

pH−• f∗F ∼= pH • f∗F, pH−•( f∗ι!F[1]) ∼= pH •( f∗ι!F[1]). (32)

By the base change identity f∗ι!F[1] = ι! f∗F[1], and by the splitting assumptions (31),
we get an isomorphism:

⊕

k

ι!
(

pH k ( f∗FX ) [1]
)
[−k] ∼=

⊕

k

(
pH k

(
f∗ι

!F[1]
))

[−k]. (33)

At this juncture, it does not seem a priori clear that the desired conclusion follows by taking
cohomology sheaves on both sides, the reason being that the unshifted summands on the lhs
are not immediately seen to be perverse. What it is a priori clear is that, due to the shift [1],
they live in pD[−1,0](Y ′) (cf. [BBD, 4.1.10.ii, p.106]).

Claim. The complex ι! pH k( f∗FX )[1] is a perverse sheaf, ∀k.

Proof of the claim. We need to show that pH−1(ι! pH k( f∗FX )[1]) = 0, ∀k. To simplify the
notation, we set:

Pk
X ′ :=

pH k
( f∗ι

!F[1]), Qk
X := ι! pH k

( f∗FX )[1] ∈ pD[−1,0]
(W ), Qk,l

X = pH l
(Qk

X ), l = −1, 0.

(34)
We need to show that Qk,−1

X = 0, ∀k.
We know that pH−k ∼= pH k , ∀k, both for f∗F and for f∗ι!F[1], so that we have that:

P−k
X ′ = Pk

X ′, Q−k,l
X = Qk,l

X , ∀k, ∀l = −1, 0. (35)

We argue by contradiction and assume that the desired conclusion fails for some k, i.e.
that there is k such that Qk,−1

X �= 0.
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By taking perverse cohomology in (33), we get an isomorphism

Pk
X ′

∼= Qk,0
X ⊕ Qk+1,−1

X . (36)

Let −k0 be the smallest index −k such that Q−k,−1 �= 0. By symmetry, k0 ≥ 0. We thus have
P−k0−1

X ′ = Q−k0−1,0
X ⊕ Q−k0,−1

X �= Q−k0−1,0
X . By symmetry, Pk0+1

X ′ �= Qk0+1,0
X

On the other hand, we have that Pk0+1
X ′ = Qk0+1,0

X ⊕ Qk0+2,−1
X = Qk0+1,0

X , because
Qk0+2,−1

X = Q−k0−2,−1
X = 0, by the minimality property of −k0.

This contradiction establishes the claim.
At this point, (33), joint with the claim, implies, by taking perverse cohomology sheaves,

that (30) holds with “ = ” replaced by an “ ∼= ”. In order to establish (30) with = (canonical
isomorphism), we simply observe that now that we know that the lhs of (33) is a direct sum
of shifted perverse sheaves, we reach the desired conclusion by taking perverse cohomology
in the isomorphism ι! f∗F[1] = f∗ι!F[1].

We have thus proved identities (30). At this point, the two final assertions of (i) can be
seen to be equivalent; we show that they hold as follows.

The assertion on the lack of constituents supported on the Cartier divisor Y ′ follows from
the fact that any such constituent would have to show up as a direct summand supported
on Y ′ and, as such, its ι! = ι∗ would show up as a non-zero Qk,−1 in the proof above, a
contradiction.

The last assertion of part (i) follows from Proposition 2·1·5.

Remark 2·3·3. As the proof shows, one may replace the assumption that ι!F[1] is perverse
semisimple, with the assumption that f∗ι!F[1] satisfies the conclusion of the RHL. Similarly,
if we replace ι!F[1] with ι∗F[−1]. This assumption is met if the boundary is a simple normal
crossing divisor and we take F to be the intersection complex, which, by the very definition
of snc divisor, is necessarily the shifted constant sheaf near the divisor; see Corollary 2·4·2.
See also the proof of part II of Theorem 3·5·4, and Remark 4·4·3.

2·4. RHL and boundary with normal crossing divisors

Let us place ourselves in the situation of Proposition 2·3·2, except that we do not assume
that ι∗F[−1] is perverse semisimple on the Cartier divisor on X ′. The goal of this section
is to prove Lemma 2·4·1, to the effect that if we are in a simple normal crossing divisors
situation on a nonsingular variety X of dimension n, so that ι∗QX [n − 1] is not perverse
semisimple on X ′, then we still have the useful RHL symmetry (cf. Remark 2·3·3). For an
application, with details left to the reader, see Remark 4·4·3.

Let X be an irreducible variety, let n be its dimension, and let Z ⊆ X be a simple normal
crossing divisor; in particular, X is nonsingular near Z . Let I be a finite set indexing the
irreducible components Z i of Z , let I = {i1, . . . , ik} ⊆ I be any subset, let Z I := ∩i∈I Z i .
We have the standard long exact sequence of sheaves on X :

0 −→QZ −→
⊕

|I |=1 QZ I −→ · · · −→
⊕

|I |=n QZ I −→ 0. (37)

By splicing (37), and by shifting in an appropriate manner, we get the system of short exact
sequences of perverse sheaves in P(X):
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0 �� 0 �� K n[0]
≃ ��

⊕
|I |=n+1 QZ I [0] �� 0,

0 �� K n[0] �� K n−1[1] ��
⊕

|I |=n QZ I [1] ���� 0,

. . . ,

0 �� K 2[dZ − 2] �� K 1[dZ − 1] ��
⊕

|I |=2 QZ I [dZ − 1] ���� 0,

0 �� K 1[dZ − 1] �� QZ [dZ ] ��
⊕

|I |=1 QZ I [dZ ] ���� 0.

(38)

Note that QZ [dZ ] is not semisimple in general, even when X is nonsingular. Nevertheless,
we have:

LEMMA 2·4·1. Let f : X → Y be a proper morphism with X nonsingular and irre-
ducible. Then f∗QZ [dZ ] has the RHL symmetry, i.e. cupping with the first Chern class L
of an f -ample line bundle induces isomorphisms

L• : pH−• f∗QZ [dZ ] −→
≃

pH • f∗QZ [dZ ], (39)

so that the complex f∗QZ [dZ ] is t-split (splits as the direct sum of its shifted perverse
cohomology sheaves). Moreover, we have that:

pH •
(
ι∗ pH ⋆

( f∗QZ [dZ ])
)
= 0, ∀• �= −1, ∀ ⋆ . (40)

Proof. For the RHL symmetry: We use descending induction on n: start from the bottom of
(38); go up one step at the time; at each step use the five lemma applied to:

0 �� pH−• A ��

L•

��

pH−• B ��

L•

��

pH−•C ��

L•

��

0

0 �� pH • A �� pH • B �� pH •C �� 0.

(41)

For the splitting: use the Deligne–Lefschetz Criterion.
For the proof of the vanishing (40), use the same kind of descending induction.

COROLLARY 2·4·2. Let f : X → Y be a projective morphism of varieties. Consider
Cartesian diagram like (29) and assume that X ′ is supported on a simple normal crossing
divisor. Let F = I CX .

Then the conclusions of Proposition 2·3·2 hold.

Proof. We simply observe that X is assumed to be nonsingular near X ′, so that, near X ′,
I CX is the constant sheaf, up to shifts. The shifts are locally constant integers, and this
does not affect the arguments. Now, F is semisimple on X . While i∗F[−1] is not semisim-
ple, Lemma 2·4·1 applies, so that the RHL holds, and we can repeat verbatim the proof of
Proposition 2·3·2.
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3. The specialisation morphism as a filtered morphism

In this section, we initiate a systematic discussion of when the specialisation morphism
is defined and when it is a filtered isomorphism for the perverse Leray filtrations associated
with a morphism. The case of the perverse filtration is the special case when said morphism
is the identity.

Section 3·1 revisits the classical specialisation morphism sp∗(−) and frames it in a
formalism suited to handle it together with perverse truncation in the later sections. The
specialisation morphism and its filtered counterparts are not defined for an arbitrary com-
plex. The main aim of this paper is to identify conditions that ensure that these morphisms
are defined, and that when they are defined they are isomorphisms and, in the filtered context,
filtered isomorphisms.

Section 3·2 introduces the notion of P-filtered specialisation morphism sp∗
P(−), where

P stands for the perverse filtration. This can be viewed as a special case of the perverse
Leray specialisation morphism seen later in Section 3·3. However, it seems useful to discuss
it separately, without the complication arising from the additional data of a morphism; this
is similar to what happens with the Grothendieck and Leray spectral sequences/filtrations.

Section 3·3 introduces the central-to-this-paper notion of (perverse Leray) P f -filtered
specialisation morphism sp∗

P f (−). In order to streamline the discussion, we introduce the
commutative diagram (55). We then prove Theorem 3·3·7 which lists criteria for the special-
isation morphism to be a filtered isomorphism for the perverse Leray filtration; the earlier
Propositions 3·1·9 and 3·2·7 are the analogous criteria for the specialisation and (perverse)
P-filtered specialisation morphisms sp∗

P(−) and sp∗
P f (−).

Section 3·4 is devoted to give a criterion for the specialisation morphism to exist and to
be a filtered isomorphism when a suitable compactification is available: see Set-up 3·4·1 and
Proposition 3·4·2.

In Section 3·5, we continue the theme of Section 3·4 -the existence of a suitable
compactification- and consider the problem of the resulting long exact sequence of cohomol-
ogy associated with the compactification -boundary, space, open part-. We prove Theorem
3·5·4 which gives criteria for the three specialisation morphisms involved to exist, to be fil-
tered isomorphisms, and to fit into an isomorphism of the resulting long exact sequences for
the triples, at the special point s and at the general point t.

We discuss the relation between the various criteria in Remark 3·3·10.
We apply these criteria to the Hitchin morphism in Section 4.

3·1. The specialisation morphism revisited

Let things be as in Section 1·4. In particular, we have: a morphism v : Y → S, a point
s ∈ S, a complex G ∈ Db

c (Y ).

By combining the base change properties in (10) and (12), and by considering the
morphisms of type ν in (8), we obtain the commutative diagram of morphisms of functors
Db

c (Y ) → Db
c (pt) (cf. Remark 1·5·4):

i∗[−1]v∗
σ ∗

��

bci∗v∗

��

ψ[−1]v∗
σ !

��

bcψv∗

��

sp!

		◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
i ![1]v∗

= bci !v∗

��

(φv∗)

v∗i∗[−1]
σ ∗

��

?sp∗? 



❧
❧

❧
❧

❧

ν=2ν



v∗ψ[−1]
σ !

�� v∗i ![1]

��

(v∗φ),

(42)
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where: there is a ν for each of the two rows, i.e. 1ν and 2ν, but we have indicated only the
one for the second row; the terms φv∗ and v∗φ in parentheses are, up to shift, the cones of
the morphisms of type σ (cf. Remark 3·1·1).

We have the functors ν, sp! : Db
c (Y ) → Db

c (pt). Due to the directions of the arrows on the
l.h.s. of (42), the broken arrow “?sp∗?” is not defined as a morphism of functors, but, as it is
discussed below, it can happen to be defined for some G ∈ Db

c (Y ).

Remark 3·1·1. (Cones in (42)). By (6), the cones of the morphisms σ ∗ and σ ! on the top row
of (42) are φv∗ and φv∗[1], respectively. Then, for G ∈ Db

c (Y ), the morphism σ ∗(v∗G) is an
isomorphism, if and only the morphism σ !(v∗G) is an isomorphism, if and only if φv∗G = 0.
What above remains true for the bottom row, with v∗φ replacing φv∗, etc.

Remark 3·1·2. (Interrelations between vanishings). In general, the two conditions
v∗φG = 0 and φv∗G = 0 are independent. We have the following implications:

(φG = 0) =⇒ (v∗φG = 0); v proper =⇒ ((v∗φG = 0) ⇐⇒ (φv∗G = 0)).

Since in general the base change morphism bci∗v∗ is not an isomorphism, the sought-after
morphisms ?sp∗? of functors Db

c (Y ) → Db
c (pt) is not defined.

Definition 3·1·3. (The specialisation morphism sp∗(G)) . Let G ∈ Db
c (Y ). We say that

the specialisation morphism sp∗(G) is defined for G if the base change morphism bci∗v∗(G)

is an isomorphism. In this case, we define the morphism in Db
c (pt):

sp∗(G) := σ ∗(bci∗v∗)−1 : RŴ(Ys, i∗G) = v∗i∗G �� ψv∗G = RŴ(s, ψv∗G). (43)

When sp∗(G) is defined we have that:

ν(G) = sp!(G) ◦ sp∗(G). (44)

Remark 3·1·4. The part of diagram (42) that is needed to define specialisation morphisms is:

v∗i∗[−1] i∗[−1]v∗
σ ∗

��bci∗v∗�� ψ[−1]v∗. (45)

The harmless shift by [−1] is convenient later on, when dealing with the morphisms of type
δ; see diagram (49). The reason for having embedded (45) in (42) is explained in Remark
3·1·10.

Remark 3·1·5.

(i) By using (17), we may re-write (43) as follows:

sp∗(G) : RŴ(Ys, i∗G) �� ψv∗G ∼ �� RŴ(Yt , t∗G). (46)

The ambiguity involved in this re-writing (see Fact 1·5·5, especially (17)) plays no
role in this paper: firstly, the image lands in the monodromy invariants; secondly, we
have limited ourselves to criteria for when the specialisation morphism is: defined;
an isomorphism; filtered for the perverse filtrations; a filtered isomorphism for the
perverse filtrations. All of these issues can be settled at a point t general for G,

independently of the monodromy action at t .
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(ii) Even when sp∗(G) is defined, I do not see a reason for the base change morphism

bcψv∗ : (RŴ(Yt , t∗G) ≃)ψv∗G −→ v∗ψG = RŴ(Ys, ψG) (47)

to be necessarily an isomorphism.
(iii) In view of the isomorphism ψv∗G ≃ RŴ(Yt , t∗G), typically, and this paper is no

exception, we are interested in ψv∗G, and not as much in v∗ψG. This is important
to keep in mind when, later we consider the filtered version of the specialisation
morphisms see (49), (50) and (53) for the perverse version, and see (55), (56) and
(59) for the perverse Leray version. Of course, the base change morphism bcψv∗ :

ψv∗ → v∗ψ is an isomorphism when v is proper.

Remark 3·1·6. (v proper) . If v : Y → S is proper, then, by the proper base change theorem,
we get the morphism of functors sp∗.

Remark 3·1·7. (The morphism of functors sp! : ψ[−1]v∗ → v∗i ![1]) . Regardless of
whether v is proper or not, the functor sp! : Db

c (Y ) → Db
c (pt) is defined. In analogy with

(46), and taking into account the definition of cohomology with supports on the closed set
Ys , for a given G ∈ Db

c (Y ), it takes the form of a morphism:

sp!(G) : RŴ(Yt , t∗G)
≃ �� ψv∗G �� RŴ(Ys, i ![2]G) = RŴYs (Y, G[2]). (48)

Most of the results proved in this paper for the morphism sp∗(G) (when defined), hold
for the morphism sp!. In fact, the proofs are simpler in this case, since we do not need to
establish the existence of sp! along the way, the way we must do for a sp∗(G). On the other
hand, in general, the r.h.s. of (48) is not easily relatable to, say, RŴ(Ys, i∗G). For this reason,
we have not included in this paper the sp!-versions of the results. We simply observe that
when, for some necessarily special G, the natural morphism ν : i∗[−1](G) → i ![1](G) is an
isomorphism, then, we do have that sp!(G) : RŴ(Yt , t∗G) → RŴ(Ys, i∗G) and this can be a
very useful tool, especially, when sp∗(G) fails to be defined. This proved to be crucial in the
paper [de-Ma-Sh 2020] (where due to the particular set-up there, we opted for a more direct
construction of the morphism sp!).

Remark 3·1·8. In what follows, “(⇐ (φG = 0))” is short for “(which is implied by (φG =

0))”.

PROPOSITION 3·1·9. (Criteria for the existence of sp∗(G) and for it being an isomor-

phism) . Let G ∈ Db
c (Y ). Recall Remark 3·1·8.

(i) If v is proper, then sp∗ : Db
c (Y ) → D(pt) is defined as a functor.

If in addition φv∗G = 0 (⇐ (φG = 0)), then sp∗(G) is an isomorphism.
(ii) If φv∗G = 0 and φG = 0, then sp∗(G) is defined and an isomorphism.

Proof. (i). For the first assertion, see Remark 3·1·6. For the second one, we are left with
showing that the morphism σ ∗(v∗G) on the top row of (42) is an isomorphism. This follows
from the fact that its cone φv∗G = 0.

(ii). The hypotheses imply that the cones of the four horizontal arrows in (42) are zero.
These four arrows are then all isomorphisms. Since one of the three vertical arrows in (42)
is an isomorphism, so are the remaining two, and we are done.
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Remark 3·1·10 (Vanishing of φ and base change). In order to define the specialisation mor-
phism, we only need the l.h.s. of diagram (42). The proof of Proposition 3·1·9.(2) shows that
the two conditions φG = 0 and φv∗G = 0 combined, imply that the base change morphism
bci∗v∗(G) for G is an isomorphism. This is the reason why we have introduced diagram (42):
if, after having plugged some G ∈ Db

c (Y ), the four horizontal arrows in (42) are isomor-
phisms, then, because of the presence of base change isomorphism bci !v∗ , the three vertical
arrows evaluated at G are also isomorphism, i.e. the base change morphism bci∗v∗ is also an
isomorphism, and the specialisation morphism sp∗(G) is defined.

3·2. The specialisation morphism and the perverse filtration

Let things be as in Section 1·4. In particular, we have: a morphisms v : Y → S, a point
s ∈ S, a complex G ∈ Db

c (Y ).

By analogy to (42), and by using the naturality properties of the morphisms of type δ in
Section 2, we obtain the commutative diagram of morphism of systems of functors:

i∗[−1]v∗
pτ≤•

1σ ∗
≤• ��

bci∗v∗
≤•

��

ψ[−1]v∗
pτ≤•

1σ !
≤• ��

bcψv∗

��
sp!

≤•

��❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

i ![1]v∗
pτ≤•

= bci !v∗
≤•

��

(φv∗
pτ≤•)

v∗i∗[−1] pτ≤•

2σ ∗
≤• �� v∗ψ[−1] pτ≤•

2σ !
≤• ��

δ
ψ
≤•

=

��

v∗i ![1] pτ≤•

δ!
≤•

��

��

(v∗φ
pτ≤•)

v∗
pτ≤•i∗[−1]

3σ ∗
≤• ��

δ∗
≤•

��

?sp∗
≤•?





✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈

ν≤•=
3ν≤•

��
v∗

pτ≤•ψ[−1]
3σ !

≤• ��

��

v∗
pτ≤•i ![1], (φ).

(49)

Remark 3·2·1 (Cones/not cones in (49)). In the top two rows of diagram (49), we have
indicated in parentheses the cones -up to shift- of the morphisms of type σ : apply (42) and
Remark 3·1·1 to pτ≤•. Since truncation is not an exact functor, the cones of the morphisms
of type σ in the third row are not shifts of v∗

pτ≤•φ; the term in parentheses on the third
bottom row is a term whose vanishing when evaluated at G ensures that the arrows of type
σ(G) on the third row are isomorphisms.

The reason why (49) has three rows, instead of the two in (cf. 42), is that pτ≤• does not
commute with i∗[−1] -nor with any other shift-; the morphisms of type δ measure the failure
of this commutativity.

Remark 3·2·2. (Interrelations between vanishings) . The conditions φv∗
pτ≤•G = 0 and

v∗φ
pτ≤•G = 0 are independent; if v is proper, then they are equivalent. By the t-exactness

of φ and the additivity of v∗, we have that: v∗φ
pτ≤• = v∗

pτ≤•φ, and that: (φG = 0) ⇐⇒

(φ pτ≤•G = 0) =⇒ v∗φ
pτ≤•G = 0.

Since in general the base change morphism bci∗v∗

≤• are not isomorphisms, the sought-
after morphism of systems of functors ?sp∗

≤•? is not defined. On the other hand, there
can be a corresponding arrow for special G ∈ Db

c (Y ). Recall the notion of “systems” (cf.
Section 1·3).
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Definition 3·2·3. (The P-filtered specialisation morphism sp∗
P(G)) . Let G ∈ Db

c (Y ).
We say that the P-filtered specialisation morphism sp∗

P(G) is defined for G if the base
change morphisms bci∗v∗

≤• (G) are isomorphisms, in which case, since the inverse isomor-

phisms form an isomorphism of systems, we can define the arrow in DF(pt): (bci∗v∗

P denotes
the evident resulting filtered isomorphism, and δP the evident resulting filtered morphism)

sp∗
P(G) := σ ∗

P(bci∗v∗

P )−1δ∗
P : v∗i∗G = (RŴ(Ys, i∗G), P) −→ (ψv∗G, P), (50)

where the last term is the one associated with the system ψv∗
pτ≤•G.

We have functors νP , sp!
P : Db

c (Y ) → DF(pt). When sp∗
P(G) is defined, we have that:

νP(G) = sp!
P(G) ◦ sp∗

P(G). (51)

Remark 3·2·4. Remark 3·1·4 holds essentially verbatim in the context of diagram (49). In
particular, we have:

v∗
pτ≤•i∗[−1] −→

δ∗
≤•

v∗i∗[−1] pτ≤• ←−
bci∗v∗

i∗[−1]v∗
pτ≤• −→σ

∗

ψ[−1]v∗
pτ≤•. (52)

Remark 3·2·5.

(i) By using (18), the filtered analogue of (43) takes the following form:

sp∗
P(G) : (RŴ(Ys, i∗G), P) −→ (ψv∗G, P) −→∼ (RŴ(Yt , t∗G), P). (53)

The analogue of Remark 3·1·5 on the ambiguities due to monodromy holds in this
context.

(ii) Even when sp∗(G) is defined, the base change morphism:

bcψv∗ : (RŴ(Yt , t∗G) ≃)ψv∗G −→ v∗ψG = RŴ(Ys, ψG) (54)

is not necessarily an isomorphism. In particular, the filtration P in (ψv∗G, P) is not
the perverse filtration for a complex on Ys .

Remark 3·2·6. (v proper) . The evident analogue of Remark 3·1·6 holds in this perverse
filtered context: if v : Y → S is proper, then, by the proper base change theorem, we get the
functor: sp∗

P : Db
c (Y ) → DF(pt).

Proposition 3·2·7 below is the P-filtered counterpart to the un-filtered Proposition 3·1·9.

PROPOSITION 3·2·7. (Criteria for the existence of sp∗
P(G) and for it being a filtered

isomorphism) .

(i) If v is proper, then sp∗
P : Db

c (Y ) → DF(pt) is defined as a functor.
If in addition φG = 0, then sp∗

P(G) is a filtered isomorphism.
(ii) If φv∗

pτ≤•G = 0 and v∗φ
pτ≤•G = 0, then sp∗

P(G) is defined.
If in addition φG = 0, then sp∗

P(G) is a filtered isomorphism.
(iii) If G is semisimple, φv∗G = 0 and v∗φG = 0, then sp∗

P(G) is defined.
If in addition φG = 0, then sp∗

P(G) is a filtered isomorphism.
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Proof. (i) For the first assertion, see Remark 3·2·6. If we assume that φG = 0, then, in view
of Remarks 3·2·1 and 3·2·2, all horizontal arrows in the commutative diagram (49) are iso-
morphisms. Since each row of vertical arrows contains an isomorphisms, all arrows in (49)
are isomorphisms, so that sp∗

P is a filtered isomorphism.
(ii) The two vanishing assumptions imply that all the four horizontal arrows in the first

two rows of (49) are isomorphisms. As seen above, this implies that the vertical base change
arrows are isomorphisms as well, so that sp∗

P is defined. If we we assume that φG = 0, then
we conclude as above that sp∗

P is a filtered isomorphism.
(iii) Since G is semisimple, we have that: φv∗G = 0 is equivalent to φv∗

pτ≤•G = 0;
v∗φG = 0 is equivalent to v∗φ

pτ≤•G = 0, Now (iii) follows from (ii).

Remark 3·2·8. (Vanishing of φ and base change) . The analogue of Remark 3·1·10, on the
vanishing of φ assumptions implying base change isomorphisms, holds in the context of the
proof of Proposition 3·2·7.

Question 3·2·9. I do not know of an example where: v is proper -so that sp∗ and sp∗
P are

defined-, where φv∗G = 0 -so that sp(G) is an isomorphism-, but where spP(G) is not
an isomorphism (i.e. in the filtered sense). The issue is that while δ∗

≤•(G) in (49) is an
isomorphism for • ≫ 0, it is not clear to me what happens for other values of •. We know
that if in addition φG = 0, then sp∗

P is an isomorphism.

3·3. The specialisation morphism and the perverse Leray filtration

Let things be as in Section 1·4. In particular, we have: morphisms f : X → Y and v : Y →

S, a point s ∈ S, a complex G := f∗F ∈ Db
c (Y ) for F ∈ Db

c (X).
By analogy to (42) and (49), and by using the naturality properties of the morphisms

of type δ in Section 2, we obtain the commutative diagram of morphisms of systems of
functors:

i∗[−1]v∗
pτ≤• f∗

1σ∗
≤• ��

bci∗v∗
≤•

��

ψ[−1]v∗
pτ≤• f∗

4

��

1σ !
≤• ��

sp!

P f ,≤•

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻

i ![1]v∗
pτ≤• f∗

= bci !v∗
≤•

��

((φv∗
pτ≤• f∗F = 0) ⇔ 1σ isos)

v∗i∗[−1] pτ≤• f∗

2σ∗
≤• �� v∗ψ[−1] pτ≤• f∗

2σ !
≤• ��

=

��

v∗i ![1] pτ≤• f∗

δ!
≤•

��

��

((v∗φ
pτ≤• f∗F = 0) ⇔ 2σ isos)

v∗
pτ≤•i∗[−1] f∗

3σ∗
≤• ��

δ∗
≤•

��

bci∗ f∗
≤•

��

v∗
pτ≤•ψ[−1] f∗

3σ !
≤• ��

=

��

4′

��

v∗
pτ≤•i ![1] f∗

bci ! f∗
≤•

=

��

((φ f∗F = 0) ⇒ 3σ isos)

v∗
pτ≤• f∗i∗[−1]

4σ∗
≤• ��

?sp∗

P f ,≤•
?

��

✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞

ν≤•= 4ν≤•




v∗

pτ≤• f∗ψ[−1]

4σ !
≤• �� v∗

pτ≤• f∗i ![1]

��

(( f∗φF = 0) ⇒ 4σ isos).

(55)

Remark 3·3·1. (Cones/not cones in (55)) . This remark is analogous to Remark 3·2·1. The
cones of the morphisms of type σ appearing on the first two rows are indicated in parentheses
on the r.h.s. The terms in parentheses on the third and fourth row are not the cones of the
morphisms of type σ (truncation is not an exact functor), but their vanishing implies that the
morphisms of type σ are isomorphisms.
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Remark 3·3·2. (Interrelations between vanishings) . The conditions φF = 0 and φ f∗F = 0
are independent; if f is proper, then φF = 0 implies φ f∗F = f∗φF = 0. Note that φ f∗F = 0
is equivalent to φ pτ≤• f∗F = 0, and it implies v∗φ

pτ≤• f∗F = 0.
The conditions v∗φ

pτ≤• f∗F = 0 and φv∗
pτ≤• f∗F = 0 are independent; if v is proper, then

they are equivalent.

Definition 3·3·3. (The P f -filtered specialisation morphism sp∗
P f (F)) . We say that

the P f -filtered specialisation morphism sp∗
P f (F) is defined for F ∈ Db

c (X) if the base

change morphisms bci∗v∗

≤• (F) and bci∗ f∗
≤• (F) are isomorphisms. In this case, since the inverse

isomorphisms form a morphism of systems, we can define the arrow in DF(pt):

sp∗
P f (F) := 1σ ∗

P(bci∗v∗

P )−1δ∗
P f (bci∗ f∗

P )−1 : v∗i∗G = (RŴ(Xs, i∗F), P f ) −→ (ψv∗ f∗F, P),

(56)
where the last term is the one associated with the system ψv∗

pτ≤• f∗ F.

We have functors νP f , sp!
P f : Db

c (X) → DF(pt). When sp∗
P f (F) is defined, we have that:

νP f (F) = sp!
P f (F) ◦ sp∗

P f (F). (57)

Remark 3·3·4. Remark 3·1·4 holds essentially verbatim in the context of diagram (55). In
particular, we have:

v pτ≤• f∗i∗[−1] v∗
pτ≤•i∗[−1] f∗

δ∗
≤• ��bci∗ f∗

≤•�� v∗i∗[−1] pτ≤• f∗ i∗[−1]v∗
pτ≤• f∗

σ ∗

��

bci∗v∗��

ψ[−1]v∗
pτ≤• f∗.

(58)

Remark 3·3·5. By using (19), we may re-write (56) as follows:

sp∗
P f (F) : (RŴ(Xs, i∗F), P fs ) −→ (ψv∗ f∗F, P) −→∼ (RŴ(X t , t∗F), P ft ). (59)

The analogue of Remark 3·2·5, on the ambiguities due to monodromy and on the meaning
of P in (ψv∗ f∗F, P), holds in this context.

Remark 3·3·6. (v proper) . The evident analogue of Remarks 3·1·6 and 3·2·6 holds in
this perverse Leray filtered context: if f and v are proper, then we get the functor:
sp∗

P f : Db
c (X) → DF(pt).

The following theorem is a perverse Leray analogue of Proposition 3·2·7. Recall the
notational Remark 3·1·8.

THEOREM 3·3·7. (Criteria for the existence of sp∗
P f (F) and for it being a filtered

isomorphism).

(i) If v and f are proper, then sp∗
P f : Db

c (X) → DF(pt) is a functor.
If in addition φ f∗F = 0 (⇐ (φF = 0)) then sp∗

P f (F) is defined and a filtered
isomorphism.

(ii) If v proper, φ f∗F = 0, and f∗φF = 0 (⇐ (φF = 0)), then sp∗
P f (F) is defined and a

filtered isomorphism.
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(iii) If f is proper, φv∗
pτ≤• f∗F = 0, and v∗φ

pτ≤• f∗F = 0 (⇐ (φ f∗F = 0) ⇐ (φF = 0)),
then sp∗

P f (F) is defined.
If in addition φ f∗F = 0 (⇐ (φF = 0)), then sp∗

P f (F) is defined and a filtered
isomorphism.

(iv) If φv∗
pτ≤• f∗F = 0, φ f∗F = 0, and f∗φF = 0 (⇐ (φF = 0)), then sp∗

P f (F) is defined
and a filtered isomorphism.

(v) If f is proper and F is semisimple, φv∗ f∗F = 0 and v∗φ f∗F = 0 (⇐ (φ f∗F = 0) ⇐

(φF = 0)), then sp∗
P f (F) is defined.

If in addition, φ f∗F = 0 (⇐ (φF = 0)), then sp∗
P f (F) is a filtered isomorphism.

(vi) If v is proper, f is projective and F and i∗F[−1] are semisimple, and φv∗ f∗F = 0
(⇐ (φ f∗F = 0) ⇐ (φF = 0)), then sp∗

P f (F) is defined and a filtered isomorphism.
(vii) If f is projective and F and i∗F[−1] are semisimple, φv∗ f∗F = 0 and v∗φ f∗F = 0

(⇐ (φ f∗F = 0) ⇐ (φF = 0), then sp∗
P f (F) is defined and a filtered isomorphism.

Proof. (i) For the first assertion in (i), see Remark 3·3·6. We now prove the second assertion
in (i). Keep in mind that the base change morphisms are all isomorphisms. Since f is proper,
φ f∗F = 0 implies that -it is equivalent to- f∗φF = 0, as well as v∗φ

pτ≤• f∗F = 0. It follows
that the four horizontal arrows on row two and three in (55) are isomorphisms. This implies
that so are the vertical arrows of type δ. It remains to show that the morphisms 1σ ∗

≤• are
isomorphisms, which follows from φv∗

pτ≤• f∗F = v∗φ
pτ≤• f∗F = 0.

(ii) Since v is proper, rows one and two are identified. The vanishing assumptions imply
that all seven arrows on rows three and four are isomorphisms. In particular, the six base
change morphisms in (55) are isomorphisms, so that sp∗

P f is defined. The assumption
φ f∗F = 0 implies that the cones of the four horizontal arrows in rows one and two are
isomorphisms, so that all seven arrows on these two rows are isomorphisms. The same argu-
ment shows that the seven arrows in rows two and three are isomorphisms. In particular, the
morphisms of type δ and the morphisms 1σ ∗

≤• are isomorphisms, and the conclusion follows.
(iii) We prove the first assertion in (iii). The base change morphisms for f are isomor-

phisms. The vanishing assumptions imply that we can identify the first two rows, so that
sp∗

P f is defined. We prove the second assertion in (iii). The hypothesis φ f∗F = 0 implies
that the morphisms of type δ are isomorphisms, and we are done.

(iv) The vanishing assumptions imply that all horizontal arrows in (55) are isomorphisms.
It follows that all arrows in (55) are isomorphisms and the conclusion follows.

(v) Since f is proper and F is semisimple, f∗F is semisimple by the Decomposition
Theorem 1·3·1, so that pτ≤• f∗F is a direct summand of f∗F . It follows that: φv∗ f∗F = 0
is equivalent to φv∗

pτ≤• f∗F = 0; v∗φ f∗F = 0 is equivalent to v∗φ
pτ≤• f∗F = 0. This shows

that (v) follows from (iii).
(vi) Since v and f are proper, sp∗

P f is defined. The semisimplicity assumptions on F and
on i∗F[−1] and the projectivity of f imply, via Proposition 2·3·2, that the morphisms of
type δ are isomorphisms. It remains to observe that the assumption φv∗ f∗F = 0, coupled
with the semisimplicity of f∗F , implies, as seen in the proof of (v), that φv∗

pτ≤• f∗F = 0. It
follows that σ ∗ is an isomorphisms and we are done.

(vii) Since f is proper, the corresponding base change morphisms are isomorphisms. As
seen in the proof of (vi), the morphisms of type δ are isomorphisms. As seen in the proof of
(v), the vanishing assumptions imply that φv∗

pτ≤• f∗F = 0 and v∗φ
pτ≤• f∗F = 0. As in the

proof of (iii), the base change morphisms for v are isomorphisms and, as in the proof of (i),
the morphisms 1σ ∗

≤• are isomorphisms. The proof of (vii) is complete.
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Remark 3·3·8. (Vanishing of φ and base change) . The analogue of Remark 3·1·10 holds
in the context of the proof of Theorem 3·3·7.

Remark 3·3·9. Recall that a condition of type φv∗(−) = 0 means that v∗(−) has locally
constant cohomology sheaves R•v∗(−) on S near s.

Remark 3·3·10. (i) [de-Ma 2018, theorem 3·2·1 parts (i,ii,ii)] are implied by the slightly
more precise Theorem 3·3·7 parts (i,iii,v), respectively.

(ii) Proposition 3·2·7 parts (i,ii,iii) are also the special cases of Theorem 3·3·7 parts
(i,iii,v) when one takes f : X → Y to be the identity.

3·4. The specialisation morphism via a compactification

Consider Theorem 3·3·7: parts (iii,iv,v,vii) do not assume that v = vX : X → S is proper,
but make some local constancy assumptions for certain direct images to S, namely
φv∗(−) = 0.

In this subsection we provide, in the context of a proper S-morphism f : X → Y and of
a non proper morphisms vX : X → S, sufficient conditions ensuring that we obtain well-
defined sp∗

P(G) or sp∗
P f (F), but that do not require local constancy assumptions. On the

other hand, they require the existence of good compactification. As we shall see, here “good”
is made precise by conditions relating vanishing cycles at the boundary. In general, it may be
difficult to achieve such a vanishing. See Remark 3·4·5 for one situation in which this is pos-
sible. They are also achieved in the compactification of Dolbeault moduli spaces constructed
in [de 2018]; see Section 4.

We start with a proper S-morphism f : X o → Y o, and we do not assume that v = vY o :

Y o → S is proper.
In order to circumvent base change issues, it is natural to first compactify the picture.

We start with f : X o → Y o and we get, by Nagata’s completion theorems: Zariski open and
dense embeddings X o ⊆ X and Y o ⊆ Y ; a proper morphism f : X → Y extending f : X o →

Y o; a proper morphism vY : Y → S extending vY o : Y o → S. By blowing-up Y, if necessary,
we may assume that W := Y \ Y o supports an effective Cartier divisor.

It follows that we can place ourselves in the following:

SET-UP 3·4·1. Let S be a variety. Consider a Cartesian diagram of S-morphisms, with
(a : W → Y ← Y o : b) closed/open complementary immersions:

Z
a ��

f

��

X

f

��

X ob��

f

��
W

a �� Y Y ob��

(60)

such that: all morphisms f are proper; the varieties Y and W proper over S; the boundary
W on Y supports an effective Cartier divisor. In particular, the functors b!, b∗ : Y o → Y are
t-exact.

Many of us are used to denote the pair of closed/open embeddings (a, b) by (i, j).
However, in this paper, and in large part of the vanishing cycle literature, the closed
embedding of the special fiber is systematically denoted by i .
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We denote by ad the distinguished triangle of endofunctors of Db
c (Y ):

ad := a∗a! −→a Id −→b b∗b∗ �������� ; (61)

by plugging G ∈ Db
c (Y ) in (61), we obtain the distinguished triangle ad(G) in Db

c (Y ),

functorial in G.
Proposition 3·4·2 below is an “ f -proper, but vX -non-proper” analogue to Theorem

3·3·7.(i), where it was assumed that f and v are proper and that φF = 0. Recall Remark
3·3·5, which allows us to use a general point t to express the target of specialisation
morphisms.

Note that the assumptions (B) in Proposition 3·4·2 imply the assumptions of Theorem
3·3·7.(v) which lead to sp∗

P f being an isomorphism. We have included (B) for completeness
in the context of this subsection. Recall the notational Remark 3·1·8.

PROPOSITION 3·4·2. Assume we are in the Set-up 3·4·1. Assume that S is a nonsingular
and connected curve and let s ∈ S be a point. Let F ∈ Db

c (X).
Consider the following two sets of conditions:

(A) φb∗ f∗b∗ F = 0 (⇐ (φb∗b∗F = 0)), and φ f∗b∗F = 0 (⇐ (φb∗F = 0) ⇐ (φb∗F =

0) ⇐ (φF = 0);
(B) F semisimple, φv∗b∗ f∗b∗ F = 0 (⇐ (φ f∗b∗b∗F = 0) ⇐ (φb∗b∗F = 0)), and

φ f∗b∗F = 0 (⇐ (φb∗F = 0) ⇐ (φF = 0)).

If either conditions (A) or (B) are met, then the P f -filtered specialisation morphism:

sp∗
P f (F) : (RŴ(X o

s , i∗b∗ F), P fs ) −→ (ψv∗ f∗i∗F, P) ≃ (RŴ(X o
t , t∗b∗F), P ft ), (62)

where t ∈ S is general for F with respect to X/S and for f∗F with respect to Y/S, is defined
and it is a filtered isomorphism for the perverse Leray filtrations.

If f : X → Y is the identity, then the same conclusion holds with sp∗
P f (F) = sp∗

P(F).

Proof. Since the proof is analogous to the proof of Theorem 3·3·7.(i), we only indicate the
main line of the arguments.

In complete analogy with the formation of the commutative diagram (55), we form the
commutative diagram: (with many decorations omitted)

i∗[−1]v∗b∗
pτ≤• f∗b∗ σ ∗

��

bc

��

ψ[−1]v∗b∗
pτ≤• f∗b∗

bc

��

σ !

�� i ![1]v∗b∗
pτ≤• f∗b∗

= bc

��

(φv∗b∗
pτ≤• f∗b∗F),

v∗i∗[−1]b∗
pτ≤• f∗b∗ σ ∗

��

bci∗b∗

��

v∗ψ[−1]b∗
pτ≤• f∗b∗ σ !

��

bc

��

v∗i ![1]b∗
pτ≤• f∗b∗

bc=

��

��

(v∗φb∗
pτ≤• f∗b∗F),

v∗b∗i∗[−1] pτ≤• f∗b∗ σ ∗

�� v∗b∗ψ[−1] pτ≤• f∗b∗ σ !

��

=

��

v∗b∗i ![1] pτ≤• f∗b∗

δ!
≤•

��

��

(φ f∗b∗ F),

v∗b∗
pτ≤•i∗[−1] f∗b∗ σ ∗

��

δ∗
≤•

��

bc

��

v∗b∗
pτ≤•ψ[−1] f∗b∗ σ !

��

bc

��

��

v∗b∗
pτ≤•i ![1] f∗b∗

bc=

��

(φ f∗b∗ F),

v∗b∗
pτ≤• f∗i∗[−1]b∗ σ ∗

��

��

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡

v∗b∗
pτ≤• f∗ψ[−1]b∗ σ !

�� v∗b∗
pτ≤• f∗i ![1]b∗

��

(φb∗F),

(63)
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the properties of which are similar to the ones of (55). The second row from the top in
(63) does not have a counterpart in (55), and this is because here we need to consider the
base change morphisms for i∗b∗. The terms in parentheses for the first three rows are, up
to shift, the cones of the arrows of type σ . After having plugged an F ∈ Db

c (X) in (63), the
vanishing of the term in parentheses implies that the corresponding morphisms of type σ are
isomorphisms.

Since v : X → S is proper, the first two rows get identified by proper base change. Since
f is proper, the same is true for the last two.

Since every row contains a vertical arrow which is an isomorphism, we only need to
show that all horizontal arrows in (63) are isomorphisms. It is enough to show that the
corresponding terms in parentheses vanish. By the identifications above, we need to do so
only for rows two, three and four.

The assumption φb∗F = 0, which is common to (A) and (B), together with the properness
of f , implies the vanishing of the terms in parentheses for the bottom three rows (for the
third row, one uses that φ commutes with perverse truncation).

We are left with proving that the morphisms of type σ on row two are isomorphisms.
We prove that (A) implies the desired conclusion. The assumption φb∗b∗F = 0 implies

the vanishing of the terms in parentheses for the second row because of what follows:

0 = f∗φb∗b∗F = φ f∗b∗b∗F = φb∗ f∗b∗ F = φb∗b∗ f∗F,

so that:

0 = pτ≤•φb∗b∗ f∗F = φ pτ≤•b∗b∗ f∗F = φb∗
pτ≤•b∗ f∗F = φb∗

pτ≤• f∗b∗F,

where in the identities above we have used proper base change for f , the fact that f b = b f
in the r.h.s. of (60), the t-exactness of b∗ (b is affine and quasi-finite) and of φ.

(B) has already been proved in Theorem 3·3·7.(v).

Remark 3·4·3. The proof of Proposition 3·4·2 shows that under its hypotheses, (A) or
(B), the base change morphism bci∗b∗ : v∗i∗b∗

pτ≤• f∗b∗ F → v∗b∗i∗ pτ≤• f∗b∗F in (65) is an
isomorphism.

Remark 3·4·4. Remark 3·1·4, on the part of (55) that is needed to define sp∗
P f (F), holds

essentially verbatim in the context of diagram (63).

Remark 3·4·5. The conditions φb∗b∗ F = 0 = φb∗F in Proposition 3·4·2 are met if, for
example, X/S is smooth, X \ X o is a simple normal crossing divisor over S and F has
locally constant cohomology sheaves. See [De 1972, XIII, Lemme 2·1·11 (dualised)]. We
do not know of a weaker, but similar set of conditions that leads to sp∗

P f being defined, but
not necessarily an isomorphisms.

COROLLARY 3·4·6. Let things be as in Proposition 3·4·2. Then we have the following
commutative diagram, with horizontal arrows given by restriction, and with vertical arrows
given by the well-defined P f -filtered specialisation morphisms:
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(RŴ(X t , t∗F), P ft ) �� (RŴ(X o

t , t∗b∗F), P ft )

(RŴ(Xs, i∗F), P fs ) ��

sp∗

P f

��

(RŴ(X o
s , i∗b∗F), P fs ).

sp∗

P f ∼=

��

(64)

Proof. We artificially add to digram (55) one row identical to the second row from the top
and place it between the second and third row; there are now five rows; we connect the
second row to the new third row by the identity; we connect the new third row to the new
fourth row the same way as rows two and three in (55) are connected. The reader can verify
that: if we apply the adjunction I d → b∗b∗ to this new diagram, call it (55′), then we obtain
what can be called the adjunction morphism between (55′) and (63). The conclusion follows.

3·5. specialisation morphisms and the long exact sequence of a triple

In the context of the compactification Set-up 3·4·1, with S a nonsingular curve and s ∈ S
a point, it is natural to ask about the relation between specialisation morphisms and the
long exact sequence in cohomology associated with the triple (Z , X, X o). Because of base
change issues, and because of the possible failure of the morphisms of type δ for the closed
embedding a to be isomorphisms, the relation is not always the expected one, i.e. the filtered
cones of the horizontal morphisms in (64) are not necessarily the corresponding objects for
i∗a!F and t∗a!F .

Recall Remarks 3·1·4, 3·2·4, 3·3·4 and 3·4·4 on the parts of the diagrams involved in the
definitions of the specialisation morphisms sp∗, sp∗

P , sp∗
P f .

We discuss the case of sp∗
P f . The case sp∗

P is then the special case when f : X → Y is the
identity. The case sp∗ is the special case, when we remove pτ≤• from the picture.

LEMMA 3·5·1. Let things be as in Set-up 3·4·1, except that we do not assume that v and
f are proper, nor that W is Cartier. Assume that S is a nonsingular curve and s ∈ S is a
point. The following diagram is commutative:

ψ[−1]v∗a!a! pτ≤• f∗ �� ψ[−1]v∗
pτ≤• f∗ �� ψ[−1]v∗b∗b∗ pτ≤• f∗ ��������

i∗[−1]v∗a!a! pτ≤• f∗ ��

σ ∗

��

bci∗v∗

��

i∗[−1]v∗
pτ≤• f∗ ��

σ ∗

��

bci∗v∗

��

i∗[−1]v∗b∗b∗ pτ≤• f∗ ��������

σ ∗

��

bci∗v∗

��
v∗i∗[−1]a!a! pτ≤• f∗ ��

i∗a!a!→a!a!i∗

��

v∗i∗[−1] pτ≤• f∗ ��

��

v∗i∗[−1]b∗b∗ pτ≤• f∗ ��������

��
i∗b∗b∗→b∗b∗i∗

bci∗b∗

��
v∗a!a!i∗[−1] pτ≤• f∗ �� v∗i∗[−1] pτ≤• f∗ ��

=

��

v∗b∗b∗i∗[−1] pτ≤• f∗ ��������

v∗a!a! pτ≤•i∗[−1] f∗ ��

δi∗

��

bci∗ f∗

��

v∗
pτ≤• i∗[−1] f∗ ��

δi∗

��

bci∗ f∗

��

v∗b∗b∗ pτ≤•i∗[−1] f∗ ��������

δi∗

��

bci∗ f∗

��
v∗a!a! pτ≤• f∗i∗[−1] �� v∗

pτ≤• f∗i∗[−1] �� v∗b∗b∗ pτ≤• f∗i∗[−1] �������� .

(65)
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Proof. This follows at once from the following list of formal properties.
Let things be as in Set-up 3·4·1. Recall (61). Let i : T → S be a morphism of varieties.

The verification of the following facts is formal and is left to the reader.

(i) σ ∗ is a morphism of functors.
(ii) The attaching triangles are compatible with base change. More precisely, the base

change morphisms i∗v∗ → v∗i∗ applied to the distinguished triangle of functors (61)
(recall that it contains the morphisms a, b) yield morphisms of the corresponding
distinguished triangles.

(iii) Let µ : i∗a!a! → a!a!i∗ be the composition of the base change isomorphism i∗a!a! →

a!i∗a! with the natural morphism a!i∗a! → a!a!i∗ [Ka-Sc 1990, Proposition 3·1·9·iii].
Then i∗a = ai∗ ◦ µ.

(iii)’ Let µ′ : i∗b∗b∗ → b∗b∗i∗ be the composition of the base change isomorphism
i∗b∗b∗ → b∗i∗b∗ with the natural isomorphism b∗i∗b∗ → b∗b∗i∗. Then µ′ ◦ i∗b = bi∗.

(iv) The attaching triangles are compatible with the morphisms of type δ. More precisely,
the morphisms of type δ applied to the distinguished triangle of functors (61) yield
morphisms of the corresponding distinguished triangles.

(v) Part (ii) holds for the base change morphisms i∗ f∗ → f∗i∗.

We need the following remark and lemma in the proof of Proposition 3·5·4.

Remark 3·5·2. The base change morphism bci∗b∗ in (65) and (63) coincide.

LEMMA 3·5·3. Let things be as in the compactification Set-up 3·4·1 and assume that S
is a nonsingular connected curve and s ∈ S is a point. Let G ∈ Db

c (Y ) be such that φG = 0
and φa!G = 0. Then the natural morphisms i∗a! pτ≤•G → a!i∗ pτ≤•G are isomorphisms.

Proof. The assumptions on vanishing are equivalent to assuming that φ pτ≤•G = 0 and
φ pτ≤•a!G = 0, so that it is enough to prove the conclusion without truncations. We have
i∗[−1]G ∼= i ![1]G and i∗[−1]a!G ∼= i ![1]a∗G. The conclusion follows from the natural
identification i !a! = a!i ! as follows: i∗[−1]a!G = i ![1]a!G = a!i ![1]G = a!i∗[−1]G.

Recall Remark 3·3·5, which allows us to use a general point t to express the target of
specialisation morphisms. Recall the notational Remark 3·1·8, and convention (iii) on shifts
of filtrations.

THEOREM 3·5·4 (specialisation and long exact sequence of a triple). Let things be as
in the compactification Set-up 3·4·1 and assume that S is a nonsingular connected curve
and s ∈ S is a point. Let F ∈ Db

c (X).
Consider the following three sets of conditions:

(I) a. f∗F has no constituents supported on W ;
b. f∗i∗F has no constituents supported on Ws;
c. φ f∗F = 0 (⇐ (φF = 0));
d. φ f∗a!F = 0 (⇐ (φa!F = 0));

(II) a. f is projective;
b. F, a! F[1], i∗F[−1] a!i∗F are perverse semisimple;
c. φ f∗F = 0 (⇐ (φF = 0));
d. φ f∗a!F = 0 (⇐ (φa!F = 0));
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(III) a. f is projective;
b. F, a!F[1], i∗F[−1] and a!i∗F are perverse semisimple;
c. φv∗b∗ f∗b∗F = 0 (cf. Remark 3·3·9) (⇐ (φ f∗b∗b∗F = 0) ⇐ (φb∗b∗F = 0));
d. φ f∗b∗ F = 0;
e. φ f∗a! F = 0.

Assume that either (I), (II), or (III) holds. Then, for t ∈ S general, we have the isomorphism
of distinguished triangles in DF(pt) :

(
RŴ(Z t , t∗a! F), P ft (−1)

)
��
(
RŴ(X t , t∗F), P ft

)
��
(
RŴ(X o

t , t∗b∗F), P ft
)

��������

(
RŴ(Zs, i∗a! F), P fs (−1)

)
��

sp∗

P f (a! F) ∼=

��

(
RŴ(Xs, i∗F), P fs

)
��

sp∗

P f (F) ∼=

��

(
RŴ(X o

s , i∗b∗ F), P fs
)

��������

sp∗

P f (b∗ F) ∼=

��

.

(66)

Proof. We plug F ∈ Db
c (X) in diagram (65). We still denote the resulting diagram by (65) in

what follows. Then (65) consists of three columns, C1, C2 and C3, and six rows R1, . . . , R6.

Each row is a distinguished triangle. The vertical arrows yield morphisms of distinguished
triangles.

The aim is to prove that, under the assumptions of the theorem: all the vertical arrows in
(65) are isomorphisms. In fact, then, by considering the compositum of the arrows from R6

to R1, and in view of (19), we obtain the following system of isomorphisms of distinguished
triangles:

v∗a!
pτ≤•+1 f∗t∗[−1]a!F �� v∗

pτ≤• f∗t∗[−1]F �� v∗b∗
pτ≤• f∗t∗[−1]b∗F ��������

ψ[−1]v∗a!
pτ≤•+1 f∗a!F ��

≃(19)

��

ψ[−1]v∗
pτ≤• f∗F ��

≃(19)

��

ψ[−1]v∗b∗
pτ≤• f∗b∗ F ��������

≃(19)

��

v∗a!
pτ≤•+1 f∗i∗[−1]a!F ��

≃sp∗( pτ≤•+1a! F)

��

v∗
pτ≤• f∗i∗[−1]F ��

≃sp∗( pτ≤• F)

��

v∗b∗
pτ≤• f∗i∗[−1]b∗F ��������

≃sp∗( pτ≤•b∗ F)

��

,

(67)
which yields the desired conclusion (66).

We first prove that (I) implies that desired goal that all the vertical arrows are isomor-
phisms.

The plan of the proof is as follows. Prove that columns C1, C2 and C3 coincide with dia-
grams (58) involved in the definitions of sp∗

P f (a!F), sp∗
P f (F) and sp∗

P f (b∗F), respectively.
Prove that all arrows in said columns are isomorphisms, so that all three morphisms sp∗

P f

are defined and isomorphisms, and the composition of the arrows from R6 to R1 yields (66).
Step 1. We carry out the plan for C1. In this case, P f (−1) will enter the picture naturally.
Let us identify C1 with (58) for a!F . In order to accomplish this, we need to show that:

(i) the top of C1, i.e. ψ[−1]v∗a!a! pτ≤• f∗F, coincides with ψ[−1]v∗a!
pτ≤•+1 f∗a!F ;

(ii) the morphism v∗i∗[−1]a!a! pτ≤• f∗F → v∗a!a!i∗[−1] pτ≤• f∗F is an isomorphism;
(iii) the bottom of C1, i.e. v∗a!a! pτ≤• f∗i∗[−1]F, coincides with v!a!

pτ≤•+1 f∗i∗[−1]a! F.

To prove (i) it is enough to prove that a! pτ≤• f∗F coincides with pτ≤• f∗a! F. This follows
from the fact that the natural morphism (22) of type δa!

for the closed embedding a is an

https://doi.org/10.1017/S0305004121000293 Published online by Cambridge University Press



476 MARK ANDREA A. DE CATALDO

isomorphism in view of our assumptions that f∗F has no constituents supported on W, so
that Proposition 2·1·5 applies.

For (ii), we argue as follows. Since i∗a! = a!i∗, is is enough to prove that i∗a! pτ≤• f∗ F
coincides with a!i∗ pτ≤• f∗F. This follows from our vanishing hypotheses and from Lemma
3·5·3, in view of the assumptions φ f∗F = 0 and φ f∗a! F = 0.

For (iii), we argue as we have done for (i), by using the assumption that f∗i∗F has no
supports on Ws .

We have shown that C1 agrees with (58) for a! F . Since f and v are proper, we have that
sp∗

P f (a!F) is defined.
Let us now prove that all arrows in C1 are isomorphisms.
The base change maps are isomorphisms. The assumption that φF = 0 implies φ f∗F = 0,

so that δi∗

is an isomorphism by Lemma 2·2·1.(iii). Finally, we claim that σ ∗ on the top of
C1 is an isomorphism. This follows from the fact that its cone φv∗a!a! pτ≤• f∗ F = 0: in fact,
by using the same kind of argument employed in (i) above, this is implied by the assumption
φ f∗a!F = 0.

This completes the proof of Step 1: all the vertical arrows in C1 are isomorphisms and
give rise to sp∗

P f (a!F), which is an isomorphism for the shifted P f (−1)’s.
Step 2. Clearly, C2 is on the nose the collection of morphisms in (58) involved in the

definition of sp∗
P f (F). Moreover, in view of our hypotheses, Theorem 3·3·7.(i) applies and

sp∗
P f (F) is defined and an isomorphism. In particular, all the arrows in C2 are isomorphisms.
Step 3: We carry out the plan for C3 by following the template of Step 1.
Since b∗ is étale, b∗ is t-exact and it commutes with f∗. Clearly, b∗ commutes with i∗. We

thus have the identities:

ψ[−1]v∗b∗b∗ pτ≤• f∗ = ψ[−1]v∗b∗
pτ≤• f∗b∗, v∗b∗b∗ pτ≤• f∗i∗[−1] = v∗b∗

pτ≤• f∗i∗[−1]b∗.

(68)

This implies that the top and bottom of C3 give rise to the domain and target of the putative
sp∗

P f (b∗F) as in Step 1.
Since the morphisms of rows are morphisms of distinguished triangles and the vertical

arrows in C1 and in C2 are isomorphisms, then, by the Five Lemma, so are the ones in C3.
This concludes Step 3 and we have shown that (I) implies the desired goal that all the

vertical arrows are isomorphisms.
We prove that (II) implies the same desired goal.
To do so, it is enough to prove that (II) implies (I). Since (c) and (d) are common to (I)

and (II), we need to show that (II) implies (Ia) and (Ib). By Proposition 2·3·2, the assump-
tions f projective, F and a! F[1] perverse semisimple imply (Ia). For the same reason, the
assumptions f projective, i∗F[−1] and a!i∗F perverse semisimple imply (Ib). The desired
goal is thus met.

Note that instead of assuming that a!F[1] (resp. a!i∗F) is perverse semisimple, it is
enough to assume that f∗a! F[1] (resp. f∗a!i∗F) satisfies the conclusion of the relative Hard
Lefschetz Theorem; see Remark 2·3·3.

We prove that (III) implies the desired goal that all the vertical arrows are isomorphisms.
We go back to (65). Again, the goal is to prove that the bottom and top rows are as in the

proof that (I) implies the desired conclusion, and that all vertical arrows are isomorphisms.
The top and bottom of C2 are already in the desired form.
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The top and bottom of C3 are already in the desired form; see (68), which uses only that
b∗ is t-exact and that it commutes with f∗.

By Remarks 3·5·2 and 3·4·3, the base change morphism bci∗b∗ in (65) is an isomorphism.
As in the case of (II), all the morphisms of type δ, connecting R5 to R4 are isomor-
phisms. The base change morphisms for i∗ f∗ and i∗v∗ are also isomorphisms in all columns,
including C3.

All the arrows in C3 are thus isomorphisms as soon as σ ∗ is. This follows from the hypoth-
esis that φv∗b∗ f∗b∗F = 0 as follows. Since F is semisimple, so is b∗F . The Decomposition
Theorem implies that φv∗b∗

pτ≤• f∗b∗F is a direct summand of φv∗b∗ f∗b∗F = 0, so that
φv∗b∗b∗ pτ≤• f∗F = φv∗b∗

pτ≤• f∗b∗ F = 0, where we have used the t-exactness of b∗ and
proper base change. The cone of σ ∗ in C3 is zero and σ ∗ in C3 is an isomorphism.

We have proved that C3 has the desired form and that all of the arrows in C3 are
isomorphisms, so that spP f (b∗G) is an isomorphism.

Since the base change arrow bci∗v∗ is an isomorphism in C3 it follows that all arrows
connecting R3 to R4 are isomorphisms. In particular, the arrow denoted by i∗a!a! → a!a!i∗

is an isomorphism.
The arrow σ ∗ in C1 is an isomorphism if and only if φv∗a!a! pτ≤• f∗F = 0, which we

now prove. As in the case of (II), we have that f∗ F has no constituents supported on W ,
so that φv∗a!a! pτ≤• f∗F = φv∗a!

pτ≤•+1 f∗a! F = v∗a!
pτ≤•+1 f∗φa!F = 0, by the assumption

0 = φ f∗a! F = f∗φa! F ( f is proper).
What above also implies that the top of C1 is ψ[−1]v∗a!

pτ≤•+1 f∗a!F , i.e. the system giv-
ing rise to the target of the specialisation map. As to the bottom of C1, since all arrows
are isomorphisms, it is identified with v∗i∗[−1]a!a! pτ≤• f∗F , which, by what above, is iden-
tified with v∗a!i∗[−1] pτ≤•+1 f∗a! F , which –using the fact that f∗a!F has no constituents
supported on Ws by virtue of the hypotheses that f is projective, a!F[1] and i∗a!F are per-
verse semisimple, coupled with Proposition 2·3·2– equals v∗a!

pτ≤•+1 f∗i∗[−1]a!F , i.e. the
system giving rise to the source of sp∗

P f (a!F).
We have proved that C1 has the desired form and that all arrows in C1 are isomorphisms.

We have already proved that the same holds for C3. As seen earlier by using the Five Lemma,
it follows that the same holds for C2. The conclusion follows.

Remark 3·5·5. Condition (I) in Proposition 3·5·4 is met if: f is projective, F is perverse
semisimple on X and a∗[−1]F is perverse semisimple on Z . Condition (II) in Proposition
3·5·4 is met if: f is projective, i∗F[−1] is perverse semisimple on Xs and a∗i∗[−2]F is
perverse semisimple on Zs . Both cases follow from Proposition 2·3·2.

Remark 3·5·6. Proposition 3·5·4 yields a different proof, under different hypotheses, of the
conclusions of both Proposition 3·4·2 and Corollary 3·4·6.

Remark 3·5·7. The toy-model for Theorem 3·5·4 is when we assume that vX , vY , vZ , vW

and f are proper and smooth. We do not assume that vY o is proper. In this case, we leave
to the reader to verify that if we set F =QX , and we consider the usual Leray filtration on
the cohomology of Xs and X t (Zs, Z t , resp.), with respect to fs : Xs → Ys and ft : X t → Yt ,

( fs : Zs → Ws and ft : Z t → Wt , resp.), then we end up with: the specialisation morphisms
are defined, they are filtered isomorphisms, and they fit in the long exact Gysin sequences:
(in what follows ⋆ is arbitrary, but fixed)
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. . . �� L⋆−2 H •−2(Z t ,Q)
Gysin �� L⋆ H •(X t ,Q) �� L⋆ H •(X o

t ,Q)
+1 �� . . .

. . . �� L⋆−2 H •−2(Zs,Q)
Gysin ��

spZ

��

L⋆ H •(Xs,Q) ��

spX

��

L⋆ H •(X o
s ,Q)

+1 ��

spXo

��

. . .

(69)

where L stands for the increasing classical Leray filtration (which classically starts at zero).

4. Applications to the Hitchin morphism

In this section we apply the results of Section 3, especially equation (66) in Theorem
3·5·4 to the triples arising from the compactification of Dolbeault moduli spaces in fami-
lies [de 2018]. The main result is Theorem 4·4·2, to the effect that the triple given by the
Dolbeault moduli spaces over a curve, its compactification and the boundary gives rise to a
specialisation morphism of long exact sequences for the (intersection) cohomology of the
special and general points that is a filtered isomorphisms of triples for the perverse Leray
filtrations. This is what one would obtain if we were in the oversimplified and ideal situation
of a fiber bundle with boundaries, and we were to take the Leray filtrations.

The compactification [de 2018] is obtained by taking a Gm-quotient; this is quickly
reviewed in Section 4·2. In order to work with such quotients, we need some results on
descending objects and properties along these quotients, which may be of some independent
interest; see Section 4·1. Section 4·3 contains some special properties of the constant sheaf
and of the intersection cohomology complex for the quotients we obtain. Finally, we put
everything together in Section 4·4, where we prove Theorem 4·4·2.

4·1. Descending along Gm-quotients

In this section, we assume we have two Cartesian diagrams of morphisms over a variety
S as in the compactification Set-up 3·4·1:

Z

f

��

a �� X

f

��

X o

f

��

b�� Z

f

��

a �� X

f

��

X o

f

��

b��

W
a �� Y Y ob�� W

a �� Y Y o,
b��

(70)

such that: Gm-acts equivariantly on the l.h.s. with finite stabilisers; the actions cover the
trivial action over S; the r.h.s. is obtained by taking the quotient under the Gm-action; the
quotient morphisms π are geometric quotients.

LEMMA 4·1·1. Each quotient morphism π above factors as π = qp, where p is a quo-
tient S-morphism by a finite subgroup C of Gm, and q is a smooth quotient S-morphism by
a Gm-action, so that, for example, we have:

π : X −→p X ′ := X /C −→q X = X /Gm = X ′/G′
m(:=Gm/C). (71)

Proof. Let C ⊆Gm be any finite subgroup containing all the stabilizers (recall that we are
in a finite type situation). The variety X ′ := X /C over S is endowed with the induced
G′

m :=Gm/C ≃Gm-action, and we have diagram (71). The quotients morphism p is finite.
By Luna Étale Slice Theorem, the quotient morphism q is smooth: the G′

m-action has trivial
stabilisers, so that q is étale locally a projection map with scheme-theoretic fiber Gm .

We record the following remark for use in the proof of Lemma 4·3·3.
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Remark 4·1·2. The following commutative diagrams are Cartesian in the category of
topological spaces:

Z
a ��

p

��

X

p

��

X ob��

p

��
Z ′ a ��

q

��

X ′

q

��

X ′ob��

q

��
Z

a �� X X o.
b��

(72)

The same is true if we replace (Z , X, X o) etc. with (W, Y, Y o) etc.

LEMMA 4·1·3. (Descending the lack of constituents on the boundary to a quotient

by Gm). Let G ∈ D(Y ) and G ∈ Db
c (Y ) be such that q∗G is a direct summand of p∗G . If G

has no constituents supported on the boundary W , then G has no constituents supported on
the boundary W .

Proof. Claim: p∗G has no constituents supported on W ′. Since p is finite, p∗ is t-exact, so
that p∗ and pH • commute. It follows that we may assume that G is perverse. Let J•G be
a Jordan–Holder filtration for G , so that the non trivial graded objects Gr J

• G are simple,
i.e. they are intersection complexes supported at irreducible closed subvarieties of Y and
with simple coefficients. By the t-exactness of p∗, we have that p∗ J•G is a filtration and
Gr p∗ J

• p∗G = p∗Gr J
• G . Since p is finite, hence small, we have that p∗ sends the intersec-

tion complex of a closed subvariety T of Y with twisted coefficients, to the intersection
complex of the image p(T ) with appropriately twisted coefficients. By construction, we
have that W = p−1(W ′). The subvarieties T appearing as the supports of the simple Gr J

• G

above are not contained in W by assumption, so that their p(T )’s are not contained in W ′.
The claim follows.

By construction, we have that W ′ = q−1(W ). Since q∗G is assumed to be a direct sum-
mand of p∗G , to prove the lemma we need to show that the constituents of q∗G are q∗[1]

of the constituents of G. But this follows from the fact that, since q is smooth of relative
dimension one with connected fibers, q∗[1] is t-exact and it preserves simple objects (cf.
[Be-Be-De 1982, p.106, bottom]).

We need the following general result in the proof of Lemma 4·1·5.

LEMMA 4·1·4. Let C be a finite group acting on a variety X, let p : X → X ′ be the
quotient morphism. Then: (i) p∗QX admits QX ′ as a direct summand; (ii) p∗ I CX admits
I CX ′ as a direct summand.

Proof. We prove (i). By [Gr 1956, (5·1·1), p.108], we have that QX ′ = (p∗(QX ))C . We split
the natural adjunction morphism QX ′ → p∗QX by sending a section s ∈QX (p−1(U )) to
(1/|C |)

∑
c∈C c∗ · s.

We prove (ii). One can argue as above; we leave this to the reader. We prove a stronger
statement, which may be of independent interest, namely that the conclusion remains valid
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if we assume that p is a small morphism that has the property that every irreducible com-
ponent of X maps onto an irreducible component of X ′. Since I CX is the direct sum of
the intersection complexes of the irreducible components of X and similarly for I CX ′, we
may assume that X and X ′ are irreducible, and that p is small and surjective. By the con-
ditions of support/co-support characterising intersection complexes, the fact that p is small
and surjective implies that p∗ I CX is an intersection complex with some twisted coefficients
L . Since p is small and surjective, there is a Zariski dense open subset j : U ′ ⊆ X ′ that
is nonsingular, and over which p is finite and étale. Then L can be taken to be the local
system on U associated with the topological covering, i.e. the direct image of the con-
stant sheaf. Note that this splits off QU by a standard trace argument. We now show that
this splitting extends uniquely to a splitting of the corresponding intersection complexes,
which proves our contention. Let I ′, J ′ ∈ P(X ′) be two intersection complexes with sup-
port precisely X ′. We have the standard identity: Hom(I ′, J ′) = Hom( j∗ I ′, j∗ J ′): we have
j∗ j∗ J ′ ∈ pD≥0(X); so Hom(I ′, j∗ j∗ J ′) = Hom(I ′, pH 0( j∗ j∗ J ′)); we have the short exact
sequence 0 → J ′ → pH 0( j∗ j∗ J ′) → Q → 0, where Q ∈ P(X ′) has support strictly con-
tained in X ′; we thus have Hom(I ′, J ′) = Hom(I ′, pH 0( j∗ j∗ J ′)) because Hom(I ′, Q) = 0
by reasons of support, and Hom(I ′, Q[−1]) = 0 by the axioms of t-structure. We apply the
standard identity above to I ′ = p∗ I CX and to J ′ = I CX ′ , and we lift the splitting off of QU

from L to the splitting off of I CX from p∗ I CX .

LEMMA 4·1·5 (Descending φ = 0 to a quotient by Gm). Let X /S be as in (70). Assume
S is a nonsingular curve, and let s ∈ S be a point. Then we have the following implications:

(i) if φQX = 0, then φQX = 0;
(ii) if φ I CX = 0, then φ I C X = 0;

(iii) let F ∈ D(X ), F ∈ Db
c (X) be such that q∗ F is a direct summand of p∗F , then: if

φF = 0, then φF = 0.

Proof. We prove (iii). Since p is proper, we have that φp∗F = p∗φF = 0. It follows that,
since φ is additive, we have that φq∗F = 0. Since q is smooth, we have q∗φF = φq∗F =

0. Since q is surjective, we have that q∗φF = 0 implies the desired conclusion (iii). Now,
(i) and (ii) follow from (iii) coupled with Lemma 4·1·4, and the facts q∗QX =QX ′ and
q∗ I CX = I CX ′[−1] (q is smooth of relative dimension one; the shifts are innocuous).

LEMMA 4·1·6. (Descending other identities).

(i) If a!QX =QZ [−2], then a!QX =QZ [−2].
(ii) If a! I CX = I CZ [−1], then a! I CX = I CZ [−1].

Proof. We prove (i).
We apply p∗ and take invariants: (p∗a!QX )C = (a! p∗QX )C = a!(p∗QX )C = a!QX ′ ;

(p∗QZ )C =QZ ′ . We thus have that: a!QX ′ =QZ ′[−2].
Since q is smooth of relative dimension 1, we have that q∗[2] = q !, so that q∗ and a!

commute. It follows that we also have that: q∗a!QX = a!QX ′ =QZ ′[−2] = q∗QZ [−2], or
q∗a!QX [2] = q∗QZ . Since q is surjective, we have that a!QX [2] is a sheaf. Since q is smooth
and surjective, we have that a!QX [2] is locally constant of rank one. Since the fibers of q are
connected, we deduce that a!QX [2] is constant and this proves (i).

We prove (ii).

https://doi.org/10.1017/S0305004121000293 Published online by Cambridge University Press



Perverse Leray filtration and specialisation 481

By repeating the first part of the proof of part (i), we see that: a! I CX ′ = I CZ ′[−1].
By repeating the second part of the proof of part (i), we see that: q∗a! I CX = q∗ I CZ [−1],

which we re-write as q∗[1]a! I CX [1] = q∗[1]I CZ .
By [Be-Be-De 1982, corollaire 4·1·12], a! I CX [1] is perverse. By [Be-Be-De 1982,

Proposition 4·2·5], q∗[1] : P(Z) → P(Z ′) is fully faithful, hence conservative. This implies
the desired conclusion (ii).

4·2. Compactification of Dolbeault moduli spaces via Gm-actions

Let us summarise the main features of the compactification in [de 2018] that we need in
this section. The notation we use here is adapted to the present needs, and differs from the
one in [de 2018].

Let X o/S be the Dolbeault moduli space associated with a reductive group G and
a smooth projective family over S. Let f : X o → Y o be the corresponding Hitchin
S-morphism; it is projective.

The main construction in [de 2018] yields two diagrams as in (70), so that, in particular,
X/S is a projective completion over S of X o/S, with boundary the S-relative Cartier divisor
Z , which is proper over S. Similarly for (W, Y, Y o). Let us give some more details. Let oS →

Y o be the canonical section: each Y o
s has a canonical distinguished point; e.g. if G = GLn ,

then this point corresponds to the characteristic polynomial tn , which in turn corresponds
to nilpotent Higgs fields. We have the closed S-subvariety f −1(oS) ⊆ X o. We have Gm-
equivariant open inclusions and equalities as follows:

X o × (A1 \ {0}) = X
o �X

o ∪ (X o \ f −1(oS)) × {0} = X � X o ×A1, (73)

Y o × (A1 \ {0}) = Y
o �Y

o ∪ (Y o \ oS) × {0} = Y � Y o ×A1, (74)

Z = (X o \ f −1(oS)) × {0}� X o × {0}, W = (Y o \ oS) × {0}� Y o × {0}. (75)

Remark 4·2·1. Note that we are not ruling out that Z = ∅. In this case, our goal, i.e.
Theorem 4·4·2, still holds and it is not trivial, for it states that the P f -filtered specialisation
morphism is an isomorphism, whether we take singular or intersection cohomology groups
with rational coefficients. If Z is not empty, it could still happen that there are points s ∈ S
such that Zs is not dense in every irreducible component of X o

s × {0}; this is not an issue in
what follows.

4·3. Special properties of QX and I CX for the compactification

LEMMA 4·3·1.

a!QX =QZ [−2], a! I CX = I CZ [−1]. (76)

Proof. By virtue of Lemma 4·1·6, it is enough to show that: (i) a!QX =QZ [−2], and (ii)
a! I CX = I CZ [−1].

In view of the open immersions Z = (X o \ f −1(oS)) × {0}) ⊆ X o × {0}, and X ⊆ X o ×

A1, it is enough to prove (i,ii) with a : Z
⊆
→ X replaced by a : X o × {0}

⊆
→ X o ×A1. One

is easily reduced to the case a : {0}
⊆
→A1, where the desired conclusions are trivial.
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The following lemma makes precise the relation between the irreducible components of
the varieties in the triple (Z , X, X o). Let J (resp. K , resp. J o) be the set of irreducible
components of X (resp. Z , resp. X o).

LEMMA 4·3·2. (i) The function J → J o, X j �→ X j ∩ X o =: X o
j is well-defined and a

bijection. We have that X j ∩ Z =: Z j is either empty, or an irreducible component of
Z; if j, j ′ ∈ J are such that Z j = Z j ′ �= ∅, then j = j ′; in particular, this defines an
injection K → J , where Zk = X j (k) ∩ Z.

(ii) The natural adjunction disitinguished triangle (61) a!a! I CX → I CX → b∗b∗ I CX �

reads as follows:

⊕
K a! I CZk [−1] −→

⊕
J I CX j −→

⊕
J b∗ I CXo

j
�������� , (77)

where the arrows are direct sum arrows (i.e. the components of each arrow with pairs
of distinct indices are zero).

Proof. Since Z is open in X o = X o × {0}, we have that the set of irreducible component of
Z injects in the evident fashion into the one of X o. Since X is open and dense in X o ×A1,
we have that the set of irreducible component of X is naturally identified with the one of
X o ×A1, which in turn, since A1 is irreducible, is naturally identified with the one of X o. It
follows that the desired statement holds if we replace (Z , X, X o) with (Z , X , X o). The
first triple is obtained from the second by dividing by the action of the connected group Gm ;
the quotient morphism has the orbits as fibers (in fact, it is a geometric quotient). It follows
that the sets of irreducible components and their mutual relations are preserved by passing
to the quotient, and (i) is proved.

We have the Cartesian diagram:

Ẑ :=
∐

K Zk

ν

��

a �� X̂ :=
∐

J X j

ν

��

X̂ o :=
∐

J X o
j

ν

��

b��

Z = ∪K Zk
a �� X = ∪J X j X o = ∪J X o

j ,
b��

(78)

where: ν are the evident morphisms induced by the closed embeddings of the irreducible
components Z j → Z and X j → X ; a (resp. b) are the evident closed (resp. open) embed-
dings. We have I CX = ν∗ I C X̂ and I CZ = ν∗ I C Ẑ . By base change, by the additivity of
adjunction morphisms, and by the identity a! I CXk = I CZk [−1] –which is due to Lemma
4·3·1, which remains valid for the irreducible components, by virtue of the just-proved part
(i)–, we have that the distinguished triangle (61) applied to I CX reads as (77), and (ii) is
proved.

LEMMA 4·3·3. Let S be a nonsingular curve and let s ∈ S be a point. Let F ∈ Db
c (X) be

either QX , or I CX . Then:

φa!F = 0, φF = 0, φb∗b∗ F = 0. (79)

In particular, we have:

φv∗a! f∗a!F = 0, φv∗ f∗F = 0, φv∗b∗ f∗b∗ F = 0. (80)
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Proof. We refer to [de-Ma 2018] and to [de 2018] for references.
We have the evident morphisms X → X o ×A1 → X o. Let Fo := b∗ F = F|Xo . Let F ∈

D(X ) be the pull back of Fo to X ; if Fo =QXo , then F =QX ; if Fo = I CXo , then
F = I CX [−1]. By the Non Abelian Hodge Theorem, X o is topologically locally trivial
over S, so that φFo = 0: this is clear when F =QX , so that Fo =QXo ; when F = I CX , so
that Fo = I CXo , we invoke the topological invariance of the intersection complex in the not
necessarily irreducible context [de-Ma 2018]. Since prXo : X o ×A1 → X o is smooth, we
have that φpr∗

Xo Fo = pr∗
XoφFo = 0. Since X is open in X o ×A1, we have that φF = 0. By

Lemma 4·1·5.(i),(ii), applied to π = qp : X → X ′ → X and F and F , we see that φF = 0.

Since v and f are proper, this implies that φv∗ f∗F = v∗ f∗φF = 0.

We now wish to apply Lemma 4·1·5 to π = qp : Z → Z ′ → Z , a!F and a! F . By the
base change identities associated with (72), we have that p∗a!F = a! p∗F (always valid)
and that q∗a! F = a!q∗ F (because q is smooth). From what above, we know that p∗F admits
q∗ F as a direct summand, so that p∗a!F admits q∗a!F as a direct summand. We claim
that φa!F = 0. Since Z is open in X o × {0}, it is enough to show that φã!F = 0, where
ã : X o × {0} → X o ×A1. Since prXo is smooth of relative dimension one, so that pr !

Xo =

pr∗
Xo [−2], we see that ã!F = Fo[−2]. Since we know that φFo = 0, we see that φã!F = 0,

as desired. By Lemma 4·1·5, we have that φa!F = 0. Since v, a and f are proper, this implies
that φv∗a! f∗a!F = v∗a! f∗φa!F = 0.

The remaining statements follow from what we have proved and the distinguished triangle
(61): we get φb∗b∗F = 0, and then ve apply again v∗ f∗ to φb∗b∗F to conclude.

LEMMA 4·3·4. Let F ∈ Db
c (X). Then: (i) f∗F has no constituents supported on W ; (ii)

f∗i∗F has no constituents supported on Ws .

Proof. We have Cartesian diagrams:

X

��

�� X o ×A1

��

�� X o

��

Xs

��

�� X o
s ×A1

��

�� X o
s

��
Y �� Y o ×A1 �� Y o Ys

�� Y o
s ×A1 �� Y o

s .

(81)

Let Fo := b∗ F = FXo . Denote by F the pul-back of Fo to X . By proper base change,
f∗ pr∗

Xo Fo = pr∗
Xo f∗F has no constituent on Y o × {0}. In view of (75), the same is true for

f∗F . We apply Lemma 4·1·3, so that f∗F has no constituents supported on W. The proof
of the second assertion is identycal in view of the fact that: if s ∈ S is a point, then we have
the −s-version of (70) and it enjoys similar properties; in particular, Lemma 4·1·3 applies
to it.

4·4. The long exact sequence of the triple (Z , X, X o)

In this section, we start with a smooth family of projective manifolds over a nonsingular
connected curve S, so that, according to Section 4·2, we have the situation in (70), where
X o/S is the Dolbeault moduli space for the family. We fix a point s ∈ S (the special point)
and we let t ∈ S be a general point.
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[de-Ma 2018, theorem 1·1·2] proves that the specialisation morphism sp∗
P f in intersection

cohomology for the Dolbeault moduli spaces of a smooth family of projective manifolds is
an isomorphism:

sp∗
P f :

(
IH •(X o

s ,Q), P fs
)
−→∼

(
IH •(X o

t ,Q), P ft
)
. (82)

This is accomplished by applying [de-Ma 2018, theorem 3·2·1, part (ii), or part (iii)].
In fact, part (ii) implies (iii); this latter seems like a more natural statement, at least when
dealing with semisimple coefficients F ∈ Db

c (X). Since the semisimplicity is essential in
what above, the methods of [de-Ma 2018] do not seem to afford the same kind of results for
the non-semisimple F =QXo , i.e. for singular cohomology.

As it is noted in Remark 3·3·10, Theorem 3·3·7 is an amplification of [de-Ma 2018,
Theorem 3·2·1] and it can thus be used to prove (82)): in fact we can use any of the parts
(iii,iv,v,vii) of Theorem 3·3·7 to deduce (82). However, none of these approaches yields
a genuine new proof of (82) since, as it turns out, in verifying the assumptions, we end
up verifying the assumptions of part (5), and thus end up using [de-Ma 2018, Theorem
3·2·1·(iii)].

In this section, we show that:

(i) by using a good compactification of Dolbeault moduli spaces, Proposition 3·4·2
yields a new proof of (82)); see Proposition 4·4·1. In fact, (82) is made more pre-
cise in (83). The proof in Proposition 4·4·1 uses Proposition 3·4·2.(A); the reader
can verify that, in the case of (topologist’s) intersection cohomology, one can use
Proposition 3·4·2.(B) as well.

(ii) Proposition 3·4·2 also leads to the proof of a new fact -not seemingly affordable by
the methods of [de-Ma 2018], nor of Theorem 3·3·7-, namely that (83) holds for
ordinary singular cohomology as well.

(iii) The good compactification of Dolbeault moduli spaces gives rise to the main new
fact proved in this section that the specialisation morphisms sp∗

P f for the triple
(Z , X, X o), in (the topologist’s) intersection cohomology as well as in rational sin-
gular cohomology, give rise to the isomorphism (84) of long exact sequences of
Theorem 4·4·2

Recall that P f on H •(X, F) is defined by considering the system pτ≤• f∗F .
We shall make implicit use of (iv) and (iii).
In the remainder of this section: when dealing with intersection cohomology groups, all

morphisms are direct sum morphisms with respect to the canonical decomposition according
to irreducible components; in Proposition 4·4·1 and Theorem 4·4·2, the horizontal arrows
are well-defined without ambiguities, the vertical ones are well-defined modulo the ambigu-
ities introduced by the action of monodromy exchanging the irreducible components. These
ambiguities are harmless for the purposes of this paper; see Remark 3·1·5. Moreover, they
are removed if instead of using a general point t , we use the nearby cycle functor ψ .

We state the following proposition using (hyper)cohomology; the reader should have no
difficulty re-writing the stronger version of (83) in DF(pt) that uses (RŴ(−, −), P f ).
Even ignoring the l.h.s. of (83), as pointed out above, this result, i.e. that the perverse fil-
tered specialisation morphisms exists and is an isomorphism for the singular cohomology of
Dolbeault moduli spaces, is new.
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PROPOSITION 4·4·1. Let H (−) denote either the singular cohomology, the intersection
cohomology, or the topologist’s intersection cohomology groups. We have the following
commutative diagram of filtered finite dimensional rational vector spaces, where the hori-
zontal arrows are the natural restriction morphisms, the vertical arrows are the well-defined
perverse-filtered specialisation morphisms and they are both isomorphisms:

(
H •(X t), P ft

)
��
(
H •(X o

t )P ft
)

(
H •(Xs), P fs

)
��

sp∗

P f ≃

��

(
H •(X o

s ), P fs
)
.

sp∗

P f ≃

��

(83)

In the case of (the topoligist’s) intersection cohomology, the arrows are direct sum arrows
for the canonical decompositions into irreducible components (77).

Proof. By Lemma 4·3·3, coupled with Theorem 3·3·7.(i), we have that the perverse filtered
specialisation morphism on the l.h.s. of (83) is defined and it is an isomorphism. We wish to
apply Proposition 3·4·2.(A) and its Corollary 3·4·6. We need to verify that φb∗b∗ F = 0 and
that φ f∗b∗F = 0. Both follow, again, from Lemma 4·3·3. This proves diagram (83). That the
arrows are direct sum arrows follows from Lemma 4·3·2.

The following result identifies the filtered cone of the restriction morphism in (83).
We state the following proposition using morphisms of long exact sequences in cohomol-
ogy. The reader should have no difficulty re-writing the stronger version of (84) that uses
(RŴ(−, −), P f ) and distinguished triangles in DF(pt).

THEOREM 4·4·2. Let H (−) denote either the singular cohomology, the intersection
cohomology, or the topologist’s intersection cohomology groups. In what follows, for inter-
section cohomology, when dealing with Zs, Z t , replace P f (1) with P f and • − 2 with • − 1.
We have as isomorphism of long exact sequences of filtered morphims:

. . . ��
(
H •−2(Z t), P ft (1)

)
��
(
H •(X t), P ft

)
��
(
H •(X o

t )P ft
)

�� . . .

. . . ��
(
H •−2(Zs), P fs (1)

)
��

sp∗

P f ≃

��

(
H •(Xs), P fs

)
��

sp∗

P f ≃

��

(
H •(X o

s ), P fs
)

sp∗

P f ≃

��

�� . . . .

(84)

For (the topologist’s) intersection cohomology, the morphisms are direct sum morphisms for
the decomposition according to irreducible components (77).

Proof. The plan is to use (66) in Theorem 3·5·4, which stems from (67), and plug (76) into
the result.

In order to use (66), we need to verify that the conditions (I) in Theorem 3·5·4 are met.
Even if it is not necessary, let us note that conditions (II) and (III) are also met in the case
where we deal with intersection cohomology via the use of I CX ; however, they are not
necessarily met if we deal with singular cohomology via the use of the non semisimple QX .

Conditions (Ia,Ib) are met by virtue of Lemma 4·3·4. Conditions (Ic,Id) are met by virtue
of Lemma 4·3·3.
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Plug F =QX [1] in (67), use i∗QX =QXs and i∗a!QXs =QZs [−2] (cf. 76), and similarly
for t∗, and get the system of isomorphisms of distinguished triangles:

pτ≤•+1 f∗QZ t [−2] �� pτ≤• f∗QX t
�� b∗

pτ≤• f∗QXo
t

��������

pτ≤•+1 f∗QZs [−2] ��

≃

��

pτ≤• f∗QXs
��

≃

��

b∗
pτ≤• f∗QXo

s
��������

≃

��

.

(85)

Then the reader can use (iv) and (iii), to observe that P f (−1) in (66) then becomes P f (1)

as in (84), which is thus proved when H is singular cohomology.
Plug F = I CX in (67), use i∗[−1]I CX = I CXs and i∗a! I CX = I CZs [−1] (cf. 76), and

similarly for t∗, and get the system of isomorphisms of distinguished triangles:

pτ≤•+1 f∗ I CZ t [−1] �� pτ≤• f∗ I CX t
�� b∗

pτ≤• f∗ I CXo
t

��������

pτ≤•+1 f∗ I CZs [−1] ��

≃

��

pτ≤• f∗ I CXs
��

≃

��

b∗
pτ≤• f∗ I CXo

s
��������

≃

��

.

(86)

Then the reader can use (iv) and (iii) to observe that P f (−1) in (66) becomes P f as in (84)
-and that • − 2 should be replaced by • − 1-, which is thus proved when H is intersection
cohomology. That the morphisms are direct sum morphisms for the decompositions into
irreducible components follows from (77).

Similarely, if we plug ICX = ⊕ j I CX j [− dim X j ], we end up with the desired conclusion.

Remark 4·4·3.

(i) The results of this section hold if we replace the Dolbeault moduli space of Higgs
bundles for G = GLn, SLn, PGLn for families of curves with their twisted counter-
parts of [de 2018, remark 2·1·2], where the degree and rank of the Higgs bundles are
coprime.

(ii) If G = GLn, SLn , these twisted Dolbeault moduli spaces are nonsingular, their com-
pactifications in Section 4·2 are orbifolds, and they can be resolved with boundary
a simple normal crossing divisor over the base of the family S; see [de 2018, the-
orem 3·1·1.(6)]. What follows is certainly redundant in our set-up of the Hitchin
morphism, but may be useful in other set-ups: the proof of Theorem 4·4·2 uses condi-
tions (I) in Theorem 3·5·4; since we are in a simple normal crossing divisor situation,
in view of Corollary 2·4·2, we could use the variant of conditions (II,III) in Theorem
3·5·4 where one only assumes that f∗i∗F[−1] satisfies the conclusion of the Hard
Lefschetz Theorem. We leave the details to the reader.
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