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1. Introduction

C. Simpson has introduced a compactification technique ([40, §11]) which he then
applied to compactify the moduli space of flat connections over a curve defined over
the complex numbers. This paper has grown from the need in [8] to generalize this
compactification technique so that it leads to compactifications of the moduli spaces
that appear in the Non Abelian Hodge Theory of a curve defined over an algebraically
closed field of arbitrary characteristic, or over a discrete valuation ring, possibly of mixed
characteristic. For more details on these moduli spaces Mpg,q of t-connections, Mygr of
connections, and Mp,; of Higgs bundles, see §2.2.

Let us discuss a little Simpson’s compactification technique leading to the compactifi-
cation of the moduli space Myr of connections on a curve C' over the complex numbers.
First, he constructs the moduli space of ¢-connections as a G,,-equivariant morphism
T : Myoq — A, where a t-connection on C is sent to the scalar value ¢t. The action is:
multiply a t-connection by a non-zero scalar. For ¢ = 0, we have the Dolbeault mod-
uli space Mp,; of Higgs bundles, and for ¢ = 1 we have the de Rham moduli space
of connections. There is the Hitchin morphism hpo : Mpo — A (A a suitable affine
space parametrizing spectral curves for C' in the cotangent bundle of C). The fiber
Npo; over the point o € A corresponding to the spectral curve rC' —rank times the
zero section— is compact and is also the set of points in Myy,q that admit infinity limits
for the G,,-action. Simpson sets Myr := (Mpgoq \ Npot)/Gm; this way the boundary
Mar \ Mgr = (Mpe; \ Npot)/Gm. This definition is simple-minded. On the other hand,
the proof that the quotient exists as a separated proper scheme over C is quite clever and
intricate (it does not use the methods from D. Mumford’s Geometric Invariant Theory).
Simpson proves a more general result ([40, §11]), where one takes the quotient by G, of
a suitable G,,-variety U/S over a complex variety S endowed with the trivial G,,-action.
This is what we mean by Simpson’s compactification technique. The application to the
compactification of My is a special case; see diagram (49) in the proof of Theorem 2.14.

The first set of results of this paper are stated in §2.1 and are proved in the lengthy
and technical §3. We generalize Simpson’s compactification technique in Theorems 2.6
and 2.7. In short, the set-up U/S/C above, is replaced by one of the form U/S/B/J,
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where B is a base scheme over a universally Japanese ring J, and the multiplicative
group acting is G, p. This level of generality seems to be the natural one in view of
A. Langer’s results yielding, as special cases of his [27, Tm. 1.1], the moduli spaces we
work with for families of curves over a base defined over such a ring. This covers the
case of discrete valuation rings, which is of interest in [8]. We complement these results
with the compactification and projectivity criteria in Theorem 2.8; here one works with
an equivariant morphism U/S — U’/S, and this is useful in our applications, as the
moduli spaces we work with do carry such morphisms, such as the Hitchin morphism
hpeor seen above, and we want to compactify domain and target, while keeping track of
the morphism.

The second set of results are compactification results for the moduli spaces My oq, Mar
and Mpy;. Recall (§2.2) that we have natural morphisms exiting these moduli spaces: the
proper Hitchin morphism hpe;; the structural morphism Tgoq : Muod — Al. In positive
characteristic, we also have: the Hodge-Hitchin morphism hgoq : Mpoq — A’ x Al (here
A’ is a suitable affine space parameterizing the spectral curves for the Frobenius twist of
the curve); the de Rham-Hitchin morphism hggr : Mgr — A’. Our compactification re-
sults for these moduli spaces and the associated morphisms are stated in §2.2 and proved
in §4, as an application of Theorem 2.8: Theorem 2.13 (Mp,q); Theorem 2.14 (positive
characteristic, Mgoq and hpoq); Theorem 2.17 (Myg); Theorem 2.18 (positive character-
istic, Myg and hqr); Theorem 2.19 (Mp,;); Theorem 2.18 (positive characteristic, Mpy;
in relation to Mpq).

In fact, we also prove projectivity results concerning the aforelisted natural morphisms
exiting these moduli spaces. We prove, using the known fact that the Hitchin morphism
hpoi is proper, that the morphisms Troq : MHoq — A', hioq and hgp are proper, in fact
projective.

The properness of hyr has been proved by M. Groechenig [18], who deduces it from
the properness of the Hitchin morphism. The Hodge-Hitchin morphism hp,qs has been
introduced by Y. Laszlo and C. Pauly, who proved ([29, Pr. 5.1]) that it is proper when
restricted over o4 x A, where 04/ is the “origin” of A’ (t-connections with nilpotent
p-curvature). A. Langer’s [27, statement at the top of p. 531 and Th. 5.1] implies that
hHoq is proper; see Remark 2.16. In either case, one applies a variant of the Langton
technique to a related Hitchin morphism, and deduces from it the desired conclusion.
The proof we offer is via the compactification theorems we prove, but also relies on
Langer’s Langton-type result [27, Th. 5.1].

The purpose of the Appendix §5 is stated in §5.1: in short, one wants to extend, un-
der favorable circumstances, the techniques and results in [7] concerning specialization
morphisms in cohomology, from a situation over the complex numbers, to the one over a
discrete valuation base ring. This entails making sure that: we have suitable compactifi-
cations (this is achieved by the compactifications in §2.2); we have the correct formalism
of perverse sheaves for schemes over a discrete valuation ring (this is confirmed in §5.2);
we carefully revisit [7, §4] and make sure that some potential issues due to positive or
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mixed characteristic are ironed out, at least under favorable circumstances (this is done
in the technical §5.3).

The results of this Appendix §5, which relies heavily on the results in §2.2, are used
in [8].
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2. Statement of the main results
2.1. Compactification and projectivity results

In order to prove the compactification Theorems in §2.2 concerning Hodge, de Rham
and Dolbeault moduli spaces associated with curves over some suitable base schemes, we
first need to prove the Projectivity Theorem III 2.8. In turn, to prove this latter result,
we need to prove the Compactification Theorem II 2.7, which is a direct consequence of
the Compactification Theorem I 2.6, the proof of which takes the bulk of this paper.

The Compactification Theorems I 2.6 and II 2.7 together generalizes Simpson’s Com-
pactification technique [40, Thm. 11.1, 11.2], which is stated and proved by C. Simpson
over the field of complex numbers, to the case over a base scheme as in Assumption 2.1.

The Projectivity Theorem IIT 2.8 is the arbitrary characteristic counterpart to [6,
Prop. 3.2.2]. In fact, by using the notation of Theorem 2.8, this same theorem replaces
the assumption that Z — Z’ is proper, with the weaker assumption that U is the pre-
image of U’. This improvement, coupled with auxiliary properness results, affords proofs
of properness and of projectivity of certain morphisms and objects arising in Non Abelian
Hodge Theory; see §2.2 and their proofs in §4.

The Compactification Theorem I 2.6 can also be viewed as a partial generalization
(replace the ground field with the base variety S) of the main theorem in [5, p.11] to
the relative case. For a comparison between Theorem 2.6 and the main theorem of [5,
p.11]), see Remark 2.10.

Let us introduce the setup for the Compactification Theorem I 2.6. This setup is
similar to the one in [40, p. 44]; the main difference is that we work over a base scheme
B over a universally Japanese ring J [41, 032E]), while Simpson works over the complex
numbers (i.e. J = C). (Added in revision: the paper [28] allows to merely assume B to
be Noetherian and drop J.)

Assumption 2.1 (Setup for the Compactification Theorem I 2.6). The following as-
sumptions concerning schemes X/S/B/J remain in vigour up to and including The-
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orem 2.6. Let J be a universally Japanese ring. Let B and S be noetherian schemes. Let
S — B — J be separated morphisms of finite type. Assume that S admits an invertible
sheaf that is ample, and an invertible sheaf that is ample relative to B; this ensures that
there is a B-morphism that is a locally closed embedding of S into P§ for some N > 0.
Let X — S be a projective morphism. Let G,,, p := G, Xz B. Let 1 : Gy, p xp X = X
be a G, p-action on X covering the trivial G,, g-action on S. Assume that X admits a
G, p-linearized ample line bundle.

Our next goal is to state Theorem 2.6 and, to this end, we need some preparation.

Limit points, fixed points. Let us recall the definition of limits of a point in X under
the G, p-action p. Let T be a B-scheme. Let © € X (T). Let p, be the orbit morphism
defined by the following compositum:

,uI:Gm,T::Gm,B XBTMGWL’B XBXi>X. (1)

If p, extends to a morphism f; : AL — X, then this extension is unique. In this case,
we say that lim;_,o t-x exists and we set it to be the restriction of i to 07 C A%. Clearly,
lim; o t-x is an T-point of X. Similarly, if i, extends to a morphism ﬁ;/ : ]P%\OT — X7,
then this extension is unique, and we set lim; ...t - z to be the restriction of ﬁ;/ to
oor C PL\ Or, which is also an T-point of X. By [10, XII Cor. 9.8], there exists the
closed subscheme V' C X of fixed points for the G,, g action.

A partial order. Let us introduce a partial order on the Zariski points of V as in [40,
p. 44] via the following definition. The weight argument as in [40, p. 44] shows that the
upcoming relation < indeed defines a partial order on the Zariski points of V.

Definition 2.2 (The Partial Order < on the Zariski points of V). Let u and v be two
Zariski points of V. Define a relation < as follows: u < v if there exists a finite sequence of
Zariski points 1, ..., £, of X such that lim; gt -2y =4, V1 <l <m—1,limy_,t-x; =
lim; o 2741, and limy oo t - 2, = 0.

If u < v, then we say that u is more zero than v, and v is more infinity then wu.

Definition 2.3 (Partitions V = VUV~ ). We consider partitions of V with the following
properties. Let V. and V_ be two disjoint closed and open subschemes of V' with the
property that V =V, UV_. In addition, we require the following: if u is more zero than
a point in V, then u € V; if v is more infinity than a point in V_, then v € V_.

Concentrators. Let Z be any G,,-stable closed subscheme of X. Let the 0-concentrator
functor ®y be the subfunctor of X such that for any B-scheme T', a T-point x of X is in
®o(T) if and only if lim;,o ¢ - = exists and lies in Z(7T'). By [22, §4.5], we see that @ is
represented by a scheme X(Z) with a morphism X((Z) — X that is locally over X, (Z)
a locally closed immersion (note that Xo(Z) — X may not be a locally closed immersion,

see [22, §4.6]). Similarly, we can define the co-concentrator @, and the scheme morphism
X(Z) = X.
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Definition 2.4 (Set Theoretic Partition X = Y, UY_UU ). We fix a partition V = VUV~
of the fixed point set as in Definition 2.3. We define Y, to be the set theoretic image of
Xoo(V4) — X, and define Y_ to be the set theoretic image of Xo(V_) — X. We define
theset U := X\ (Y; UY_).

Remark 2.5. Let us show that the sets Y. in Definition 2.4 are disjoint. If there were
x € Yy NY_, then z would be more zero than a point u € V, and more infinity than a
point v € V_. We would then have that u is more zero than v € V_. By Definition 2.3,
we would have that v € Vy N V_, contradicting that V, N V_ = (.

Recall that a uniform (resp. universal) geometric quotient A — B is a geometric
quotient whose formation commutes with flat (resp. arbitrary) base change B’ — B.

Theorem 2.6 (Compactification Theorem I). Assumption 2.1 on X/S/B/J are in vigour.
Fiz a partition of the fized point set V.= VT UV~ as in Definition 2.3 and let X =
Y, UY_UU be the corresponding set theoretic partition as in Definition 2.4. We have
that

(1) Both Yy and Y_ are closed inside X.

(2) The uniform geometric quotient U — U/G,, p exists, with U/G,, g an S-scheme.
(8) The morphism U/G,, g — S is universally closed.

(4) The morphism U/G,, g — S is separated, thus, in view of (3) above, proper.

Proof. The proof occupies the whole of §3. O

Theorem 2.7 (Compactification Theorem II). Assumption 2.1 on S/B/J are in vigour.
Suppose Z/S is an S-scheme with a G, g-action that is compatible with the trivial G, -
action on S. Assume that there is a G, p-linearized relatively ample line bundle on Z/S.
Suppose that the fized point set W C Z is proper over S, and that for any z € Z the
limit limy_,ot - z exists in W. Let U C Z be the subset of points z such that the limit
lim; oo t - 2z does not exist in Z. Then U is open and there exists a uniform geometric
quotient U — U/G,, g by the action of G, g. This geometric quotient is separated and
proper over S.

Proof. This follows from Theorem 2.6 in the same way in which [40, Thm. 11.2] follows
from [40, Thm. 11.1]. We only reproduce some of the highlights of the proof. Use the
Gy, p-linearized relatively ample line bundle on Z/S to embed Z/S G, p-equivariantly
into some PZ as a locally closed subvariety. Take the closure and call it X/S. Let
V C X be the fixed point set. Define V. := W to be the fixed point set in Z. Let
Vo=V N (X\ Z). The rest of the proof consists of showing that V; and V_ have the
desired properties, and that U, as it is defined in the statement of this theorem, is indeed
X \ (Y3 UY_). At this juncture, one applies Theorem 2.6. O
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Setup for the Projectivity Theorem IIT 2.8. Assumption 2.1 on S/B/J are in vigour.
Let Z and Z' be varieties over S, endowed with a G, _g-action covering the trivial G, p-
action over S, so that the structural morphisms Z,Z" — S are G,, g-equivariant. Let
Z — Z' be a Gy, p-equivariant S-morphism.

Theorem 2.8 (Projectivity Theorem III). Let U C Z (U' C Z', resp.) be the subset such
that the co-limits do not exist. Assume that

(a) Z/S and Z'/S carry relatively ample line bundles admitting G, g-linearizations.
(b) The fized point set V- C Z is proper over S.

(¢) The 0-limits exist in Z.

(d) At least one of the following two conditions is met

(i) the Gy, p-equivariant S-morphism Z — Z' is surjective;
(ii) the fized point set V! C Z' is proper over S and the 0-limits exist in Z'.

(e) U is the preimage of U’ (this is automatic if Z — Z' is proper).
Then:

(1) U (U’ resp.) is open in Z (Z', resp.);
(2) The morphism U — U’ descends to a proper S-morphism U/G,, g — U’ /G B
between the geometric quotients, both of which are proper and separated over S;
(8) (a) the descended morphism U/G,, g — U'/G,, g is projective;
(b) if, in addition, (U'/G,,.5)/S is also projective, then (U/G,, B)/S is projective.

Proof. The proof is identical to the one in [6, Prop. 3.2.2]. Note that in [6] the current
assumption (e) is replaced by the assumption that Z/Z’ is proper; the proof in [6] works
with the current assumption in place of the properness assumption on Z/Z’.

For the reader’s convenience, we discuss briefly the structure of the proof. Parts (1,2)
can be proved along the same lines of the proof of Theorem 2.7. We simply note the
following: the assumption (d.i.) on surjectivity implies easily the assumption (d.ii) on
the properness of the fixed point set and the existence of 0-limits. One applies the
Compactification Theorem II 2.7 to Z and to Z’ to find the uniform geometric quotients
U/G,,p and U'/G,, g. The descended morphism U/G,, g — U’'/G,,,p between the
uniform geometric quotients arises from the G, g-equivariance of the morphism U — U’.
The properness and separateness over S of these quotients follow from Theorem 2.7. The
properness of the descended morphism follows from the properness of (U/G,,.5)/S.

What needs proof is part (3). Part (3) is proved in [6, Prop. 3.2.2] (the set-up there
is the one of characteristic zero, but the proof works for arbitrary base scheme B).

The key part is (3.a):



8 M.A.A. de Cataldo, S. Zhang / Advances in Mathematics 401 (2022) 108329

The proof in [6, Prop. 3.2.2] relies on Kempf’s Descent Lemma [13, Thm. 2.3], which
is stated over fields of characteristic zero. A generalization of Kempf’s Descent Lemma
to the case over a more general scheme can be found in [1, Thm. 10.3] and [36, Thm.
1.3.(iii)].

To apply [1, Thm. 10.3], we need to show that: (i) The uniform geometric quotient
U/Gy,, g given by Theorem 2.6 is a good and tame moduli space for the quotient stack
[U/G,,Bl; (ii) some tensor power of the G,, p-linearized ample line bundle on U has
trivial stabilizer action at closed points, in the sense of [1, Def. 10.1].

(i) follows from Remark 3.9. (ii) follows from the fact that the stabilizers of the closed
points of U are finite subgroup schemes of G,, over the corresponding residue fields,
and that for a finite group scheme G of order n over a field, the n-th power morphism
g g": G — G is the identity morphism, see [32, Prop. 11.32].

Then one proves the (U/G,,,5)/(U’ /G, g)-ampleness of the descended line bun-
dle by observing that it is ample on the fibers of the proper morphism (U/G,, 5)/
U')Gp.B). O

Remark 2.9 (Comparison of Theorems 2.6 and 2.7 with [40]). The Compactification
Theorems LII 2.6, 2.7 are stated and proved in [40, Thm. 11.1, 11.2] over the complex
numbers, where [40] Thm. 11.2 is a corollary to [40] Thm. 11.1, the same way the
Compactification Theorem IT 2.7 follows from the Compactification Theorem I 2.6.

As it is observed in [6, §3.2], C. Simpson’s [40, Thm. 11.1, 11.2] are missing a seemingly
necessary hypothesis on the existence of a G,,-linearized X/S-ample line bundle. This
minor point out of the way, all the necessary ideas are clearly stated by C. Simpson in
[40, §11]. We felt that some details were present only in implicit form, and then only
within a characteristic zero setup. Since in this paper we need these results also over a
base, we felt the need to write a detailed proof of the Compactification Theorem I 2.6.
Again, all the ideas in the proof of the Compactification Theorems I, IT are due to C.
Simpson.

Remark 2.10 (Comparison of Theorem 2.6 with [5]). When S = Spec(k), the set U of
Theorem 2.6 is called a sectional set in [5, Def. 1.2]; the same paper also considers semi-
sectional sets. The most obvious difference between sectional and semi-sectional sets is
that, unlike a sectional set, a semi-sectional set may contain some, but not arbitrary,
G,-fixed point. For a semi-sectional set U’, it is also proved in [5, Thm. 3.1] that U’/G,,
is a semi-geometric quotient. The difference between a geometric and a semi-geometric
quotient is that a point in a semi-geometric quotient may corresponds to multiple orbits.
In this paper, we do not consider semi-sectional sets.

The proof in [5, Thm. 3.1] is obtained by first establishing what are the possible config-
urations of fixed-point sets for actions of G,, on projective spaces P{¥. One equivariantly
embeds X in some }P’,ﬁv by using the ample G,,-linearized line bundle. This is followed
by an inductive analysis, and here we summarize very roughly, of how the fixed-point
set on X is related to the fixed-point set of the ambient Pév . In the relative case, it is
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not clear to us how to piece together the possible global configurations of the fixed-point
sets of (P&, X) fiber-by-fiber over S. Therefore, it is not clear to us how to modify the
proof in [5, Thm. 3.1] to make it work in the relative case over S we are working with.

Remark 2.11 (Comparison of Theorem 2.8 with [6]). (a) The items (1), (3), and (4) of
Projectivity Theorem III 2.8 are essentially borrowed from [6, Prop. 3.2.2]. [6] is stated
and proved in characteristic zero, but, once the Compactification Theorems I, II, 2.6 and
2.7 are in place, the proof carries over to arbitrary characteristic.

(b) Moreover, we remove from [6, Prop. 3.2.2] the hypothesis that Z — Z’ is proper,
and we replace it with the weaker hypothesis that U is the preimage of U’. Observe that
the preimage of U’ sits inside U automatically. If one assumes that Z — Z’ is proper,
then one shows that the preimage of U’ is U. In all the applications of the Projectivity
Theorem III that we provide in this paper, i.e. in §2.2, the sets U and U’ are constructed,
and the preimage of U’ is verified to be U by inspection of the construction. In all such
applications, we have that U’/U is proper. We ignore if the assumptions of Theorem 2.8
imply that U/U’ must be proper.

2.2. Applications to projectivity in non Abelian Hodge theory

We introduce the setup for our main projectivity results, Theorems 2.14 (Hodge/t-
connections), 2.18 (de Rham/flat connections) and 2.20 (Dolbeault/Higgs bundles).

The context is the one of moduli spaces of t-connections on a curve, which is a kind
of umbrella covering, in some sense, Higgs bundles and flat connections. The notion of
t-connections was introduced and studied by C. Simpson [40] over the complex numbers,
and by Y. Lazslo and C. Pauly [29] in positive characteristic.

Smooth Curves. Let B be a noetherian scheme that is finite type over a universally
Janpanese ring J. Let m : C' — B be a projective and smooth family of geometrically
connected curves. We record such a family of curves as

C/B/J. (2)

Rank r and degree d. We fix the rank r and degree d of the vector bundles underly-
ing Higgs bundles, connections and ¢-connections. When relevant, in context, we make
further assumptions on rank and degree, and sometimes on the characteristic.

The Hodge Moduli Space. A ¢-connection on C/B is a triple (E,t, V), where E is
vector bundle, t € H(B,Op), and V; : E — E ®o,, we,p is an Op-linear morphism of
O¢-modules so that for every f, a local section of O, and s, a local section of E, we
have that Vi(fs) = tdf ® s + fV:(s).

By [27, Thm. 1.1], there exists a quasi projective B-scheme My,4(C/B), which is the
coarse moduli space of slope semistable t-connections of rank r and degree d on C/B.

Remark 2.12. For the notions of universally /uniformly corepresenting, see [27, Thm.
1.1]. The coarse moduli space uniformly corepresents the functor of semistable families;
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the stable part is open and universally corepresents the functor of stable families; when
rank and degree are coprime, stability equals semistability, and we have universal corep-
resentability. In particular, in the stable case, taking fibers commutes with taking the
coarse moduli space.

Considering ¢ as a section of AL over B, the assignment (¢, F,V;) — t defines a
natural morphism of B-schemes:

Trod(C/B) : Mpoq(C/B) — AL. (3)

Frobenius. Let J be of characteristic p > 0, with p a prime number. Let ¢ : T — B
be a B-scheme. Let frp : T — T be the absolute Frobenius, i.e. the identity on the
topological space, with comorphism a — a?. Let T(F) := T x B.frp B be the Frobenius
twist of T relative to B. We have the following commutative diagram

frr
/\
T TB) T (4)
Frp orT
. l l
q
B B.

fre

The Hodge-Hitchin Morphism. Let J be a field of characteristic p > 0. Given any
t-connection V; on C/B, [29, §3.5] defines the p-curvature ¥(V;) of V;, which is an Oc¢-
linear morphism F — E ®o, w?? - Let A(C/B,w¢, ) be the vector bundle associated

with the locally free sheaf €;_, mw?% (recall that we have fixed rank r and degree
d for the Hodge moduli space). Taking the characteristic polynomial of ¥(V;) defines
a morphism ¢p : My,q(C/B) — A(C/B,wg/B). Let A(CY®)/B,wx = ,p) be the total

space of the vector bundle @WiB)w?;iB) /B The Frobenius pull back Fr, /B defines a

closed immersion A(C(B)/B,wX<B>/B) — A(C/B,wg/B). [29, Prop. 3.2] shows that
there exists natural factorization of (¢p, Trod) : Muoa(C/B) — A(C/B,wg/B) x AL as

(Fry g, Idy 1)
Mi10a(C/B) PrlI, A(CB) /B wxm) ) x Aj h—

A(C’/B,wg/B) x AL.
(5)
The quasi-projective morphism hgoq(C/B) in (5) is called the Hodge-Hitchin mor-
phism. Note that [29, Prop. 3.2] contains a minor inaccuracy, as it declares the target of
H tobe Axpg Al
The diagram (5) is made of B-schemes endowed with G,,, p-actions so that the mor-
phisms are G,,, p-equivariant. The action on My ,q is given by t- (E, V) := (E, Vis). Let
A/ (resp. AP) be the direct factor of A(CP)/B) (resp. A(C/B, wg/B)) that is the vector

(B) i

bundle associated to the locally free sheaf . Wym B (resp. Tr*wég/B). The action on
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A(CB)/B) (resp. A(C/B,wg/B)) is given by the standard dilation weight ip actions
on each direct factor A/ (resp. A?). The action on A} is the usual weight one dilation
action.

Dolbeault Moduli Space and Hitchin Morphism. Let Mp,;(C/B) be the coarse moduli
space of slope semistable Higgs bundles of fixed rank  and degree d on C'/B. Mpy,(C/B)
is quasi-projective, see [27, Thm. 1.1]. Let A(C/B;w¢,p) be the vector bundle associated
to the locally free sheaf @;_, mw?} 5 Let

hpot(C) : Mpoa(C/B) — A(C/B,wc/B) (6)

be the Hitchin morphism that sends a Higgs field to the coefficients of its characteristic
polynomial.

If J is a field of positive characteristic, then there exists a natural isomorphism
A(C/B,wep)®) = A(CP) /B wew),p) (See Lemma 4.1). Let hpoa(C/B)o,
Mp04(C/B)o, — A(C®)/B) be the base change of the Hitchin morphism via the closed
immersion Op < AL. There exists a natural morphism Mp,(C/B) — M,a(C/B)o,
that is bijective on geometric points. Lemma 4.2 shows that there exists the following
commutative diagram of G, p-equivariant morphisms

hHod, 05

Mpod(C/B)o, — A(C'®)/B) — A(C/B)®) (7)
T AB)/B
Mpa(C/B) A(C/B).

Dol

de Rham Moduli Space and de Rham-Hitchin Morphism. A flat connection is a t¢-
connection with ¢ = 1. Let Myr(C) be the moduli space of semistable flat connections
of fixed rank r and degree d. By [27, Thm. 1.1], the de Rham moduli space Myr(C) is
quasi-projective.

When J is a field of positive characteristic, there is the natural morphism Myr(C) —
Mp0a(C) x a1, 1p, which, by Lemma 4.5, is an isomorphism. The restriction hqr(C)
of hpei(C) to Myr(C) is called the de Rham-Hitchin morphism. Lemma 4.5.(2) shows
that the restriction hgod(C)g,, 5 : MHoa(C) xat Gmp — A(CPB)) xp Gy, p admits a
Gy, p-equivariant trivialization as hgr(C) x1d : Mgr(C) xp G, g — A(C’(B)) XBGm B.

Statement of Results.

Our first result is the Projective Completion of 7 : Mpoq — A' Theorem 2.13, to the
effect that there is a natural G,,-equivariant projective completion 7 : Mpo,q — Al of
the morphism 7 : Mp,q — A'. If we further require that the base ring J is a field of
positive characteristic, we can also extend the Hodge-Hitchin morphism hgoq : Myoq —
A(C®)/B) x A' and prove that the Hodge-Hitchin morphism hgoq is proper, in fact
projective (Theorem 2.14). To our knowledge, the properness of hg,q has not been
addressed before. [29, Prop. 5.1] addresses the special case of nilpotent ¢-connections,
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i.e. the properness of hoq over the locus 04 x A'. In our proof, we leverage on this
special case; in fact, we only need the properness of the nilpotent cone Np,;, i.e. that
of the Hitchin fiber hp!,(04) over the origin 04 € A(C/B). The special case of this
projectivity result when rank and degree are coprime (which rules out the case of degree
zero, for example) is established by an ad hoc method in [8].

Theorem 2.13 (Projective Completion of 7 : My,q — A'). Let the smooth curve C/B/.J
be as in (2). We have the following commutative G, p-equivariant diagram

Mt10a(C/B)~—— Mp,q(C/B) (8)
THod(C/B)i THod(C/B)
AL = AL,

where:

(1) The top horizontal arrow is an open immersion with dense image, dense in every
fiber of THoa(C/B);
(2) The morphism Toq(C/B) is projective.

Theorem 2.14 (Projective Completion of the Hodge-Hitchin Morphism). In the setup in
Theorem 2.13, if we further assume that J is a field of characteristic p > 0, then we
have the following commutative G, p-equivariant diagram

Miz0a(C/B)C Mi10a(C/B) 9)
thod(C/B) Fir10a(C/B) l
roa(C/B) | A(CP)/B) x A= A(CB)/B) x Al | 71001c7B)
prl -
AL = AL,

where:

(1) The top square is Cartesian, the horizontal arrows are open immersions with dense
image, dense in every fiber of THoqa(C/B) and hpoq(C/B).

(2) The morphisms hpod(C/B), hiod(C/B) and DF are proper, in fact projective (pr is
affine).

(3) A(CB)/B) is the weighted projective space P(1,1-p,2p,...,rp) = P(1,1,2,...,7)
associated with the G, p-variety Al x H;l AL, where G,, acts as standard dzlatzons

of weight 1 on A' and of weight ip on the remaining factors.
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The proofs of Theorems 2.13 and 2.14 are postponed to §4.2.

Remark 2.15. For the stated equality of weighted projective spaces, i.e. keep the first 1
and replace ip by i for i = 1,...,r, see [9, Prop. 1.3] and [12, §1.3, Proposition]. This
should not be confused with the fact that, when dealing with weighted projective spaces,
we can replace the vector of weights by a positive integer multiple of it.

Remark 2.16. A. Langer’s [27, statement at the top of p. 531 and Th. 5.1] implies that
hoq is proper. On the other hand, in order to have a complete proof of [27], one
also needs to prove that the morphism from the moduli of semistable bundles with
t-connections to the appropriate moduli space of semistable Higgs bundles (with Higgs
field then given by the p-curvature of the ¢-connection), is proper. A. Langer has very
kindly provided us with a proof of this fact in a private communication. Added in revi-
sion: the paper [28] provides complete details and proves an even stronger statement.

By taking the fiber over 15 € A}, of (8) and (9), and by observing that the fiber of
7 over the same value is Simpson’s compactification Mygr, we immediately deduce the
following Theorems 2.17 and 2.18:

Theorem 2.17 (Projective Completion of Myr). Let the smooth curve C/B/J be as in

(2). There exists a projective B-scheme Myr(C/B) and an open immersion of B-schemes
Mar(C/B) — Myr(C/B) with dense image.

Theorem 2.18 (Projectivity of the de Rham-Hitchin morphism). In the setup in Theo-
rem 2.17, if we further require that J is a field of characteristic p > 0, then we have the
following Cartesian diagram

Mar(C/B)~— M4r(C/B) (10)
hdR:hHod,lAl \L l hHod, 1,

A(CB)/B)—— A(CP)/B),
where

(1) The horizontal arrows are open embeddings with dense image;
(2) The morphisms har = hpod,1,, and hiod1,, are projective;

(3) A(CB)/B) is the weighted projective space in Theorem 2.14.(3);
(4) The compactification My is projective.

In the Dolbeault case, we do not know whether the natural G,, g-equivariant mor-
phism Mpe — Mpod,0,, is an isomorphism. On the other-hand, we use the G, p-action
to obtain projective G, p-equivariant completions of Mp, and of Myea,0,, which are
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suitably compatible with the natural G, p-equivariant morphism Mp, — Mpoed,0,, -
Note that we use the subscripts to denote the fibers: for example, the fiber of hgoq over
0a1 is denoted by Mpod,0,; -

Theorem 2.19 (Projective Completion of the Dolbeault Moduli Space). Let the smooth
curve C'/B/J be as in (2). We have the following commutative G, g-equivariant diagram

A(C/B) <2 Mpu(C/B) — Miroa0,, (C/B) (11)
A(C/B) " Mpo(CJB) —= Mitoao,, (C/B),

where:

(1) All the B-schemes in the bottom row of (11) are projective;

(2) All the vertical arrows are open immersions with dense image;

(8) All the horizontal arrows in (11) are projective;

(4) The two horizontal arrows in the right half of (11) are bijective on geometric points
and, if degree and rank are coprime, then they are isomorphisms.

(5) The morphism hpe : Mpe — A is naturally isomorphic to the compactification
constructed in [6, Thm. 8.1.1, which uses Thms. 3.2.1 and 3.2.2] ([6] works over the
complex numbers, but in view of the compactification and projectivity results of this
paper, the construction and results hold in arbitrary characteristic as well).

When the base ring J is a field of positive characteristic, the Hodge-Hitchin morphism
exists, and we can slightly improve Theorem 2.19 as follows:

Theorem 2.20 (Projectivity of the Hitchin morphism). In the setup in Theorem 2.19, if
we further require that J is a field of characteristic p > 0, then we have the following
G, B-equivariant commutative diagram:

Mp.(C/B) Mo, (C/B)  (12)
Mpo(C/B) —= Myoan,, (C/B)
hpot hDot i thod,OAl hHod,0, 1
A(C/B) — " A(CB)/B)
/ FT‘Z \

A(C/B) A(CP)/B),




M.A.A. de Cataldo, S. Zhang / Advances in Mathematics 401 (2022) 108329 15

where

(1) All the oblique arrows in (12) are open immersions with dense image;

(2) All vertical and horizontal arrows in (12) are projective morphisms;

(8) The top two horizontal arrows satisfy the properties in Theorem 2.19.(4);

(4) If we further require that J is algebraically closed, then the top two arrows are uni-
versal homeomorphisms;

(5) A is the weighted projective space P(1,1,2,...,7) associated with the G, g-variety
Al x H;:l A, where G, p acts as standard dilations of weight 1 on A' and of weight
i on the remaining factors and, as the notation indicates, the morphism Fr4 is the
relative Frobenius morphism for the B-scheme A.

The proofs of Theorems 2.19 and 2.20 are postponed to §4.3.

Remark 2.21. We have borrowed the construction of 7 in (9) from [15, Thm. 3.2], where
it is proved, over the complex numbers, that Simpson’s compactification of the Dolbeault
moduli space is projective.

3. Proof of the compactification Theorem I 2.6

The purpose of this section is to prove the Compactification Theorem I 2.6. In §3.1,
we prove some well known lemmata that are used in later sections. In §3.2, we construct
an object Z(r) that is used in the proofs of all the items of Theorem 2.6. In §3.3, we
prove item (1) of Theorem 2.6 which states that Yy and Y_ are closed inside X and
that the uniform geometric quotient U/G,, p exists. In §3.4, we prove the item (2) of
Theorem 2.6 which states that U/G,, g exists as a uniform geometric quotient. In §3.5,
we prove the item (3) of Theorem 2.6 which states that U/G,, g — S is universally
closed. In §3.6, we prove the item (4) of Theorem 2.6 which states that U/G,, g — S is
separated.

3.1. Some preparatory Lemmata

In this subsection, we prove Lemmata 3.1, 3.2, and 3.3. While they are all well-known
and quite general, we could not find formal references for the exact statements that we
need in the subsequent sections.

We use the following version of valuative criterion in the proof of universal closedness,
which follows from [19, Ex.I1.4.11.(b)] and the proof of [41, 03K8|:

Lemma 3.1 (Valuative Criterion for Universal Closedness). Let f : X — S be a morphism
of finite type between noetherian schemes. Then f is universally closed iff given any DVR
Ry inside its fraction field K and a commutative diagram
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Spec(K) —— (13)

X
]
Spec(Ry) — Y,

we can find a field extension L O K, a valuation ring R inside L dominating Ry, and a
morphism Spec(R) — X, making the following diagram commutative:

Spec(L) — Spec(K) ——= X (14)

A

Spec(R) — Spec(Ry) —— Y.

We need two Lemmata about lifting group actions along normalizations and blowing
ups in the proof of Lemma 3.5.

Lemma 3.2 (Group actions on blowups). Let X be a locally noetherian scheme over a
scheme T. Let G be a group scheme over T that is locally noetherian. Let u: G xp X —
X be a G-action on X. Let Y be a G-invariant closed subscheme of X with dense
complement Let X be the blowing up of X along Y. Suppose that G X1 G XTX G ><TX
and X are reduced, and that X is separated.

Then the blowing up X of X along Y admits a G-action making the blow down mor-
phism T : X > X to be G-equivariant.

Proof. We have the canonical isomorphisms
GXTYg(GXTX) XpX’XYg(GXTX) XIL’XY, (15)

where px is the natural projection G x X — X, the morphisms from Y to X are always
the inclusion Y < X, and we have included the morphisms in the subscript to emphasize
which fiber product we are taking. Indeed, the first isomorphism is automatic, and the
second isomorphism follows from the G-invariance of Y.

Since py is flat, by [30, Prop 8.1.12.(c)], the blow up of G X7 X with center G XY
is canonically isomorphic to G X x X. By (15), we see that G x x X is also the blow
up of G xr X with center the fiber u=!(Y). By the universal property of the blow up
[30, Prop 8.1.15], there exists a unique morphism i : G X1 X = G xr X, making the
following diagram commutative:

Gxr X 1= X (16)

GXTXT-X.
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Let % : G x1 G — G be the group multiplication morphism and e : T — G be the
identity morphism. To verify that g defines a group action on X, and that 7 : X — X
is G-equivariant, we need to show the following three identities of morphisms:

fio(lgx i) =fio(u® x15): GxrGxr X = X, (17)
ﬁo(exl;):l»)?:f(%f(, (18)
po(lgxm)=mofi: GxpX — X. (19)

All three pairs of morphisms agree on the open and dense subscheme corresponding
to X \ Y. By the assumption on the reducedness and separatedness on the domains and
target, [19, Ex I1.4.2] shows that the three identities hold over all of their domains. (Note
that the separatedness of X implies the separatedness of X by [41,0102]). O

Lemma 3.3 (Group actions on normalization). Let X be a scheme over a scheme T.
Suppose that X is an integral scheme. Let G be a group scheme over T that acts on X
via the action morphism p : G xp X — X. Let 7 : X' — X be the normalization of
X. If G x7 X' is a normal and integral scheme, then X' admits a G-action, making the
normalization morphism w: X' — X to be G-equivariant.

Proof. Consider the surjective morphism G xp X’ lexm, o x7 X £ X. Since G xp X
is normal and integral, the universal property of normalization [17, Prop 12.44] induces
a unique morphism p’ : G X7 X’ — X’ so that we have the equality of morphisms:

po(lgxm)=mop' : Gxp X — X. (20)
If we can show that p’ is a G-action, then (20) shows that the normalization m :
X’ — X is G-equivariant. We now proceed to show that p’ is indeed a G-action: Let

u& : G x7 G — G be the group multiplication morphism and e : T — G be the identity
morphism. We need to show the following two equalities of morphisms:

MIO(IGxM/):/J/O(/LGX:lX/)Z GXTGXTX/%X/, (21)
polexly)=1x: X' — X" (22)

To show (21), by the uniqueness of 1/, it suffices to show that the two morphisms are
equal after a composition of 7 : X’ — X, i.e., we want to show that

mou o(lg x u) :wou’o(uG X1x): GxpGxpr X' — X' — X. (23)
By (20), both the morphisms in (23) factors as

G xp G xp x X' 2T G G oxp xX = X, (24)
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where the last morphism is

ﬂo(lgxp)zuo(paxlx)iGXTGXTX%X. (25)

We thus have (21). The equality (22) follows similarly: by (20), we have

mop o(exly)=pomo(lgxmo(exly)=po(exly)=1x, (26)

so we have that (22) holds after composing 7, hence (22) holds by the uniqueness of f’
in the universal property of normalization. 0O

3.2. The schemes Z(r)

Our goal in §3 is to prove Theorem 2.6.

A feature of our proof of Theorem 2.6 is that the proof of Y, and Y_ are closed
is similar to the proof of the universal closedness of U/G,, g — S, in the sense that
both proofs start with a point r € X(R) for some discrete valuation ring R, which then
produces a rational map P} --» Xg, and both proofs rely heavily on the structure of the
resolution of indeterminancy Z(r) of the rational map P} --» Xp. Therefore it seems
best to first introduce and study Z(r) in this Section 3.2 and then to diverge to separate
proofs of the items (1)-(2) of Theorem 2.6 in Sections 3.3-3.6.

Our next goal is to define what Z(r) is. We do so in Lemma 3.4.

Let R be a discrete valuation ring with fraction field L and residue field «.

Let r € X(R). Let n € X (L) be the restriction of r to the open subscheme Spec(L) C
Spec(R). Taking the orbit of 7, we have the morphism i, : G, . — X. Since G, p acts
trivially on S, we have that the image of the composition G, 1, My X -5 Sisa point,
and that the morphism G,, g 21, X — S factors through a morphism Spec(R) — S.
Therefore we can extend the morphism G,, ; — S to a morphism ]P’i — S. Since X
is proper over S, we can extend pu, to an S-morphism i, : P} — X. We then have a
graph morphism 'z : P} — P} xs X, which is a closed immersion [19, p.106], and is
Gy, r-equivariant. Let j : P} xg X — P} xg X be the natural open immersion induced
by the open immersion Spec(L) < Spec(R). Let W be the scheme theoretic image of
jolm : Pf — Pk xgX. Since X is projective over S, we have that X := X x g Spec(R)
is projective over Spec(R). The morphism px o j o'z : P{ — X induces a rational map
b:PL--» Xg.

Lemma 3.4 (Introduce Z(r)). There exists a proper birational morphism w5 : Z(r) — W
with Z(r) regular, making the following diagram commutative:
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P, w Z(r) (27)

R e Xkg.
We have that 75 is an isomorphism above every regular point of W. Moreover,
(1) Z(r) is the last element W, in the following sequence:
w5 Z(r) =W, =Wy = . > W 2 Wy =W, (28)

where Wi — W is the normalization, and for every i > 1, W; 11 — W; is obtained
by first blowing up, W/Z — W;, the singular locus (which by definition is reduced) of
W, and then by normalizing, Wiy1 — VAV;, the resulting WQ;

(2) Z(r) is also the last element Z, in the following sequence

me: Z(r) = Zn 2 Zp_y 2N 2 2 = PR, (29)

where for each 1 > 1, Z; is obtained by blowing up a closed point of Z;_1.

Proof. The commutative diagram (27) is exactly the elimination of points of indeter-
minacy for the rational map b as constructed in [30, Thm. 9.2.7], where it is shown
that every rational map from a regular fibered surface over a one dimensional Dedekind
scheme D (such as P} over Spec(R)) to a projective D-scheme (such as X g over Spec(R))
admits an elimination of indeterminacy mg : Z(r) — Zy, which is a finite sequence of
blowing-ups of closed points of the target as in (29), and which factors through the
desingularization of the closure of the graph of the rational map as in (28). We thus
obtain our lemma as a direct application of [30, Thm. 9.2.7]. O

Our goal in the remainder of this §3.2 is to prove Lemma 3.7, which describes the
reduction of the closed fiber of Z(r) over Spec(R). We now fix r € X (R), and suppress
the argument r in Z(r) = Z. We start with the following

Lemma 3.5 (G,, r action on the partial resolutions Z,). Fach Z;, 0 < i < n, in the
sequence (29) admits a G, g-action so that each p; : Z; — Z;_1 is Gy, g-equivariant.
Furthermore, each pi11 : Ziy1 — Z;i is a blow up of a Gy, r-fized closed point of Z;.

Proof. We first show the
CLAIM: Z,, = Z admits a G, r-action so that g : Z — ]P’}% is Gy, r-equivariant.
Then we finish the proof using an increasing induction on 7 > 0.
To show the CLAIM above, by Lemmata 3.2, 3.3, and 3.4.(1), we see that it suffices to
show that for each ¢ > 1 the singular locus of W; is made of G, g-fixed points. Indeed,
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since each W;, ¢ > 1, is normal, the singular locus has to be closed points [30, Prop.
4.2.24). If these singular closed points are not fixed by the G, g-action, then the orbits
of the points under G,, r would form a one dimensional subscheme of the singular locus
of W;, contradicting the normality of W;. The CLAIM is thus proved.

We now prove the lemma by induction on i > 0.

Base case 1 = 0:

The G, r-action on P}i is the natural one induced by the multiplication on the open
subscheme G, r C IP’}%. The statement about pg is vacuous. Let zg be the closed point
of Z; that is the center of the blow up p;1 : Z1 — Zy. We would like to show that zg is a
Gy, r-fixed point:

If 2y is not fixed by the G, r-action, then the fiber 75 1 (z0) inside Z has an irreducible
component E that is not stable under the G,, r-action. Let £ be the generic point of
E. Consider the orbit morphism jig, : Gy, pep) — Z. The scheme theoretic image
O(E) of pe, properly contains E as a closed subscheme since E is not G,,-stable. Thus
dim(O(F)) > 2. Since Z is two dimensional and integral, the set theoretic image of pg,
is dense inside Z. Therefore, the set theoretic image m(Z) is contained in the closure of
the G, gr-orbit of zp, which is one dimensional, contradicting that m¢ is surjective. Thus
2o has to be a G,,, g-fixed point, and the base case is established.

Now suppose that we have established the case i — 1 and would like to show the case 1.

Since p; : Z; = Z;_1 is a blow up of a G, g-fixed closed point of Z;_;. By Lemma 3.2,
we see that Z; admits a G, g-action so that p; is G, r-equivariant. Let z; be the closed
point of Z; that is the center of the blow up p;+1 : Z;31 — Z;. We would like to show
that z; is a G, g-fixed point. We first show that the morphism p,, o...op;y1: Z — Z;
is G, g-equivariant, i.e., the analogue of the equation (19) holds in our case:

az,o(lg X (pno..opiy1)) =pno..opirioaz: GuprxXrZ— Z;, (30)

where oz and az, denote the G, r-action morphisms on Z and Z;. Since Z; is obtained
from Zy, = P} by iterated blowups on closed points, by the inductive hypothesis we have
that the projection p; o ...op1 : Z; = Zy is a G, r-equivariant isomorphism over an
open and dense subscheme Uy of Zy. From the CLAIM, we see that the equation (30)
holds when restricted to the open and dense subscheme G, r wagl(UO) of Gy, R XRZ.
Therefore, by [19, Ex I1.4.2], we see that the equality (30) holds, so p, o ... o p;y1 is
G, r-equivariant. We can now use the argument in the base case to conclude. Namely,
if z; is not fixed by the G,,, gr-action, then (p, o... op;+1) ! would trace out a dense two
dimensional subscheme of Z under the G,, r-action. We then have that p, o...op;y; :
Z — Z; maps Z to the G,, g-orbit of z; in Z;, which is one dimensional, contradicting
that mg : Z — Zj is surjective. 0O

Lemma 3.5 above essentially contains all the information of Z in Lemma 3.7. However,
in order to keep track of the G, r-actions under each blow up p; : Z; — Z;_; in the proof
of Lemma 3.7, we need to study a family of affine charts involved in the sequence of blow
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ups (29). The subtlety is that different G, g-fixed points of Z; have non-isomorphic,
although similar, G, gr-invariant affine neighborhood, and that we need to know what
happens to the G, r-action when we blow up any of the G,, gr-fixed points of Z;.

We start with the affine charts for Zg = P}: we have that AL and P} \ 0p = AL
cover Z, so the two affine charts are isomorphic to Spec(R[z]) and Spec(R[z~1]), where
x is an independent variable. The variable  has positive weight w(x) under the G, r-
action. Let A be the uniformizing parameter of R, by the triviality of the G,, r-action
on Spec(R), we have that the weight of A under G,, g is w(X) = 0.

The blow up p1 : Z1 — Zy has center 0, or co,. Without loss of generality, assume p;
is the blow up of 0. (If p; is the blow up of oo, then we can exchange x and x~!). By the
description of a blow up algebra of a regular algebra in [30, p.325 bottom], we have that
Zy can be covered by three G,, r-invariant affine charts isomorphic to Spec(R[z, \/z]),
Spec(R[y]) and Spec(R[z~1]), where y is a new independent variable. We have that the
weight of z under the G, g-action is still w(x), while the weight of A/z under the G, g-
action is w(A/z) = w(\) — w(z) = —w(x). Since the exceptional divisor of p; is defined
by y in Spec(R[y]) and A\/z in Spec(R[x, A/x]), we have that the weight of y under the
G, r-action is w(y) = —w(A/z) = w(zx).

Since w(A/z),w(x) # 0, we have that the G,, r-fixed point of Spec(R[z,\/xz])
is defined by the maximal ideal (z,)/x) generated by z and 2. The blow up of
Spec(R[z, A/z]) with center (x,\/x) is covered by the G,, g-invariant affine charts
Spec(R|[z, 97/\2]) and Spec(R[%, %]) As for the weight under the G,, r-action, we have
that w(\/z?) = —2w(x).

Writing out the charts for iterated blow ups of Spec(R[z, A/z]) at G,,,-fixed points as
above, it is easy to see that we have the following

Lemma 3.6 (Compatibility of the weights at intersection points). For each Z;, 0 < i < n,
in the sequence (29), we have that Z; can be covered by affine charts that are isomorphic
to Spec(R[z]) or

Spec(Rlz1, 2]/ (2123 = A)), (31)

for some a,b € Z>q, with a +b > 0.

The weight of = under the G, r-action is nonzero. Let w(z1) and w(z2) be the weights
of z1 and zo under the G, r-action, then we have that w(z1) and w(z2) are both nonzero,
and that aw(z1) + bw(z2) = 0. In particular, we have that w(z1)w(z2) < 0.

Proof. From the paragraphs above Lemma 3.6, we see that Z; is covered by affine charts
that are isomorphic to Spec(R]x]) and iterated blow ups of Spec(R[z, A\/z]) at G,,-fixed
points. We would like to show that such blow ups can be covered by the charts of the
form as in (31), and that the weights satisfies what in the statement of this Lemma 3.6.

We show this by induction on the number of blow ups of Spec(R[x, A/x]). The base
case, where there are no blow ups, is satisfied because we can take 21 = x, 20 = \/x,



22 M.A.A. de Cataldo, S. Zhang / Advances in Mathematics 401 (2022) 108329

a =b =1, and we have w(z) + w(A/xz) = 0. For the inductive step, we blow up a
Gy-fixed point of the chart in (31). Since w(z1), w(z2) # 0, the G,,-fixed point has to
be the maximal ideal (z1,22). The resulting blow up can be covered by the spectra of
Rl[z1, 2] and R[ZL, o], with 2825 = A, i.e., the spectra of

Rlz1, 23] /((21)" "0 (25)" = A) and R[27, 23]/ ((21)*(25)*+" = A). (32)
Furthermore, we have that

w(z1) = w(z1), w(zp) =w(z) —w(z), w(z))=mw(n)-w(z), wlz)=uw(z). (33)

Now it is easy to check that the weights have the desired properties in the statement of
the lemma. O

We can now prove the main Lemma 3.7 as a corollary of Lemma 3.6:

Lemma 3.7 (Shape of Closed Fiber of Z; over Spec(R)). For each Z;, 0 < i < mn, in the
sequence (29), let

Ei = (Zz XR K)Ted (34)

be the reduction of the fiber of Z; — Spec(R) over the closed point Spec(k) — Spec(R).
We have that for each 0 < i < n,

(1) E; is connected;

(2) the irreducible components of E; are all isomorphic to P};

(3) the singular points of E; are where the irreducible components of E; meet, and the
singular points are all ordinary double points;

(4) all of the irreducible components of E; admit nontrivial G, ,-actions so that every
singular point of E;, which lies in only two irreducible components of E;, is the
0-limit of one component and the oo-limit of the other component;

(5) the relation < in Definition 2.2 gives a linear order on the set of G, . -fixed points
of E;. Furthermore, there are i + 1 Gy, -fized points, i — 1 of which are singular,
and the two regular G, .-fized points are the unique mazimal and minimal elements
with respect to <.

Remark 3.8 (Lemma 3.7 in terms of graphs). For each 0 < i < n, define a directed
graph I'(E;) as follows: with each irreducible component of E; we associate an edge, and
with each G, ,-fixed point of E; we associate a vertex; according to Lemma 3.7.(2),(4),
each irreducible component £ of E; contains two G, .-fixed points e; and eg, which are
the 0 and oo limits of the G, ,-action on £ respectively, thus we can let the vertices
corresponding to e; and ez be the source and the end of the edge ed(€) corresponding
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to € respectively, and let the direction on ed(€) be pointing from the source to the end.
Then Lemma 3.7 implies that I'(E;) has ¢ + 1 vertices, and is of the form

O— 0 — ...— O,

Proof of Lemma 3.7. Since p; : Z; — Z;_1 is the blow up of a closed point of Z;_1,
we have that E; = (p; ' (Ei_1))req is connected if and only if E;_; is connected. Since
Eo =P} is connected, we have that each E; is connected, thus we have item (1).

From Lemma 3.6, we see that the fiber Z; X r k can be covered by the affine charts
that are isomorphic to the spectra of k[z] or k[z1, 22]/(2§28) for some a,b € Z>q with
a + b > 0. Therefore E; can be covered by the affine charts that are isomorphic to the
spectra of k[x] or k[z1, 22]/(z122). Items (2) and (3) are immediate from these charts.

From the description of weights in Lemma 3.6, we see that = has nontrivial weights,
and that w(z1)w(z2) < 0. Therefore we have item (4).

We prove item (5) by an induction on ¢ > 0. The base case i = 0 is automatic because
we have that two regular G, ,-fixed points 0,, and oo, of Ey = P!, and that 0, < ooy.
Now suppose we have proved the case i — 1. Let us order the i G, ,-fixed points of F;_;
as z1 < ... < z;. Suppose p; : Z; — Z;—1 is the blow up with center z; for some 1 < j <.
We then have that p; is a G, r-equivariant isomorphism when restricted to the affine
charts for 21, ..., 2j_1, Zj+1, ..., z; selected in Lemma 3.6. For each k # j, let yy, := p 1 (zk).
Let y? and y7° be the 0 and oo point of the exceptional divisor, which is isomorphic to
P! by item (2), of the blow up p;. It then follows from item (4) that we can linearly
order the G,,-fixed points of E; as y1 < ... < yj_1 < y? <y <yj1 < ... <y;. We have
thus showed the first sentence of item (5) in case i. Since each of y; and y; lies in only
one component of F;, from Lemma 3.6 we see that y; and y; have affine neighborhoods
isomorphic to Spec(R]x]), thus y; and y; are regular. Any G,, ,-fixed point of E; that is
not y; or y; lies in two components of E;, thus cannot be regular. We have thus showed
the case i of item (5). O

3.3. Closedness of Yy and Y_

In this Section 3.3, we prove Theorem 2.6.(1) which states that both Y_ and Y, are
closed inside X.

The sets Y, and Y_ are constructible (see the first paragraph of Section 3.2), thus it
suffices to show that Y, and Y_ are closed under specializations. Let x, 2’ be two Zariski
points of X so that 2’ € {z}. Assume that = € Y. We would like to show that 2’ € Y.

By [19, Lemma I1.4.4, Ex. I1.4.11], there exists a discrete valuation ring R with fraction
field L and residue field x, and an R-point r € X (R), so that r maps the generic point
of Spec(R) to z and the closed point of Spec(R) to z’.

Take Z = Z(r) as defined in Lemma 3.4. By Lemma 3.5 we have that the morphism
e 1 L — IP’I{2 is the composition of iterated G, r-equivariant blow ups at G, r-fixed
closed point. Therefore mg restricted over the closed subscheme 1 C P} is an isomor-
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phism. Thus 75 *(15) is an R-point of Z. We employ the notation as in (27). Define the
composition of G, g-equivariant morphisms 77 : Z I W s Xp 25 X, We then
have that W7\ﬂ51(1R) =r: Spec(R) — X. We then have an equality of L-points of X:

mr(mg H(oor)) = tlirgot - T (35)

We employ the notation in Lemma 3.7. By keeping track of what happens to the affine
charts containing ooy, in ]P’i under each blow up p; : Z; — Z;_1 as in Lemma 3.6, we see
that 7 *(cor) in Z specializes to the maximal element 2,41 with respect to the linear
order <. By (35), we have that m7(z,41) € {lim;_c0 t - 2}. Since z € Y, and V. is closed,
we have that m7(zp,41) € V4. Since 77 is G, p-equivariant, for any 0 < j < n+ 1, we
have that 77(z;) < m7(2n41). By the defining property of V., we see that m7(z;) =€ V.
In particular, we can let z; be the oo-limit of 75 '(1,), we then have that

. 12 . .
tlgglot RS tlggot “T|Spec(r) = tlgglot M1l o1,y = mr(z5) € Vi (36)
Therefore we have that 2’ € Y, and we have proved that Y, is closed inside X.

The proof that Y_ is closed inside X is very similar to the proof above, except that
we exchange 0 and oo in the argument. We have thus proved Theorem 2.6.(1).

3.4. Ezistence of uniform geometric quotient U/GmB

In this section, we prove Theorem 2.6.(2) which states that a uniform geometric
quotient ¢ : U — U/G,, p exists.

Proof of Theorem 2.6.(2). By Assumption 2.1, we can cover U with G, p-invariant open
affine subschemes U = |J, Q;. By [37, Thm. 3, Rmk. 8, 10], for each i, there exists a
uniform categorical quotient ¢; : Q; = Q;/G,, p which is surjective, and that Q;/G, B
is of finite type over B.

We first show that these ¢;’s glue to form a uniform categorical quotient ¢ : U —
U/G,,, 5, which is immediately reduced to showing that for every i,j, we have that
QiNQ; = ¢~ ¢i(Qi N Qj), see the proof of [1, Prop. 7.9]. Since any two closed point
qi, ¢ in Q; are mapped to the same point in Q;/G,, p if and only if the closures (inside
Q;) of the orbits of ¢i and ¢4 intersect nontrivially, see [37, Thm. 3.(ii)], we are further
reduced to showing that every closed point ¢’ in @Q; has closed orbit in @;:

Since the closure of the orbit of ¢* in X has boundaries contained in V, we have that
the orbit of ¢* is closed inside X — V. By Theorem 2.6.(1), we have that U is open inside
X, thus the orbit of ¢* is closed inside U, thus closed inside @;. Therefore, we have shown
that there exists a uniform categorical quotient ¢ : U — U/G,, p.

We now show that ¢ is indeed a uniform geometric quotient:

[37, Thm. 3.(iii)] shows that the image of any G,, p-stable closed subscheme of U is
closed in U/G,,, g, which, combined with the proof of [16, p.8, Rmk. (6)], shows that ¢
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is submersive. Since G, p is open over B, by [26, Rmk. 2.8.3], we have that ¢ is actually
universally submersive.

Checking the definition of uniform geometric quotients as in [16, Def. 0.6], we have
that to conclude the proof, it suffices to show that for any algebraically closed field K
and a point K-point a € U/G,, g(K), the fiber $~!(a) contains only one G, g-orbit:

If the dimension of ¢~!(a) is larger than 1, then by generic flatness, there exists a
closed point u € @ such that ¢~!(u) has dimension larger than 1, which contradicts
the fact that a closed point in U has a closed orbit in U, which is established above.

Therefore, it remains to show that ¢=1(a) is irreducible:

Again, by [37, Thm. 3.(ii)], any two geometric points of U are mapped to the same
geometric point of U/G,, p by ¢ if and only if the closures (inside U) of the orbits of the
two geometric points intersect nontrivially. We have seen above that any closed point
u in U has a closed orbit in U, thus ¢~!(u) is irreducible. By [41, 0553], we must have
that ¢~1(a) is irreducible for any geometric point of U/G,, 5. We have that finished the
proof. O

Remark 3.9 (U/G,, p is a tame and good moduli space). Let us verify that, by using
the terminology as in [1], the uniform geometric quotient U/G,, g is a tame and good
moduli space for the quotient stack [U/G,, g]:

Since a geometric point in (X — V)(K), where K is an algebraically closed field, has
closed orbits in (X — V) g, we have that X —V is the prestable locus for the G,, g-action
on X, see [1, Def. 10.1]. By [1, Prop. 11.4], there exists a tame and good moduli space
(X -V)/Gp ] = (X —V)/G,, 5. By Theorem 2.6.(1), we have that U is open inside
X — V. Thus [U/G,, g] is an open substack of [(X — V)/G,, ], see [21, Rmk. 2.3.1].
Therefore, by [1, Rmk. 7.3, Prop. 7.10], we have that [U/G,, 5] — U/G, g is also a
tame and good moduli space.

3.5. Universal closedness of U/Gy, g — S

In this section, we prove Theorem 2.6.(3) which states that the morphism U/G,, p —
S is universally closed.

Proof of Theorem 2.6.(3). Let us start with the following commutative diagram, where
R is a discrete valuation ring, and L is its fraction field

Spec(L) — > U/Gyn.p (37)
Spec(R) S.

Let Ul .= U XU/Gp.s SPec(L). Since U — U/Gy, p is a geometric quotient, by
[16, Def. 0.6.(ii)], we have that the orbit morphism pg : G, — U factors through a
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surjective morphism u’g : G, — UL, Define oy := ”/5(1 ). The morphisms G, 1, He,
UL — Spec(L) give field extensions L C k(ay) C L. Therefore we have that oy € UL(L).
We now have the following commutative diagram:

Uk — Spec(L) —— Spec(R) (38)
Pl
X~ U U/Gm s s.

The composition aj o ay =: 7 defines an L-point n € U(L). By the properness of X/S,
we have that n induces an R-point r € X (R) filling in the commutative diagram (38).

Let Z = Z(r) be as defined in Lemma 3.4. Recall that g : Z — P}, is the composition
of iterated G, r-equivariant blow ups p; : Z; — Z;_; at G, gr-fixed points of Z;_;. From
Lemma 3.6, we see that the centers of all blow ups are in the closed fiber Z; 1 Xy k.
Therefore we have that mg is an isomorphism when restricted over the open subscheme
P} C P4. Recall that we have the composition of G, g-equivariant morphism 77 :
Z 2w s Xp 25 X, We have that 7T7|Tr6—1(1L) =1 : Spec(L) — X, and we have the
equalities of L-points of X:

mr(mg ' (00r)) = lim - n, and 77(mg ™ (0)) = lim ¢ - . (39)

Since n € U(L), we have that lim; ,o t-n € V_(L) and lim;_,ot - € V4. (L). We em-
ploy the notation in Lemma 3.7. By keeping track of what happens to the affine charts
containing 0, and ooy, under each blow up as in Lemma 3.6, we see that 7 1(oo L) spe-
cializes to the maximal element z, 41 with respect to the linear order < in Definition 2.2,
and that 75 *(01) specializes to the minimal element 2z; with respect to <. By (39), we
have that 77(2,4+1) € V_ = V_, and that 77(z1) € Vi = V.. Thus there exists a smallest
number 1 < j < n so that m7(z;) € V and m7(2j11) € V_. In particular, we have that
for any j’ < j, both m7(z;/) and 77(zj41) are in V.. Also, for any j” > j, we have that
zjn > zj11, thus both m7(2;~) and m7(zj41) are in V_. Therefore j is the unique number
so that m7(z;) € V4 and m7(2zj41) € V_.

Let £ be the irreducible component of E, that contains both z; and z;;i. By
Lemma 3.7, there is an isomorphism iso : & — P! sending z; to 0, and z;11 to 0o,.
Let d, be the x-point of £ so that iso(d,) = 1.. By [30, Lemma 8.3.35.(a)], there ex-
ists a Weil divisor A of Z that maps surjectively onto Spec(R) under the projection
Z — Spec(R), and contains §,. Therefore the fraction field L’ of the generic point of A
is a finite field extension of L. Let R’ C L' be a DVR dominating R and let dp € Z(R'),
so that dp sends the closed point of Spec(R') to 0, € E,(k), and the generic point of
Spec(R’) to the generic point of A. Let §7+ be the restriction of dr/ to the generic point
Spec(L’) C Spec(R’). Since 77(0,) € X (k) has 0-limit in V. and oo-limit in V_, we have
that 77(d,.) € U(x). Therefore we have that 81 € 75 *(Gp.1)(L'), 50 61 and 75 *(11,) are
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in the same Gy, p/-orbit, thus 77(d./) and 7r7(7r51(1L)) = 9 are in the same G, p/-orbit
in X. Since U is G, p-invariant, and n € U(L), we have that 77(d1,) € U(L’). Therefore
we have that 77(0g/) € U(R').

We have found 77(dr/) € U(L') which is in the same G,, - orbit as 7, and which
can be extended into m7(0g/) € U(R'). In particular, under the quotient morphism
U — U/Gy, g, we have that m7(d/) is sent to & € U/G,, g(L) that appears in our
starting diagram (37).

Consider the composition g : Spec(R') TR U/G,,. We have the following
commutative diagram:

Spec(L’) —— Spec(L) LN U/Gp, B (40)

I |

Spec(R') —— Spec(R) S.

By the valuative criterion in Lemma 3.1, we have the universal closedness of the
morphism U/G,, g = 5. O

3.6. Separatedness of U/Gp, g — S

In this Section 3.6, we prove Theorem 2.6.(4) which states that U/G,, g — S is
separated.

One word about notation: recall that we have U, = U xg Spec(L) and UL =
U Xu/G,,.» Spec(L). In this section, we always use upper scripts, such as UL, UE, to
denote fiber products over U/G,,, p; while lower scripts, such as Uy, Ug, P}, denote fiber
products over S or B.

We also employ the notation used in Section 3.5.

Suppose the morphism & : Spec(L) — U/G,, g in (37) can be extended to a morphism
& : Spec(R) — U/G,, g. The diagram (38) now becomes

3}

Ul == Spec(L) —= Spec(R) (41)
a2l / lg y i
X U U/Gum.5 s.

Below we prove the separatedness of U/G,, g — S by showing that the natural R’-
point of U/G,,, g induced by & € (U/G,, g)(R) coincides with the R'-point g in (40)
in Section 3.5. We have the following diagram where every square is Cartesian:
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B3 B1 B1 B2

vt Uk U Ut U* (42)

T .

Spec(L) —= Spec(R) — U/Gm.5 ~— Spec(R) <—— Spec(k).

Lemma 3.10. The fiber products U®, U*, and U are all irreducible.

Proof. Since a geometric fiber of ¢ is a G, g-orbit, we have the irreducibility of U" and
UL. We now show that U® is irreducible. Since G, p is open over B, by [26, Rmk. 2.8.3],
we have that U — U/G,, p is universally submersive, thus the morphism U — Spec(R)
is submersive. Therefore U* is not open. Thus U’ is not closed. Let UL be the closure
of UL inside UR. If UL N U* is a zero dimensional closed subscheme of U*, then the
morphism UL — Spec(R) violates the upper semicontinuity of dimensions of fibers at
the source [19, Ex I11.12.7.2]. Therefore we must have ULNU* is one dimensional. Since
U* is irreducible, we have that ULlnU* = U*, and that U = UL is irreducible. 0O

Lemma 3.11. The set theoretic image of B1o0Bs : U® — U is contained in the set theoretic
image of the restriction of m7 : Z — X to the closed subscheme E, C Z.

Proof. By Lemma 3.10, we have that for any closed point u of U”, dim Oy=r , = 2.
The proof of [30, Lemma 3.35] shows that there exists a finite field extension L' D L, a
discrete valuation ring R’ C L’ dominating R, and v € UR(R’), so that yr sends the
closed points of Spec(R') to u.

Let vz be the restriction of vg: to the generic point Spec(L’) C Spec(R’). Since U —
U/G,,, g is a geometric quotient, by [16, Def. 0.6.(ii)], we have that the orbit morphism
i+ G, — U factors through a surjective morphism g : G,, ;, — UL. Therefore we
have a finite field extension L' C L” and yp» € G, (L") so that g(yr») = v, € UE.
Let R C L” be a valuation ring that dominates R’ C L’. We can identify G,  with
75 "(Gm.z) C Z since 76 is an isomorphism over G,, ; C Pk. Since Z — Spec(R) is
proper, we can extend vr» € Gy, (L") to yr» € Z(R"). Let " be the residue field of
R”. Let 7, be the restriction of yg~ to Spec(k”).

By construction we have that w7 (vg») = 1 0 82(vr+). Since X/k is separated, we have

that 77 () = 810 f2(u). O

End of Proof of Theorem 2.6.(4). From Lemma 3.11, we see that the set theoretic image
of B1 08 : U® — U lies in the set theoretic image of the restriction of 77 : Z — X to
the unique irreducible component £ of F,, that lies between z; and z;;. Therefore, the
images of all the k-points of U” under g0 7 are in the same G, ,-orbit as 77(d,): recall
that J, is defined in Section 3.5 as the closed point £ that is mapped to 1, under the
natural isomorphism £ — Pl. Furthermore, recall that the image of 77(d,) under the
quotient U — U/G,, is the closed point of the filling £ € U/G,,(R’) selected in the end
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of Section 3.5. Therefore, we have that the composition Spec(R’) — Spec(R) 2o, U/Gp,
agrees with d¢/ : Spec(R') = U/G,, on both the generic and closed points. Therefore we
have a factorization

&R : Spec(R’) — Spec(R) Lo, U/Gp. (43)

Since g is fixed, we have that the lift {, € U/G,,,(R) of £ € U/G,,(§) is unique, thus
we have the separatedness of U/G,, — S.

The proof of Theorem 2.6.(4), and hence of the Compactification Theorem I 2.6, is
now complete. O

4. Projectivity of compactifications in non Abelian Hodge theory

In this section, we apply the compactification/projectivity results of the Projectivity
Theorem IIT 2.8 to first prove Projective Completion Theorems 2.14 (Hodge), 2.18 (de
Rham) and 2.20 (Dolbeault). We focus on the Hodge and Dolbeault picture, since Theo-
rem 2.18 is an immediate consequence of the Hodge picture (take the fiber over t = 141
in Theorem 2.14).

4.1. Some more preparatory Lemmata

In this section, we first prove some preparatory Lemmata 4.1, 4.2, 4.3 and 4.5 that
are stated in §2.2.

Let J be a field of characteristic p > 0. Let C'/B be the smooth curve as in (2). Recall
that we have fixed the rank r and the degree d for the Hodge, Dolbeault, and de Rham
moduli spaces. In the present section, we adopt the following abbreviations: Let A be
the Hithcin base A(C/B) for the curve C/B. Let A®) be the relative Frobenius twist
of A. Let A’ be the Hitchin base A(C®)/B) for the curve C#)/B.

Lemma 4.1 (A®) = A’). There exists an isomorphism of B-schemes AB) = A’

Proof. To find an isomorphism between A®) and A’ is equivalent to find a natural
isomorphism between sheaves of Op-algebras:
Sym* (rawx/5)") @0, gt O = Sym* (7P wxw 5)Y). (44)
Since X/B is smooth and of relative dimension 1, working etale locally over B, we
can assume that B is an affine scheme Spec(R), and X = Spec(R[z]). The coherent
sheaf wx/p (resp. wx) p) is the rank 1 free R[z]-module (resp. R[r ® 1]-module) with
a generator dz (resp. d(z ® 1)). Let y (resp. y ® 1) be the element in Hompg(R|[x], R)
(resp. Hompg(R[z ® 1], R)) that sends z (resp. x ® 1) to 1 € R. The left hand side of
(44) corresponds to the R-algebra R[y,0,] ®g, fr, R, while the right hand side of (44)
corresponds to the R-algebra R[y ® 1,0,g1]. The assignment f0, ® 1 — (f ® 1)0zg1



30 M.A.A. de Cataldo, S. Zhang / Advances in Mathematics 401 (2022) 108329

induces an isomorphism of R-algebras from the left hand side to the right hand side of
(44). O

Remark 4.2 (F'rs “="0% ). Assuming the notation in Lemma 4.1 and its proof, we see
that the comorphisms of the B-morphisms A — A(B) — A’ are determined by the
assignments (f ® 1)0pg1 — fO0r @ 1 — (f0,)? € Rly,d,]. We can then derive another
description of the compositum F : A — A’

A B-point of A is a linear combination of terms of the form r;z7(dx)* with r; € R.
We have that

(g @ 170k0,) (F(B) (ria? (d2))) = ((708) (ria (d)*) ) = 0%,

Therefore we see that F(B) sends dz to dz ® 1, 2 to x ® 1, and 7; to r?. Therefore,
the function F(B) : A(B) — A’(B) is induced by the pull back

HO(B XB C’,pr(*;wC/B) (: HO(CawC/B))
fT* 70'* *
%HO(B x5 CP) primwom p) (= H(C®),was p)).

Similarly, one can show that, for any B-scheme T', the morphism F(T) : A(T) — A'(T)
is induced by the pull back (op, frr)*.
Note that by [29, §2.3], we have the following commutative diagram:

(oB,frT)
//—\
CH xpT —= (CxpT)") ——=CxpT (45)
prr l l
T T.

frr

Therefore, up to a natural identification CB) xp T = (C x g T)™), the morphism
F(T) is induced by o7

Lemma 4.3 (Factorization of Hodge-Hitchin Morphism over 0,4:). Let AP be the B-
scheme that is the total space of the locally free Og-module @;_, w*w;@é}%, There exists
the following commutative diagram:

«
hHod,OA/ FTc/B

Mr04(C/B)o,, A AP (46)

O'*B“:”F’I'A
fre

Mpa(C/B) A.

Dol
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Proof. Since the p-curvature of a Higgs bundle ¢ is ¢”, we have that the outer 5-gon in
(46) is commutative. Since frc = opoFre/p, by Remark 4.2, we see that the triangle in
(46) is commutative. Furthermore, the morphism Fry, /B is a monomorphism. Therefore,
the bottom left square of (46) is commutative. O

Remark 4.4. The commutativity of diagram (46) shows that the isomorphism A(%) =2 A’
is Gy, p-equivariant, since all the other arrows involved in the left square of (46) are
G, p-equivariant.

Lemma 4.5 (Trivialization of Hodge-Hitchin Morphism over G,, p). The natural B-
morphism Mar(C/B) = Muoa(C/B) X a1, 1p is an isomorphism. There exists a natural
isomorphism of B-schemes Mar(C/B)x Gm, 5 = Muod(C/B) X p1, Gy p. Furthermore,
we have the following commutative diagram:

Mi0a(C) a1 Gppp ~—— Mar(C) x5 G (47)
hHod G, p l lhdRXle,B
A X G B = A X G B

Proof. Since M4 is uniformly corepresenting, we have that the fiber product Mpr,q X a1
Gy, is corepresenting the functor of t-connections with invertible ¢. Therefore, the
morphism ((E,V),t) — (E,tV)) defines an isomorphism between the functors that are
corepresented by Mgr X g G, g and Mpoq X a1 Gy, g, thus an isomorphism between the
corepresenting schemes. Since f is also an isomorphism of G,, p-schemes, we have an
isomorphism Myr = Mpyoq X a1 1g. When J is a field of characteristic p > 0, the bottom
isomorphism in (47) is given by (a;, t) — (t"Pa;,t), with a; € Al (recall that A’ is the

direct factor of A(C®)/B) corresponding to the locally free sheaf WﬁB)w?;ﬁB) / g O

4.2. Proof of Theorems 2.13 and 2.1/
Proof of Theorem 2.13. We have the basic G, p-equivariant diagram with Cartesian

square (where the subscript B is dropped) from [15, §3.1]. This construction already
appears in [20, Proof of Lemma 6.1].

Z = MHod X AL AQ E—— MHod (48)

| X

T Ai’y _— > A}\ (x,y) ——= A ==zy

| |

S:=Al z,
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where the G,, g action on Af‘,vy is defined by setting t(z,y) := (z,ty), the G,, g action
on A} is the usual dilation ¢ - A := ¢}, and the G,, g action on Al is trivial.

We would like to apply the Compactification Theorem II 2.7 to Z/S in (48). Below
we show that the assumptions in Theorem (2.7), i.e. that zero limits of Zariski points
exist in Z, and that the fixed point locus in Z is proper over S, are satisfied:

A Zariski point z € Z(k), where k is a field, can be represented by a pair ((E, V), (z,y))
on Cy, where (E, V) is semistable as a vector bundle with an zy-connection. The G, x-
orbit of z is then represented by ((E,tV), (z,ty)). We can naturally extend this G, j-
orbit to obtain an A}-family with the element over 05 € A}, being ((E, ¢), (x,0)), where
(E, ¢) is a possibly non-stable Higgs bundle. By Langer’s Langton-type result [27, Th.
5.1], we can change the Og-fiber (F,¢) to a semistable (E’,¢’) so that we obtain a
morphism A} — Z which maps t € G, 1 (k) to ((E,tV), (z,ty)) and maps 0y, to (E’, ¢’).
Therefore, we have that Z has all its zero limits.

The G,, p fixed locus on Mp,q is contained in the fiber MHO‘LOA%\ of 7 over the
origin OAi € A%\. Since the natural morphism Mp, — MHOd,OA\i is Gyy,,p-equivariant
and bijective on geometric points, we have that the set underlying G, g fixed locus is
naturally identified with the G,, g fixed locus of Mp,; inside hB})l(oAz).

We now show that hgil (04/) is proper over B: Using the valuative criterion for proper-
ness, we are reduced to the case where B is a discrete valuation ring, but then the
Langton-type argument in the proof of [14, Thm. 1.3] goes through and gives the proper-
ness of hz_)};z (04+) over B. Since the B-morphism Mp, — Mpoq,0 is bijective on geometric
points, using the valuative criterion Lemma 3.1 (taking L to be algebraic closure of K
so that we can lift the L point from MHOC“JAl to Mpor), we have that the G, p-fixed
locus of Myy,q is also proper over B.

The following can then be verified:

(1) The G, p fixed point set in Z is proper over S;

(2) The complement U in Z of the set of points in Z admitting infinity limits, is Z
minus the z-axis times the closed subset of My ,q that is universally homeomorphic to
the proper fiber h! (04/);

(3) The open subvariety 7' C Z obtained by removing the preimage of the origin via
the projection onto the y-axis, endowed with the projection to this puncture y-axis is
Gy, p-equivariantly isomorphic to Mpoq X G, g (cf. (47)).

Apply the Projectivity Theorem III 2.8 to this situation. The Projective Completion
of 7: Mpoq — A Theorem 2.13 follows once we set Mpyoq := U/G,, B etc.

To finish the proof, we simply need to observe that:

(i) Mpo,q admits a natural open immersion into My,q by property (3) above.

(ii) U/Gy,,p admits a natural G, p action compatible with the open immersion (i);
this action is already present on Z and on U by letting G, g act by the standard weight
one dilation ¢ - x := tz on the x coordinate.

(iii) We also need to endow S := Al (which originally had the trivial action, so
we could arrive to U/G,, g — S via the Compactification Theorem II 2.7) with the
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standard weight one dilation action, so that, now, 7, and in fact the whole diagram (8),
is G,,,p-equivariant. The proof of Theorem 2.13 is thus completed. O

Proof of Theorem 2.14. We would like to apply the Compactification Theorem IIT 2.8.
We define the Z, Z’, and S in Theorem 2.8 in the following way:

We augment the diagram (48) by inserting the Hodge-Hitchin morphism. We obtain
the G, p-equivariant commutative diagram with Cartesian squares

7 = MHod X A1 A2 MHod (49)

\L Rhitod i hHoa

I . Al 2 / 1
7' =A XBAx,yHA XBA)\ T

| |

S = Al A2 Al

To check that the assumptions of Theorem 2.8, we note that, firstly, the assumptions
in Theorem 2.8 that are only about Z and U are checked in the proof of Theorem 2.13;
secondly, other assumptions involving Z’ and U’ are easily checked to be satisfied. The
existence of the commutative diagram (9), the item (1) of Theorem 2.14, and the pro-
jectivity of hoq and Troq then follows from the application of Theorem 2.8.

Since hpoq maps the boundary of My, to the boundary A’ x AL, we have that
the Hodge-Hitchin morphism hp,q is also projective. Thus we have the item (2) of
Theorem 2.8.

By inspecting the construction of Z’, it is clear that we obtain the weighted projective
space P(1,1 - p,2p,...,rp). This latter coincides with P(1,1,2,...,7) in view of the
fact that we can replace ip by ¢; see Remark 2.15. The proof of Theorem 2.14 is thus
completed. O

4.8. Proof of Theorems 2.19 and 2.20

Proof of Theorem 2.19. We would like to apply Compactification Theorem III 2.8 as in
the proof of Theorem 2.14 in §4.2.
To obtain a similar diagram as (49), we substitute the right column of (49) by the

morphisms Mp,; M Axg Al 2y A, where h'p,; denotes the Hitchin morphism
hpot : Mpor — A followed by the closed embedding A = A x {0p1} — A x Al. We can
then add the corresponding analogue of the left column in (49) by the construction in
(48). Then the arguments in §4.2 applies, mutatis mutandis, and finishes the proof of all
the statements in Theorem 2.19 about the left half of the diagram (11).

For the remaining statements in Theorem 2.19, we need two variations of the diagram
(48): For the first variation, we first replace the right column of (48) by the constant B-
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morphism Mp,; — A}B that sends Mp,; to O C A}B, and then construct the left column
as in (48)- this gives us the compactification of Mz,q above; For the second variation, we
take the base change of the whole diagram (48) via the inclusion 0y < A}~ this gives us
the compactification m and shows that the fiber (M)o 5 of the compactification
of Myoq constructed in Theorem 2.13 is the compactification of Mpeq,0,. The natural
morphism Mpe — MHod,0, then induces a morphism of the two variations of diagram

(48), thus a morphism Mpe — Mpoed,0,- The remaining statements in Theorem 2.19
can then be checked routinely. O

Proof of Theorem 2.20. We assume the notation in the proof of Theorem 2.19. Consider
the commutative diagram of G,,, p-equivariant morphisms

MDol MHod (50)
lh’DDl thod
FraxlId
A XB Al : A Al XB Al
Al

We repeat essentially verbatim the arguments in §4.2, by applying the construction
(48) and augmenting it using (50), the same way we used (49). Of course, we need the
evident “multiple morphisms” version of the Compactification Theorem IT 2.7 and of the
Projectivity Theorem IIT 2.8. The items (1)-(3) of Theorem 2.20 then follow. (Let us
remark that, in view of the factorization Mpo — Mpoda0,, — A’, the projectivity of
Mpor — Mroa,0 a1 follows immediately from the projectivity of the compositum Mp,; —
A—A)

For the item (4) of Theorem 2.20, note that ¢ : Mp, — MHod,0,, is a universally
closed bijection. If the rank r and degree d are coprime, then the morphism c¢ is an
isomorphism by the universal corepresentability property of the Hodge moduli space;
see Remark 2.12. We are done if we can show that c is indeed a universal bijection, as
universally closed universal bijections are universal homeomorphisms. Given any Zariski
point & of Mp,;, we would like to show that the field extension x(z) D k(c(z)) is purely

inseparable. By taking the closure of « and ¢(x), and shrinking ¢(x) if necessary, we may

assume that T and ¢(x) are both normal, and ¢z is finite. Let & be the normalization of

T in the separable closure of k(c(x)) inside x(x). We have that & — ¢(x) is generically
etale and injective. Since J is algebraically closed, and here is the only place where we

use this assumption on J, we have that & — c¢(x) is an isomorphism over an open and

dense subset of ¢(x). Therefore, we have that x(Z) = k(c(x)), thus the field extension
k(z) D k(c(x)) is purely inseparable. We have thus proved item (4).
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For the item (5) of Theorem 2.20, note that by construction, we obtain the morphism
A=P(1,1,2,...,p) —= A =P(1,p,2p,...,rp) = P(1,1,2,...,7r) = A. (51)

Note that the Frobenius twist of A is P(p,p, 2p, ...,7p) = P(1,1,2,...,p) = A = A’. Since
the restriction of A — A’ to A is the relative Frobenius Fr 4, we have that the morphism
(51) A — A’ is also the relative Frobenius Fr4 for P(1,1,2,...,7).

The compactification and Mp, Theorem 2.20 follows. O

5. Appendix: smooth moduli and specialization
5.1. Introduction to the appendix

The paper [7] is devoted to develop a formalism for the specialization morphism, when
it exists, as a perverse Leray filtered morphism for a family of morphisms f : X — Y over
a base curve S; the ground field is the one of the complex numbers. While §1,2,3 of [7] are
rather general, §4 of [7] is devoted to applying the formalism when the morphism f is the
Hitchin morphism Mp,(C/S) — A(C/S) — S associated with a smooth curve (§2.2)
C/S. The main result is [7, Tm 4.4.2], to the effect that the specialization morphisms
for this family are defined and are filtered isomorphisms. Another relevant result is [7,
Lm 4.3.3], to the effect that ¢(v.Qasp,,) = 0 for the vanishing cycle functor applied to
the direct image complex with respect to the structural morphism v : Mp, (C/S) — S.
Note that neither statement is a priori clear, since the morphism v is not proper.

In the paper [8], we use the generalization of [7, Tm. 4.4.2; Lm 4.3.3] to the cases
where the base is a complete strictly Henselian DVR S, and the morphisms f are:
1) the Hodge-Hitchin morphism (5) Mpea(C/k) — A(CM)) x A} — A}, after base
change to the appropriate local ring S at the origin of A}c; 2) the Hitchin morphism (6)
Mpa(C/S) — A(C/S) — S. These moduli space are with respect to certain coprimality
conditions on rank, degree and characteristic of the ground field. These conditions turn
out to imply the smoothness of these moduli spaces and that they universally corepresent
the appropriate functors (so that taking the fibers over S, one gets the expected moduli
space). The desired generalization of these results is not a simple matter of routine and
has as starting point the compactification results stated in §2.2 and proved in §4.2.

The purpose of this appendix is to tie in the compactification results of this paper
with [7, §4] by providing the necessary background so that we can prove [7, Tm. 4.4.2,
Lm. 4.3.3] for the Hodge and Dolbeault moduli spaces for smooth curves C/S (2.2) over
a complete strictly Henselian DVR S as in the previous paragraph, so that we can use
these results in [8].

Brief summary of [7, §4]. [7, §4] uses the compactification constructed in [6, Tm. 3.1.1
and (14)]; this construction uses the same kind of quotient by G,,, technique used in this
paper. The outcome of the construction is summarized in the diagrams [7, (70), (72)]:
the compactification of the moduli space is denoted by an open immersion X° C X
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with boundary Z (i.e. a triple (Z, X, X°)); the compactification is obtained by taking
the quotient by G, of a suitable triple (2, 27, Z°°). [7, §4] uses in an essential way, the
topological local triviality, due to C. Simpson, of the Dolbeault moduli spaces over the
base S (all over the complex numbers). This implies the same kind of local triviality of
the triple (2, 2", Z°°). In turn, this implies the vanishing ¢(Q 2°) = #(Qz) = 0 of the
vanishing cycles before taking the quotient by G,,. Due to the local product structure
([7, Lm. 4.3.1]), one also has, before taking the quotient, that a!@wg = Qo [—2], where
a: % — Z is the closed embedding. The key point in proving [7, Tm.4.4.2, Lm. 4.3.3]
is to descend, along the quotient by G,,, the vanishings and identities above from the
triple (2, 2, Z°°) to the triple (Z, X, X°).

Plan to fulfill the purpose. In order to achieve the desired purpose stated above, the

plan is to follow the path traced in [7, §4] over the complex numbers and make the
necessary adjustments along the way when working over the DVR S.

The suitable Q,-adic formalism in §5.2. First of all, we need a suitable formalism
of Q,-adic constructible sheaves on separated schemes of finite type over the complete
strictly Henselian DVR, S. This is the content of §5.2, where we collect some results
in the literature to provide a linear exposition of the eight functor formalism and of
perverse sheaves for Q,-adic constructible complexes on separated schemes of finite type
over an excellent DVR. With the formalism of §5.2 at our disposal, we recover virtually
the whole of the machinery in [7, §1,2,3], and we are ready to tackle the purpose of this
appendix.

The compactifications we use. We use the compactifications of Hodge and Dolbeault
moduli given in §2.2 by Theorems 2.14 and 2.20. The key construction is summarized by
diagrams (48) and (49). Warning on notation concerning case of the Hodge moduli space:
i) what has been denoted by £" above in the brief summary is a suitable open subset U
of what is denoted Z in (49) (cf. the proof of Theorem 2.13 in §4.2); ii) what is denoted
by Z above, is the closed subset of U = 2 given by the preimage of the x-axis with the
fiber of the Hitchin morphism over the origin (nipotent cone Np,;) removed from every
copy of Mpy over the points of the z-axis; then & is isomorphic to the product (z-
axis) X (Mpor \ Npoi). Despite the spaces being singular, the closed embedding 2 C 2
is regular of codimension one.

In general, the Hodge and Dolbeault moduli spaces are not regular. We leave the is-
sues of smoothness over the appropriate base, and of universal corepresentability for the
Hodge and Dolbeault moduli spaces to [8] (they follow from suitable coprimality assump-
tions). Next, we tackle all the remaining issues that arise in connection to generalizing
[7, Th. 4.4.2, Lm. 4.3.3] from C to a complete strictly Henselian DVR S.

List of remaining technical issues in §5.3. At this juncture, a close inspection of [7]
reveals that the only issues that arise when trying to fulfill the purpose of this appendix,
i.e. generalize [7, Lm. 4.3.3 and Tm. 4.4.2] to these compactifications discussed above
over the DVR S, are the aforementioned smoothness and universal corepresentability
(dealt with in [8]), and a small list of technical facts that need to be suitably generalized
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when replacing the base ring C with an algebraically closed field, or with a complete
strictly Henselian DVR. Dealing with this list, is the content of §5.3.

5.2. Rectified perverse t-structure over a DVR

We collect and complement references in the literature, so that one can work with
nearby /vanishing cycles in the context of Q,-adic coefficients and middle perversity t-
structures. The key ingredient is O. Gabber rectified middle perversity t-structure for
schemes of finite type over a DVR.

The trait. Let (.5, s,n) be trait, i.e. the spectrum of a DVR (discrete valuation ring),
with closed point i : s — S, and with generic open point j :  — S. With the exception
of (52), we work with schemes f : X — S that are separated and of finite type over S
and with S-morphisms that are separated and of finite type. The special closed fiber is
denoted X and the generic open fiber X,,. Fix a prime number ¢ that is invertible in S.

The constructible Q,-adic derived category. The trait S is Noetherian, regular and of
dimension one. In particular, we have access to the finiteness results in [38, Th. Finitude].
Let X/S be as above. Let D%(X,Q,) be the Q,-constructible derived category, whose
objects we call (constructible) complexes; see [11, Thm. 6.3]; see also [14, §5]. It is
endowed with a natural t-structure, with heart the abelian category of Q,-constructible
sheaves on X.

The formalism of functors. As X/S varies, with S fixed, the categories D%(X,Q,)
enjoy the usual formalism of the eight (“derived”) functors

(f!af!)a (f*af*)a (®aH0m),7J%¢7

with the usual adjunction relations among them —in each parenthesis (A, B) above,
A is left adjoint to B—, as well as duality exchanges —such as Dfi = f.D,Df' =
f*D, Dy[—1] = ¥[—1]D (for the last one, use [23, Thm.4.6], and ¢ = 1, 0 j*). These
functors are exact (additive, commute with translations, preserve distinguished trian-
gles). See [11, Th. 6.3], for a partial list of the properties concerning fi, f*, f*, f+, ®, Hom.
The functors D, 1) and ¢ are discussed below.

Duality. The duality functor D used above is introduced as follows. We call the con-
structible complex Kg := Q,4[2](1) the dualizing sheaf of S; see [11, Tm. 6.3.(iii)].
The object Kx/g := f'Kg is a dualizing sheaf on X relative to S. We denote by
D := Hom(—,Kx/s) : DX,Q,) — DX,Q,) the corresponding dualizing con-
travariant functor. Note that K, g = i'Kg = Kgs = @“7 i.e. the dualizing sheaf
of s relative to S coincides with the usual dualizing sheaf of s. On the other hand,
Kn/S = j!KS = Qénp}(l) # an = Bay/n-

Nearby and vanishing cycles functors. For the nearby and vanishing cycles functors v
and ¢ see [39, 7.1 I, 7.2 XIII], as well as [23,24], and references therein. Note that what
we denote by ¢ here, is denoted by ¢[—1] in [23,24]; in particular, the usual distinguished
triangle of functors appears here as (54) i* — ¥ — @[1] ~.
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When using the functors 1, ¢ we assume in addition that the trait S = S" is Henselian.
Choose a separable closure of the residue field. Form the associate strict Henselianization
S(s) of S at s. Choose a separable closure of the fraction field of the strict Henselianiza-
tion. After base change, we obtain natural morphisms of S-schemes (e and j are not of
finite type)

Jj c J

X5 —— X, Xy X, X. (52)

We define the nearby cycles functor by setting
Yi=1 7.6 DAX,Qp), — D(Xs, Q). (53)

The constructibility assertion here is from [38, Th. Finitude, Tm. 3.2] and [23, p.45 top]
(this is what is needed in [11] to land in the constructible derived category). We also
have the more classical nearby cycles functor v, : D%(X,,Q,) — D%(Xs,Q,), obtained
by setting i, := 5*3*6*. Clearly, ¢ = 1, 0 j*, i.e. ¥(F) depends only on the restriction
J*F. Let v: Xg ., — X be the natural projection morphism. By adjunction, we have a
natural morphism vt 1, which we simply denote by i* — 1 (this is literally correct
if S is strictly Henselian). The cone of this morphism is in fact functorial (cf. [39, 7.2
XII1, (1.4.2.2, 2.1.2.4)], and we denote it by ¢[1]. We have a distinguished triangle of
functors

i = = P[]~ (54)

For a partial list of the properties concerning ) and ¢, see [7, §2.1]. See also [23, §4]
(in particular, see Th. 4.7 for the compatibility with cup products).

The rectified middle perversity t-structure. We go back to the case where S is a
trait (not necessarily Henselian). For X/S separated and of finite type, the category
D%(X,Q,) is endowed with O. Gabber’s “rectified” middle-perversity t-structure [23,24,
§4, §2] which is defined by setting

PD=Y(X,Q,) = {K | i*K € PD=°(X,), j*K € PD="1(X,)}, (55)

rD=%(X,Q,) = {K| 'K € \D=°(X,), j*K € PD="1(X,)}.

If X/S is obtained from a separated scheme Z of finite type over a smooth curve C over
a field, by localizing at a closed point on the curve C, then the usual middle perversity
t-structure on Z induces the rectified one in (55).
Note that i,.Q,,, Quq[1] = Roj*@zn[l], j*@gn[l] and j[@en[l] are rectified perverse.
Self-duality. By using the definition, and the fact that the middle perversity t-structure
on a variety over a field is self-dual for the usual relative dualizing complexes over
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the field, it is easy to verify that the rectified perverse t-structure is self-dual for the
relative dualizing complex Ky g, i.e. the duality functor D exchanges pDSO(X ,Q,) and
pDZO(Xv @Z)

t-exactness. The functors j, and j; and (5*[—1] = j'[—1], 1[~1] and ¢ are t-exact
([23, §4]). If f : X — Y is an affine S-morphism, and S is a Henselian, then f, is
right t-exact for the rectified perverse t-structure ([24, Th. 2.4, due to O. Gabber]. Let
f: X — Y be a morphism. Let d > 0 be an integer such that every geometric fiber of
f has dimension at most d. Then we have the following “inequalities” for the rectified
t-structure: fi : PD=0(X) — PDSYY), f' . PD2O(Y) — PDZ"Y(X), f* . PDSO(Y) —
PDSYX), f. : PDZY(X) — PD="4(Y); see [3, 4.2.4] for the case of a field, that can be
used to bootstrap the proof over S by using (55).

We also have the analogues of 3, 4.1.10-11-12, Prop. 4.2.5, 4.2.6], which can be proved
in the same way.

The category of rectified perverse sheaves. The category of rectified perverse sheaves
on X is Abelian, Noetherian, self-dual, Artinian, and every simple object is an interme-
diate extension of a simple object ([3, §4.3]) from either the central, or the generic fiber
(for this last item, see [23, p.49, (c)]).

5.8. Compactification and specialization

We refer to §5.1. Let C'//B = J be a smooth curve as in §2.2. The technical issues we
need to address are the following:

(a) The construction, of a suitable natural completions of: For J = k an alge-
braically closed field, Mpg,q4(C/k)/A} and of the associated Hodge-Hitchin morphism
Mipoa(C/k) — A(CWM) x AL, for J = S a complete strictly Henselian DVR, of
Mpo(C/B)/B and of the associated Hitchin morphism Mp,,(C/B) — A(C/B)).
This way, diagram [7, (70) and (72)] and their properties are in place (they are
Cartesian up to nilpotents, and this creates no problems when working with the
étale topology).

(b) Taking the quotient by a possibly non-reduced flat finite group subscheme of G, g
in the proof of [7, Lemma 4.1.1].

(c) Being able to factor the G,, quotient into a quotient as in (b), and a free quotient,
as in [7, Lemma 4.1.1].

(d) The use of Luna slice Theorem in the proof of [7, Lm. 4.1.1] in the context of a G, 5
action with trivial stabilizers on an affine variety;

(e) The use of Lemma [7, Lm. 4.1.4], i.e. the assertion that if p: A — C is the quotient
by a finite flat group scheme G over B (with some extra assumptions to be listed in
Lemma 5.3), then Q,, is a direct summand of p,Q, 4.

(f) The use of Lemma [7, Lm. 4.1.3], i.e. the identity a'Qx = Qz[-2].

Issue (a) is resolved by taking the compactifications in §2.2.
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Issue (b) is resolved by the forthcoming standard Lemma 5.1. We note that this issue
(b) can also be resolved if the positive characteristic p of the ground field is bigger than
the rank r of the Higgs bundles we are taking: then the stabilizers we deal with are
i-roots of unity for i = 1,...,r, and they are thus reduced (finite cyclic).

Issue (c) is resolved in the forthcoming Lemma 5.2.

Issue (d) is resolved by [2, Thm. 20.4], where the authors prove a relative version of the
Luna Slice Theorem. In particular, [2] implies that for a smooth affine B-scheme X with
a free action of a smooth affine reductive group scheme G over B, if the GIT quotient
X/G exists, then etale locally over B, X is etale locally isomorphic to the product of G
and a B-scheme W, which, morally, is a slice transversal to the G-orbit.

Issue (e) is resolved by the forthcoming Lemma 5.3.

Issue (f) is resolved by O. Gabber Purity result [24, Tm. 2.2].

Lemma 5.1. Let X be a quasi-projective scheme over a noetherian base scheme B. Let G
be a finite flat group scheme over B that acts on X. Then a uniform geometric quotient
q: X = X/G exists, the morphism q is finite, and the quotient X/G is quasi-projective
over B.

Proof. For the statements without the quasi-projectivity of X/G, a proof is contained
in [34, Thm. 4.16]. When B is the spectrum of a field, a proof can also be found in [31,
Thm. 12.1]. See also [35, Rmk. 4.2].

The quasi-projectivity of X/G over B is proved by [35, Prop. 4.5.(B")] O

Lemma 5.1 implies the following Lemma 5.2, which is needed in the proof of
Lemma 5.3.

Lemma 5.2. Let X/B be as in Lemma 5.1. Let H be a group scheme over B. Suppose
that X /B admits an H-action, so that the uniform geometric quotient ¢ : X — X/H
exists. Let G be a finite flat closed group subscheme of H so that the quotient group
scheme H/G exists and is reductive. Then we have a factorizaiton

¢: X & X/G %5 X/H,
where both q1 and g are uniform geometric quotients.
Proof. We first show that H/G acts on X/G: We have the short exact sequence
0—-0x®0p/g—0x®@0g — Ox ®0g — 0.
Since the composition Oy, — Ox — Ox ® Oy — Ox ® Og, where the middle
morphism is the action comorphism, is trivial, we have a natural morphism Ox, —

Ox ® Opyq, which factors through Ox /¢ — Ox/q ® O G- One can check that this
defines the comorphism of an H/G action on X/G.
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By Lemma 5.1, we have that the uniform geometric quotient ¢; : X — X/G exists.
Using [37, Thm. 3, Rmk. 8,10] as in the proof of Theorem 2.6.(2) in §3.4, we have that
2 X/G = (X/G)/(H/G) exists as a uniform categorical quotient, and that ¢ is a
uniform geometric quotient if for any geometric point a of X/G, the set-theoretic image
to(H/G) of the orbit morphism py, is closed. The closedness of p,(H/G) is shown by
the proof of [4, Lm. 3.3.1.(1)], thus g» is a uniform geometric quotient. The factorization
q = q1 © g2 follows from the uniqueness of a geometric quotient. O

Recall that for any base scheme B and any abstract group G, there exists a unique
constant group scheme over B associated with G, see [41, 03YW].

Lemma 5.3. Assume the setup as in Lemma 5.1. Assume either one of the following
additional assumptions on B or G:

(i) G is the constant group scheme associated to an abstract finite group;
(it) B =k is an algebraically closed field;
(7ii) B is of equal characteristics and G is the group scheme un of N-th roots of unity
for some N € Z~q.

Then (Qq)x/c is a direct summand of q.(Q,)x

Proof. Let us start with the case with assumption (i).
Let ¢ : X/ — X/G be the uniform geometric quotient as in Lemma 5.1. We have that
(2:(Q)x)¢ = (Q))x/c- Since char(Q,) = 0, there exists the trace morphism

|G| Zg S Q* X — (Q*(@l)X)Gv

geG

which defines a splitting of the inclusion (Q;) x/¢ < ¢.(Q,) x. The case with assumption
(i) is then proved.
We now consider the case with assumption (ii): Let

14)G04)G*>7T0(G)4)1

be the “connected-étale short exact sequence” as in [32, p.114], i.e. G is the unique
connected normal subgroup scheme of G so that mo(G) := G/Gy is etale over k. Recall
that G is reduced if and only if Gy is trivial.

By Lemmata 5.1 and 5.2, the uniform geometric quotients ¢1 : X — X/Go, ¢2 :
(X/Go)/m(G) and ¢ : X — X /G exist, and we have a factorization

q: X 5 X/Go £ (X/Go)/mo(G).
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Since Gy is connected and k is algebraically closed, by [41, 054N] we have that for
any field extension K D k, (Go)k is also connected. Since |(Go)x| is discrete, we have
that |(Go)k| is a singleton. Since (q1)x : Xk — (X/Go)x = Xk/(Go)k is also a
geometric quotient, we have that (¢1)x is injective. By [41, 0154], we have that ¢; is
universally injective, and thus purely inseparable. Since ¢; is also finite and surjective
by Lemma 5.1, we have that ¢; is a universal homeomorphism [41, 04DF]. Therefore we
have that ¢1..(Q,)x = (Q¢)x/G,, see [33, Rmk. 2.3.17].

Therefore, to show that (Qg)y/q, is a direct summand of ¢,(Q,)x, it suffices to
show that (Q;)x/q, is a direct summand of g2.(Q,) x/G,- Note that m(G) is associated
with an abstract finite group, see e.g. [25, §8.21]. We are then reduced to the case with
assumption (i). The case with assumption (ii) is thus finished.

For the case with assumption (iii), [2, Lm. 19.7] shows that there exists a subgroup
scheme G of uy so that fiber by fiber over B, GGy restricts to the identity component
of pup, and that the quotient group scheme Go/un is etale over B. Therefore the short
exact sequence

1—)G0—>MN—>NN/G0—>1,

fiber by fiber over B, restricts to the étale-connected sequence in the proof in case (ii)
above. Moreover, using the fact that py is cyclic and B is of equal characteristic, we
see that py/Go is isomorphic to the group scheme associated with the abstract finite
group (pun)p(k(D)) for some closed point b in B with residue field x(b). Therefore, similar
argument as in case (ii) finishes the proof in case (iii). O
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