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AbstractÐ We consider the problem of synthesis of safe
controllers for nonlinear systems with unknown dynamics using
Control Barrier Functions (CBF). We utilize Koopman operator
theory (KOT) to associate the (unknown) nonlinear system
with a higher dimensional bilinear system and propose a data-
driven learning framework that uses a learner and a falsifier
to simultaneously learn the Koopman operator based bilinear
system and a corresponding CBF. We prove that the learned
CBF for the latter bilinear system is also a CBF for the
unknown nonlinear system by characterizing the ℓ2-norm error
bound between these two systems. We show that this error
can be partially tuned by using the Lipschitz constant of the
Koopman based observables. The CBF is then used to formulate
a quadratic program to compute inputs that guarantee safety
of the unknown nonlinear system. Numerical simulations are
presented to validate our approach.

Index TermsÐ Computational methods, Modeling, Robotics

I. INTRODUCTION

In this paper, we consider the problem of synthesizing
controllers that render a nonlinear system with unknown
dynamics safe, that is, controllers that guarantee that a
certain set will be forward invariant relative to the (unknown)
nonlinear system (we refer to the latter set as the safe set).
In particular, we consider the problems of 1) representing
the unknown nonlinear system as a lifted Koopman based
bilinear system and 2) learning a valid Control Barrier
Function (CBF) for the unknown system that can induce a
controller that can guarantee safety.

Literature review: In recent years, Koopman operator
theory (KOT) has emerged as a popular tool to analyze and
control nonlinear systems in applications in various fields,
including robotics and aerospace engineering [1]±[5]. KOT
enables the transformation of a controlled nonlinear system
to an infinite-dimensional bilinear system. However, the con-
trol design problem based on the infinite-dimensional bilinear
system poses practical and computational challenges. For this
reason, methods such as the Extended Dynamic Mode De-
composition (EDMD) are utilized to approximate the infinite-
dimensional linear system corresponding to a control-free
nonlinear dynamical system to a finite-dimensional linear
system. The lifted state (that is, the state of the lifted model)
is determined by the so-called Koopman-based observables
which are functions of the original states of the nonlinear
system. However, the computation of these observables is
a major challenge in general. Recent methods either 1)
guess the observables by identifying certain terms in the
nonlinear dynamics [6], 2) derive the set of observables
for particular classes of nonlinear systems such as those
describing attitude dynamics and rigid body motion [1], [2],
[7] or 3) use machine learning tools to learn the observables
[8]. Moreover, for a selected set of observables there is
no guarantee that the lifted linear model constructed by
using the EDMD algorithm can approximate the controlled
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nonlinear dynamics accurately. To that end, [9] provides
an approach for the selection of the observables from a
given dictionary of ªguessedº observables. [10] constructs
a lifted linear system corresponding to a nonlinear system,
such a quadrotor, from guessed observables using the EDMD
algorithm and design an LQR type controller based on the
lifted system representation of the nonlinear system. Authors
of [3] consider modelling and control of soft robots using
KOT based methods. Further, [11] constructs a Koopman
based lifted linear system by characterizing the observables
as higher derivatives of the underlying nonlinear dynamics.

Two major requirements for a controlled nonlinear system
is closed-loop stability and safety which can be guaranteed
by designing controllers that rely on the notions of Control
Lyapunov Functions (CLF’s) and Control Barrier Functions
(CBF’s), respectively. Safety is of prime importance for many
engineering applications. To this end, forward invariance
of a set relative to a system can be thought as the dual
property for safety of the latter system. The notion of CBF,
which was first introduced in [12], can be used to design a
feedback control law that would render the safety set forward
invariant relative to the closed-loop system. Control design
methods based on Control Barrier functions (CBF’s) have
proved to be effective tools to guarantee safety for nonlinear
systems. Although there are many methods to synthesize
CBF’s, most of them assume that either an exact or an
approximate model of the underlying nonlinear dynamics
is known a priori. Authors of [13] learn a CBF from safe
trajectories generated by an expert but assumes that the
control affine nonlinear dynamics is known a priori. Next,
[14] provide a learning framework for synthesis of CBF’s
from sensor data and uses a vector classifier function to
characterize the barrier function. Recently, the authors of
[15] have used KOT to propagate the nonlinear system via a
lifted linear system for faster computation of invariant safety
sets. However, [15] assumes that the CBF and the Koopman
based observables are known. Further, [16]±[21] assume that
a CBF is known. Synthesizing CBF’s for unknown nonlinear
system using Gaussian processes, under the assumption that
the control vector field term of the control affine system is
known has been considered in [22]. In addition, in [22],
the CBF is characterized by a polynomial function with
unknown coefficients that need to be learned. Recently, there
has been a plethora of results that leverage neural networks
and Sequential Modulo Theories (SMT) solvers to learn
certificate functions such as CLF using a learner and a
falsifier [23]±[25]. Our approach is distinct from [25] in two
important ways. First, we characterize the ℓ2 norm of the
difference between the time derivatives of the CBF along the
trajectories of the Koopman based bilinear system and the
unknown nonlinear system and prove that the learned CBF
for the bilinear system also acts as a CBF for the unknown
system. Second, we show that the ℓ2 norm of this difference
can be adjusted by tuning the Lipschitz continuity of the
CBF via spectral normalization of neural networks.

Main contributions: The main contribution of the paper is
two-fold. First, we simultaneously learn a Koopman based
bilinear model and a corresponding CBF by using a learner



and a falsifier. This is in contrast with most approaches in
the field that assume that a CBF and / or the dynamics of
the nonlinear system are known. Second, we show that the
learned CBF for the learned bilinear system also acts as a
CBF for the unknown nonlinear system. Further, we use
the learned bilinear model and the corresponding CBF to
compute control inputs guaranteeing safety for the unknown
nonlinear system via the solution of a quadratic program
(QP). We verify our approach for a collision avoidance
problem with a differential drive robot.

Structure of the paper: Section II discusses preliminaries
and Section III describes the problem statement. Section IV
discusses the Koopman based CBF and Section V presents
the learning framework to simultaneously learn the Koopman
based bilinear system and a corresponding CBF. Section VI
discusses the numerical simulations followed by concluding
remarks in Section VII.

II. PRELIMINARIES

Consider a nonlinear control-affine system:

ẋ = F (x,u) = f(x) + g(x)u, x(0) = xinit, (1)

where f and g are Lipschitz continuous functions, x ∈ X ⊂
R
n is the state and u ∈ U ⊂ R

m is the control input.
Although we do not consider hard input or state constraints,
we will assume that the sets X and U are compact (the latter
assumption is needed to avoid some practical issues that can
arise when solving the learning problem over an unbounded
domain). In addition, we assume that the nonlinear dynamics
governed by f and g are unknown. We will also assume
that the zero vector is the equilibrium point of (1). To keep
the notation simple, we omit the dependence of the state
and the control input on time. A discrete-time version of the
nonlinear system (1), which can be obtained by using, for
instance, the fourth order Runga-Kutta discretization scheme,
is given by

xk+1 = ℓ(xk,uk), x0 = xinit, (2)

where xk = x(k∆t) + O(∆t4), uk = u(k∆t) and ∆t >
0 is the sampling time period used in the Runga-Kutta
discretization scheme.

Assumption 1. The vector field F is Lipschitz continuous
in X × U and the Lipschitz constant KF of the unknown
nonlinear system (1) is known a priori, that is,

∥F (x,u)− F (y,v)∥ ≤ KF ∥(x,u)− (y,v)∥ (3)

for all (x,u), (y,v) ∈ X × U .

Remark 1. There is no loss of generality in assuming that
F is globally Lipschitz continuous given that local Lipschitz
continuity over a compact set implies global Lipschitz conti-
nuity [26]. In contrast to [22] which assumes that the function
g is known, in this paper we do not make such assumptions.

A. Control Barrier Functions

Consider a continuously differentiable function h : X →
R for the control-affine system (1) that satisfies

h(x) ≥ 0, ∀x ∈ X0 and h(x) < 0, ∀x ∈ Xd (4)

where X0 denotes the safe set and Xd the set of states that
must be avoided.

Assumption 2. The set X0, which is the complement of Xd
in X , i.e., X0 = X \Xd, is control (positively) invariant, that
is, there exists a control law π(x) : X0 → U such that for
all initial conditions xinit ∈ X0, the solution φ(·;xinit) to (1)
with φ(0;xinit) = xinit satisfies φ(t;xinit) ∈ X0 for all t ≥ 0.

The function h is said to be a Control Barrier Function
(CBF) when it satisfies the following definition:

Definition 1. Let X0 ⊂ R be the 0-superlevel set of h :
X → R, then h is a Control Barrier Function (CBF) for (1),
if there exists a class K∞ function1 α : R → R such that

sup
u∈U

Lfh(x) + Lgh(x)u ≥ −α(h(x)), ∀ x ∈ X (5)

where Lfh(x) and Lgh(x) are the Lie derivatives of h(x)
with respect to f and g, respectively.

Let us denote the following (state-dependent) set of inputs:

KCBF(x) = {u ∈ U :

Lfh(x) + Lgh(x)u(x) ≥ −α(h(x))}. (6)

Then, the selection of an input u(t) from KCBF(x(t)) at
each time t ≥ 0 will ensure that the set X0 will be forward
invariant relative to (1). In other words, given an initial
condition xinit ∈ X0, the solution to (1) x(t) will also remain
in X0 if u(t) ∈ KCBF(x(t)) for all t ≥ 0. Further, given a
nominal controller k(x), a feedback controller uS(x) can be
designed that can guarantee that the system will remain in
the safe set X0 by solving the following quadratic program
(QP):

CBF-QP uS(x) := argmin
u∈U

∥u− k(x)∥2 (7a)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)). (7b)

Because f and g are unknown, one cannot compute the
solution of QP (7) and use it to design a feedback controller
guaranteeing safety for the unknown nonlinear system (1).
Further, if the dynamics of the system (1) were known, the
safe controller uS(x) would not be implementable as the
constraint (7b) must be satisfied for uncountable t ∈ [0, T ]
where T is the total time horizon. Therefore, we consider
finite time intervals ti = i∆t, tK = T and compute control
inputs at those time intervals. This might lead to violation
of constraint (7b). For this reason, we make the following
assumption:

Assumption 3. The discretization step ∆t > 0 is sufficiently
small so that satisfaction of constraint (7b) at tk implies
constraint satisfaction (7b) for all t ∈ [tk, tk +∆t].

Remark 2. In view of Theorem 3 from [28], Assumption 3
always holds true provided that F and α are Lipschitz
continuous.

B. Koopman Operator Theory

Given a nonlinear system, ẋ = f(x), the Koopman
operator K is a linear infinite-dimensional operator which
linearly propagates a set of observables Φ(x) which are
functions of states. In other words, K[Φ(x)] = Φ◦Ft, where
Φ(x) : Rn → R

N , N > n, ◦ is the composition operator and
Ft is the flow map of the uncontrolled dynamics ẋ = f(x)
which is given by

Ft(x(t0)) = x (t0) +

∫ t0+t

t0

f(x(τ))dτ. (8)

1A function α(·) : R→ R belongs to the class of K∞ functions if it is
strictly increasing and in addition, α(0) = 0 and lim

r→∞

α(r) =∞ [27].



For the nonlinear control affine system (1), the time deriva-
tive of Φ(x) along the trajectories of (1) is given by

Φ̇(x) = ∇xΦ(x)[f(x) + g(x)u]

= ∇xΦ(x)f(x) +∇xΦ(x)g(x)u

= KΦ(x) +∇xΦ(x)

m
∑

i=1

gi(x)ui. (9)

Further, it is assumed that ∇xΦ(x)gi(x) belongs to the span
of Φ(x). In other words, there exists a constant matrix Ci
such that ∇xΦ(x)gi(x) = CiΦ(x). The previous assump-
tion is reasonable as the authors of [29] have shown that
for sufficiently large number of Koopman observables, the
system governed by (1) can be equivalently modelled as a
Koopman Bilinear Form (KBF) as follows:

ż = Kz +

m
∑

i=1

Cizui, (=: ψ(x,u)), (10)

where z := Φ(x). To preserve the bilinearity, we apply Euler
discretization to (10) to obtain the following discrete-time
bilinear control system:

zk+1 = Kdzk +

m
∑

i=1

Dizkui, (=: ψd(x,u)), (11)

where Kd := (K∆t + I), Di = Ci∆t and ∆t > 0 is the
sampling time period. The following assumption is needed
for x(t) satisfying (1) and z(t) satisfying (10) to be well
defined and finite for all t ≥ 0.

Assumption 4. We assume that the vector fields F and ψ
are forward complete2.

Remark 3. The motivation for using the Euler discretization
scheme is twofold. First, the bilinear form of the model is
maintained so that the model is affine in control. Second,
since the bilinear model is affine in control, it can directly
be used for the computation of safe inputs based on the QP
formulation (CBF-QP).

III. PROBLEM STATEMENT

The goal of the problem considered in this paper is to
characterize a CBF for the unknown nonlinear system (1)
and design a corresponding feedback controller that will
guarantee safety. Since (1) is unknown, computing control
inputs that render (1) safe using the QP formulation is
practically impossible. We are given instead a dataset D
which consists of state-input pairs i.e. D = {(xk,uk) ∈
X × U : k ∈ {1, 2, . . . , Nd}} which satisfy the following
assumption:

Assumption 5. The data points in D are ergodic in X × U
with respect to the uniform distribution.

Next, we formulate the combined learning and control
design problem:

Problem 1. Under Assumptions 1-5, simultaneously learn
the Koopman based bilinear model for (1) and a CBF that
satisfies (4) for the learned model. Further, learn a CBF for
the unknown nonlinear system (1) and compute a control
input u(t) that will render the nonlinear system (1) safe.

2For the definition of forward completeness, the reader may refer to [30].

IV. KOOPMAN BASED CBF

The equivalent form of the CBF-QP (7) in the lifted space
Φ(x) can be represented as follows:

uS(x) := argmin
u∈U

∥u− k(x)∥2 (12a)

s.t.
∂h(x)

∂z
∇xΦ(x)F (x,u) ≥ −α(h(x)). (12b)

Since f and g are unknown, one cannot compute the control
inputs uS(x) that would guarantee safety of the unknown
nonlinear system (1) by solving the constrained convex QP
(Quadratic program) (12). To this end, we use the learned
Koopman based bilinear model (KBF) (10) and the CBF for
the learned model (as described in Section V) to solve the
following modified QP:

uS(z) :=argmin
u∈U

∥u− kL(z)∥
2 (13a)

s.t.
∂h(x)

∂z

(

Kz +

m
∑

i=1

Cizui

)

≥ −α(h(x)) (13b)

where kL(z) is the nominal feedback controller for the
bilinear system (10). The control input computed by solving
(13) is then fed back to the original nonlinear system (1) to
guarantee safety. In this paper, we choose α(y) = λy, where
λ > 0.

V. LEARNING KOOPMAN BASED BILINEAR MODEL AND A

CONTROL BARRIER FUNCTION

Consider a dataset D which consists of state-input pairs
i.e., D = {(xk,uk) ∈ X × U : k ∈ {1, 2 . . . Nd}}.
We construct feedforward neural networks for the encoder
(observables) Φ : R

n → R
N , decoder ζ : R

N → R
n

(transforms the lifted state back to the original state) and
the CBF h : X → R. To simultaneously learn the Koopman
based bilinear system (10) and a CBF, the following loss
function is minimized

L(Φ, h) = β1Ldyn + β2Lrecons + β3Lbarr, (14)

where β2 and β3 are positive real constants. The individual
loss functions in (14) are defined as follows:

The dynamics loss Ldyn captures the error between the
state zk+1 and the state propagated from zk to zk+1 via the
Koopman based lifted bilinear system (11). In particular,

Ldyn =

Nd−1
∑

k=1

∥Φ(xk+1)−KdΦ(xk)−
m
∑

j=1

[ui]jDjΦ(xk)∥
2
2

(15)

where ui denotes the ith data point and [ui]j denotes the
jth component of input ui. The matrices Kd and D :=
[D1, D2, . . . , Dm] are updated at every epoch using the
EDMD algorithm [5] as follows:

[

K̃d D1 . . . Dm

]

= ΓηT
(

ηηT
)−1

(16)

where the matrices η and Γ are given by

η =
[ (

1
u1

)

⊗ Φ(x1), · · · ,
(

1
uNd−1

)

⊗ Φ(xNd−1)
]

,

Γ = [Φ(x2), . . . ,Φ(xNd
))] (17)

where ⊗ denotes the Kronecker product. Note that for a
given Φ, the matrices Kd and D are updated optimally at
every epoch.



The reconstruction loss Lrecons is used to penalize the error
between the lifted state zk and the state which is obtained
by applying the decoder and then the encoder to the lifted
state. In particular,

Lrecons =

Nd
∑

k=1

∥xk − ζ(Φ(xk))∥
2
2 (18)

The role of control barrier loss Lbarr (inspired by [23])
is to penalize any violation of the conditions in (4) by the
(candidate) CBF h(x) and is defined as follows:

Lbarr =
1

Nd

Nd
∑

i=1

max (0,−h(xai )) + max
(

0, h(xbi )
)

+max (0,∇xh(xi)ψ(Φ(xi),ui)) (19)

where x ∈ X , xai ∈ X0 and xbi ∈ Xd. The first term in (19)
corresponds to the requirement that h(x) ≥ 0 for x ∈ X0,
the second term to h(x) < 0 for x ∈ Xd and the last term
to the condition (7b) be satisfied. However, given a finite
number of points in X0, Xd and X , minimizing the control
barrier loss function would still not guarantee that h(x) is a
CBF. To this end, we first introduce a finite input set U =
{uc1, u

c
2, . . .u

c
R} where uci ∈ U for all i ∈ {1, 2, . . . , R} and

R ∈ N>0. Next, we introduce a first-order logic expression:

E(z,x) =
(

h(xa) < 0
∨

h(xb) ≥ 0
)

∨

(

∧

u
c

i
∈U

∇zh(x)ψ(x,u
c
i ) < β − α(h(x))

)

(20)

where β > 0, computation of which is detailed in Theorem
2. E(z,x) returns ªtrueº if there exists a pair (z,x) that
violates at least one of the CBF conditions and returns ªfalseº
otherwise. We use the class of Sequential Modulo Theories
(SMT) solvers [31] to generate counterexamples that satisfy
the falsification constraint. These counterexamples are then
added to either set X0 or set Xd depending on where the
counterexamples lie. This process is repeated until the SMT
solver is not able to generate any counterexamples that sat-
isfy the falsification expression E(z,x) (i.e., when E(z,x)
returns false). In this paper, we use the dReal algorithm as
a SMT solver due to its δ−completeness property that is
defined as follows:

Definition 2. [31] Let ϕ(x) be a quantifier first-order logic
constraint. An algorithm is said to be δ−complete if for
any ϕ(x), the algorithm always returns one of the following
answers correctly: ϕ does not have a solution (unsatisfiable),
or there is a solution x = b that satisfies ϕδ(b) where ϕδ(b)
is a small variation of the original constraint.

Remark 4. Our approach is offline and we assume that
we have access to a high-fidelity simulator which return the
state-input data pairs in environments where X = X0.

Due to the δ-completeness property of dReal algorithm,
there is a guarantee that the SMT never fails to generate any
counterexample if one exists [31].

A. CBF for the unknown nonlinear system

In this section, we prove that the CBF computed for the
Koopman based bilinear model is also valid for the original
nonlinear system with unknown dynamics.

Theorem 1. Under Assumptions 1-5, if the SMT solver is
not able to generate any counterexamples for the falsification

constraint, the proposed learning framework in Section V
computes a CBF for the Koopman bilinear form (10) corre-
sponding to the unknown nonlinear system (1).

Proof. Since the dReal (SMT) algorithm is δ-complete (Def-
inition 2), if the SMT solver is not able to generate any
counterexamples, then there does not exist any z such that
(20) holds. Consequently, the following expression is true

¬E(z,x) = (h(xa) ≥ 0)
∧

(

h(xb) < 0
)

∧





∨

u
c

i
∈U

∇zh(x)ψ(x,u
c
i ) ≥ β − α(h(x))





where x ∈ X , xa ∈ X0 and xb ∈ Xd. Therefore, there
exists a s ∈ {1, 2 . . . , R} such that

∇zh(x)ψ(x,u
c
s) ≥ β − α(h(x) ≥ −α(h(x)), (21)

where we have used the fact that β > 0. Consequently,

sup
u∈U

∇zh(x)ψ(x,u) ≥ ∇zh(x)ψ(x,u
c
s) ≥ −α(h(x))

which implies that h(x) is a CBF for the bilinear system
(10).

Theorem 2. Under Assumptions 1-5, if the SMT solver is
not able to generate any counterexamples for the falsification
constraint and if Φ(x) is injective, then the CBF h(x) for
the Koopman based bilinear system (10) is also a CBF for
the original nonlinear system with unknown dynamics (1).
In other words, the learned CBF h(x) satisfies

∂h(x)

∂z
∇xΦ(x)F (x,u) ≥ −α(h(x)),

for all x ∈ X and u ∈ U .

Proof. Let (y,v) be a training sample and (x,u) be an
arbitrary point belonging to X × U (we use the notation

a and b, i.e., (a, b) := [aT, bT]T). Let δ > 0 be such that
∥(x,u)− (y,v)∥ ≤ δ. Further, let

µ := max
(y,v)∈D

∥∇yΦ(y)F (y,v)− ψ(y,v)∥ (22)

and M > 0 such that ∥∂h(x)
∂z

∥ < M . In addition, let
τ := max{∥(y,u)∥ : (y,u) ∈ D}. Then, using the triangle
inequality, we have

∥∇xΦ(x)F (x,u)− ψ(x,u)∥

≤ ∥∇xΦ(x)F (x,u)−∇yΦ(y)F (y,v)∥+

∥∇yΦ(y)F (y,v)− ψ(y,v)∥+ ∥ψ(y,v)− ψ(x,u)∥

≤ ∥∇xΦ(x)F (x,u)−∇xΦ(x)F (y,v)∥+

∥∇xΦ(x)F (y,v)−∇yΦ(y)F (y,v)∥+

∥∇yΦ(y)F (y,v)− ψ(y,v)∥

+ ∥ψ(y,v)− ψ(x,u)∥ (23)

Since Φ, ψ and F are Lipschitz continuous functions with
Lipschitz constants KΦ, Kψ and KF , respectively, we have

∥F (x,u)− F (y,v)∥ ≤ KF ∥(x,u)− (y,v)∥ ≤ KF δ,

∇xΦ(x) ≤ KΦ, ∇yΦ(y) ≤ KΦ,

∥F (y,v)∥ ≤ KF ∥(y,v)∥ ≤ KF τ

∥ψ(y,v)− ψ(x,u)∥ ≤ Kψ∥(y,v)− (x,u)∥ ≤ Kψδ

∥∇yΦ(y)F (y,v)− ψ(y,v)∥ ≤ µ



Therefore, (23) becomes

∥∇xΦ(x)F (x,u)− ψ(x,u)∥

≤ KΦKF δ + 2KΦKF τ + µ+Kψδ <
β

M
(24)

where β > 0 is a sufficiently large constant. Then, choosing
β to satisfy (24) implies that

∇zh(x)ψ(x,u)−∇xh(x)F (x,u)

≤

∥

∥

∥

∥

∂h

∂z

∥

∥

∥

∥

∥∇xΦ(x)F (x,u)− ψ(x,u)∥ < M
β

M
= β

(25)

In view of (25) and Theorem 1, we have

∇xh(x)F (x,u) > ∇zh(x)ψ(x,u)− β

> −α(h(x)). (26)

Hence, h(x) satisfies the Koopman based equivalent form of
CBF (12) and the result follows.

Remark 5. The value of β depends on KΦ and µ which
can be tuned and reduced. The value of KΦ can be reduced
using spectral normalization of neural networks whereas µ
can be reduced by learning a better Koopman based bilinear
model for the unknown system. Consequently, the value of
β can be reduced and hence the computational burden on the
SMT solver can be reduced.

Remark 6. Theorem 1 only provides sufficient conditions
as to when the learned CBF for the bilinear system acts as
a CBF for the unknown system.

B. Spectral normalization of Koopman based observables

Consider a function p(x, θ) that is characterized by a
neural network as follows:

p(x, θ) =WL+1(γ(WL(γ(WL−1(. . . γ1x) . . . )))) (27)

where θ := {W 1,W 2, . . .WL} constitutes the collection
of weights of the neural network and γ is the activation
function. Spectral normalization stabilizes the neural network
training by constraining the Lipschitz constant of a function
which is characterized by a neural network [32]. We can
upper bound the Lipschitz constant of the neural network by
leveraging the spectral norm of each layer ql(x) = γ(W lx)
for layer l as follows. For the linear map q(x) = Wx,
the spectral norm denoted by ∥q∥lip is given by ∥q∥lip =
sup
x

σ(∇xq(x)) = σ(W ). For activation functions such as

Tanh and ReLU, the spectral norm is equal to 1. Therefore,

∥p(x, θ)∥lip ≤ ∥qL+1∥lip · ∥γ∥lip . . . ∥q
1∥lip =

L+1
∏

i=1

σ(W i).

(28)

Proposition 1. For a given KΦ > 0, if the collection of
weights θ at every hidden layer of the neural network that
characterizes Φ(x) are normalized as follows:

W̄ =W/σ(W ) ·K
1

L+1

Φ , (29)

then the Lipschitz constant of Φ(x) is upper bounded by
KΦ.

Proof. Using W̄ =W/σ(W ) ·K
1

L+1

Φ , we have

σ(W̄ i) = σ(W i/σ(W i) ·K
1

L+1

Φ ) = K
1

L+1

Φ . (30)

Hence, using (28), we have

∥Φ(x)∥lip ≤
L+1
∏

i=1

σ(W̄ i) =
L+1
∏

i=1

K
1

L+1

Φ = KΦ (31)

Therefore, the result follows.

Remark 7. Note that for a given KΦ > 0, there is always
a trade off between how small KΦ can be made and how
accurately one can learn the set of observables Φ that
represents the lifted state for the Koopman based model
(11). Further, we use spectral normalization to ensure that
the learned h(x) is Lipschitz continuous.

C. Algorithm

Algorithm 1 summarizes our proposed approach to com-
pute control inputs that would guarantee safety for the
unknown nonlinear system (1).

Algorithm 1 Safe controller for unknown nonlinear system

Input: Nd, ∆t, n, m, T , U , D = {xk, uk}
Nd

k=1
, xinit, xgoal

Output: Φ, ζ, Kd, Di ∀ i ∈ {1, . . . ,m}, US

1: function LEARNING(D)
2: Repeat:
3: Φ, ζ ← NNθ(x,z) ▷ Encoder and decoder
4: h(x)← NNθ(x) ▷ Candidate CBF

5: [Kd, . . . , Dm]← ΓηT
(

ηηT
)

−1
▷ Update bilinear system

6: Compute total loss L(θ) from Eqn. (14)
7: θ ← θ + αNN∇θL(θ) ▷ Update weights
8: until convergence
9: return Φ, ζ, [Kd, . . . , Dm] , h(x)

10: end function
11: function FALSIFICATION(X)
12: Use dReal algorithm to verify conditions (20)
13: return satisfiability ▷ True or False
14: end function
15: function SAFE CONTROL(x)
16: Φ, ζ, [Kd, . . . , Dm] , h(x)← LEARNING(D)
17: x← xinit
18: Repeat:
19: u(x)← Eqn. (13), U ← Append(u(x))
20: xnext ← Apply control input u(x) to (Eqn. (12))
21: x← xnext
22: until convergence of x→ xgoal
23: return US

24: end function
25: function MAIN()
26: while Satisfiable do
27: Add counterexamples to D
28: Φ, ζ, [Kd, . . . , Dm] , h(x)← LEARNING(D)
29: S ← FALSIFICATION(D)
30: end while
31: US ← SAFE CONTROL(xinit)
32: end function

The function LEARNING (Lines 1 to 10 of Algorithm 1)
takes the data snapshots D of state-input pairs and returns
the learned bilinear model and the CBF. For a given learned
bilinear model, the function FALSIFICATION (Lines 11 to
13 of Algorithm 1) returns whether the falsification constraint
(20) is true or false. If it returns false, the SMT solver
generates a counterexample that satisfies (20). Given the
current state x, the function SAFE CONTROL (Lines 15 to
24 of Algorithm 1) uses the learned observables, CBF and
the bilinear model to generate an input by solving the QP
(13). This input is then fed back to the unknown nonlinear
system (1) to get the subsequent state xnext. This process is
repeated until the desired state is reached.

D. Limitations

Next, we briefly discuss the main limitations of our ap-
proach. First, the SMT solver is not scalable, which restricts
our approach to low-dimensional systems. Second, there is
no guarantee that the algorithm terminates, i.e., it is not able
to generate any more counterexamples.




