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Abstract— We consider the problem of synthesis of safe
controllers for nonlinear systems with unknown dynamics using
Control Barrier Functions (CBF). We utilize Koopman operator
theory (KOT) to associate the (unknown) nonlinear system
with a higher dimensional bilinear system and propose a data-
driven learning framework that uses a learner and a falsifier
to simultaneously learn the Koopman operator based bilinear
system and a corresponding CBF. We prove that the learned
CBF for the latter bilinear system is also a CBF for the
unknown nonlinear system by characterizing the ¢?-norm error
bound between these two systems. We show that this error
can be partially tuned by using the Lipschitz constant of the
Koopman based observables. The CBF is then used to formulate
a quadratic program to compute inputs that guarantee safety
of the unknown nonlinear system. Numerical simulations are
presented to validate our approach.

Index Terms— Computational methods, Modeling, Robotics

I. INTRODUCTION

In this paper, we consider the problem of synthesizing
controllers that render a nonlinear system with unknown
dynamics safe, that is, controllers that guarantee that a
certain set will be forward invariant relative to the (unknown)
nonlinear system (we refer to the latter set as the safe set).
In particular, we consider the problems of 1) representing
the unknown nonlinear system as a lifted Koopman based
bilinear system and 2) learning a valid Control Barrier
Function (CBF) for the unknown system that can induce a
controller that can guarantee safety.

Literature review: In recent years, Koopman operator
theory (KOT) has emerged as a popular tool to analyze and
control nonlinear systems in applications in various fields,
including robotics and aerospace engineering [1]-[5]. KOT
enables the transformation of a controlled nonlinear system
to an infinite-dimensional bilinear system. However, the con-
trol design problem based on the infinite-dimensional bilinear
system poses practical and computational challenges. For this
reason, methods such as the Extended Dynamic Mode De-
composition (EDMD) are utilized to approximate the infinite-
dimensional linear system corresponding to a control-free
nonlinear dynamical system to a finite-dimensional linear
system. The lifted state (that is, the state of the lifted model)
is determined by the so-called Koopman-based observables
which are functions of the original states of the nonlinear
system. However, the computation of these observables is
a major challenge in general. Recent methods either 1)
guess the observables by identifying certain terms in the
nonlinear dynamics [6], 2) derive the set of observables
for particular classes of nonlinear systems such as those
describing attitude dynamics and rigid body motion [1], [2],
[7] or 3) use machine learning tools to learn the observables
[8]. Moreover, for a selected set of observables there is
no guarantee that the lifted linear model constructed by
using the EDMD algorithm can approximate the controlled
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nonlinear dynamics accurately. To that end, [9] provides
an approach for the selection of the observables from a
given dictionary of “guessed” observables. [10] constructs
a lifted linear system corresponding to a nonlinear system,
such a quadrotor, from guessed observables using the EDMD
algorithm and design an LQR type controller based on the
lifted system representation of the nonlinear system. Authors
of [3] consider modelling and control of soft robots using
KOT based methods. Further, [11] constructs a Koopman
based lifted linear system by characterizing the observables
as higher derivatives of the underlying nonlinear dynamics.

Two major requirements for a controlled nonlinear system
is closed-loop stability and safety which can be guaranteed
by designing controllers that rely on the notions of Control
Lyapunov Functions (CLF’s) and Control Barrier Functions
(CBF’s), respectively. Safety is of prime importance for many
engineering applications. To this end, forward invariance
of a set relative to a system can be thought as the dual
property for safety of the latter system. The notion of CBF,
which was first introduced in [12], can be used to design a
feedback control law that would render the safety set forward
invariant relative to the closed-loop system. Control design
methods based on Control Barrier functions (CBF’s) have
proved to be effective tools to guarantee safety for nonlinear
systems. Although there are many methods to synthesize
CBF’s, most of them assume that either an exact or an
approximate model of the underlying nonlinear dynamics
is known a priori. Authors of [13] learn a CBF from safe
trajectories generated by an expert but assumes that the
control affine nonlinear dynamics is known a priori. Next,
[14] provide a learning framework for synthesis of CBF’s
from sensor data and uses a vector classifier function to
characterize the barrier function. Recently, the authors of
[15] have used KOT to propagate the nonlinear system via a
lifted linear system for faster computation of invariant safety
sets. However, [15] assumes that the CBF and the Koopman
based observables are known. Further, [16]—[21] assume that
a CBF is known. Synthesizing CBF’s for unknown nonlinear
system using Gaussian processes, under the assumption that
the control vector field term of the control affine system is
known has been considered in [22]. In addition, in [22],
the CBF is characterized by a polynomial function with
unknown coefficients that need to be learned. Recently, there
has been a plethora of results that leverage neural networks
and Sequential Modulo Theories (SMT) solvers to learn
certificate functions such as CLF using a learner and a
falsifier [23]-[25]. Our approach is distinct from [25] in two
important ways. First, we characterize the ¢ norm of the
difference between the time derivatives of the CBF along the
trajectories of the Koopman based bilinear system and the
unknown nonlinear system and prove that the learned CBF
for the bilinear system also acts as a CBF for the unknown
system. Second, we show that the ¢ norm of this difference
can be adjusted by tuning the Lipschitz continuity of the
CBF via spectral normalization of neural networks.

Main contributions: The main contribution of the paper is
two-fold. First, we simultaneously learn a Koopman based
bilinear model and a corresponding CBF by using a learner



and a falsifier. This is in contrast with most approaches in
the field that assume that a CBF and / or the dynamics of
the nonlinear system are known. Second, we show that the
learned CBF for the learned bilinear system also acts as a
CBF for the unknown nonlinear system. Further, we use
the learned bilinear model and the corresponding CBF to
compute control inputs guaranteeing safety for the unknown
nonlinear system via the solution of a quadratic program
(QP). We verify our approach for a collision avoidance
problem with a differential drive robot.

Structure of the paper: Section II discusses preliminaries
and Section III describes the problem statement. Section IV
discusses the Koopman based CBF and Section V presents
the learning framework to simultaneously learn the Koopman
based bilinear system and a corresponding CBF. Section VI
discusses the numerical simulations followed by concluding
remarks in Section VIIL.

II. PRELIMINARIES
Consider a nonlinear control-affine system:

z=F(z,u) = f(x)+g(x)u, x(0)=mpm, (1)

where f and g are Lipschitz continuous functions, x € X C
R™ is the state and v € U C R™ is the control input.
Although we do not consider hard input or state constraints,
we will assume that the sets X' and Uf are compact (the latter
assumption is needed to avoid some practical issues that can
arise when solving the learning problem over an unbounded
domain). In addition, we assume that the nonlinear dynamics
governed by f and g are unknown. We will also assume
that the zero vector is the equilibrium point of (1). To keep
the notation simple, we omit the dependence of the state
and the control input on time. A discrete-time version of the
nonlinear system (1), which can be obtained by using, for
instance, the fourth order Runga-Kutta discretization scheme,
is given by

p— 5 p—
Thy1 = LTk, up),  To = Tinit, 2

where ), = x(kAt) + O(At?), up = u(kAt) and At >
0 is the sampling time period used in the Runga-Kutta
discretization scheme.

Assumption 1. The vector field F' is Lipschitz continuous
in X x U and the Lipschitz constant K of the unknown
nonlinear system (1) is known a priori, that is,

[1F(@,u) = F(y,v)|| < Kpll(z,w) - (y,0)]  3)
for all (z,u), (y,v) € X xU.

Remark 1. There is no loss of generality in assuming that
F is globally Lipschitz continuous given that local Lipschitz
continuity over a compact set implies global Lipschitz conti-
nuity [26]. In contrast to [22] which assumes that the function
g is known, in this paper we do not make such assumptions.

A. Control Barrier Functions

Consider a continuously differentiable function A : X —
R for the control-affine system (1) that satisfies

h(z) >0, VereX, and h(z) <0, VeeX; 4

where X denotes the safe set and X; the set of states that
must be avoided.

Assumption 2. The set &), which is the complement of X,
in X, i.e., Xy = X'\ Ay, is control (positively) invariant, that
is, there exists a control law m(x) : Xy — U such that for
all initial conditions @y, € X, the solution ¢(-; xini) to (1)
with o (0; Zinit) = Tin;e satisfies o(t; Tinie) € Xo for all ¢ > 0.

The function h is said to be a Control Barrier Function
(CBF) when it satisfies the following definition:

Definition 1. Let Xy C R be the O-superlevel set of h :
X — R, then h is a Control Barrier Function (CBF) for (1),
if there exists a class Ko, function! a: R — R such that

VeedX (5

where Lh(x) and Lyh(x) are the Lie derivatives of h(x)
with respect to f and g, respectively.

Let us denote the following (state-dependent) set of inputs:

KCBF(QZ) = {u eU:
Lih(x) + Loh(x)u(x) > —a(h(x))}. (6)

Then, the selection of an input w(¢) from Kcpr(x(t)) at
each time ¢t > 0 will ensure that the set Ay will be forward
invariant relative to (1). In other words, given an initial
condition iy € X, the solution to (1) x(¢) will also remain
in Xy if u(t) € Kcpr(x(t)) for all ¢ > 0. Further, given a
nominal controller k(x), a feedback controller us(x) can be
designed that can guarantee that the system will remain in
the safe set Xy by solving the following quadratic program

(QP):

CBF-QP wug(x) := argmin  |lu — k(z)|? (7a)
weld

st. Lyh(x)+ Lyh(x)u > —a(h(x)). (7b)

Because f and g are unknown, one cannot compute the
solution of QP (7) and use it to design a feedback controller
guaranteeing safety for the unknown nonlinear system (1).
Further, if the dynamics of the system (1) were known, the
safe controller ug(x) would not be implementable as the
constraint (7b) must be satisfied for uncountable ¢ € [0, T
where T is the total time horizon. Therefore, we consider
finite time intervals t; = iAt, tx = T and compute control
inputs at those time intervals. This might lead to violation
of constraint (7b). For this reason, we make the following
assumption:

Assumption 3. The discretization step At > 0 is sufficiently
small so that satisfaction of constraint (7b) at t; implies
constraint satisfaction (7b) for all ¢ € [tg, tx + At].

Remark 2. In view of Theorem 3 from [28], Assumption 3
always holds true provided that F' and « are Lipschitz
continuous.

B. Koopman Operator Theory

Given a nonlinear system, € = f(x), the Koopman
operator /C is a linear infinite-dimensional operator which
linearly propagates a set of observables ®(x) which are
functions of states. In other words, C[®(x)] = ® o F;, where
O(x): R" — RN, N > n, o is the composition operator and
F: is the flow map of the uncontrolled dynamics & = f(x)
which is given by

to+t
Ful(to)) = @ (to) + / f@rydr.  ®

to

A function () : R — R belongs to the class of Koo functions if it is
strictly increasing and in addition, «(0) = 0 and gm a(r) = oo [27].
T o o}



For the nonlinear control affine system (1), the time deriva-
tive of ®(x) along the trajectories of (1) is given by

b(z) = Vo ®(2)[f(2) + g(@)u]
Va®(x)f(z) + Ve QI>( )g(x)u
Ko

Zgz u;. )

Further, it is assumed that V,®(x)g; () belongs to the span
of ®(x). In other words, there exists a constant matrix C;
such that V,®(x)g;(x) = C;®(x). The previous assump-
tion is reasonable as the authors of [29] have shown that
for sufficiently large number of Koopman observables, the
system governed by (1) can be equivalently modelled as a
Koopman Bilinear Form (KBF) as follows:

() + Vo O(x

2=Kz+ Z Cizuy, (:: '(/}(177 u))7

i=1

(10)

where z := ®(x). To preserve the bilinearity, we apply Euler
discretization to (10) to obtain the following discrete-time
bilinear control system:

Zk+1 (11)

= Kqzp + ZDizkuiv (= Ya(z,u)),

i=1

where K4 := (KAt + I), D, = C;At and At > 0 is the
sampling time period. The following assumption is needed
for x(t) satisfying (1) and z(¢) satisfying (10) to be well
defined and finite for all £ > 0.

Assumption 4. We assume that the vector fields F' and
are forward complete?.

Remark 3. The motivation for using the Euler discretization
scheme is twofold. First, the bilinear form of the model is
maintained so that the model is affine in control. Second,
since the bilinear model is affine in control, it can directly
be used for the computation of safe inputs based on the QP
formulation (CBF-QP).

III. PROBLEM STATEMENT

The goal of the problem considered in this paper is to
characterize a CBF for the unknown nonlinear system (1)
and design a corresponding feedback controller that will
guarantee safety. Since (1) is unknown, computing control
inputs that render (1) safe using the QP formulation is
practically impossible. We are given instead a dataset D
which consists of state-input pairs i.e. D = {(xg,ur) €
X xU : ke {1,2,...,Ng}} which satisfy the following
assumption:

Assumption 5. The data points in D are ergodic in X x U
with respect to the uniform distribution.

Next, we formulate the combined learning and control
design problem:

Problem 1. Under Assumptions 1-5, simultaneously learn
the Koopman based bilinear model for (1) and a CBF that
satisfies (4) for the learned model. Further, learn a CBF for
the unknown nonlinear system (1) and compute a control
input u(¢) that will render the nonlinear system (1) safe.

2For the definition of forward completeness, the reader may refer to [30].

IV. KOOPMAN BASED CBF

The equivalent form of the CBF-QP (7) in the lifted space
®(x) can be represented as follows:
lu — k()|”

ug(x) ;= argmin (12a)
weld

Oh(z)
0z

Since f and g are unknown, one cannot compute the control
inputs ug(x) that would guarantee safety of the unknown
nonlinear system (1) by solving the constrained convex QP
(Quadratic program) (12). To this end, we use the learned
Koopman based bilinear model (KBF) (10) and the CBF for
the learned model (as described in Section V) to solve the
following modified QP:

S.t.

Vz@(x)F(x,u) > —alh(x)). (12b)

us(z) :=argmin |lu — kz(2)|? (13a)
ah(m) m
== (ICz + ; Cizui) > —a(h(z)) (13b)

where kr(z) is the nominal feedback controller for the
bilinear system (10). The control input computed by solving
(13) is then fed back to the original nonlinear system (1) to
guarantee safety. In this paper, we choose a(y) = Ay, where
A> 0.

V. LEARNING KOOPMAN BASED BILINEAR MODEL AND A
CONTROL BARRIER FUNCTION

Consider a dataset D which consists of state-input pairs
ie, D = {(xp,ux) € X xU : k € {1,2...Ng}}.
We construct feedforward neural networks for the encoder
(observables) ® : R® — RY, decoder ¢ : RV — R"
(transforms the lifted state back to the original state) and
the CBF h : & — R. To simultaneously learn the Koopman
based bilinear system (10) and a CBF, the following loss
function is minimized

,C((I), h) = Blﬁdyn + BQLrecons + ﬁ3£barrv

where (85 and (3 are positive real constants. The individual
loss functions in (14) are defined as follows:

The dynamics loss Lay, captures the error between the
state zy; and the state propagated from zj to 25y via the
Koopman based lifted bilinear system (11). In particular,

(14)

Ng—1 m
Lon= Y ®(@h11) — Ka® (i) — > [wil; D;®(ws)I3
k=1 Jj=1

5)

where u; denotes the i data point and [u;]; denotes the
ith

7" component of input w;. The matrices 4 and D :=
[Dy, Das,...,Dy,,] are updated at every epoch using the
EDMD algorithm [5] as follows:

] =" (m") "

where the matrices 7 and I' are given by

1
7( uNd71 ) ®(D(de*1) ] )
, P(2N,))] (17)
where ® denotes the Kronecker product. Note that for a

given @, the matrices K; and D are updated optimally at
every epoch.

| Kg Dy... D, (16)

n= ( ull )®<I>(931)7
I'=[®(x2), ...



The reconstruction loss Liecons 1S used to penalize the error
between the lifted state z; and the state which is obtained
by applying the decoder and then the encoder to the lifted
state. In particular,

Z lack — C(@ ()13

The role of control barrier loss Ly, (inspired by [23])
is to penalize any violation of the conditions in (4) by the
(candidate) CBF h(x) and is defined as follows:

1
N, ;max(o, —h(
0, Veh(z:) (P (x:), ui))

where € X, ¢ € X and 2% € X,;. The first term in (19)
corresponds to the requirement that h(x) > 0 for € X,
the second term to h(x) < 0 for & € Xy and the last term
to the condition (7b) be satisfied. However, given a finite
number of points in Xy, Xy and X', minimizing the control
barrier loss function would still not guarantee that h(x) is a
CBF. To this end, we first introduce a finite input set U =
{u§, us,...u%} where u§ € U foralli € {1,2,..., R} and
R € N5 . Next, we introduce a first-order logic expression:

E(z,x) = (h(m“) <0\/h(a" 0) \/
( N Vah(@)y(z,uf) < g - a(h(w))> (20

uselU

(18)

recons

ﬁbarr = w?)) -+ max (0’ h(wf))

+ max ( 19)

where 8 > 0, computation of which is detailed in Theorem
2. E(z,x) returns “true” if there exists a pair (z,«) that
violates at least one of the CBF conditions and returns “false”
otherwise. We use the class of Sequential Modulo Theories
(SMT) solvers [31] to generate counterexamples that satisfy
the falsification constraint. These counterexamples are then
added to either set Xy or set Xy depending on where the
counterexamples lie. This process is repeated until the SMT
solver is not able to generate any counterexamples that sat-
isfy the falsification expression £(z,x) (i.e., when £(z, x)
returns false). In this paper, we use the dReal algorithm as
a SMT solver due to its d—completeness property that is
defined as follows:

Definition 2. [31] Let ¢(x) be a quantifier first-order logic
constraint. An algorithm is said to be d—complete if for
any ¢(x), the algorithm always returns one of the following
answers correctly ¢ does not have a solution (unsatisfiable),
or there is a solution & = b that satisfies ¢5( ) where ¢°(b)
is a small variation of the original constraint.

Remark 4. Our approach is offline and we assume that
we have access to a high-fidelity simulator which return the
state-input data pairs in environments where X = Aj.

Due to the d-completeness property of dReal algorithm,
there is a guarantee that the SMT never fails to generate any
counterexample if one exists [31].

A. CBF for the unknown nonlinear system

In this section, we prove that the CBF computed for the
Koopman based bilinear model is also valid for the original
nonlinear system with unknown dynamics.

Theorem 1. Under Assumptions 1-5, if the SMT solver is
not able to generate any counterexamples for the falsification

constraint, the proposed learning framework in Section V
computes a CBF for the Koopman bilinear form (10) corre-
sponding to the unknown nonlinear system (1).

Proof. Since the dReal (SMT) algorithm is §-complete (Def-
inition 2), if the SMT solver is not able to generate any
counterexamples, then there does not exist any z such that
(20) holds. Consequently, the following expression is true

(h(z") = 0) \ (h(z") < 0) \
V Vih(@)(@

ufelU

—&(z,x) =

uf) = B — a(h(z))

where x € X, ¢ € A and x® € X,. Therefore, there

exists a s € {1,2..., R} such that
Vh(x)(z, us) > B — a(h(z) > —a(h(z)),

where we have used the fact that 5 > 0. Consequently,
sup V. h(@)i(@,u) > Vih(z)i(@,ul) > —a(h(@))
ucld

21

which implies that h(x) is a CBF for the bilinear system
(10). O

Theorem 2. Under Assumptions 1-5, if the SMT solver is
not able to generate any counterexamples for the falsification
constraint and if ®(x) is injective, then the CBF h(x) for
the Koopman based bilinear system (10) is also a CBF for
the original nonlinear system with unknown dynamics (1).
In other words, the learned CBF h(x) satisfies

Oh(x)
0z
for all x € X and u € U.

Va®(z)F(x,u) > —a(h(z)),

Proof. Let (y,v) be a training sample and (x,u) be an
arbitrary point belonging to X x U (we use the notation

aand b, ie., (a,b) :=[aT, b*]T). Let § > 0 be such that

[[(x,u) — (y,v)|| < 4. Further, let
pim V2@ F(y0) - vyl 22

and M > 0 such that ||ah(

7 = max{||(y, w)| : (¥,
inequality, we have

|| < M. In addition, let
u) € D} Then, using the triangle

[Va®(z)F(z,u) — ¢(x,u)||
< V2 @(z)F(z,u) — Vy@(y)F(y,v)|+
IVy@(y)F (y, ) Yy, v)|| + [Y(y, v) — Yz, u)|
< ||V2@(z)F(z, V:c@(w) (y,v)|+
V2 ®(x)F(y, ) y@(Y) F(y, )|+
[Vy@(y)F(y,v) - ( v)|l
+ Uy, v) — ¢(z,u)| (23)

Since ®, ¢ and F' are Lipschitz continuous functions with
Lipschitz constants K¢, Ky and K, respectively, we have

|F(@,u) — F(y,v)| < Kpll(z,u) — (y,v)] < KFd,
Vz@(x) < Ko, Vy®(y) < Ko,
1F(y, v)ll < Krll(y,v)|| < Kp7
[o(y, v) = (@, u)l| < Ky[(y,v) = (2, u)|| < Kyd

IVy@(y) F(y,v) — ¥y,

v)[| < p



Therefore, (23) becomes
[Va®(x)F(z,u) — ¥ (z, u)|
p

< KoKpd+2Ko KpT + p+ Kyd < u @

where 5 > 0 is a sufficiently large constant. Then, choosing
B to satisfy (24) implies that

u) — Vah(x)F(x,u)

B
H Ww@ (@) F(au) — v@.w)] < M2 = 5
(25)
In view of (25) and Theorem 1, we have
Vah(x)F(x,u) > V h(z)p(z,u) — 3
> —a(h(x)). (26)
Hence, h(x) satisfies the Koopman based equivalent form of
CBF (12) and the result follows. O]

Remark 5. The value of 8 depends on K4 and g which
can be tuned and reduced. The value of K¢ can be reduced
using spectral normalization of neural networks whereas p
can be reduced by learning a better Koopman based bilinear
model for the unknown system. Consequently, the value of
[ can be reduced and hence the computational burden on the
SMT solver can be reduced.

Remark 6. Theorem 1 only provides sufficient conditions
as to when the learned CBF for the bilinear system acts as
a CBF for the unknown system.

B. Spectral normalization of Koopman based observables

Consider a function p(«,6) that is characterized by a
neural network as follows:

p(@,0) = WE (y(WE(y(WEH(. )))

where 0 = {W! W2 ...WL} constitutes the collection
of weights of the neural network and < is the activation
function. Spectral normalization stabilizes the neural network
training by constraining the Lipschitz constant of a function
which is characterized by a neural network [32]. We can
upper bound the Lipschitz constant of the neural network by
leveraging the spectral norm of each layer ¢!(z) = v(W'x)
for layer [ as follows. For the linear map ¢(x) = W,
the spectral norm denoted by ||¢||ip is given by |[|q|li, =
sup 0(Vgq(x)) = o(W). For activation functions such as

xT
Tanh and ReLU, the spectral norm is equal to 1. Therefore,

Alx). .. (27)

1. 7L+1 i
g lip = T o(W?).
- (28)

Proposition 1. For a given K¢ > 0, if the collection of
weights 6 at every hidden layer of the neural network that
characterizes ®(x) are normalized as follows:

(@, 0)llip < g™ lp - 17l - -

W =W/o(W

then the Lipschitz constant of ®(x) is upper bounded by
Ks.

Proof. Using W = W/a(W

)-Kg™, (29)

1
)- K&, we have

o(W" =a(W/a(W?) -Kﬁ) = K;T (30)

Hence, using (28), we have

L+1 L+1
1 ()||1p < H g H KHI Kg (3D
Therefore, the result follows. O

Remark 7. Note that for a given K > 0, there is always
a trade off between how small K4 can be made and how
accurately one can learn the set of observables & that
represents the lifted state for the Koopman based model
(11). Further, we use spectral normalization to ensure that
the learned h(x) is Lipschitz continuous.

C. Algorithm

Algorithm 1 summarizes our proposed approach to com-
pute control inputs that would guarantee safety for the
unknown nonlinear system (1).

Algorithm 1 Safe controller for unknown nonlinear system

Input: Ny, At, n, m, T, U, D = {$k7 'U'k}]k\[:dl» Tinit> Lgoal
Output: &, {, K4, D; Vi€ {l,...,m}, Us
: function LEARNING(D)
Repeat:
D, ¢ + NNp(z, z)
h(x) <+ NNp(x)
[Kd»- . ~7Dm] — FﬂT
Compute total loss £(0) from Eqn. (14)
0«0+ (XNNV(.)[,(g)
until convergence
return @, ¢, [Kq,...,Dm], h(x)
10: end function
11: function FALSIFICATION(X)
12:  Use dReal algorithm to verify conditions (20)
13:  return satisfiability
14: end function
15: function SAFE CONTROL(x)

> Encoder and decoder
> Candidate CBF

T -1 > Update bilinear system

> Update weights

ORI N W

> True or False

16: @, ¢, [Kg,...,Dm], h(x) + LEARNING(D)
17 x < @i
18:  Repeat:

19:  wu(x) « Eqn. (13), U < Append(u(x))

20:  @®pext < Apply control input u(x) to (Eqn. (12))
21: x4 Epext

22:  until convergence of & — @goq

23:  return Ug

24: end function

25: function MAIN()

26: while Satisfiable do

27: Add counterexamples to D
28: D, ¢, [Kgy---,Dm], h(x) < LEARNING(D)
29: S < FALSIFICATION(D)

30: end while
31: Ug < SAFE CONTROL(®init)
32: end function

The function LEARNING (Lines 1 to 10 of Algorithm 1)
takes the data snapshots D of state-input pairs and returns
the learned bilinear model and the CBF. For a given learned
bilinear model, the function FALSIFICATION (Lines 11 to
13 of Algorithm 1) returns whether the falsification constraint
(20) is true or false. If it returns false, the SMT solver
generates a counterexample that satisfies (20). Given the
current state x, the function SAFE CONTROL (Lines 15 to
24 of Algorithm 1) uses the learned observables, CBF and
the bilinear model to generate an input by solving the QP
(13). This input is then fed back to the unknown nonlinear
system (1) to get the subsequent state @ex. This process is
repeated until the desired state is reached.

D. Limitations

Next, we briefly discuss the main limitations of our ap-
proach. First, the SMT solver is not scalable, which restricts
our approach to low-dimensional systems. Second, there is
no guarantee that the algorithm terminates, i.e., it is not able
to generate any more counterexamples.



VI. RESULTS

In this section, we provide numerical simulations to
validate the ability of our proposed approach to compute
control inputs that would keep the state of the unknown
nonlinear system in a given safe set. The nominal controller
k1 (z) for the learned Koopman based bilinear system (10) is
computed using the MPC package do-mpc [33] in Python.
We consider the differential drive robot with dynamics:

& = rsin(f), ¢y =rcos(d), 0 =(r/L)w (32)
where r is the radius of the wheels, L is the distance
between wheels, * = [z, y, 0] is the state, u = w is
the control input. We choose » = 0.1m, L = 0.1m, N =
5 R =10, B = 2, B2 = 005 pz =1, & =
[-5,5]% x [-0.2,0.2], U = [—1,1]. Further, we choose
Tanh to be the activation function with learning rate set
to 1073, In our simulations, we have considered observable
functions of the form ®(x) = [T, ¢1(2),..., on_n(z)]*
which are injective. The set U is generated by uniformly
sampling M inputs from /. The initial conditions xy are
sampled from a square with center at (—2.5m, —2.5m) and
side equal to 2m. A circular obstacle is placed with center
at origin and radius equal to 1m. A,y denotes the set of
points that lie outside this circular obstacle. Fig. 1 shows
50 different safe trajectories generated using our approach
starting from a fixed xy (sampled uniformly from square
[—3.5, —1.5] x [=3.5, —1.5]) to a goal position Tgeu Which
is chosen to be (2.5m,2.5m).

3
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y (m)

-4 -2 0 2 4
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Fig. 1: 50 safe trajectories generated using our proposed
approach from initial conditions sampled from a square
region to the same goal position.

VII. CONCLUSION

In this paper, we proposed a learning framework to si-
multaneously learn a Koopman based bilinear model for
an unknown nonlinear system and a valid Control Barrier
Function for the learned model. We proved that the CBF
for the bilinear model also acts as a CBF for the unknown
nonlinear system. Through numerical simulations, we ver-
ified our proposed approach on a differential robot for a
collision avoidance problem. In our future work, we will
consider extending our approach to CBFs to systems with
(unknown) dynamics of higher relative degree.
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