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Abstract

Learning and synthesizing stabilizing controllers for unknown nonlinear control
systems is a challenging problem for real-world and industrial applications.
Koopman operator theory allows one to analyze nonlinear systems through the
lens of linear systems and nonlinear control systems through the lens of bilinear
control systems. The key idea of these methods lies in the transformation of the
coordinates of the nonlinear system into the Koopman observables, which are
coordinates that allow the representation of the original system (control system)
as a higher dimensional linear (bilinear control) system. However, for nonlinear
control systems, the bilinear control model obtained by applying Koopman
operator based learning methods is not necessarily stabilizable. Simultaneous
identification of stabilizable lifted bilinear control systems as well as the associated
Koopman observables is still an open problem. In this paper, we propose
a framework to construct these stabilizable bilinear models and identify its
associated observables from data by simultaneously learning a bilinear Koopman
embedding for the underlying unknown control affine nonlinear system as well
as a Control Lyapunov Function (CLF) for the Koopman based bilinear model
using a learner and falsifier. Our proposed approach thereby provides provable
guarantees of asymptotic stability for the Koopman based representation of the

unknown control affine nonlinear control system as a bilinear system. Numerical
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simulations are provided to validate the efficacy of our proposed class of stabilizing
feedback controllers for unknown control-affine nonlinear systems.

Keywords: Koopman operator theory, Neural networks, Control Lyapunov
Functions
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1. Introduction

Recently, Koopman operator techniques have proven to be powerful tools
for the analysis and control of nonlinear systems whose dynamics may not be
known a priori. The key idea of such methods is to associate a nonlinear system
(nonlinear control system) with a linear system (bilinear control system) of
higher dimension than the original system. The higher dimensional state spaces
of these “lifted” linear or bilinear control systems are spanned by functions of
states known as Koopman observables. Unlike linearization techniques, Koopman
operator methods provide higher dimensional (lifted) linear or bilinear state
space models which explicitly account for nonlinearities in the original system
dynamics and their validity is not limited to a small neighborhood around a
reference point or trajectory as in standard linearization approaches. However,
since the Koopman operator is infinite-dimensional, the resulting lifted state
space models will be also infinite-dimensional and consequently, the control
design can become a complex, if not computationally intractable, task. In order
to improve computational tractability, recent approaches in the field aim at
characterizing a finite approximation of the Koopman operator via data-driven
methods such as the Extended Dynamic Mode Decomposition (EDMD). EDMD
mainly uses time series data to form a higher dimensional linear (bilinear) state
space model that approximates the unknown nonlinear system (control-affine
nonlinear control system). In addition, the connection of EDMD with Koopman
operator theory has been explored in [1] and extended to non-sequential time
series data in [2]. Further [3] shows the convergence in the strong operator

topology of the Koopman operator computed via EDMD [4] to the actual
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Koopman operator as the number of data points and the number of observables
tend to infinity. Koopman operator theory (KOT) has been applied to robotics
applications [5, 6, 7, 8, 9], power grid stabilization [10, 11|, state estimation
[12, 13], control synthesis [14, 15, 16, 17], actuator and sensor placement [18],
aerospace applications [19, 20], analysis of climate, fluid mechanics and control of
PDEs, to name but a few. Koopman operator theory postulates that a nonlinear
uncontrolled system can be lifted to an equivalent (infinite-dimensional) linear
system whereas a nonlinear control system to a bilinear control system. The
major challenge in realizing this lifting process is that the Koopman observables
are unknown and their characterization can be a complex task. [21] presents a
deep learning framework for learning the Koopman observables for uncontrolled
dynamical systems. However, the learned Koopman operator is not guaranteed
to be stable. [22] proposes a method to guarantee stability by learning a stable
Koopman operator by utilizing a particular operator parameterization that
ensures that the computed Koopman operator is Schur stable. However, the
applicability of [22] is restricted to uncontrolled systems. Further, [23, 24, 25]
propose data-driven approaches for identification of Koopman invariant subspaces
whose applicability is, however, limited to uncontrolled nonlinear systems.
There has been a wide interest in control design methods which are based on
neural networks. Most of the proposed approaches in the relevant literature use
reinforcement learning [26]. However, there are no theoretical guarantees that
the designed control system is stabilizable 2 which is crucial especially for safety
critical applications. Towards this aim, the notion of Control Lyapunov Function
(CLF) from control theory can play a vital role in characterizing the stability
properties of nonlinear control systems and designing stabilizing controllers (that
is, controllers that guarantee closed-loop stability). CLFs were first studied
by Sontag [27] and Artstein [28]. The existence of a CLF provides necessary

and sufficient conditions for closed-loop stability of nonlinear control systems

3A system is stabilizable if there exists a feedback controller that can render the closed-loop

system asymptotically stable
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and can be viewed as a stability or safety certificate for such systems. In the
control literature, there exist many approaches for the computation of Lyapunov
functions for nonlinear control affine systems based on, for instance, sum-of-
squares (SOS) and semidefinite programming (SDP) optimization [29, 30, 31, 32].
However, these methods do not typically scale well and their applicability is
limited to polynomial control-affine systems. Further, [33] showed that for a
particular dynamical system, there does not exist any polynomial Lyapunov
function despite the dynamical system being globally asymptotically stable.
Recent approaches [17, 34, 35, 36] use the notion of CLF to design a stabilizing
MPC based controller for the Koopman based model of a nonlinear system.
However, all these references assume that the CLF is a quadratic function
(fixed structure). Using this fact, the CLF is computed by solving a convex
optimization problem. Further, [17, 34, 35] assume that the Koopman based
observables which are utilized for the computation of the approximation of a
nonlinear system are known or guessed.

Finding a Lyapunov function for a nonlinear system is in general a challenging
task. Recently, the so-called Lyapunov neural networks methods have been pro-
posed to learn a valid Lyapunov function that will guarantee closed-loop stability
of nonlinear systems. The candidate Lyapunov functions are parameterized by
means of feedforward neural networks and the Lyapunov conditions are imposed
as soft constraints in the learning (optimization) problem. These methods are
motivated by the fact that any continuous function can be approximated by
means of a neural network with a finite number of parameters that must be
learned [37, 38]. A continuously differentiable function corresponds to a Lya-
punov function for a nonlinear system if it satisfies certain conditions, which
we refer to as Lyapunov conditions. One can verify whether a function learned
by a neural network satisfies these conditions or not by utilizing techniques
that can check certain properties of the outputs of the neural network. These
verification techniques can be broadly classified into two main methods, one in
which the verification is inexact and is carried out by solving a relaxed convex

problem and another one in which the verification is exact and based on Mixed
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Integer Programming (MIP) solvers and Sequential Modulo Theories (SMT)
solvers. In [39, 40, 41, 42] Lyapunov control methods are proposed based on
Lyapunov neural networks. [43] proposes formal synthesis methods for learning
Lyapunov functions. However, the approaches proposed in [39, 40, 41, 42, 43|
assume that the nonlinear dynamics are known. [44] proposes a framework for
learning a Lyapunov function where the dynamics are not known. [45] provides
stability certificates via a learned Lyapunov function using trajectory data only.
[46] proposes a framework for discrete-time polynomial (nonlinear) systems and
learns a safe region of attraction (ROA) using neural networks. However, these
approaches are restricted to learning linear feedback controllers or neural network
based feedback controllers and do not guarantee the existence of a stabilizing
feedback controller or propose a systematic method to characterize it. Further,
there are no tools to analyze the stability properties of unknown control-affine
nonlinear systems. In contrast with the aforementioned references, in this work
we utilize the Koopman operator theory framework to describe, analyze and
control the behavior of any known or unknown control-affine nonlinear system
via a higher dimensional (lifted) bilinear control system.

Contributions: The main contribution of our work is four-fold. 1) We
propose a deep learning framework for simultaneously learning a stabilizable
bilinear (lifted) state space model and the Koopman observables from data
obtained from the open-loop trajectories of the latter system generated by
random control inputs applied to the unknown control-affine nonlinear system.
In our approach, closed-loop stability is guaranteed when our method can
successfully learn a Control Lyapunov Function (CLF). Finding a valid CLF
for a general nonlinear system is still considered an open problem. To that
end, the key contribution of this work toward control design is a systematic
method to compute a valid CLF using deep neural networks and verification
algorithms. 2) Based on the learned CLF, we design a feedback controller
using the celebrated universal Sontag’s formula [27]| that guarantees closed-
loop asymptotic stability. 3) Our approach allows us to utilize state-of-the-art

tools for verification based on SMT solvers even for the case in which the
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nonlinear dynamics is unknown by computing a data-driven (lifted) bilinear
system (approximation of the unknown system) via KOT based methods. 4)
In contrast to recent methods [39, 40, 41, 42, 43, 44], which either restrict
themselves to the class of linear feedback controllers or learn nonlinear feedback
controllers represented by neural networks which do not offer guarantees of
closed-loop stability in general, our method ensures that the computed feedback
controller is a stabilizing one which can asymptotically steer the system to the
origin. To the best knowledge of the authors, this is the first paper that proposes
a method that simultaneously learns the observables together with a stabilizable
Koopman Bilinear Form (KBF) which allows us to design stabilizing feedback
controllers for the Koopman bilinear system. To illustrate and also validate the
ability of our proposed class of stabilizing feedback controllers to steer nonlinear
systems with unknown dynamics to the desired final state, we present numerical
experiments for a nonlinear control system used in practical applications as well
as a popular academic example.

Organization: The rest of the paper is organized as follows. Section
2 introduces the preliminaries followed by the problem statement. Section 3
discusses our approach to solve the problem. Section 4 discusses the results

followed by some concluding remarks in Section 5.

2. Preliminaries and Problem Statement

Consider a control-affine nonlinear system given by
m
= f(x)+g9(x)u= f(x)+ Zgi(a:)ui, x(0) = zg (1)
i=1

where f : R" —» R", g = [g1, g2.-.9m], where ¢g; : R" — R” for all i €
{1,...,m}, ¢ € X C R" is the state of the system and w = [uy, us, ..., uy,]T €
U C R™ is the control input applied to the system where X and U are compact
sets (the assumption on compactness of X and U is made for learning purposes
given that it would be practically impossible to solve the learning problem over

unbounded admissible input or state sets; the reader should not perceive this
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assumption as an indication of studying problems with state or input constraints).
The function f is commonly known as the drift term (or vector field) whereas g
is known as the actuation effect (or control vector field). We make the following

assumptions:

Assumption 1. We assume that the function f is Lipschitz continuous whereas

the function g is continuously differentiable.

Assumption 2. We assume that the origin & = 0 is the unique equilibrium of
the uncontrolled system & = f(x) in X' (in other words, @ = 0 is the unique

solution to the equation: f(z) =0 in X).

Further, in this paper, we consider the case that f(x) and g(x) are unknown
in general. Next, we consider a discrete-time nonlinear control system which
is obtained from the continuous-time system (1) after using a fourth order

Runge-Kutta method:
Tit1 = h(zg,uk), x1(0) = x (2)

where ¢, € X', h : X — R"™. This discrete-time dynamical system will be used
for construction of a dataset which would be used for training of the neural

network (Section 3).

2.1. Koopman operator theory

In 1931, B. O. Koopman proved the existence of an infinite dimensional linear
operator that can describe the evolution of functions of states of a nonlinear
system, which are known as the observables [47]. Formally, let F be the space of
functions spanned by the observables ® : R™ — RY where ® = [¢1, ¢2,...,én]T
and N > n, then the Koopman operator K : F — F is a linear infinite-

dimensional operator that acts on functions ® € F and is defined as follows:

K[®(z)] = ® o My(x), (3)
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where M, denotes the flow map of the uncontrolled nonlinear dynamics & = f(x)

which is given by

to+t
M ( (to)) = @ (to) + / f(a(r)dr. (4)

to

It can be easily verified that K is a linear operator, that is, K[k1®1 + ko®s] =
k1 K[®1] + ko K[®s] for all k1, ke € R and @, &5 € F. In practice, the Koopman
operator is approximated by a finite-dimensional (truncated) operator which
is subsequently used for modelling, analysis and control design. In this paper,
we denote by K the finite-dimensional approximation (or truncation) of the
Koopman operator K which can be represented by a matrix (we will use the
same symbol for the latter operator and its matrix representation).

For control-affine nonlinear systems described by (1), the time derivative of
® along the system trajectories is given by

b(z) = VO(z)[f(z) + g(@)u] = VO(z)f(z) + VO(x)g(z)u

m

= l&b(:c) + Vo(x) Zgi(m)ui. (5)

i=1
We assume that V®(z)g;(x) belongs to the span of ®(x). In other words, there

exists a constant matrix (); such that

Vo(x)gi(x) = Qi®(x).
This is a reasonable assumption to make given that, as is shown in the following
lemma (which is taken from [48]), it holds true that for sufficiently large number
of Koopman observables, the system governed by (1) can be equivalently modelled

as a Koopman Bilinear Form (KBF):

Lemma 1. [48] For the system governed by (1) and a set of observables Z =
{z; € Z}3°, which is a basis of Z, where Z = {h € F|h(x1,u1) = h(x2,u2)},
the Koopman based realization of the system (1) defined over Z is bilinear.
Since z is a function of x only, therefore Z := {z = &(x) : € X'} and Lemma
1 is applicable. The KBF form can then be written as follows [49]:

z = I€Z + Z Qizui, (6)

i=1



where z := ®(x) and z € Z where Z = {z = ®(x) : ® € X'}. Note that
z = 0 is a equilibrium point for the bilinear system (6). After applying Euler

discretization to the KBF and assuming zero order hold, we get
_ m N m
zpy1 = 2 + TKzp + TZ Qizru; = Kgzp + Z B;zpu;, (7)
i=1 i=1

where T is the sampling period, l%d =1+ TI@, I is the identity matrix and
B; = TQ;. Note that the local truncation error, ||z(tx) — zg||, satisfies the

following upper bound:
lz(tk) — zi|l < pLT?, (8)

where L and p are given by

m

L= H/E:d + ZBizkui
i=1

=L t)|]. 9
L op=L s =0 (9

Note that the truncation error tends to zero as T tends to zero. Hence, even
if for a given T, the truncation error between the states of the discrete-time
system and the continuous-time system is not sufficiently small, T' can be reduced
accordingly. Note that in contrast to discretization approaches like Runge-Kutta,
the Euler discretization preserves the bilinear form in the discrete-time state
space model. This was the main motivation as to why Euler discretization was

chosen over the Runge-Kutta methods.

Remark 1. Of particular interest is the case in which one can find a set of
Koopman observables such that the unknown nonlinear system can be represented

by a (continuous-time) linear time invariant (LTI) system as follows:
2= Az + Bu. (10)

The continuous-time LTT in (10) can be associated with the following discrete-

time LTT system:

Zi+1 = Aqzi + Baug, (11)
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Figure 1: Learning and control framework for unknown nonlinear dynamics using Koopman

operator theory

where Ag = 4T, By = fOT eAtdtB and T is the sampling period. Recently, the
approach of lifting a nonlinear control system to a linear control system has
gained a lot of attention [5] due to the availability of rich libraries of tools to
analyze and design controllers for linear systems. However, lifting a nonlinear
system into a higher dimensional linear system can be quite restrictive in practice
because it may be hard to find a linear system that accurately describe the
behavior of the original nonlinear system over a large portion of the state space,
as pointed out in [50]. Further, the realization of the lifting process based on
Koopman operator methods applied to a control-affine nonlinear system yields
a bilinear control system rather than a linear system. This (lifted) bilinear
representation of the control-affine nonlinear system has several advantages over

the counterpart linear system representation as pointed out in [48].

2.2. Ezxistence of stabilizing feedback controllers

Given the bilinear system (6), let us define the CLF as follows:

Definition 1. A Control Lyapunov Function is a continuously differentiable
positive definite function V : D — Ry, where 0 € D (that is, V is positive

everywhere in D expect at z = 0 where it is zero) such that the infimum of the

10
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Lie derivative of V over all inputs is negative. More precisely,

JIEIZE V(z) <0 (12a)
. V., V. | OV
where V(z):= 925" EICz + 52 ; Qizu;. (12b)

If the infimum of the Lie derivative of the CLF over all u € U is negative, then
there exists a control input for which V(z) is negative along the trajectories of
the closed-loop system. In particular, it can be shown that in the latter case
there exists a feedback controller u := k(z) = [k1(2), ..., kmn(z)]T that renders
the closed-loop system asymptotically stable (in other words, k(z) is a stabilizing

feedback controller). This is stated formally as follows:

Theorem 1. [51] For the system given by (6), there exists a continuously
differentiable function k(z) for all z € RY \ {0} and continuous at z = 0 such
that the controller u = k(z) renders the zero solution z = 0 of the closed-loop
system asymptotically stable if and only if there exists a Control Lyapunov
Function (CLF) V(z) such that

(C1) For all z # 0, 31", 2Y.Q,2u; = 0 implies 2XKz < 0

(C2) For all € > 0, there exists ¢ > 0 such that ||z|| < ¢ implies the existence
of |u|| < e satisfying (12)

The condition (C2) is also known as the small control property. If both
conditions (C1) and (C2) hold true, then the feedback controller u := k(z) =
[k1(2), k2(2), ..., km(2)]T, where the i-th component k;(z) of the feedback con-
troller k(z) satisfies the universal Sontag’s formula [27]:

7mumuw¢f@I§§% if o(2) £ 0

ki(z) = 7 (13)
0, otherwise

where a(z) = XKz, o(z) = Y10, (3LQizu:)?%, and ¢;(z) = 3LQ;z, will be
a stabilizing controller (in other words, the controller k(z) will render the

closed-loop system asymptotically stable)

11
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Remark 2. In contrast to recent methods which compute linear feedback con-
trollers [39, 42] or nonlinear feedback controllers represented by neural networks
[44] without offering any guarantees for closed-loop stability in general, our ap-
proach guarantees the existence of a stabilizing controller that will asymptotically

steer the state of the Koopman based bilinear system (1) to the origin.

2.83. Problem statement
Next, we provide the precise formulation of the problem addressed in this

paper:

Problem 1. Given the data snapshots X from the unknown nonlinear control
system (1), compute the Koopman observables z = ®(x) and the matrices
[K4, Bi, ..., By] governing the Koopman based bilinear system (6). Further,
design a feedback controller that renders the zero solution of the Koopman based

bilinear system (6)

In the following sections, we explain in detail how our learning framework simul-
taneously learns the lifted bilinear system and a valid CLF, thereby consequently

allowing us to design stabilizing feedback controllers for the lifted bilinear system.

3. Learning a stabilizable bilinear control system using Koopman

operator theory

In this section, we present a learning approach to simultaneously learn the
Koopman observables and a valid CLF for the learned bilinear system. Let
the state snapshots {mk}kNgl and the corresponding control inputs {uk}iv ‘s be
obtained when the control input wy, is applied to the discrete-time system (2) to
transfer the state from xy, to x4y for all k € {1,2..., Ng—1} and let Ny denote
the total number of data snapshots. Consider an encoder z = ®(x; 0) : R* — RY
which maps the state € R” to a higher dimensional lifted state z € R where
N > n and 6 denotes the vector of parameters of the neural network. Similarly,
let z = ®~1(z;0) : RN — R” denote the decoder which maps the lifted state

back to the original state & as shown in Fig. 2. For notational simplicity, we

12
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represent ®1(z;6) by ®~!(z). We construct a CLF V(z;6), to be the output
of a feedforward neural network. The main motivation for using feedforward
neural networks for representing CLF is that they are expressive in the sense
that any continuous function can be represented by means of a feedforward
network with a finite number of parameters. For notational simplicity, we denote
V(z;0) by Vyp(z). Since the CLF has to be continuously differentiable, a smooth
tanh activation function is used. One can also use the smooth approximations
of the ReLU activation function. The objective is to simultaneously learn a valid
CLF, Koopman observables ®, the discrete-time Koopman operator Kq and the
matrices B; for all i € {1,2,...m} that appear in the governing equations of the

bilinear system by minimizing the following loss function £ given by

L = a1Liccons + O‘2£’dyn + a3£1yap + oy LroA (14)

where a1, as, ag and a4 are positive hyperparameters. Next, we describe the
individual losses L econs, Ldyns Lphys Liyap, LrROA Whose weighted sum constitute
the overall loss function L.

i) Reconstruction loss Lyecons: The reconstruction loss ensures that the
encoder is able to lift the state & and the decoder is able to project back the

lifted state z to @. The expression for L econs is given by

recons = X7 Z Hmk - 1 (mk))H%

ii) Bilinear control system loss Lqyn: The dynamical system loss L4y, (also
known as the bilinear control system loss in this case) represents the extent to
which the observables obey the governing Koopman based bilinear system and is

given by the following expression

1 Ng—1 m 2
Layn = N, 1 H{J (Tigt1) — ICd<I> (xz;) ;ul ;B;® (x;) ‘
During every epoch, the matrices K4, Bi, ..., B are updated as follows:

|: Iad Bl . Bm } = ﬂNd\II%d (\Ilqulgd)il

13
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where the matrices U, and Sy, are given by

Uy, = ©®(@1), -, @ ®(@N, 1) |
u1 'U,Nd71

Bn, = [®(z2), ..., P(zN,)] (16)

where ® denotes the Kronecker product. Note that for given ® and ®~*!, the
matrices K, By, - - - B, updated as in (15) minimize Lqyy if ¥, is a full row-rank
matrix. This approach is known as the Extended Dynamic Mode Decomposition
(EDMD) [2]. Note that ¥y, can be made full row-rank if we increase the number
of data-snapshots. Further, these matrices are updated optimally during every
epoch of training the neural network. However, the major challenge is that the
right Koopman observables ® are unknown at the beginning. Hence, the loss
initially is not zero and can actually be significantly large.

iii) Control Lyapunov risk Liyap: The control design based on CLF involves

minimizing the minimax cost which is represented as follows [39]:

Q%ierzl,t max (max (0, —Vp(2)) + max (0, VVy(2)2) + V7 (0)) (17)

where VVp(z) denotes the gradient of Vy(z) with respect of z. The time derivative
of Vp(z) along the system’s trajectories is defined as follows:

AV - IV AV (Kqg— Dz 0V <~ Bizu;
The first term in (17) ensures that the CLF is positive definite, the second
term ensures that the Lie derivative of CLF is negative and the last terms
ensure that the value of CLF at the origin is zero. The control Lyapunov loss
function Ly, measures the degree of violation of the Lyapunov conditions
mentioned in (12). The common approach adopted in the relevant literature
[39] is to utilize loss functions in order to transform the hard constraints on
the CLF (12) into soft constraints (i.e., minimize Liy,,). Let the value of
ming ey maxzcz (max (0, —Vp(2)) + max (0, VVy(2)2) + VZ(0)) be G(z*,u*).
If Vo(2) is a valid CLF, then G(z*,u*) = G(z1) = --- = G(zn,) = 0. Since

14
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a valid CLF is not known during the training process and given the set Z =
{z1, z2,...,2n,}, the conditional probability P(G(z*,u*) = G(z1,u1)|Z) =
P(G(z*,u*) = G(z2,u2)|Z) = --- = P(G(z*,u*) = G(zn,,un,)|Z). Therefore,
the optimal unbiased Monte Carlo estimate [39] of the control Lyapunov risk is
given by the sample mean as follows:

Ng

L5 (max (0, ~Vh(20) + max (0.VVp(2)2) + VZ(0)  (18)

ﬁlyap = Ny
i=1

The hard constraint V(0) = 0 can be satisfied by manually setting the biases
of the neural network Vy(z) to be zero before the learning begins. Note that
that setting the biases to zero is one way to ensure that the hard constraint
Vo(0) = 0 is satisfied. An alternative way would be by choosing a candidate
Control Lyapunov Function (CLF) as Vy = zTNéngz where Np : RY — RN*N
and then try to learn the function Ny that characterizes V. The violation of
the Lyapunov conditions leads to failure in designing control inputs as these
conditions need to be guaranteed over all states in D. To avoid this issue, a
first-order logic (also known as the falsification constraint) is incorporated which
generates a counter-example that would not satisfy the Lyapunov conditions

(12). In other words, the first-order logic F.(z) can be represented as

Fo(z) = (iz? - i@(w)f >e> o) A (Ve(z) <OV VV(2)z > o) (19)

To avoid numerical sensitivity issues, the value of € is orders of magnitude smaller
than the dimension of Z. Further, ¢ is chosen such that 2?21 w? > ¢ would

imply that Ef\; zz2 > e. Therefore, € is chosen such that

n N
5<<min{1, I1Z1], min{Zaz?,Zz?}}. (20)
i=1 i=1

We use a Satisfiability Modulo Theories (SMT) algorithm (SMT algorithms
are used to determine whether a mathematical formula is satisfiable or not) for
generating counterexamples which satisfy the falsification constraint (19). The
problem of generating examples that satisfy the nonlinear constraints is highly

non-convex and NP hard. However, recent progress among the class of SMT

16
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algorithms has shown to be effective in solving problems with such nonlinear
constraints. There are several SMT solvers, such as dReal [52], Z3 [53] and cvch
[54], that one can utilize. However, in this work we will be using the dReal

algorithm due to its d—completeness property [55] which is stated as follows:

Definition 2. [55] Let ¢(x) be a quantifier first-order logic constraint. An
algorithm is said to be d—complete if for any ¢(x), the algorithm always returns
one of the following answers correctly: ¢ does not have a solution (unsatisfiable),
or there is a solution & = b that satisfies ¢°(b) where ¢°(b) is a small variation

of the original constraint.

The neural network is trained until the SMT solver is not able to generate a
counterexample satisfying the falsification constraint. Once a counterexample is
generated, the training data are updated accordingly to further train the neural
network. Note that a SMT solver never fails to generate counterexamples which
satisfy the falsification constraint (19) if there are any. This is rigorously proved
for SMT solvers such as dReal in [52].

If the dimension of the nonlinear system is large, learning a valid CLF using
Layn and F. might be computational expensive for a SMT solver. To improve
computational tractability, we simplify the computation of L4y, and F. by
considering the set of candidate CLF’s as follows. Consider a set of candidate

Control Lyapunov Functions V' (z;0) as follows:
V(2:0) = 2" (v] + Wi (2)" W (2))z, (21)

where Wi (2) is a ny, X N matrix that corresponds to the output of a feedforward
neural network, v > 0 and n,, is the number of hyper-parameters. Clearly, V (z;6)
is positive definite given that the matrix I + Wy (2)TWx(2) is positive definite

as the sum of a positive definite matrix and a positive semi-definite matrix.
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Therefore, Liyap and F.(z) can be written as follows:

Ng
1 .
Liyap = 7 E max (0, VVy(z;)2;),
i=1

N

N
Fe(z) = (Z 2?2 = Z ®(x)? > 5) A (VVy(z)z > 0)

Remark 3. A stabilizable Koopman based linear model can also be learned by
suitably modifying Lqyn and Liyap as
1 Nad

‘Cdyn = m ; H(I) (:Ei+1) — I€d¢ (.’L'Z) — Bdui

2

2

where the matrices Ay and By (Eqn. (11)) are updated during each epoch as

follows:
[Ka, Ba) 2 [Aq, Bd) = B, [¥n,, U] (22)

where { denotes the Moore-Pseudo inverse and Sy,, ¥y, and U are given by

Uy, = [@(z1),..., 0(zN, 1)), (23a)
ﬂNd = [<I>(a:2),...,<I>(:cNd)], (23b)
U= [ug,...,un,]| (23¢)

Further the control Lyapunov risk and the falsification constraint remain the

same except that VVp(z) now becomes:

oV (Kg—1 oV

iv) Region of attraction (RoA) loss function Lroa: Let ¢(¢,z) be the
solution to the system of ordinary differential equations which describe the
dynamics of a nonlinear system with initial condition z at time ¢ = 0. Then,
the Region of Attraction (RoA) is defined as the set of all points such that
tlirgogb(t, z) =0 [56].

Finding the exact region of attraction either analytically or numerically is not

possible for many practical cases. However, one can use Lyapunov based methods
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to estimate the RoA of nonlinear systems [57, 58]. If there exists a Lyapunov
function that satisfies the conditions of asymptotic stability over a domain Z, then
the simplest estimate of RoA is given by the set Q. = {z € RN : V(z) <c} C 2.
The RoA loss Lroa is defined as follows:

Ng
1
Lroa = N, Z zill2 = 74 Vo(z:) (25)
=1

where 74 > 0 is a tunable parameter. The loss function Lroa characterized how
fast the CLF increases compared to the radius of the level sets. The region of
attraction is also called as the region of asymptotic stability or domain / basin

of attraction [56].

Remark 4. Although, the optimization problem (i.e., minimizing the loss given
in (14)) is highly non-convex, recent results in deep learning have been successful

in finding global minima for these non-convex problems.

The overall algorithm used to learn and control an unknown control-affine
nonlinear system is described in Algorithm 1. Its main steps can be summarized
as follows. The function LEARNING takes the data snapshots and returns the
learned matrices governing the higher dimensional bilinear system, the Koopman
observables (encoder), the decoder and a valid CLF. The learned CLF and the
matrices governing the bilinear systems are then used to design a stabilizing
feedback controller based on Sontag’s formula (13). The function CONTROL
takes the initial state ¢y and computes the control sequence U (via the learned
Koopman based bilinear model and the Control Lyapunov function) which steers

the unknown nonlinear control system to the origin.
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Algorithm 1 Learning Koopman operator based stabilizable bilinear model for

control

1:
2
3
4
5:
6
7
8
9

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:

26:
27:
28:
29:
30:
31:
32:
33:

Input: Ng, n, m, T, X = {xy, uk}kNil
Output: &, o1, Ky, B;Vie {1,...,m}, u=k(2)

function LEARNING({@y}p,, {ur}nd,)

Repeat:

®, &1 + NNy(z, 2) > Encoder and decoder
Vo(z) < NNg(2z) > Candidate Control Lyapunov Function (CLF)
[I&d, ey Bm} «~ BN, \Il%d (‘I’Nd ‘1171:,(1) o > Update bilinear system matrices
VVo(2) ¢ GL CarD= 4 B 5o | Bizs

Compute total loss £(0) from Eqn. (14)
0« 0+ aVeLl(0) > Update weights

until convergence
return ®, &1L, [l@d, ceey Bm] , Vo(z)
end function
function FALSIFICATION(X)
Impose conditions defined in Eqn. (19)
Use SMT solver to verify the conditions
return satisfiability
end function
function CONTROL(xo) > Stabilizing feedback controller
o, o1 [Iﬁd, . .,Bm} , Vo(z) < LEARNING(X)
Repeat:
u < Eqn. (13), U < Append(u) > Universal Sontag’s formula
Tnext < Apply feedback control law u to discrete system (Eqn. (2)) > Propagate the
state
T Tnext
until convergence

return U

: end function

function MAIN()

while Satisfiable do
Add counterexamples to X
b, oL, [Iﬁd, .. .,Bm} , Vg(z) < LEARNING(X)
S+ FALSTFICATION(X)

end while

U « CONTROL(zq)

end function
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4. Results

In this section, we present results from numerical experiments which demon-
strate the efficacy of our proposed learning -based stabilization approach on
several nonlinear control systems. The learning framework is implemented in
PyTorch for the simulations and our implementation follows Algorithm 1. The
dReal package (SMT solver) is used to generate counterexamples for learning a
valid CLF. In the following subsections, we first consider one popular academic

nonlinear systems followed by one more realistic nonlinear systems.

4.1. Van der Pol oscillator

Next, we consider the Van der Pol oscillator system whose governing equations

are given by
T] = X9, To = (1—;6%)1‘24—.%1 +u (26)

where x = [r1, 23]7 € R? is the state and u € R is the control input for the
Van der Pol oscillator. We define the state domain X = {x : &, < & < zyp}
(the inequality should be understood in the element wise sense) where @y, =
[-10, —10]T and x,, = [10, 10]T. We set the sampling time 7" = 0.01. The
drift term and the control vector field of the Van der Pol system are polynomial
and thus smooth. In addition, the system has an unique equilibrium. Therefore,
both Assumptions 1 and 2 hold. Figures 5a and 5b show the evolution of the
states of the Van der Pol oscillator with initial conditions &y sampled from a
uniform distribution over X. Once a valid CLF is learned from training the
neural network, it is used in the Sontag’s formula to design a stabilizing feedback
controller that would steer the state from xg to the origin.

The control inputs are shown in Fig. 3c Note that the origin corresponds to
the unstable equilibrium. The different solid colored curves in Figs. 5a, 5b and
3d represent the trajectories that originate from different initial conditions which
are sampled from within [—4,4]2. Fig. 3c represent the control inputs which

generated these trajectories. If no control input is applied, the trajectories will
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converge to a limit cycle (shown by green dotted curve in Fig. 3d), irrespective
of the initial state.

State State

x 0
-2
-4
2 B 0 0B 0 5 0w 5 0w » 2
t t
(a) z1 (b) z2
Control .
== Limit cycle
4
2
< 0 \
. A
-
0 5 10 15 20 i 30 35 4 2 A o B 2 3 4
t X1

Figure 3: The evolution of the state and control input with time for the Van der Pol oscillator

4.2. Cart pole system

The cart pole system is an underactuated system with one control input and
two degrees of freedom (DOF). Due to its nonlinear structure, it is often used to
validate nonlinear controllers. Cart pole systems can find many applications in,
for instance, rocket propellers, self balancing robots, and stabilization of ships.
The equations of motion of the cart pole system can be written as follows:

U+ mypsind (l92 — gcos 9)

T =
Me + myp(sin6)2 ’

. wcosf +mylh? cosfsinf — (m, +m,) gsin b
i — : : (27)
[ (me + mp(sin6)?)

where m, = 4kg is the mass of the cart, [ = 1m and m, = 1m are the length
and mass of the pole respectively, € = [z1, ©2, 73, 24]T = [z, 0, , G}T is the

state and w is the control input which controls the linear velocity of the cart.
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Since the state space of the cartpole system is non-Euclidean (it is actually a
manifold embedded in R*), we restrict our simulation-based analysis to a domain
in which the system has a unique equilibrium. Further, both the drift term and
335 the control vector field are smooth. Hence, both Assumptions 1 and 2 hold. The
objective is to steer the initial state of the cart to an upright position. We set
T = 0.005s. Fig. (4) shows the convergence of the trajectories starting from a
set of ten randomly selected initial conditions to the origin when a stabilizing

feedback controller is applied to the unknown control-affine nonlinear system.

State State

- o~
< <
-05
310
-1.0
305 15
00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
t
(a) =1 (b) z2
State State
15
04
10
02
0s
00
" <
00
< ., < /
=05
-04
06 -1.0
-15
00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
t t
(c) =3 (d) za
Control
30
20
10
S o
-10
-20
-30
00 25 50 75 100 125 150 175 200
(e) u

Figure 4: The evolution of the state and control input with time for the cart pole system
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The different solid colored curves in Figs. 4a-4d represent the trajectories
that originate from different initial conditions. Fig. 4e illustrates the control
inputs that generated these trajectories. Note that depending on the complexity
of the system dynamics, the dimension of the lifted space N can be increased
or decreased. Further, it was observed that the computational time required
by the SMT solver to find counterexamples for the computation of a valid CLF
increased exponentially with N. Fig. 5 shows the overall loss £ for the Van der

Pol oscillator and the cartpole system.

Deep Koopman Losses Deep Koopman Losses

—— Total Training MSE loss —— Total Training MSE loss

10°

Total loss
Total loss

0 200 00 600 800 0 250 500 750 1000 1250 1500 1750 2000
Epochs Epochs

(a) Van der Polsystem (b) Cartpole system

Figure 5: Total loss for the Van der Poland cartpole systems

4.8. Comparison with a recent method

We compare our approach with a recent method [17] which proposes a method
to design stabilizing feedback controllers using the notion of CLF. In contrast
with our approach, the authors of [17] assume that the CLF is quadratic and
the Koopman based observables are guessed. Further, they assume that the
nonlinear dynamics is known a priori. For our comparisons, we consider the Van
der Pol oscillator and the cartpole example, where N = 15 is chosen for our
approach. To implement the method proposed in [17], we choose monomials of
degree 2 (N = 15) for the cartpole system and monomials of degree 4 (N = 15)
for the Van der Pol oscillator. The metric used for our comparisons is the
tracking error which is the Euclidean norm of the difference between the actual

and desired states of the systems. It is evident from Fig. 1 that our approach
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results in tracking errors with similar orders of magnitude for the Van der Pol
oscillator. However, for the cartpole system, the approach [17] doesn’t lead to

the convergence of the states to the desired trajectory.

Tracking error | Method [17] | Our method
Van der Pol 7.95 6.58

Cartpole 9.12 x 10° 8.35

Table 1: Comparisons with prior methods demonstrate the effectiveness of our approach

4.4. Discussion on numerical results and learning framework

The main advantage of using our proposed method over other standard
approaches in the field [39, 40, 41, 42, 43, 44] is twofold. First, Koopman
operator theory allows us to analyze an unknown control-affine nonlinear system
via a learned higher dimensional Koopman based bilinear system. Second, unlike
recent methods which restrict themselves to linear feedback controllers or learn
a neural network based controller, our approach provides provable guarantees
for closed-loop stability for the Koopman based bilinear system.

The training in our simulation study was performed for at least 900 epochs
with Adam optimizer before the falsifier was used to generate counterexamples
(that violate CLF conditions) which were then added to the training data. The
activation function used for the encoder, decoder and the CLF is Tanh with
learning rate set to 1072 and the Mean Squared Error (MSE) loss for all the
examples. The analytical expressions for Vy(z) and ®(x) are required to generate
counterexamples by a SMT verifier (falsifier (19)) and compute the feedback
stabilizing controller (Eqn. (13)). The expressions for Vy(z) and ®(x) are

represented by the following recursive relations:
CLF: Vy(z) = tanh(Wy.  yit1 + 074 1)
where y; = tanh(W/y;—1 +b7), i =h", y] ==z
Encoder: ®(x) = tanh(Wy. Y11 + bfe )

where y; = tanh(Wy,_1 +b5), i =h°, yi==
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where h¥, W, by and h¢, W, b$ denote the number of hidden layers, weights
and biases of the CLF and encoder respectively. In order to train the encoder,
decoder and the CLF, we assume that a black-box simulator of the unknown
nonlinear dynamics (2) is available where @1 is returned given x; and wy.
For the Van der Pol oscillator, we use the encoder and CLF with 1 hidden
layer of 6 units each whereas for the cart pole system, we use the encoder and
CLF with 2 hidden layers of 32 units each. For the decoder, we use a neural
network with 2 hidden layers of 16 units each for all experiments.
Hyperparameter tuning: The hyperparameters a;, as, az and a4 were
tuned based on the combination of the controller performance and the empirical
loss on the training data. We observed that for the Van der Pol system, a; =
0.001, g =2 a3 =1 and a4 = 1 yielded the best results whereas for the cart
pole we obtained the best results for oy = 0.05, as =3, a3 = 1 and oy = 1. We
use a trial-and-error method to guess the best hyperparameters. However, recent

methods such as in [59] can be used to learn the optimal hyperparameters.

5. Conclusions

We proposed a Koopman operator based learning framework to compute
a lifted bilinear system that serves as a higher dimensional representation of
an unknown control-affine nonlinear system and design a stabilizing feedback
controller based on a Control Lyapunov Function (CLF) which is computed
under the same learning framework. Our approach simultaneously learns 1) the
matrices that determine the state space model representation of the bilinear
system, 2) the Koopman based observables and 3) a valid CLF by using a learner
and a falsifier. The learned CLF is then used to design a stabilizing feedback
controller (based on the learned Koopman bilinear system) which is then applied
to the control-affine nonlinear system. Numerical experiments are provided to
validate the ability of our proposed class of learning-based feedback controllers to
stabilize control-affine nonlinear systems with unknown dynamics. A particularly

exciting direction for our future work is to use the learned bilinear model to
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design robust control laws for the unknown nonlinear system which can account

for disturbances acted upon the latter system as well as modelling errors and

uncertainties. Another possible direction is to extend the results presented herein

to stochastic nonlinear control systems.
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