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Abstract
The design and operation of systems are conventionally viewed as a sequential decision-making process that is informed 
by data from physical experiments and simulations. However, the integration of these high-dimensional and heterogeneous 
data sources requires the consideration of the impact of a decision on a system’s remaining life cycle. Consequently, this 
introduces a degree of complexity that in most cases can only be solved through a simplified decision-making approach. In 
this perspective paper, we use the digital twin concept to formulate an integrated perspective for the design of systems. Spe-
cifically, we show how the digital twin concept enables the integration of system design decisions and operational decisions 
during each stage of a system’s life cycle. This perspective has two advantages: (i) improved system performance as more 
effective decisions can be made, and (ii) improved data efficiency as it provides a framework to utilize data from multiple 
sources and design instances. The novelty in the presented perspective is that it necessitates an approach that enables fleet-
level (i.e., decisions that influence a plurality of systems) and system-level decisions. From a formal definition, we identify 
a set of eight capabilities that are vital constructs to bring about the potential, as defined in this paper, that the digital twin 
concept holds for the design of systems. Subsequently, by comparing these capabilities with the available literature on digi-
tal twins, we identify research questions and forecast their broader impact. By conceptualizing the potential that the digital 
twin concept holds for the design of systems, we hope to contribute to the convergence of definitions, problem formulations, 
research gaps, and value propositions in this burgeoning field. Addressing the research questions, associated with the digital 
twin-inspired formulation for the design of systems, will bring about more advanced systems that can meet some of the 
societies’ grand challenges.
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1 � Introduction and motivation

The advent of the internet of things and advancements in 
computational resources has accelerated the development 
of systems with increasing degrees of complexity and merit 

(Fuller et al. 2019). A specific concept that has received 
increased attention from the scientific community is the 
“digital twin.” The digital twin concept is the perspective 
that a set of simulation models can be used to model the state 
of a system, and be combined with dynamically collected 
data from the physical system to provide operation support 
(Tao et al. 2019; Son et al. 2022). Examples of where the 
digital twin concept has been applied can be found in aero-
space, manufacturing, and automotive engineering (van der 
Valk et al. 2021; Haag and Anderl 2019). The digital twin 
concept can be viewed as a special case of a cyber-physical-
social system that involves bidirectional communication 
between the digital and physical components of a system 
(Alam and El Saddik 2017). Note that this can also include 
bidirectional communication with the social space. While 
increasing in popularity for the operation of systems, the 
merit that the digital twin concept holds for the design of 
systems is not well defined (Wright and Davidson 2020). In 
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this paper, we establish a digital twin-inspired framework for 
the design of systems with the purpose of jointly considering 
design and operation decisions.

Within the context of engineering design, the digital twin 
concept has been perceived as a variety of different concepts 
(e.g., a three-dimensional computer-aided design model, a 
machine learning model, or a physics-based simulation) 
(Bárkányi et al. 2021). According to the definition provided 
in Schweigert-Recksiek et al. (2020), the digital twin con-
cept encompasses all these interpretations. Specifically, it is 
argued that the digital twin concept includes the function-
ality that a digital system can be realized in the form of a 
virtual information construct that dynamically mimics the 
structure, context, and behavior of a physical asset through 
observed data. The purpose of the digital system is to inform 
decisions that improve the value of the physical system (A. 
I. of Aeronautics and Astronautics 2020). However, this per-
spective does not consider the design of the physical system, 
nor does it enable systematic integration of data from previ-
ous design generations.

For the digital system to provide an accurate representa-
tion of a specific physical system, it is provided with data 
that are dynamically collected throughout a system’s life 
cycle. Through real-time data analysis, the digital system 
can then be used to mimic the physical state and inform 
decisions that have improved value for a specific system 
(e.g., vehicles of the same model could benefit from differ-
ent operation decisions as they are used by different drivers 
with different driving behavior under different usage con-
texts) (Rosen et al. 2015; Sharma et al. 2020; Söderberg 
et al. 2017). However, the dynamic updating of the digital 
system places stringent demands on the required compu-
tational resources, limiting the effectiveness of the digital 
twin concept (Reuther et al. 2019; Bergquist 2001). In addi-
tion, as it is desired to consider the effect of decisions on 
a system’s entire life cycle, a model that can predict the 
future state of the physical system is required. However, this 
introduces uncertainty, as no model can predict the future 
with perfect accuracy (Biesinger and Weyrich 2019), and 
thus places an additional demand on the necessary computa-
tional resources to quantify this uncertainty (Halemane and 
Grossmann 1983). Nevertheless, as more data are collected 
over a system’s life cycle, the uncertainty of the predicted 
future states will decrease as the models will have improved 
fidelity with the acquisition of more data (e.g., data-driven 
models improve in fidelity as they are dynamically updated 
with observed data) (Famelis and Chechik 2019).

The prediction of the state of a system in the future 
has reduced fidelity for longer time horizons and could 
explain why much of the work on the digital twin concept 
focuses on the later stages of a system’s life cycle (e.g., 
predictive maintenance (Magargle et al. 2017; Barthelmey 
et al. 2019), structural health monitoring (Tuegel et al. 

2011; Seshadri and Krishnamurthy 2017; Wei et al. 2022), 
recycling (Wang and Wang 2019), and recovery (Ayani 
et al. 2018)). However, with the increasing availability of 
computational resources and algorithmic advancements, 
progressively more digital twin-related work is being done 
at earlier stages of a system’s life cycle (e.g., manufactur-
ing (Leng et al. 2021; Ghanem et al. 2020; Guo et al. 2020; 
Moser et al. 2020), supply chain management (Barykin 
et al. 2021), and policymaking in cyber-physical social 
systems (Karkaria et al. 2021; Tao et al. 2019)). As deci-
sions at the early stage of a system’s life cycle have a 
higher impact on the overall system performance com-
pared to downstream decisions, it becomes critical that 
consideration is given to the decisions in the design stage 
(upper stream) of a system.

In this paper, we introduce a digital twin-inspired per-
spective to the design of systems. Specifically, we show 
that by integrating online data collected from sensors into 
the objective function for decision-making we can jointly 
measure the relative merit of design and operating deci-
sions. This has two primary advantages: (i) it provides an 
integrated framework for the design of systems by joint con-
sideration of design and operation decisions, and (ii) it pro-
vides improved data efficiency by enabling the integration 
of data from previous system generations (e.g., manufac-
tures of phones, automobiles, and airplanes that periodically 
release new generations of the same designs). However, it 
should be noted that design typically involves decisions that 
affect a plurality of systems, whereas operation decisions 
are specific to one system. This is a functionality that is 
pivotal when using the digital twin concept for the design 
of systems and is central to the perspective presented in this 
paper. Design and operation decisions warrant joint consid-
eration as they influence a system’s performance (e.g., the 
operation decisions made during the manufacturing process 
depend on the part geometry determined during the design 
phase). Moreover, the proposed framework centers around 
the optimization of an objective function with respect to the 
system design and operation decisions. Note that the intro-
duced framework involves a design perspective that accounts 
for the multiple phases of a system’s life cycle as opposed 
to the typical single-phase user-centered implementation of 
the digital twin concept (Jaensch et al. 2018; Zhou et al. 
2019; Wang and Wang 2019). Alternatively, a reference that 
explicitly discusses the use of the digital twin concept for 
the design of systems is Tao et al. (2018); however, this 
does not involve a discussion on how to use the digital twin 
concept to make fleet-level decisions (e.g., design decisions) 
nor does it involve a discussion on how to benefit from data 
of previous system iterations. In this paper, we provide a 
formal formulation for the decision-making model based on 
the digital twin concept. Through analysis of the objective 
function formulation, we identify a set of capabilities that 
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are necessary to advance the potential that the digital twin 
concept holds for the design of systems. By comparing the 
identified capabilities with the available literature on the 
digital twin concept we unearth a set of research opportuni-
ties for further scientific inquiry. Continued research in the 
identified research areas will enable the discovery of gener-
alizable knowledge that will bring about the design of more 
advanced systems.

In Sect. 2, we will introduce the digital twin-inspired 
perspective to the design of systems and use it to identify a 
set of capabilities that are vital to its realization. In Sect. 3, 
the current state of the digital twin concept is discussed by 
comparing available methods with the identified capabili-
ties. Subsequently, in Sect. 4, we identify a set of research 
directions considering the introduced digital twin-inspired 
perspective and the limitations of the digital twin-inspired 
methods in the literature. Finally, in Sect. 5, we conclude 
this work by summarizing our contributions, reiterating the 
identified research directions, and forecasting their potential 
impact.

2 � Digital twins and design

In this section, we provide a formal definition of the digital 
twin concept and state our premises for how this can be 
advantageous for the design of systems. In addition, we will 
use this definition to identify a set of capabilities that are 
vital to the effective deployment of the digital twin-inspired 
perspective to system design.

2.1 � Digital twins as a concept for design

While multiple definitions of the digital twin concept have 
been proposed in previous literature, we adopt the definition 
of the American Institute of Aeronautics and Astronautics 
(AIAA) (2020). Specifically, they defined the digital twin 
concept as

A set of virtual information constructs that mimics 
the structure, context and behavior of an individual / 
unique physical asset, or a group of physical assets, is 
dynamically updated with data from its physical twin 
throughout its life cycle and informs decisions that 
realize value.

We believe that this is an appropriate definition as it 
emphasizes that a digital twin is unique to a specific physi-
cal system, involves the acquisition of data, and the use of 
this data to inform decisions that realize value over the entire 
life cycle of a system. Moreover, this definition provides 
sufficient freedom to be compatible with any type of system 
(e.g., manufacturing, aerospace, and automotive systems), 
while being specific enough in terms of its fundamental 

constructs (i.e., dynamic data acquisition, prediction, and 
decision-making).

While the AIAA definition is appropriate to inform 
operation decisions, it is specific to a single system and is 
inappropriate to inform design decisions at the fleet level. 
Conversely, in the context of system design, the authors 
believe that the value proposition that the digital twin con-
cept holds is as follows

The digital twin concept provides an integrated per-
spective for the design of systems to improve data 
efficiency and performance through the joint consid-
eration of design and operation decisions.

Specifically, the digital twin concept for the design of 
systems enables a systematic approximation of a system’s 
state/merit throughout each step in its life cycle. Conse-
quently, such an approximation can be used to improve the 
value proposition of a specific system. In the context of a 
system’s design, the digital twin concept encapsulates the 
consideration of operating conditions during the design of 
the system. Consequently, this enables the formulation of 
design decisions that not only optimize the value proposi-
tion of one or more iterations of the same system at their 
inception but rather over their entire life cycle. In addition, 
the availability of a model that approximates the state of a 
system’s life cycle enables a multi-generation design per-
spective. Specifically, data collected from previous genera-
tions of a design can be used to establish the physical and 
digital system of the next generation with improved per-
formance and fidelity, respectively (e.g., cars, phones, and 
airplanes have new design generations periodically). We 
focus our attention on the multi-generation design of the 
same systems as using data from dissimilar systems will be 
more complicated and of reduced utility. Nevertheless, the 
digital twin concept provides a perspective that facilitates 
the collection and utilization of data over a system’s life 
cycle and across multi-generations.

A specific advantage that the digital twin concept holds 
for the design of systems is that it enables a designer to 
acknowledge the interdependence between design and 
operation decisions. For example, decisions about the 
disposal (i.e., operation decision) of a system depend on 
the materials used (i.e., design decision) in the physical 
components of the system. When taking a discrete-time 
perspective to the operation of a system, we find that for 
each time t a decision ut ∈ U has to be rendered. The 
space of admissible operation decisions U can, among 
others, include manufacturing decisions Um , control 
decisions throughout the service life of the system Us , 
and disposal decisions Ud (i.e., U =

{
Um ∪ Us ∪ Ud

}
) . 

However, the operational decisions are dependent on the 
design of the system that can be represented by a vector 
x ∈ X ⊂ ℝ

dx × ℕ
px where dx is the dimensionality of the 
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quantitative design variables and px is the dimensional-
ity of qualitative design variables (i.e., a set of mutually 
exclusive categorical alternatives).

The system design and operation decisions require an 
objective function f ∶ St × Ut × Xt → ℝ that measures the 
relative merit of admissible decisions. Consequently, this 
introduces an optimization problem for the design of a single 
generation of a system as

where we used a policy function � ∶ St → U that maps a 
state of the system st ∈ St into a control decision at time 
t. In addition, we assume that we can approximate the 
state of the physical system through a data set obtained 
from sensors placed on the physical system Pt ∈ Pt , and 
a set of simulation data Dt ∈ Dt (i.e., a state if defined as 
st ∈ St = Pt ×Dt ⊂ ℝ

ds × ℕ
ps where ds is the dimensionality 

of the quantitative state variables and ps is the dimension-
ality of the qualitative state variables that represent a set 
of mutually exclusive categorical alternatives). It should be 
observed that how a system’s state is defined is consistent 
with the definition of the digital twin concept as its construc-
tion requires “virtual information constructs” (e.g., simula-
tions and virtual models). Moreover, as decisions have to 
be made for a dynamic problem with a time horizon T, we 
require a reward function rt ∶ St × Ut → ℝ that measures the 
relative merit of competing prospects for a discrete point in 
time. Note that this implies that rt(⋅) can be used throughout 
the different stages of a system’s service life. This can be 
accommodated by having a conditional operator that defines 
a unique reward function for each stage in a system’s life 
cycle. For example, the reward function can be defined as

where r(m)t (⋅), r
(s)
t (⋅), r

(d)
t (⋅) are the reward functions for the 

manufacturing, service, and disposal stage of a system’s 
life cycle, respectively. Note that the integration of design 
and operation decisions is similar to the field of control 
co-design (Cui et al. 2020). The difference between con-
trol co-design and the method proposed in this paper is that 
control co-design involves the design of a system’s control 
during one stage of the system’s service life, whereas we 
propose the joint consideration of control decisions across 
all life cycle stages. In addition, while co-design involves 
the design of control systems, the presented framework also 
enables human–computer interaction through, for example, 

(1)

x
∗,�∗ = argmax

x∈X,�∈M

f (st,�t(st), x),

= argmax
x∈X,�∈M

T∑
t=1

rt(st,�t(st), x),

(2)rt(⋅) =

⎧⎪⎨⎪⎩

r
(m)
t (⋅), if in manufacturing stage

r
(s)
t (⋅), if in service stage

r
(d)
t (⋅), if in disposal stage

nudging (Kissmer et al. 2018). Control co-design has been 
shown to significantly improve the value proposition of vari-
ous autonomous systems (Garcia-Sanz 2019), and as such 
foreshadows the benefits that can be attained by joint con-
sideration of design and operation decisions for the design 
of systems. The final piece for the optimization of Eq. 1 is 
a state transition function Γ(⋅) that maps the system state st 
and operation decision ut into an approximation of the state 
at the next time step t + 1 as st+1 = Γt(st, ut) (i.e., we require 
a dynamic as Γt ∶ St × Ut → St+1 ). Note that the reward func-
tion r(⋅) is not the same as the objective function f (⋅) as it 
only gives the value of being in a specific state st at time t, 
whereas the objective function f (⋅) considers the evolution 
of the system over its life cycle.

The digital twin concept for the design of systems 
requires the formulation of the reward function rt(⋅) and the 
state transition function Γt(⋅) . For the first generation of a 
system’s design, these models will primarily be driven by 
physics-based simulations. However, as more sensor data 
are collected throughout the life cycle of the system, we 
can update these models by synthesizing experimental and 
simulation data in a hybrid model. The fidelity and utility of 
these models will increase as more data are collected. The 
full potential of the digital twin concept would be achieved 
once a digital representation has been obtained that is identi-
cal to the physical system. However, from this statement, we 
can make two observations: (i) it is unrealistic to achieve a 
digital system that unlocks the full potential of the digital 
twin concept as this would require a state transition func-
tion Γt(⋅) that perfectly represents physical reality, and there-
fore (ii) when optimizing Eq. 1 we need to account for the 
uncertainty associated with the model parameters, model 
inadequacies, and collected data. One approach to account 
for these sources of uncertainty is to take the expectation of 
the objective function in Eq. 1 as

While taking the expectation of the objective function ena-
bles a designer to account for the central tendency of the 
reward, it neglects the magnitude of the variability in the 
predicted response. Consequently, alternative strategies 
include robust optimization (Tsui 1999), reliability-based 
design (Youn and Choi 2004), and utility-based decision-
making (Hazelrigg 1998).

A distinction that needs to be made is how Eq. 3 can 
be used to make design decisions that can affect a plural-
ity of systems while considering a distribution of operation 
decisions, and how it can be used to inform the specific 
operational decisions for an individual system. This func-
tionality can be achieved by using multi-modal fusion to 
integrate fleet data from previous iterations in conjunction 

(3)x
∗,�∗ = argmax

x∈X,�∈M

�

[
T∑
t=1

rt(st,�t(st), x)

]
.
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with simulation models to establish the reward function and 
system dynamic. However, data from past iterations can 
only be partially representative of the new system as the 
design will change over its generations. However, this differ-
ence can be considered as concept drift (Zhang et al. 2020; 
Lu et al. 2018) and can be accounted for through transfer 
learning (Huang et al. 2022) or data augmentation (Nemani 
et al. 2022). Consequently, the reward function and system 
dynamics can be approximated with a higher degree of fidel-
ity and subsequently be used to make design decisions of 
improved merit by maximizing Eq. 3 with respect to x while 
taking the expectation for a random distribution of operation 
conditions and decisions. This is a procedure that is analo-
gous to using a driving profile to make design decisions in 
automotive engineering (i.e., the operation conditions and 
decisions are approximate through one or more sets of pre-
viously observed time series data) (Fontaras et al. 2013). 
Conversely, during the later stages of the system’s life cycle, 
the reward function and system dynamics can be updated 
with system-specific data. Consequently, system-specific 

operation decisions can be made by maximizing Eq. 3 with 
respect to � while fixing the design variables x.

The digital twin concept for the design of systems is 
visualized in Fig. 1, in the above section, we show the 
multi-generation system design perspective, and in the bot-
tom section, we highlight the constructs associated with a 
single generation of a system. In the multi-generation set-
ting, we show that each generation starts with making the 
design decisions x∗ and a generalized control policy �∗ that 
defines the initial state of one or more systems s1 . With the 
generalized control policy, a distinction is made between 
the autonomous control decisions (e.g., the tire pressure of 
a vehicle) and the decisions made by the user (e.g., vehicle 
velocity). Specifically, during the design of a system, we can 
only optimize Eq. 3 with respect to design decisions and the 
autonomous operation decision, while the usage behavior 
can only be accounted for as a source of uncertainty. Moreo-
ver, we note that the design decisions are fixed over the life 
cycle of a specific system, but that the control policy for 
autonomous operation decisions can be updated at each time 
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Fig. 1   A digital twin perspective to the multi-generational design of 
systems. The digital twin perspective to design enables the integra-
tion of design and operation decisions as shown in the bottom half of 

the figure. In addition, the consideration of the entire life cycle ena-
bles the use of data over multiple generations of a system’s design 
and is visualized in the top half of the figure
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step. These decisions are made using physics-based simula-
tions and experiments. While at the first stage (i.e., � = 1 ) we 
do not yet have data collected for the evolution of generation 
� ∈

{
1,… , �max

}
 over their life cycle, the designer can rely 

on data from previous generations or expert knowledge if 
𝜏 > 1 . As these models will not be able to accurately rep-
resent the physical system, a designer is required to prop-
erly account for the uncertainty in their predictions that can 
come from uncertain parameters, model uncertainty, model 
bias, and noisy data. It should be noted that the formulation 
presented in Eq. 3 describes a general class of problems 
that are known as Markov decision processes. This formula-
tion is also encountered in dynamic programming, system 
dynamics, and reinforcement learning. Due to the generaliz-
able formulation of the digital-twin-inspired system design 
framework, we can benefit from a plethora of available theo-
ries and methods.

Once the design decisions have been made, the system 
goes through subsequent steps in its life cycle during which 
more data are collected to infer the state of the system as 
represented in the bottom half of Fig. 1. The digital state of 
a system updates itself with the online data collected from 
the physical system, this has two important benefits: 

1.	 The digital state updates itself recursively to represent 
the state of a physical system. in other words, the digi-
tal state parameter D�

t
 mimics the state of the system 

and can include parts of the physical system that are not 
directly observed through sensor data.

2.	 The collected data provide a comparison between the 
realized state of the system and the predicted state by 
the dynamic Γ . By comparing the predicted state to the 
realized state, we can enhance the physics-based model 
with the observed data through multi-modal data fusion 
(i.e., improve predictive fidelity).

As data are being transferred from the physical system to 
the digital system, it is typical to have a filtering step that 
changes the format of the collected data to be compatible 
with the digital system. Conversely, the digital system can 
be used to send a control signal to the physical system to 
improve operational performance or collect data that can 
lead to improved future performance (i.e., Eq. 1 is optimized 
with respect to the control policy). For example, it could be 
imagined that the hybrid model has high prediction accuracy 
for the current mode of control, whereas its fidelity is low 
in an untested area of the control space. Consequently, it 
could be beneficial to try an untested control policy to learn 
if a better control policy can be identified. This is a problem 
that has been well studied by the optimization community in 
the context of Bayesian optimization (van Beek et al. 2021).

An example of the application of the digital twin con-
cept for the design of a system is car tires, as visualized in 
Fig. 2. Car tires can benefit from the digital twin concept as 

Fig. 2   Visualization of the digital twin-inspired approach for the 
design of a vehicle tire. During the design phase, fleet data (i.e., data 
from all previous systems) can be used to make nominal design and 
operation decisions. Conversely, during a system’s operation life data 

can be used to make operation decisions for a specific system as they 
are exposed to unique operating conditions (e.g., different operator 
decisions and environmental conditions)
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controlling tire pressure require bidirectional communica-
tion between the physical systems and the digital system to 
improve fuel economy, extend tire life, improve handling, 
and reduce risks (Velupillai and Guvenc 2007; Kowalewski 
2004). Throughout the different stages, the state of a tire can 
be inferred and monitored during its life cycle. For example, 
during the operation of a car tire, sensors can be used to 
measure, tire pressure, tire velocity, tire temperature, total 
mileage covered by the tire, and tire wear rate (i.e., variables 
Pt ). The collected data then function as input to the digital 
system to provide an approximation of the physical state of 
the tire. For example, simulation models can use the sensor 
data as input to predict an additional set of state variables 
such as strain energy and the evolution of tears inside the 
tire (i.e., variables Dt ). Note that the simulation models can 
be physics-based, data-driven or a combination of the two 
(Mao et al. 2020). The joint set of the sensors and simula-
tion data provide the approximation of the state of a specific 
tire for a specific vehicle (i.e., st = Pt ∪ Dt ). Note that this 
implies that the state of a car tire is context-dependent (i.e., 
driving behavior, weather, and road conditions influence 
the evolution of a tire’s state). This observation has been 
visualized by the evolution of System 1 and System 2 in 
Fig. 2. For example, during the manufacturing stage, vari-
ations in microstructural features can result in a difference 
in system performance and the effect of these variations can 
exacerbate over time. However, the state representation will 
typically be a high-dimensional data source that is difficult 
to interpret. Consequently, a reward function rt(⋅) is required 
that uses data from physics-based models, physical experi-
ments, and tire/car-specific sensor data to enable quantita-
tive comparison between the merit of different states at a 
specific time t. The reward function could consider a wide 
variety of criteria that can include the remaining tire life, 
driving comfort, tire economy, and environmental impact. 
Finally, we require a system dynamic Γt(⋅) that enables the 
prediction of future states st+1, st+2,… given a set of control 
policies �(⋅) , weight their relative measure, and then select 
the best policy. Examples of control policies �(⋅) for a car 
tire include the regulation of tire pressure, vehicle velocity/
acceleration, and when to replace the tire. While the current 
description of the car tire system focuses on operation deci-
sions, it should be observed that its formulation also allows 
for the consideration of design decisions x (e.g., tire thick-
ness, thread depths, and material), and operation decisions 
during different stages of the life cycle (e.g., manufacturing 
process conditions and disposal). This example will be used 
throughout this paper to contextualize different aspects of 
the digital twin concept for the design of systems as intro-
duced in this section.

2.2 � Capabilities of a digital twin for system design

From the above discussion, we can identify the following set 
of necessary capabilities when using the digital twin concept 
for the design of systems. 

1.	 Online monitoring and control (i.e., collection of state 
st , and control data ut ): A primary function of the digital 
twin concept is the ability of the digital system to use 
data collected from the physical system to provide moni-
toring of the state of the physical system (e.g., in the car 
tire example the tire pressure is measured continuously 
and adjusted to improve performance). This is a crucial 
capability as this provides online insight into the state 
of a specific system as opposed to the information of a 
fleet of systems. Moreover, through online monitoring, 
it becomes possible to make system-specific decisions 
by providing a control signal to the physical state.

2.	 Forward prediction (i.e., the dynamic Γ ): Forward pre-
diction enables a system-specific estimation of future 
performance. This capability improves the effectiveness 
of the online monitoring and control capability, as it 
enables the consideration of the impact that decisions 
have at future time steps in a system’s life cycle. (e.g., 
in the car tire example the endurance strength of the tire 
can be predicted by utilizing temperature and wear rate 
as measured through the sensors placed on the physical 
system). Observe that this highlights the importance of 
uncertainty quantification of future states so that opera-
tion decisions can be made that promote either robust-
ness or reliability.

3.	 Multi-modal data fusion (i.e., improve the fidelity of 
Γ(⋅) and f (⋅) ): This capability enables the integration of 
data collected from the physics-based simulation models 
with the data collected from the specific system or fleet 
of systems. The physics-based models provide only an 
approximation of the true physical system and as such 
data can be used to improve its fidelity. This capability 
enables the predictions of the digital system to become 
more consistent with the physical system and as such 
approximate the full potential of the digital twin concept 
(e.g., in the car tire example, the bias in the physics-
based endurance strength model can be accounted for by 
comparing data from physical experiments with empiri-
cal data). In this scenario, data from previous systems 
can also be used to improve the predictive fidelity of the 
models used in the design phase.

4.	 Online updating of the digital system (i.e., update Γ(⋅) 
at times t): This capability enables the fidelity of the 
forward prediction capability to improve over time and 
to be system specific. Consequently, this improves the 
effectiveness of the operation decisions ut . The updating 
capability can be achieved by comparing the sensor data 
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with the predicted state of the system that comes from 
the forward prediction capability (i.e., Γ(⋅) ). Through 
this comparison, the digital system, associated with a 
specific system, can be updated throughout the system’s 
life cycle (e.g., in the car tire example, the endurance 
strength model continuously improves in fidelity as more 
sensor data are acquired). This will improve the predic-
tive properties of the forward prediction capability and 
improve the control decisions. In other words, online 
updating of the digital system is specific to a system, 
whereas the multi-modal data fusions capability can also 
inform decisions of a fleet of systems (i.e., design deci-
sions).

5.	 Dimension Reduction of State Representation (i.e., 
minimize ds + ps ): In order to make Eq. 3 tractable, it 
is required that we have a low-dimensional representa-
tion of the physical state st . Consequently, this requires 
the exclusion of large amounts of information that will 
inevitably result in a discrepancy between the predicted 
future states and the observed future states (e.g., in the 
car tire example, we cannot measure the temperature 
field throughout the tire, but have to rely on a single 
point measurement). Note that this implies that dimen-
sion reduction of the state representation involves the 
appropriate selection of simulation model outputs as 
well as the selection of sensors and their placement. 
Consequently, this will require an approach that can be 
used to reduce the dimension of the state representation 
while minimizing the negative consequences that this 
has on the fidelity of the state transition function Γ(⋅).

6.	 Exploratory data collection (i.e., account for the fidel-
ity of the system dynamic Γ(⋅) in the objective func-
tion f (⋅) ): When invoking the digital system to inform 
decisions, it could happen that some areas of the space 
of admissible design and control decisions have not 
been sufficiently explored. Consequently, the predic-
tion fidelity in these areas is low and it is impossible 
to confidently conclude that these decisions are inferior 
(e.g., in the car tire example, the system, dynamic Γ(⋅) 
cannot accurately predict if the driving distance can be 
improved by reducing the tire pressure to 30 psi if it 
only has data from physical experiments, simulations, 
and operation decisions in the range of 50 psi to 100 
psi). An additional capability of the digital twin con-
cept for the design of systems would thus be to enable 
the exploration of decisions that have a large degree of 
prediction uncertainty. This capability will improve the 
global fidelity of the digital system to have an improved 
value proposition over its entire life cycle. Note that this 
capability necessitates the ability to quantify the predic-
tive uncertainty of the digital system to balance the pre-
dicted average merit of a decision with its uncertainty.

7.	 State Reward Function Approximation (i.e., the formu-
lation of r(⋅) ): In the optimization of Eq. 3, we require 
a formulation for the reward function of the state of 
a system. The complexity of this function depends 
on the intended purpose of the system. For example, 
the length of a crack in an aircraft wing is used as the 
reward function in Li et al. (2017). However, in most 
cases, the formulation of a reward function will not be 
as straightforward as it involves the trade-off between 
different objectives, or the need to balance the disparate 
interests of a group of stakeholders interacting with the 
system. This capability enables the designer of a system 
to autonomously measure the merit of design and opera-
tion decisions.

8.	 Uncertainty Quantification and Propagation (i.e., predict 
the uncertainty in f (⋅) ): The optimization problem stated 
in Eq. 1 requires knowledge about the uncertainty in the 
objective function. Note that in conjunction with capa-
bility 6, it is necessary to make a distinction between 
epistemic and aleatoric sources of uncertainty. The rea-
son for this is that the acquisition of new data points 
can only be expected to reduce epistemic uncertainty 
(e.g., model uncertainty), as aleatoric uncertainty is 
intrinsic to the acquired data (e.g., aleatoric uncertainty 
introduced through the use of a dimension reduction 
technique). Consequently, an important capability of 
establishing a digital system is the quantification of 
uncertainty sources and the propagation to the objec-
tive function (e.g., in the car tire example, the digital 
system does not know the environmental conditions 
under which the tire will be exposed in the future and 
thus needs to account for this source of uncertainty). 
Moreover, it should be noted that through the updating 
capability newly observed data points can be used to 
reduce uncertainty, (e.g., physical data are used to vali-
date and quantify the uncertainty of a simulation model). 
Uncertainty quantification enables a designer to make a 
trade-off between the mean performance and variability 
when deciding to make system design and/or operation 
decisions.

3 � Status of the digital twin concept 
for system design

In this section, we discuss some of the literature relevant 
to the use of digital twins for the design of systems. We list 
a set of representative papers and compare them with the 
capabilities identified in Sect. 2.2. It was found that most 
of the available literature integrated three or four capabili-
ties while specifically focusing on one. Consequently, in 
Table 1, the research papers are clustered based on their 
primary capabilities (vertical axis of the table). In addition, 
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any secondary capabilities of the papers reported in Table 1 
are summarized in columns three to eleven.

From the literature on monitoring and control (capabil-
ity 1), we can identify two types of approaches. In the first 
approach, sensors are used as input to a model to generate 
insight into a specific system that is then used by a human 
to make control decisions (Zhou et al. 2019; Pan and Zhang 
2021). For example, in Zhou et al. (2019), a feed-forward 
neural network is used to establish an online analysis tool 
to make power grid management decisions, and in Pan and 
Zhang (2021), a framework that integrates building infor-
mation models, with the internet of things and data mining, 
is used to help inform project management decisions. Con-
versely, in the second approach, data are collected through 
sensors and used in the digital system to make autonomous 
decisions (i.e., no human is needed to make decisions). For 
example, in Cronrath et al. (2019), reinforcement learning 
is proposed as an approach to learning the system dynamic 
Γ(⋅) and reward function r(⋅) to make autonomous control 
decisions. The ability to make autonomous control decisions 
is an important functionality when using the digital twin 
concept for the design of systems, but it is not sufficient as it 

cannot readily be extended to also include design decisions 
/revii(i.e., decisions made during the design phase and that 
affect a plurality of systems).

Part of autonomous decision-making is the construction 
of the system dynamic Γ(⋅) that enables the prediction of 
how the system will evolve. Through forward prediction of 
the state st (capability 2), it becomes possible to make non-
myopic decisions that consider the remaining life cycle of 
the system as opposed to greedy decisions that only consider 
the state of the system at the next time step. The importance 
of this capability has been argued in Jiang et al. (2021); 
Brockhoff et al. (2021). Examples of specific methods for 
forward prediction of the system state include Bayesian 
machine learning (Jiang et al. 2021), dynamic neural net-
works (Wunderlich and Santi 2021), and physics-informed 
machine learning (Tuegel et al. 2011). Moreover, examples 
of successful implementation of forward state prediction 
include power electronic converters (Wunderlich and Santi 
2021), manufacturing (Jaensch et al. 2018), and maintenance 
(Suhail et al. 2021; Tuegel et al. 2011).

Forward prediction of the system state is a prerequisite 
for the ability to quantitatively measure the relative merit of 

Table 1   Comparison of literature on the digital twin concept to the capabilities identified in Sect. 2.2

Primary capability Reference Secondary capability number

1 2 3 4 5 6 7 8

1. Online monitoring and control Zhou et al. (2019) X X X X
Cronrath et al. (2019) X X X X
Pan and Zhang (2021) X X X

2. Forward prediction Jiang et al. (2021) X X X
Brockhoff et al. (2021) X
Wunderlich and Santi (2021) X X X
Jaensch et al. (2018) X X
Suhail et al. (2021) X X
Tuegel et al. (2011) X X X X X X

3. Multi-modal data fusion Liu et al. (2018) X X X
Xiang et al. (2018) X X X X
Erikstad (2017) X X X X

4. Online updating of the digital system Huang et al. (2021) X X X X
Koulamas and Kalogeras (2018) X X X X X X
Ritto and Rochinha (2021) X X X X X

5. Dimension Reduction of State Representation Hartmann et al. (2018) X X
Garg and Panigrahi (2021) X X

6. Exploratory data collection Gohari et al. (2019) X X X
Bárkányi et al. (2021) X X X X
Macchi et al. (2018) X X X

7. State Reward Function Approximation Sun et al. (2020) X X X
Eirinakis et al. (2020) X X X X X

8. Uncertainty Quantification and Propagation Woodcock et al. (2020) X X X X X
Gohari et al. (2019) X X X X
Aversano et al. (2019) X X X X X
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competing design and operating decisions through a state 
reward function r(⋅) (capability 7). In Sun et al. (2020), a 
framework for federated learning and deep reinforcement 
learning is introduced to analyze power consumption. Fed-
erated learning is a data-driven method that enables statis-
tical learning on multiple decentralized systems. Jointly, 
the system dynamic and reward function enable the digital 
system to have information on the physical characteristics 
and behavior of some of the physical elements, an emerging 
capability that the authors of Eirinakis et al. (2020) refer to 
as the “cognitive digital twin.”

Additional capabilities to improve the effectiveness of 
the digital twin concept for the design of systems are the 
need to fuse multi-modal data (Xiang et al. 2018) (capability 
3). Examples of this are the integration of sensor data with 
simulation data (Liu et al. 2018) and the weighted sum of 
multiple models (Erikstad 2017). The ability to fuse data 
from multiple sources of fidelity, which can be achieved by 
multi-fidelity modeling, can greatly improve the predictive 
accuracy of the system dynamic Γ(⋅) and reward function 
r(⋅) and thus the effectiveness of the rendered decisions. A 
challenge with multi-modal data fusion is updating the digi-
tal system to mimic a specific physical system (Koulamas 
and Kalogeras 2018) (capability 4). Note that this is differ-
ent from the initial digital system that is constructed during 
the design phase and that is the same for the entire fleet of 
systems. Specifically, in Koulamas and Kalogeras (2018), a 
framework is presented that integrates the internet of things 
with big data principles, ambient intelligence, and robotics 
to enable online learning.

Another aspect of effective decision-making is uncer-
tainty quantification (Aversano et al. 2019) (capability 8), 
which has been achieved through Monte Carlo-based sam-
pling (Woodcock et al. 2020) or the more efficient surrogate-
based approaches like Gaussian processes (Aversano et al. 
2019). Updating the digital system and uncertainty quanti-
fication with forward prediction can be a computational and 
time-intensive challenge that limits practical implementa-
tion. Examples of models that have been applied success-
fully for this purpose are random forests (Ritto and Rochinha 
2021), and edge intelligence (Huang et al. 2021). Edge intel-
ligence is an approach that can accelerate model updating 
by dividing the process into multiple processes of reduced 
computational cost and then performing these simulations 
in a decentralized manner (i.e., reduced computational cost 
through parallel computing). However, note that not all sys-
tems are amenable to edge intelligence as not all computa-
tional processes can be performed in parallel.

Model updating can be further accelerated through 
dimension reduction (capability 5), as acknowledged in 
Hartmann et al. (2018). An additional advantage is that 
dimension reduction reduces the need for data storage 
(Garg and Panigrahi 2021). Specific examples of dimension 

reduction within the context of a digital twin concept include 
the Krylov subspace method (Hartmann et al. 2018), and 
data duplicity elimination for intrinsically noisy data sources 
(Garg and Panigrahi 2021). In addition, updating the digital 
system enables intelligent exploratory data collection that 
involves a compromise in the effectiveness of immediate 
operation decisions to provide long-term operational ben-
efits (Koulamas and Kalogeras 2018; Ritto and Rochinha 
2021) (capability 6). This capability can be further enhanced 
through uncertainty quantification to balance the need for 
exploitation with exploration (Huang et al. 2021). While the 
individual capabilities of the digital twin concept have been 
explored without explicit consideration of system design, we 
find that they all fit in the general framework as presented 
in Sect. 2.

In addition to the above observations, we find that no 
work presents a framework that integrates all the capabilities 
identified in Sect. 2.2. Additionally, it can be observed that 
there is a lack of research on the quantification and propa-
gation of uncertainty sources. Not accounting for the vari-
ous sources of uncertainty (e.g., data, model, and prediction 
uncertainty) limits the quality of the decisions that are ren-
dered based on the information provided by the digital state. 
In addition, the state reward function approximation is not 
used widely in models of digital twins for systems design. 
While the state reward function can be relatively straightfor-
ward for the design of a product with a single objective, its 
formulation for the design of a system with multiple objec-
tives can be complex in nature, and computationally expen-
sive. More details on the specifics of these challenges are 
given in Sect. 4. In short, there are no research papers that 
jointly implement all the capabilities, and this observation in 
combination with the potential benefits delineated in Sect. 2 
indicates that there are new and worthwhile research areas 
to be explored in the use of the digital twin concept for the 
design of systems.

4 � Discussion on research opportunities 
and relevant methods

From Table 1, we observed that the full potential of the digi-
tal twin concept for the design of systems, as described in 
this paper, has not yet been achieved. The primary reason 
for this is that no method integrates all capabilities. Specifi-
cally, we find that the following three research areas warrant 
further investigation: (i) fusion of multi-modal data sources 
to enable forward prediction of future states, (ii) modeling 
of the state reward function to measure the relative merit 
of competing design and operation decisions, and (iii) the 
integration of all capabilities to provide tractable design and 
operation support. In this section, we will provide a more 
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detailed description of these research areas and a summary 
of statistical tools that can aid in addressing them.

4.1 � Avenues for further scientific inquiry

In this subsection, we provide a detailed introduction to the 
problem-specific intricacies of the three research areas and 
use this to formulate a set of research questions. 

1.	 Autonomous decision-making places stringent demand 
on the required computational resources as it involves 
the fusion of multi-modal data to make predictions 
of future states when optimizing Eq. 3. This process 
quickly becomes intractable when using high-fidelity 
physics-based simulation models, and thus motivates 
the use of multi-modal data fusion methods (Chen et al. 
2017). Critical to the accuracy of these statistical data 
fusion models are the number of available samples, and 
their dimensionality. Specifically for the design of sys-
tems, the representation of the state st is not a straight-
forward task. While the complexity of the physical sys-
tem can be observed through a set of carefully placed 
sensors, this only provides a discrete representation of 
the entire system (Kapteyn et al. 2021). Consequently, 
when this information is used to approximate the state 
of a physical system through a set of computational 
models, a bias will be observed (Kennedy and O’Hagan 
2001). Consequently, a systematic approach to reducing 
this bias through the allocation of a sparse but repre-
sentative set of sensors and simulation models becomes 
important. With that in mind, we can identify the follow-
ing set of research questions; 

(a)	 How to fuse multi-modal data sources to mimic 
current and predict future states of a physical sys-
tem to enable decision-making?

(b)	 How can we achieve dimension reduction of the 
state representation while maintaining the quality 
of design and operation decisions?

(c)	 How to quantify the various sources of uncertainty 
and how to propagate their effects on the objective 
function in Eq. 3?

	    The advantage that can be achieved by addressing the 
above objectives is that it will improve the accuracy of 
the system dynamic while requiring fewer experimental 
samples to do so. Consequently, the system can make 
decisions that will have an improved expected reward. 
Moreover, reducing the dimensionality of the system 
will reduce the computational overhead, and as such 
design and operation decisions can be made in shorter 
time intervals.

2.	 Modeling of the state reward function to measure the 
relative merit of competing design and operation deci-
sions: The purpose of the state reward function is to 
compare the relative merit of competing decisions at a 
specific point in time t and needs to reflect the prefer-
ences of the system’s stakeholders. While this can be 
straightforward for a design that has a unitary metric of 
merit (e.g., failure stress in an aircraft wing (Kapteyn 
et al. 2021) or crack length in an aircraft wing (Li et al. 
2017)), the typical scenario will be that the merit of a 
system is measured through multiple criteria. We will 
continue our discussion by going into multi-objective 
optimization, but the reader should be aware that the 
state reward function cannot directly be applied as the 
objective function due to the recursive formulation of 
Eq. 3. Multi-objective optimization has a rich body of 
literature and can typically be divided into two types 
of approaches; (i) finding a Pareto frontier of optimal 
solutions and then choosing among those (Iyer et al. 
2019), and (ii) optimizing a weighted sum of objective 
functions (Hazelrigg 1998). However, most of these 
approaches are only appropriate for problems involv-
ing a relatively small number of criteria ( ≤ 3 ). In con-
trast, the merit of a system can often be measured over 
a comparatively much larger number of criteria. For the 
car tire example, a designer could be interested in fuel 
economy, maintenance cost, environmental impact, driv-
ing comfort, and average mileage. It is difficult to select 
a decision on a Pareto frontier or to weigh the relative 
importance of dimensions of merit in a space with four 
or more dimensions. More complicated still is the con-
sideration that many systems are designed for a plurality 
of stakeholders (e.g., a car tire’s users, manufacturers, 
mechanics, designers, and dealers) that hold divergent 
preferences, a problem that is known as preference mod-
eling (Cui et al. 2022). Note that the relative importance 
of the dimensions of merit is weighed differently by each 
individual and that this cannot be mapped into a single 
preference without violating conditions of logical deci-
sion-making (Yu 2012; Arrow 1950; van Beek 2022). 
While preference modeling addresses this problem by 
using consumer purchasing data to identify the design 
features and their associated levels that are predicted to 
maximize sales, it does not account for other stakehold-
ers, nor does it account for the evolution of a system 
over its life cycle. For example, a mechanic replacing 
a tire might have a different preference when it comes 
to the design of the tire as opposed to a consumer. In 
addition, the mechanic’s preference will not be reflected 
in their purchasing behavior/data but will result in addi-
tional costs if tires are sold with a maintenance contract. 
Consequently, new methods are required to make deci-
sions about the design and operation of a system that 
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consider the interests of all the stakeholders interacting 
with the system. From this observation, the following 
two research questions can be identified; 

(e)	 How to formulate the state reward function, con-
sidering a large number of criteria, to account for 
the effectiveness of design and operation decisions 
over the life cycle of a system?

(f)	 How can the divergent interests of stakeholders 
be considered when making design and operation 
decisions?

	    Through scientific inquiry into the above two research 
questions, a deeper understanding of high-dimensional 
and group decision-making will be obtained. Conse-
quently, a more accurate and logically consistent meas-
ure of merit for competing decisions will be obtained 
to improve the quality of the rendered decisions. In 
addition, systematically considering the interests of the 
stakeholders will improve the effectiveness of the ren-
dered decisions as they will enjoy broader social sup-
port. Finally, establishing more accurate state reward 
functions will improve the degree to which decisions 
can be made autonomously as part of the digital system.

3.	 Integration of all capabilities to provide tractable design 
and operation support: Finally, the integration of all 
capabilities of the digital twin concept for the design 
of systems requires additional scientific inquiry. The 
full potential, as described in Sect. 2, has not yet been 
achieved as no framework has successfully combined all 
the identified capabilities. The objective of integrating 
all capabilities itself has a set of challenges. Specifically, 
we forecast that the computational overhead will become 
a limiting factor. For example, online updating of the 
digital system, uncertainty quantification, uncertainty 
propagation, and optimization of the objective function 
are in themselves computationally intensive tasks. Con-
sidering these tasks jointly, in one framework, is likely 
to result in prohibitive computational costs. Even the 
reduction of the dimensionality of the state will not suf-
ficiently reduce the computational cost of Eq. 1 to ena-
ble swift decision-making during a system’s life cycle. 
Consequently, additional effort is required to reduce 
the computational cost of integrating all capabilities. 
The authors believe that this can be achieved through 
improved computational algorithms and simplifying 
assumptions. Consequently, this gives rise to the fol-
lowing set of research questions;

(g)	 How can we combine the capabilities, identified 
in this paper, for design and operation decision-
making?

(h)	 What level of digital system fidelity is tolerable 
when making predictions and decisions?

(i)	 How can we identify and quantify the hidden features 
which are affecting the behavior of the system?

	    The advantages of combining all capabilities of the 
digital twin concept for the design of systems will enable 
the realization of systems with improved value. Specifi-
cally, this will enable the efficient use of data to improve 
model fidelity and the reliability of the associated design 
and operation decisions. More important still is that the 
digital twin concept for the design of systems will enable 
the joint consideration of design operation decisions.

4.2 � Relevant statistical tools

While the solution strategies for the above-identified 
research directions are still to be defined, it is clear that 
they will require the use of statistical tools to enable data-
informed decision-making. Consequently, in this subsection, 
we will go over the identified research directions and intro-
duce a set of statistical tools that can prove fundamental to 
answering their associated research questions. 

1.	 Relevant tools for the fusion of multi-modal data 
sources to enable forward prediction of future states: 
The dynamic Γ(⋅) of the digital system will in many sce-
narios be required to predict the state of the system at 
future points in time (Zhang et al. 2010). Note that the 
system dynamic Γ(⋅) is different from the reward func-
tion r(⋅) in that it needs to provide a forward prediction 
of the system state as opposed to providing a relative 
measure of merit. First, we discuss the scenario where 
a data-driven model is required to predict temporal 
and continuous response variables (e.g., in the car tire 
example, we have the tire temperature and residual cas-
ing stress as real-valued and temporal variables). When 
response variables are imbalanced, Synthetic minority 
oversampling technique (SMOTE) such as borderline 
SMOTE, clustered SMOTE, and safe-level SMOTE can 
be used to balance response variables in real time so 
that models have highest accuracy when trained on the 
these variables (Gulowaty and Ksieniewicz 2019). Some 
relevant models that can be used in this context include 
autoregressive models (Hannan and Kavalieris 1986), 
dynamic regression (Shaw et al. 1997), neural network-
based models (Hwang 2009; Zaremba et al. 2014), and 
Gaussian process-based models (Conti et al. 2009; Zhao 
et al. 2011). A specific advantage offered by Gaussian 
process-based models is that they provide uncertainty 
quantification that can be leveraged for efficient optimi-
zation (i.e., Bayesian optimization) (Zhang et al. 2017; 
Dehghanimohammadabadi et al. 2021).
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	   In addition to continuous state variables, the dynamic 
Γ(⋅) can be required to predict a discrete future state. 
For example, in the car tire problem, the prediction of 
whether the tire will fail at times t ∈ {1,… , T} (i.e., yes 
or no?). In addition to the systems dynamic, the policy 
�(⋅) can be required to predict a discrete set of operating 
decisions given the state of a system st (e.g., should the 
tire be retreaded?). It thus follows that when we require 
a model to predict the discrete state of a system st or 
map the state of a system into a discrete decision (i.e., 
�(st) ), then we are dealing with a classification problem. 
Addressing this type of problem requires recognition, 
understanding, and grouping of discrete objects or data 
at times t ∈ {1,… , T} (Rafiei and Adeli 2017; Bar-
thelmey et al. 2019). For this purpose, a promising class 
of classification models are random forests as they have 
strong performance in classification, can be compatible 
with temporal data, and provide uncertainty quantifica-
tion of the predicted class (Xu and Chen 2017).

2.	 Relevant tools for modeling the state reward function 
to measure the relative merit of competing design and 
operation decisions: While it is an open research ques-
tion of how the state reward function r(⋅) should be 
constructed, its formulation and validation will require 
data (experimental and simulation). In the case of the 
digital twin concept for the design of systems, multi-
modal data are collected with the aid of sensors in real 
time (Aydemir et al. 2020). Typical multi-modal fusion 
methods, (e.g., calibration and bias correction (Kennedy 
and O’Hagan 2001) cokriging (Khatamsaz and Allaire 
2021), nonhierarchical fusion (Chen et al. 2016), and 
latent map data fusion (Oune et al. 2021)), enable the 
integration and interpolation of multiple sources of 
noisy data (Gong et al. 2022). While these methods 
work well for low-dimensional data, the design of sys-
tems typically requires statistical models that can handle 
high-dimensional data (Erikstad 2017). Specifically, the 
high dimensionality of the data can come from several 
factors; (i) the data can include images and property 
fields (e.g., the stress fields inside the tire as predicted 
by a simulation model), and (ii) some systems include 
a large number of sensors (e.g., an aircraft or truck). 
Consequently, this requires a statistical method that is 
compatible with high-dimensional inputs and outputs. 
With that in mind, Bayesian networks provide a promis-
ing approach and have the additional advantage of being 
able to update the model parameters as new data become 
available (i.e., improve model fidelity with incoming 
data) (Chen and Pollino 2012).

	   The data received from sensors, simulation models, 
and physical experiments typically manifest various 
types of uncertainty (Chakraborty et al. 2021; Kennedy 
and O’Hagan 2001). Consequently, the reward func-

tion should account for these sources of uncertainty to 
facilitate decision-making. While the above models can 
be used to integrate and interpolate between the multi-
modal data, they do not provide a systematic treatment 
of the sources of uncertainty and their effect on the pre-
dicted responses. The complexity of this task should 
not be underestimated as establishing a digital system 
will require the integration of a great many statistical 
tools that each have their specific source of uncertainty. 
For example, a typical approach when incomplete data 
are observed (e.g., when sensors fail to give informa-
tion about the pressure of the tire as a consequence of 
an internet outage) is to use synthetic data to replace it 
(Zotov et al. 2020). However, while synthetic data can 
be used to keep the digital system operational, it also 
introduces a new source of uncertainty that needs to be 
quantified and propagated (Xu et al. 2022; Tuegel 2012). 
Some statistical tools that have historically proven use-
ful for these types of tasks include Gaussian process 
models (van Beek et al. 2021), Bayesian neural networks 
(Kononenko 1989), Bayesian networks (Li et al. 2017) 
polynomial chaos expansion (Sepahvand et al. 2010), 
and quantile regression (Koenker and Hallock 2001). 
In the car tire example, the velocity sensor has an error 
rate of ±1 % that needs to be accounted for when making 
design and operation decisions.

3.	 Relevant tools for integration of all capabilities to pro-
vide tractable design and operation support: Potentially 
the biggest challenge that needs to be addressed to real-
ize the advantages that the digital twin concept holds 
for the design of systems is tractability. The individual 
capabilities of the digital system can be computationally 
intensive, making their joint integration more compli-
cated still. Computational advantages can be achieved 
by decoupling the constructs of the digital system so that 
they can be performed through parallel computing (Zhou 
et al. 2019). Such an approach typically lends itself to 
one of three approaches; bagging, boosting, and stack-
ing (Syarif et al. 2012). In bagging, multiple models are 
trained in parallel on a subset of the training data and 
then combined through averaging. In boosting, models 
learn sequentially in and adaptively place more weight 
on poorly predicted samples to reduce prediction bias. In 
stacking, different models are trained in parallel and are 
then combined by spatially changing the weights on each 
model. Physics-informed models along with bagging, 
boosting, and stacking can be used to find and predict 
the hidden features in the digital twin system by utiliz-
ing the prior knowledge acquired by transfer learning. In 
contrast, algorithmic advancements will require research 
into the specific methods, so that their unique proper-
ties can be leveraged to improve the performance of the 
digital system.
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5 � Concluding remarks

In this paper, we have presented a digital twin-inspired per-
spective on the design of systems. Specifically, we intro-
duced a system-agnostic mathematical formulation for how 
the digital twin concept can be used to improve the value 
proposition of systems by enabling the joint optimization of 
design and operation decisions. This formulation involves 
two primary aspects; (i) design decisions that define the 
materials, dimensions, and configuration of a system and 
that are fixed throughout a system’s life cycle, and (ii) auton-
omous operation decisions that get updated based on a sys-
tem’s specific state and usage conditions. A vital novelty in 
this perspective is the extension of the digital twin concept 
to enable design decisions that can involve a plurality of 
systems as opposed to operational decisions that are sys-
tem specific (Thelen et al. 2022, 2023). We continued our 
discussion by comparing available literature on the digital 
twin concept for the design of systems with the identified 
capabilities. From this analysis, we observed that no method 
exists that integrates all capabilities stated in this paper, and 
thus concluded that additional scientific inquiry into the 
use of the digital twin concept for the design of systems is 
warranted. Subsequently, we highlighted a set of research 
areas for future scientific inquiry that will provide a valu-
able contribution to the design of systems. These directions 
include; (i) dimension reduction of state representation (i.e., 
the parameters used to characterize the digital, and physi-
cal state), (ii) the formulation of a state reward function, 
(iii) online updating of the digital system to enable system 
specific forward prediction, and (iv) the integration of the 
required capabilities to realize the potential that the digital 
twin concept holds for the design of systems, as described 
in this paper. Under each of the general research directions, 
we have identified a set of research questions and introduced 
a set of statistical tools that can prove useful in answering 
these questions. From this exercise, we formulated the fol-
lowing key takeaways; 

1.	 design and operation decisions require quantitative com-
parison between their merit on different stages in a sys-
tem’s life cycle,

2.	 establishing an efficient digital system involves a trade-
off between dimension reduction of the state representa-
tion variables and the quality of the design and operating 
decisions, and

3.	 integration of the identified capabilities requires signifi-
cant computational advances to be tractable.

We argue that, while the digital twin concept has received 
progressively more interest from the scientific community, 
its full potential for the design of systems has not yet been 

achieved. By working toward the aforementioned digital 
twin-inspired research areas, we believe that more advanced 
design systems can be realized. The advantages that these 
systems will have are; (i) improved performance through 
the joint consideration of design and operation decisions, 
and (ii) improved data efficiency as it will enable the use 
of data across multiple design generations. By laying out 
a set of research directions, we hope to guide the scientific 
community toward achieving the lofty goal of using the 
digital twin concept to enable the designs of systems that 
address the societal challenges of the future (e.g., the design 
of advanced data-driven health systems, urban infrastructure 
systems, and clean water systems to address some of the 
grand challenges as identified by the national academy of 
engineering (NAE 2019)).
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