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Electric vehicle batteries contain many internationally sourced critical
minerals. Seeking a stable mineral supply, the US Inflation Reduction Act sets
amarket-value-based target for battery critical mineral content. In 2027, for
anelectric vehicle to be tax-credit eligible, 80% of the market value of critical
mineralsinits battery must be sourced domestically or from US free-trade
partners. We determined that the target may be achievable for fully electric

vehicles with nickel cobalt aluminium cathode batteries, but achieving the
target with lithium iron phosphate and nickel cobalt manganese batteries
would be challenging. We also note that a mass-based target could avoid
some of the challenges posed by a market-value target, such as volatile
market prices. We further conclude that the approach the Act has taken
ignores the environmental effects of mining, non-critical minerals supply,
support for recycling and definitions that avoid gamesmanship.

Electric vehicles (EVs) are central to plans to mitigate greenhouse gas
(GHG) emissions from the transportation sector. In August 2022, Presi-
dentBiden signed the Inflation Reduction Act (IRA), which provides tax
creditsforeligible EVsand aims to spur their adoption. One criterion for
anEVtobeeligible for atax creditis that after 31 December 2026, 80%
of the market value of the critical minerals in its battery be ‘extracted
or processed in the United States’ or any of the 20 free-trade countries
(FTCs) withwhomthe United States holds a free-trade agreement. Min-
eralsrecovered fromrecyclinginNorth Americaalso count towards the
80%target. This 80% target, meant to enhance the security of mineral
supply, and therefore energy security for vehicle electrification, is
challenging because relevant minerals such as cobaltand manganese
are overwhelmingly extracted outside US borders.

Furthermore, the IRA’s market-value-based target does not address
several key issues that would increase the sustainability of EV batteries'
and enhance the security of mineral supply. First, the infrastructure and
technology for EV battery recycling will not be ready by 2027 to return
criticalminerals from spent batteries to the supply chainin time to help
meet thistarget, which will leave battery makersto lean onvirgin min-
eral supplies’. Moreover, the market value of recycled minerals may be
less than that of virgin minerals*, disincentivizing use of recycled miner-
alsevenwhen they become available because manufacturers willmore
easily meet the IRA targets with expensive virgin minerals. Policies and
incentives that follow the IRA should accelerate and expand existing

efforts to establish adomestic battery recycling network and support
ongoing development of battery recycling technology. Second, there
isno explicit provision to evaluate the environmental effects of differ-
ent mineral sources, including recovering minerals from geothermal
brines®, from coal®or other unconventional sources, from the ocean’®,
from spent electronics’ and from virgin mineral mining, which poses
asignificant environmental quality threat'* ", The effects on overall
air, water and soil quality—along with GHG emissions—of minerals
acquisition will be essential to predict and monitor to avoid burden
shifting as the United States aims to decarbonize light-duty vehicles.

Nonetheless, itisimportant to evaluate the feasibility of the IRA’s
target as it stands for multiple lithium-ion battery chemistries used
in fully electric battery electric vehicles (BEVs) and plug-in hybrid
electric vehicles (PHEVs). We evaluate the target for three BEV bat-
tery chemistries: nickel manganese cobalt (NMC) (current majorityin
the market), nickel cobalt aluminium (NCA) (currently used by Tesla)
and lithium iron phosphate (LFP) (Tesla S3 and Ford F150 will use this
chemistry)”. Inour analysis, we average the compositions of four NMC
batteries: NMC111, NMC532, NMC622 and NMCS811. We consider only
the critical minerals in the IRA’s Section 45c(6): aluminium, cobalt,
graphite (natural and synthetic), lithium, manganese and nickel. We
summarize the mass and market-value contributions by mineral for
BEV (Supplementary Tables 2G and 11D, respectively) and PHEV bat-
tery chemistries (Supplementary Tables 3G and 12D, respectively).
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Fig.1|Number of tax-credit-eligible BEV batteries and predicted market
demand in2027. a, Market-value basis. b, Mass basis'*'®. At least 80% of the
market value of the critical minerals in the number of batteries the blue bars
depict derives from the United States and FTCs. Maximum-availability scenarios
assume the United States purchases all exported minerals from FTCs. Baseline-
imports scenarios assume import levels will follow historical patterns. Results
(blue bars, mean mineral market value + s.d.) are the number of tax-credit-

eligible batteries available as calculated with the mean mineral market value over
fiveyears (n=>35). Error bars reflect the minimum and maximum number of tax-
credit-eligible batteries when calculated with mineral market values equal to one
standard deviation above and below the mean mineral market value. The centre
oftheerror bar corresponds to the result calculated when the mean mineral
market values are used.

In BEV NMC batteries, the dominant market-value contributor was
cobalt (48%) (Supplementary Table 11F). Aluminium contributed
over 60% to the market value of critical minerals in LFP batteries.
Nickel was the majority contributor (49%) to the market value of NCA
BEV batteries.

We considered two scenarios for provision of these minerals. First,
in the ‘maximum availability’ scenario, we assume the United States
importsallavailable supply of each mineral from FTCs". This scenario
isunlikely because FTCs do not trade exclusively with the United States.
Inthe second scenario (‘baselineimports’), we reduced the amount of
minerals from FTCs to match historical import levels. Both scenarios
account for US production and for the use of critical minerals in other
industries (Supplementary Table 4A-F). Minerals obtained fromrecy-
clingin North America are also allowable under the IRA. Accordingly,
we included secondary production of nickel and aluminium from
scrap and waste materials from other industries (Supplementary Table
7A,B,M,N). Neither mineral-availability scenario includes minerals
stemming from EV lithium-ion battery recyclingbecauseitisnotyetat
anindustrial scale in the United States. Supplementary Table OA lists
additional assumptions adopted in creating the scenarios.

Critically, the IRA specifies minerals must be extracted or pro-
cessed in the United States or an FTC. Therefore, minerals could be
imported from anon-FTC country to the United States or an FTC and
processed in away that would meet IRA requirements. Thisintroduces
the possibility of gamesmanship that could reduce mineral and energy
security and worsen the environmental effects of producing EV batter-
ies. For example, the United States imported 2,618 t of lithium mineral
(between lithium hydroxide and lithium carbonateimports) in 2019".
Of that, 59% came from Argentina, a non-FTC country that does not
offer the labour and environmental protections the United States
requires of FTC partners. Ifthe United States processed thisimported
Argentinianlithium and useditin batteries, the cars that contain these
batteries would be tax-credit eligible. Our analysis did not account for
this scenario because it does not reduce the mineral security and envi-
ronmental quality risks associated with international supply chains. To
achieve the aims of the IRA, guidance should be provided regarding
what constitutes processing and what allowable sources are for the
minerals that would be processed in the United States oran FTC.

Figure ladisplays the number of BEV batteries that meet the 80%
IRA target assuming only a single chemistry is used for all batteries™.
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Fig.2|Number of BEV batteries by mineral in 2027. Blue, yellow and rust-
coloured bars represent batteries with NMC, NCA and LFP chemiistries,
respectively'*'°. Bars falling in grey-, yellow- and green-shaded areas indicate
insufficient, constrained and sufficient mineral supply, respectively. The

International Energy Agency estimates arange in battery demand that introduces
uncertainty into mineral requirements; this is reflected by the height of the
yellow-shaded area.

Nearly universally, not enough batteries meet this criterion to satisfy
projected BEV demand. The one exception is when critical minerals
in NCA batteries are at their low market value and mineral availability
is high. Meeting the IRA targets for BEVs is therefore extraordinarily
challenging.

We also assessed the viability of the market-based target for
smaller PHEV batteries (Supplementary Fig. 1a) with LFP, NMC and
lithium manganese oxide (LMO) chemistries. LFP batteries would
meet demand under both mineral-availability scenarios. It would
be just possible to meet demand for NMC batteries when supply is
at baseline mineral levels. In the baseline imports scenario, enough
LMO batteries may not be available. In general, the 80% market-value
target is viable for PHEVs, even under baseline mineral availability
(Supplementary Fig.1).

TheIRA’s choice of amarket-value-based target limited to certain
criticalminerals raises four challenges. First,amarket-based target may
be met before all the critical minerals in a battery are acquired from
asecure source (for example, the United States and FTC countries),

depending onthebattery chemistry. Second, the environmental effects
of critical minerals acquisition are physically tied to the amount of
mineral producedrather thanits market value. (Although a high market
value does, of course, drive mineral production.) Third, market values
fluctuate. For example, the prices of cobalt and nickel have increased
by about US$13,000 and US$4,000 per metric ton, respectively, since
2019".Ininterpreting the IRA policy, guidance on what market values
to use and from which sources would help reduce uncertainty and
gamesmanship and hold all automakers to the same standard in the
interpretation of market value. Finally, non-critical minerals central to
batteries, such as iron for LFP batteries, are produced mainly (98%")
outside the United States, raising supply risks. Even though they may
beEarth-abundant, the extraction of these minerals—largely innon-FTC
countries (61% for iron**)—may degrade environmental quality.
Using a mass-based target could avoid these four challenges.
Accordingly, wealso evaluated achieving the IRA's target if the 80% were
based on mass rather than market value (Fig. 1b). Graphite, aluminium
and nickel had the largest mass shares in batteries (Supplementary
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Table 2H). Overall, it was not possible to meet an 80% mass-share
threshold for IRA-eligible minerals. Compared with Fig. 1a, LFP and
NCA battery availability shrank. NMC battery availability rose because
the limiting ingredient on a mass basis is graphite, rather than cobalt
asin the market-value target case, and supplies of graphite are larger
than cobalt supplies. For PHEVs, the number of batteries achieving a
mass-based target also falls for LFP and LMO chemistries compared
with market-value-based results. Again, NMC battery availability grows.
High-level conclusions about eligible battery production are similar
whether a mass- or market-based target is used although absolute
numbers of eligible batteries vary. Given the fluctuations in mineral
market values, using a mass-based target in the policy could improve
its transparency but may not incentivize production of high-value
minerals domestically, which isimportant for mineral security.

InFig.2, weillustrate—in the context of the IRA—which minerals are
atthe core of the availability challenge for different battery chemistries.
Mineral by mineral, we calculated how many batteries could be made
for each of the three chemistries on the basis of IRA-eligible mineral
supply. This analysis does not account for abattery-level market value
or mass target for critical minerals. Itindicates that IRA-eligible nickel
and aluminium supplies are plentiful. Notably, however, there is not
enough cobalt or graphite to meet demand under either availability
scenario. Manganese supply is also constrained. In the case of PHEVs,
only cobalt and lithium exhibit insufficient supply (Supplementary
Fig.2); supplies of other IRA-eligible minerals would support produc-
tion of enough batteries to meet demand. For BEVs, lithium supply is
sufficient under the maximum-availability scenario, but supply falls
shortattypicalimportlevels. Today, the United States does notimport
any lithium from Australia, a dominant lithium producer and an FTC
country, because Australian lithium destined for battery materials is
exported to China (94% of market value in 2022"). As supply chains
shift to reflect a changing policy landscape, the United States could
increaseits share of eligible minerals, including lithium, by increasing
imports from FTC countries such as Australia.

The barriers facing the critical minerals targetin the IRA bring to
mind theinability of the young cellulosic biofuels industry to meet the
16-billion-gallon annual productiontarget set for itin the 2007 Renew-
able Fuel Standard (RFS) for2022'¢.1n 2021, the US Environmental Pro-
tection Agency seta2022 Renewable Volume Obligation of 630 million
gallons of this fuel®, a far cry from the original aspirations of the RFS.
If, as with the RFS targets for cellulosic biofuels, IRA critical mineral
targets fail, will US consumers be slower to adopt EVs because there
will be fewer that are tax-credit eligible? How will this lack of adoption
impact GHG reduction targets? While domestic mining increases are
probably essential to meet IRA targets, establishing and expanding
mining activity is subject to lengthy and important permitting and
environmental protection activities. To increase the likelihood of
success in reducing transportation GHGs and the overall sustainabil-
ity of electrified transportation, battery recycling® is an unqualified
necessity, albeit one that may be slow to rise to the challenge without
aninfusion of greater support.

Methods

The quantities of critical minerals (as defined in IRA Section 45¢(6): alu-
minium, cobalt, graphite (natural and synthetic), lithium, manganese
andnickel) in BEV and PHEV batteries are from the Greenhouse Gases,
Regulated Emissions and Energy Efficiency in Technologies (GREET)
model’. Mass and market-value shares for BEVs and PHEVs are in Sup-
plementary Tables 2H, 3G, 11D and 12D.

The International Energy Agency projects that between 990,000
and 1,900,000 BEVs and between 500,000 and 1,100,000 PHEVs will be
sold in 2025. We therefore adopted a range of BEV sales of 1-2 million
new BEVs and 0.5-1.5 million new PHEVsin 2027 for the United States.

Annual production and import data of the six selected critical
minerals were obtained from the US Geological Survey (USGS) Mineral

Commodity Summaries and Yearbooks. We assumed constant pro-
duction and imports between 2021 and 2027. We accounted for use
of critical minerals in multiple industries. Only a fraction of minerals
produced andimported are used in battery production. We estimated
these fractions on the basis of data from the USGS as documented
in Supplementary Table 5A. The resulting mineral availabilities rep-
resent upper bounds; we erred on the side of assuming maximum
amounts of minerals would be available for battery production. For
example, if USGS documentation indicated mineral consumption was
dividedamong several industries thatincluded battery production, we
assumed that entire fraction went to battery production. Our analysis
included recycled and scrap minerals. We assumed that all aluminium
scrap had an aluminium content of 90% (Supplementary Table 4A) and
that all nickel scrap (Supplementary Table 4F) had a nickel content of
100%. We note that critical minerals are produced as multiple types
of compounds. For example, lithium may be on the market as lithium
carbonate, lithium hydroxide, lithium chloride or spodumene. Nickel
canbefoundinferronickel, sulfide and laterite ores. We calculated min-
eral availability using stoichiometry or estimates of a typical amount
of mineral in different types of ore (Supplementary Table 4A-F). For
each battery chemistry, we identified the limiting critical mineral
ingredient on the basis of market value for which IRA-allowable criti-
cal mineral supply would first be depleted. The limiting mineral was
graphite for LFP batteries. It was cobalt for NMC and NCA batteries.
We then determined the minimum market-value share of that limit-
ing mineral that was required to produce batteries that meet the IRA
80% critical mineral market-value target. After determining the mass
share of the mineral that corresponded to the minimum market-value
share, for each mineral-availability scenario, we estimated the number
of tax-credit-eligible batteries that could be produced when the mar-
ket value of each mineral was at its average, minimum and maximum
values. We note that individual battery manufacturers use different
battery ‘recipes’ thatinfluence the amount of minerals used per battery
and, accordingly, the number of batteries that would be tax-credit eli-
gible. Given that thisinformation s proprietary, we used GREET values
for amounts of minerals per battery. We set the range of market values
on the basis of the standard deviation of a five-year span of mineral
market values. A similar approach to calculating the population of
tax-credit-eligible batteries was taken to evaluate an 80% target based
on mass share. Market values are five-year averages'. Ranges reflect
the standard deviationin market values for each mineral over the past
five years (Supplementary Table 8I).

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All calculations, dataand datasources are provided in the Supplemen-
tary Information.
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