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Abstract

We study the spectral measures of conservative mixing flows on the 2-torus having one
degenerate singularity. We show that, for a sufficiently strong singularity, the spectrum of
these flows is typically Lebesgue with infinite multiplicity.

For this, we use two main ingredients: 1) a proof of absolute continuity of the maximal
spectral type for this class of non-uniformly stretching flows that have an irregular decay of
correlations, 2) a geometric criterion that yields infinite Lebesgue multiplicity of the spectrum
and that is well adapted to rapidly mixing flows.

1 Introduction

Smooth conservative, or area-preserving, flows on surfaces provide one of the fundamental ex-
amples in the theory of dynamical systems. These flows are often called multi-valued, or locally,
Hamiltonian flows, following the terminology introduced by S. P. Novikov [48], who emphasized
their relation with solid state physics [49]. In fact, smooth conservative surface flows preserve by
definition a smooth area-form, hence they are generated by the symplectic dual of a closed 1-form,
which is locally the exterior derivative of a multi-valued Hamiltonian function.

Multi-valued Hamiltonian flows can be viewed as special flows above circle rotations, or more
generally above IETs (interval exchange transformations). One can thus also view them as time
changes of translation flows on surfaces. When the flow has fixed points, the ceiling function has
singularities, that often appear at the discontinuity points of the IET.

The study of conservative surface flows goes back to Poincaré, and it knew spectacular ad-
vances with the works of the Russian school starting from the beginning of the second half of last
century till the early 90s. Recently, further substantial advances were made in their understanding
and they attracted a lot of attention due to their connections with billiards on rational polygons and
Teichmüller theory, as well as with parabolic dynamics such as the dynamics of horocycle flows
and Ratner theory.

Questions on the ergodic and spectral theory of conservative surface flows have a long his-
tory. The simplest setting to be examined is that of smooth conservative flows on the 2-torus
without periodic orbits. This setting is reduced to that of reparametrizations (time changes) of
minimal translation flows (see for example the textbook [5] by I. P. Cornfeld, S. V. Fomin and
Ya. G. Sinai). A. N. Kolmogorov [39] showed that such reparametrized flows are typically con-
jugated to translation flows, since it suffices for this that the slope of the translation flow belongs to
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the full measure set of Diophantine numbers. He also observed that more exotic behaviors should
be expected for the reparametrized flows in the case of Liouville slopes. M. D. Shklover indeed
obtained in [58] examples of real analytic reparametrizations of linear flows on the 2-torus that
were weak mixing (continuous spectrum). Not long after Shklover’s result, A. B. Katok [25], and
later A. V. Kochergin [33], showed the absence of mixing for non-singular conservative flows on
the 2-torus, hence establishing that in a sense shear of nearby orbits near singularities is the only
mixing mechanism available for smooth surface flows1. Note that analytic reparametrizations
of Liouvillean irrational flows of the 2-torus can have a mixed singular continuous and discrete
maximal spectral type [12, 20].

Kochergin mixing flows on surfaces.

The simplest mixing examples of conservative surface flows are those with one (degenerate) sin-
gularity on the 2-torus produced by Kochergin in the 1970s [34]. They are time changes of linear
flows on the 2-torus with an irrational slope and with a single rest point (see Figure 1 and the last
section of this introduction for a precise definition of Kochergin flows). Equivalently these flows
can be viewed as special flows under a ceiling, or roof, function with at least one power singularity
(see Figures 2 and 3 and the precise definition of special flows in Section 2).

Figure 1: Torus flow with one degenerate saddle acting as a stopping point.

Multi-valued Hamiltonian flows on higher genus surfaces can also be mixing (or mixing on
an open ergodic component) in the presence of non-degenerate saddle type singularities that have
some asymmetry (see Figure 2). Such flows are called Arnol’d flows and their mixing property,
conjectured by V. I. Arnol’d in [1], was obtained by K. Khanin and Ya. G. Sinai [31] and, later, in
more generality by Kochergin [36, 38].

Kochergin also proved that for suspension flows under a roof function with symmetric log-
arithmic singularities over a circle rotation, mixing fails for almost every rotation number [35].
Many years later he proved in [37] that indeed mixing fails in this case for all rotation numbers.

Ulcigrai substantially extended Kochergin’s results by proving in [66] that conservative flows
with non-degenerate saddle singularities are generically not mixing (due to symmetry in the saddles).

1This confirmed Kolmogorov’s intuition about the absence of mixing for analytic reparametrizations of translation
flows, but only in this two-dimensional setting. Indeed, mixing analytic reparametrizations of translation flows on T3

were obtained in [8].
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Recently, J. Chaika and A. Wright [4] gave mixing examples with finitely many non-degenerate
fixed points and no saddle connections on a closed surface of genus 5.

Although mixing was thoroughly studied for conservative surface flows, almost nothing was
known about the spectral type and spectral multiplicity of the mixing examples (see for example
the survey by Katok and J.-P. Thouvenot [29] and the discussion therein). By spectral type of a flow
{T t} we mean the spectral type of the associated Koopman operator Ut : L2(M,µ) : f → f ◦T t .

The nature of the spectral type and multiplicity of mixing surface flows naturally arose as
soon as such mixing examples were obtained, especially since, at that time, the spectral theory of
dynamical systems was a matter of major interest for the Russian school in that second half of last
century (see for example the textbook [5] or Kolmogorov’s 1954 ICM address [40]). Since then,
the question about the possibility of a Lebesgue maximal spectral type for mixing surface flows
appeared in many monographs and surveys (see for example the discussions in [29], [44] or [6]). In
the survey [29], by Katok and Thouvenot, it is remarked that “Some estimate of correlation decay
have been obtained but they are too weak to conclude that the spectrum is absolutely continuous.”
Finally, Kochergin at the end of his paper [38] asks about rate of mixing and absolutely continuous
spectrum (Problem 4) and multiple mixing (Problem 6) for flows on surfaces.

In this paper we treat the simplest mixing examples that are Kochergin flows on the torus with
a single degenerate rest point. We give a general statement here that will be made more specific in
the last section of this introduction.

Theorem 1. There exists a real analytic conservative flow on T2 with exactly one singularity, with
Lebesgue spectral type of countable multiplicity.

Note that besides their own interest, mixing conservative flows attracted an additional attention
since they stood as the main and almost only natural class of mixing transformations for which
higher order mixing has not been established, nor disproved. The first and third author of this
paper established multiple mixing only for a very special class of mixing Kochergin flows [13].
In our proof of Theorem 1 we will actually show that Kochergin flows with a sufficiently strong
singularity have for almost every slope a countable Lebesgue spectrum. As a consequence, neither
B. Host’s celebrated theorem that establishes multiple mixing for mixing systems with purely
singular spectral type [21], neither [13], can give a positive answer to the multiple mixing question
for typical Kochergin flows.

Before we proceed to the precise statement of Theorem 1, we make some comments about the
new phenomenon that is enclosed in the above result and about the mechanisms that yield it.

How chaotic can the lowest-dimensional, smooth, invertible dynamical systems be?

A circle diffeomorphism with irrational rotation number that preserves a smooth measure is smoothly
conjugate to a rotation. It is hence rigid in the sense that the iterates along a subsequence of the
integers converge uniformly to identity. Rigidity implies the absence of mixing between any two
measurable observables. This absence of mixing actually holds for all smooth circle diffeomorph-
isms with irrational rotation number since, by Denjoy theory, they are topologically conjugated
to rotations. Circle diffeomorphisms with rational rotation number are even farther from mixing,
since their non-wandering dynamics are supported on periodic points.

The lowest dimensional setting that can be investigated for dynamical complexity after circle
diffeomorphisms is that of multi-valued Hamiltonian flows on surfaces. In the absence of peri-
odic orbits, these flows can be viewed as reparametrizations of minimal translation flows on the
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torus. Combining Kolmogorov’s result on the linearizability of Diophantine flows, and the theory
of periodic approximations, A. Katok [25] proved that sufficiently smooth reparametrizations of
linear flows on the torus are actually rigid. In particular, the maximal spectral type of smooth
conservative flows of the torus without periodic orbits is always purely singular.

Figure 2: The orbit of a point by the special flow above a rotation of angle α and under a bounded ceiling
function ϕ . Smooth reparametrizations of linear flows on T2 are equivalent to such flows.

As a consequence of Katok’s result, in order to go beyond the purely singular maximal spectral
type for smooth conservative flows on the 2-torus, one must allow the existence of singularities
for the flow. When there is just one singularity, the phase portrait is actually similar to that of
a minimal translation flow, apart from one orbit that contains the saddle point which acts as a
stopping point (see Figure 1). Our result shows that in this situation the maximal spectral type can
indeed be Lebesgue even in this ‘almost one-dimensional’ setting.

Quasi-minimal flows that are spectrally isomorphic to Bernoulli flows

The two extremes in describing the stochasticity of a dynamical system from a spectral point of
view are simple pure point spectrum on one end and countable Lebesgue spectrum on the other.
Translation flows on the torus have a simple pure point spectrum, while Bernoulli flows have
countable Lebesgue spectrum.

The proof of the countable Lebesgue spectrum property for geodesic flows on negatively
curved surfaces by I. M. Gelfand and S. V. Fomin [19], and later for general (open sets of) K-
flows by A. N. Kolmogorov, Ya. G. Sinai and others, was considered as a major breakthrough
by the Russian school of dynamical systems in the second half of the twentieth century, because
of what it implied on the similarities between some deterministic systems and stochastic flows
[60, 5, 61, 51, 42].

Parallel to this discovery was another major discovery made by Kolmogorov that quasi-periodic
Diophantine motion is robust in many systems of mechanical origin (such as quasi-integrable
Hamiltonian flows). This later developed into what is called today KAM theory (after Kolmogorov,
Arnol’d and Moser). With these two phenomena in sight, stemming from the theory of K-systems
and from KAM theory, Kolmogorov ventured in his ICM 1954 paper into the following interesting
speculation : It is not impossible that only these cases (a discrete spectrum with a finite number of
independent frequencies and a countably-multiple Lebesgue spectrum) are admissible for analytic
transitive measures or that, in a sense, only they alone are general typical cases. This of course, is
in stark contrast with the Halmos-Rokhlin general description of invariant ergodic measures as be-
ing continuous and purely singular for the generic system in the weak topology, and Kolmogorov
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insisted in his speculation on restricting to the analytic setting, avoiding even the smooth category,
for the above dichotomy to have some chances to hold. We know today, that even in the analytic
category, and even in low dimensional systems such as reparametrized irrational flows of the 2-
torus, there are many other possibilities for the spectrum, including singular continuous, mixed,
etc., but the validity of the dichotomy in some typical sense is still a possibility.

For systems with zero entropy, for many decades progress on spectral questions was restricted
to the case of homogeneous flows, starting with O. S. Parasyuk’s result [50] on countable Lebesque
spectrum for horocycle flows (see for example [32] for a systematic exposition of ergodic theory
of homogeneous flows and many references). The only instance of smooth systems for which
Lebesgue spectrum was established beyond hyperbolic and algebraic case is in [17] where the
second author and Ulcigrai show that the maximal spectral type of smooth time-changes of the
horocycle flow of a compact hyperbolic surface is Lebesgue. Their work was motivated by a
conjecture of A. Katok and J.-P. Thouvenot that time-changes of horocycle flows should also
have countable Lebesgue spectrum (see [29], Conjecture 6.8). Independently, R. Tiedra [62], [63]
(following a different approach) obtained the absolute continuity of the spectrum for the same
flows.

Note that conservative flows on surfaces always have topological entropy zero2. Note also
that conservative non-singular time changes of translation flows on the 2-torus were presented by
Kolmogorov [40] as the basic context of real analytic systems in which discrete spectrum prevails.
In the particular case that we are considering of flows with just one singularity, the phase portrait
is, as mentioned above, very similar to that of a minimal translation flow, except for the existence
of one rest point. It is a striking fact that some of these quasi-minimal flows, as in Theorem 1, turn
out to have a countable Lebesque spectrum and thus are spectrally equivalent to ergodic Bernoulli
flows.

In the next two subsections we describe some aspects of these two steps as well as their rela-
tions to the existing literature. In a third subsection, we cast our results in a more general picture
on conservative surface flows and describe their relations to the main recent advances in the field.
In the last subsection of this Introduction, before we give the plan of the paper, we explain the
shear mechanism that underlies mixing for conservative surface flows with singularities, and we
precisely state our results .

Non uniform shear and irregular decay of correlations

To prove the absolute continuity of the spectrum of a dynamical system, it is natural to look for a
control on the decay of correlations by the flow. The only result in the direction of getting power-
like estimates for the decay of correlations of surface flows was obtained in [10], where the first
author proved a polynomial bound t−η on the decay of correlations (as functions of time t > 0)
for Kochergin flows with one power singularity and for the characteristic functions of rectangles.
However, in that paper, the power of the decay η is bound to be less than 1

4 , so it is not possible to
deduce from the decay anything about the spectral type of the corresponding flow.

However, and as it is often the case, characteristic functions of nice sets do not give the best
rate of decay of correlations between observables. Our work takes inspiration from that of [17],

2The situation is completely different for surface diffeomorphisms. Anosov automorphisms of the torus and their
relatives constructed by A. Katok [28] on the sphere and the disc are classical examples of conservative Bernoulli
surface diffeomorphisms. Later, Bernoulli diffeomorphisms and flows were shown to exist on any compact manifold of
dimension larger than 2 and 3 respectively [7, 22].
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especially in the use of coboundaries to estimate the decay of correlations, as well as in the proof
of the equivalence to Lebesgue of the maximal spectral type. Our approach considerably refines
the approach of [17] in two directions : 1) it handles non-uniformly parabolic flows, for which
the correlation decay, even for coboundaries, is very irregular (not even bounded by t−1/2), and
2) it gives a criterion for countable multiplicity, which applies to Kochergin flows, but also to a
much wider class of mixing systems with square summable decay of correlations for a sufficiently
rich class of functions. To prove the square summable decay of correlations for Kochergin flows,
we also take inspiration from [10] where a quantitative approach to the mixing shear mechanism
exhibited by Kochergin in [34] is adopted to obtain a speed of mixing for these flows.

Indeed, there is a fundamental difference between the decay of correlations for time-changes
of horocycle flows and for mixing surface flows, that we will now explain.

For time-changes of horocycle flows, the decay of correlations for coboundaries exploited in
[17] is based on the uniform shear of geodesic arcs, linear with respect to time, as in B. Marcus’
proof in [47] of mixing for these flows. Such a shear can be readily derived from the commutation
relations for the horocycle and the geodesic flows, and the unique ergodicity of the horocycle flow
(and hence of all of its time-changes), first established by H. Furstenberg [18] (see also [46]).
The amount of shear is asymptotically linear with respect to time, since it is given by the ergodic
integral of a function of non-zero mean.

In the case of suspension flows above rotations, the shear of horizontal arcs is provided by
the stretching of the Birkhoff sums of a ceiling function with a singularity (see Figure 4, and
the last subsection of this introduction for a precise description of the shear mechanism). In this
case, the amount of shear is non-uniform since it is given by the ergodic integrals of a integrable
function of zero mean, hence it depends on deviation of ergodic integrals from the mean. This non-
uniform shear has a strength that depends on the asymptotics of the roof function at the singular
point. It is crucial for our argument that the singularity be chosen strong enough so that, over
most of the phase space, the reciprocal of the stretching is a square integrable function of time.
This means that our power singularity must be chosen with exponent in the interval (1/2,1). For
asymmetric power singularities, the set where the reciprocal of the stretching of Birkhoff sums is
not sufficiently small, that is, not square-integrable, has very small measure and can be neglected
in the argument. However, such suspension flows cannot be realized as smooth flows on a surface.
For symmetric power singularities of exponent close to 1, which indeed can be realized as smooth
flows (see Remark 1 below), the set of insufficient stretching is not negligible anymore, and we
have to deal with it in the argument. This is a significant difficulty, both conceptual and technical,
and in fact the summability of the correlations even when their decay is not uniform, is a new
phenomenon that, to the authors’ best knowledge, does not arise in any of the proofs of absolutely
continuous spectrum of dynamical systems available in the literature (see [17] , [62], [63], [59]).

Indeed, we emphasize that in our situation, and in contrast with all the above-mentioned cases,
in particular that of time-changes of horocycle flows investigated in [17] , we have that for any
smooth functions, the correlation coefficients will not always be of order less than t−1/2−ε as t goes
to infinity. To the contrary, along the subsequence tn given by the denominators of the irrational
rotation, the correlation coefficients will in fact be as large as t−1/2+ε

n , for some ε > 0, because
there is a set of measure of order t−1/2+ε

n on which the flow at time tn is almost equal to the identity.
This bad set appears due to the cancellations in the stretching of the Birkhoff sums of the ceiling
function that are caused by the symmetry at the singularity (a remnant of the Denjoy-Koksma
property). The bad set is essentially a union of thin towers that follow in projection the orbit of the
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rotation on the base. Outside the bad set, the correlations are well controlled due to sufficiently
strong uniform stretching. A crucial part of our argument, completely absent in the earlier works
mentioned above, deals precisely with the bad set. Indeed, we use a bootstrap argument and the
regular structure of the bad set, to show that for most of the times that are in a medium scale
neighborhood of the time tn, there is some small power decay of correlations on the bad set. This
property, plus the smallness in measure of the bad set, plus the fast decay outside of this set, finally
yield square summability of the total correlations (see Figures 3, 6 and 7).

We think our method will be useful in treating other parabolic flows where mixing is due to
shear and where the shear is often sufficiently strong but not uniformly in time and space.

A criterion for countable Lebesgue multiplicity for parabolic flows

Once we know that the maximal spectral type of Kochergin flows is absolutely continuous, two
natural questions arise, one about the equivalence of the spectral type to Lebesgue measure on R,
and one about the spectral multiplicity.

The type and multiplicity of mixing surface flows was often raised in connection with the
question whether there exist flows with simple Lebesgue spectrum. This is the flow version of the
famous Banach’s problem on the existence of a measure preserving transformation having simple
Lebesgue spectrum. However, no tools were available to understand the multiplicity question for
these flows. A criterion that gives an upper bound on the multiplicity of the spectrum of a flow,
introduced by Katok and Thouvenot ([29, Theorem 1.21]), does not apply to our Kochergin flows
due to the strong shear near the singularity.

We introduce here a geometric criterion based on rapid mixing that implies the pure Lebesgue
and infinite multiplicity for flows that have an absolutely continuous maximal spectral type. It
applies in particular to Kochergin flows with sufficiently degenerate power singularity and allows
to complete the proof of Theorem 1, building on the absolute continuity of the maximal spectral
type, and on the estimates that implied it.

The criterion, that we call CILS (Criterion for Infinite Lebesgue Spectrum), will be presented
in detail in Section 6. Heuristically we see that if the flow admits a given number n+1 of functions,
n > 0, such that each function is almost orthogonal to the cyclic space of any other one, and such
that the spectral measures of the functions can be chosen to be not too small on any fixed bounded
measurable set of R, then the pure Lebesgue multiplicity of the flow is larger than n+1. In fact, in
our formulation it is enough to construct n+1- functions such that the (n+1)× (n+1) matrix of
Fourier transforms of their square-integrable mutual correlations has maximal rank equal to n+1
on any given positive measure subset of the real line.

The idea of constructing an arbitrarily large number of such independent functions for a rapidly
mixing system is the following: one can choose the functions to be supported on one or several
Rokhlin towers for the flow (or flow-boxes with an arbitrarily short base) and specify their values
on these towers so that the conditions of the criterion are satisfied for a finite, arbitrarily large time.
Heuristically, such finite systems of functions are constructed to have orthogonal cyclic subspaces
on a large subinterval of the real line. Once more, it is in fact enough to control the Fourier
transforms of all correlations of the functions in each finite system over a large time interval. The
conditions of the criterion in the infinite complementary intervals are then derived from the mixing
estimates, that is, from the square-integrability of the correlations (and their Fourier transforms).

Note that for n = 0, only the condition on the spectral measure is required and yields the
equivalence of the maximal spectral type to Lebesgue. Our criterion in that case reduces to the
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one used by the second author and Ulcigrai in [17] in the prof that the maximal spectral type
of smooth time-changes of horocycle flows is Lebesgue. Also, the construction of the function
satisfying the criterion in that case n = 0 is very similar to the construction in [17] but has to be
adapted to our context of non-uniformly stretching flows.

The main novelty in our CILS is the lower bound on the multiplicity. Indeed, our CILS gives
an alternative to the much stronger K-property introduced by Kolmogorov [41], Sinai [60] and
others to establish countable Lebesgue spectrum for uniformly hyperbolic systems. It is presented
in a clear cut form that makes it applicable to a wide range of smooth mixing systems with a
sufficiently fast rate of mixing for observables in some rich class of functions.

Besides K-flows, infinite Lebesgue spectrum was so far established only for homogeneous
flows and other systems of algebraic origin. Even in one of the simplest non-algebraic cases, that of
smooth time changes of horocycle flows, the countable Lebesgue spectrum property, conjectured,
as we have recalled, by Katok and Thouvenot (see [29], Conjecture 6.8), was still open.

Our criterion allows to extend the work of the second author and Ulcigrai [17] and thereby
complete the proof of the Katok-Thouvenot conjecture. However, the domain of applicability of
our criterion is definitely wider than the class of uniformly parabolic flows (that is, flows with
uniformly strong shear) such as horocycle flows and their time changes. Indeed we have applied it
in this paper to the borderline case of mixing Kochergin flows, which are non-uniformly parabolic,
with irregular decay of correlations, even for smooth coboundaries.

We believe that a systematic application of our CILS will allow to show that countable Le-
besgue spectrum is a robust property in many non linear contexts, where many metric invariants
(not just one metric invariant, like entropy in the case of K-systems) preclude the possibility of
isomorphism classification.

Other recent advances in the study of ergodic properties of surface flows

Further advances in the ergodic theory of flows on higher genus surfaces came only in last couple
of decades as a consequence of a deeper understanding of the behavior of ergodic sums (integrals)
of Interval Exchange Transformations (translation flows), and several spectacular developments in
that direction also brought renewed interest in multi-valued Hamiltonian flows on surfaces.

The second author studied deviations of ergodic averages for such flows [15] and proved a
substantial part of the conjectures formulated by M. Kontsevich [43] and A. Zorich [67], [68],
[69] on their deviation spectrum. From these results, A. Avila and the second author [2] derived
the weak mixing property of non-toral translation flows and of Interval Exchange Transformations
which are not rotations. The proof of the Kontsevich–Zorich conjectures was later completed by
A. Avila and M. Viana [3].

Ergodic properties of multi-valued Hamiltonian flows on higher genus surfaces with non-
degenerate saddle singularities were then studied by C. Ulcigrai, who established that such flows
are generically weak mixing [65], but not mixing [66] (see also D. Scheglov’s paper [57]).

For suspensions flows under ceiling functions with asymmetric logarithmic singularities, Ulcigrai
generalized in her thesis [64] the result of Khanin and Sinai [31] to suspensions with one singu-
larity above generic IET’s. Only recently, D. Ravotti [55] has carried out the argument for any
number of singularities, thereby establishing mixing, with (at least) logarithmic decay of correla-
tions, for smooth flows of Arnol’d type on surfaces of higher genus.

After Ulcigrai’s work on mixing properties, a few major questions remained open in the er-
godic theory of flows on surfaces: whether mixing is at all possible for conservative smooth flows
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with non-degenerate saddles in higher genus, whether smooth flows on surfaces can have Lebesgue
spectrum, and finally whether mixing implies multiple mixing (Rokhlin’s question).

As explained above, a better understanding of the various possible behaviors of IET’s al-
lowed J. Chaika and A. Wright [4] to answer the first question in the affirmative. They proved
the existence of mixing special flows over non-generic, uniquely ergodic, interval exchange trans-
formations, in the case of a smooth ceiling function with symmetric logarithmic singularities at
the interval endpoints. Their result implies in particular the existence of an (exceptional) mixing
smooth flow with only Morse saddle singularities on a surface of genus 5.

Other important advances came from a better understanding of the similarities between the
dynamics of uniformly parabolic flows, such as the horocycle flow, and locally Hamiltonian flows
on surfaces. The first and third author proved multiple mixing for a class of such flows on the
torus [13] (a restricted atypical class in the case of Kochergin flows, but a typical class for Arnol’d
asymmetric flows). For this, they showed that these flows display a generalization of the so called
Ratner property on slow divergence of nearby orbits (introduced by M. Ratner [52], [53], [54]
in her study of ergodic properties of horocycyle flows), that implies strong restrictions on their
joinings, which in turn yield higher order mixing. Multiple mixing was later generalized to many
mixing flows on higher genus surfaces in [23]. This was the first application of the Ratner property
to prove multiple mixing outside its original context of horocycle flows. Finally, a disjointess cri-
terion, based on the Ratner property, has very recently been introduced in [24], and systematically
applied to disjointness results for time-changes of horocycles and Arnol’d flows (see also [16] for
an application of the criterion to Heisenberg nilflows and [14] for a refinement of Ratner disjoint-
ness result for time-changes of horocycle flows). As for the question on the spectral type and
multiplicity of mixing surface flows, no results were known up to now.

In the next subsection, we describe the mixing mechanism that comes from shear for sur-
face flows with singularities, or for special flows above rotations. We will also give the precise
definition of the Kochergin flows for which we will establish the countable Lebesgue multiplicty.

Shear of Birkhoff sums and mixing

Consider a section of a Kochergin’s flow with one singularity on the torus, that is transversal to all
orbits and does not contain the singularity. The dynamics can then be viewed as that of a special
flow above an irrational rotation of the circle with a return time function (called a ceiling or roof
function) having a power-like singularity (see Figure 3).

Figure 3: Representation of a 2-torus flow with one degenerate saddle as a special flow under a ceiling
function (symmetric) power-like singularity.
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The singularity is precisely the last point where the section intersects the incoming separatrix
of the fixed point. The strength of the singularity depends on how abruptly the linear flow is
slowed down in the neighborhood of the fixed point (see Remark 1). In the case of other surfaces
and several singularities, the flows obtained by Kochergin are equivalent to special flows above
interval exchange transformations (IET’s) with ceiling functions having power-like singularities at
the discontinuity points of the IET.

The mechanism of mixing in Kochergin examples is, in part, the same as in the weak mixing
examples of Shklover, namely the stretching of the Birkhoff sums of the ceiling function above the
iterates of the ergodic base dynamics. Whenever these sums are uniformly stretched above small
intervals, the image of small rectangles by the special flow for large times decomposes into long
and thin strips (see Figure 4). These strips are well distributed in the fibers due to uniform stretch,
and well distributed in projection on the base because of ergodicity of the base dynamics.

Figure 4: Mixing mechanism for special flows: the image of a rectangle is a union of long narrow strips
which fill densely the phase space.

However, the reason behind the uniform stretching is different for Shklover’s flows and Kocher-
gin’s ones. For the first ones, uniform stretching of the Birkhoff sums of the ceiling function is due
to a Liouville phenomenon of accumulation, along a subsequence of time, of the oscillations of the
ceiling function due to periodic approximations. In the case of Kochergin’s flows, it is the shear
between orbits as they get near the fixed points that is responsible for mixing. As a consequence,
for the latter uniform stretching holds for all large times, while for the former, the existence of
Denjoy-Koksma (DK for short) times impedes mixing. Denjoy-Koksma times are integers for
which the Birkhoff sums have an a priori bounded oscillation around the mean value on all or on
a positive measure proportion of the base (see for example the discussion around property DK in
[6]). Hence, a key fact behind Kochergin’s result is that the Denjoy-Koksma property does not
necessarily hold for ceiling functions having infinite asymptotic values at some singularities.

A threshold is given by smooth ceiling functions having logarithmic singularities. When such
a singularity is symmetric, it is known that for a typical irrational rotation a Denjoy-Koksma like
property holds that prevents mixing of the special flow (see [45] and [6, Section 8]). In higher
genus, Ulcigrai [66] proved that, despite the presence of polynomial deviations of Birkhoff sums
from the mean [69], [15], for almost all IET’s there are still sufficient cancellations to prevent
mixing. A different, special, cancellation mechanism was found slightly earlier by Scheglov [57]
in genus 2. However, as proven by Chaika and Wright [4], these cancellations do not happen for
all IET’s, as the speed of convergence of Birkhoff sums to the mean can be very slow, and this is
why mixing is possible in some special cases.

The case of asymmetric logarithmic singularities is different. In [1], Arnol’d showed that
multi-valued Hamiltonian flows with non-degenerate saddle points have a phase portrait that de-
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composes into elliptic islands (topological disks bounded by saddle connections and filled up by
periodic orbits) and one open uniquely ergodic component. On this component, the flow can be
represented as the special flow over an interval exchange map of the circle and under a ceiling
function that is smooth except for some logarithmic singularities. The singularities are typically
asymmetric since the coefficient in front of the logarithm is twice as big on one side of the singu-
larity as the one on the other side, due to the existence of homoclinic loops (see Figure 5). As we
mentioned above, Khanin and Sinai [31] proved that, as conjectured by Arnol’d, this asymmetry
produces mixing.

Figure 5: Multivalued Hamiltonian flow. Note that the orbits passing to the left of the saddle spend
approximately twice longer time comparing to the orbits passing to the right of the saddle and starting at
the same distance from the separatrix since they pass near the saddle twice.

In this paper, we will show that Kochergin flows with a single sufficiently strong degenerate
singularity typically have a Lebesgue spectral type with countable multiplicity. We now formulate
our results more precisely. The flows which we will consider are special flows given by a base
dynamics that is an irrational rotation by α ∈ T, and a ceiling function ϕ ∈C2(T \ {0}), ϕ > 0,
with the following properties:

lim
θ→0+

ϕ(θ)

θ−(1−η)
= M1 and lim

θ→0−

ϕ(θ)

θ−(1−η)
= M1 (1)

lim
θ→0+

ϕ ′(θ)

θ−(2−η)
=−N1 and lim

θ→0−

ϕ ′(θ)

θ−(2−η)
= N1 (2)

lim
θ→0+

ϕ ′′(θ)

θ−(3−η)
= R1 and lim

θ→0−

ϕ ′′(θ)

θ−(3−η)
= R1 (3)

where η is a small number, η ∈ (0, 1
1000), and +∞ > M1,N1,R1 > 0. We refer to the beginning

of Section 2 for an exact definition of special flows. We assume that
∫
T ϕ(θ)dθ = 1. We let

M = {(θ ,s) ∈ T×R : s 6 ϕ(θ)} and denote by µ the measure equal to the restriction to M of
the product of the Haar measures λT on the circle T and λR on the real line R. This measure
is the unique invariant measure for the special flow T t

α,ϕ given by (α,ϕ). Our main result is the
following. For ξ > 0, we will say that α ∈ Dlog,ξ if and only if there exists a constant C(α) > 0
such that for any p ∈ Z,q ∈ Z∗,

|α− p
q
|> C

q2 log1+ξ q
.

It is a classical and easy to prove fact that for any ξ > 0, Dlog,ξ has full Haar measure in T.
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Theorem 2. For α ∈ Dlog,ξ , ξ < 1
10 , the dynamical system (T t

α,ϕ ,M,µ) has Lebesgue spectral
type with countable multiplicity.

Remark 1. In [34], the following method is adopted to obtain conservative flows on the torus
with a degenerate saddle-node fixed point as in (1)–(3). Consider first some Hamiltonian flow on
R2 with the x−axis invariant and with a unique singularity at the origin. In the neighborhood of
the origin, the orbits of such a flow are as described in Figure 1. It is then possible to cut a small
neighborhood of the origin and paste it smoothly inside the phase portrait of a linear flow of T2

with any given slope. As a result, one gets a multi-valued Hamiltonian flow that has a unique
singularity of saddle-node type. An easy calculation shows that if we consider the Hamiltonian
given by Hl(x,y) = y(x2+y2)l then the corresponding special flow has a unique symmetric power-
like singularity as in (1)–(3) with η arbitrarily close to 0 as l→ ∞.

One can also obtain analytic examples with one fixed point as in (1)–(3). To do so, one
starts with the smooth construction of a multi-valued Hamiltonian described above. Then, for
an arbitrary k > 2l + 4, one considers a real analytic approximation of the smooth multi-valued
Hamiltonian that continues to have the same slope and a unique singularity at (0,0), with the same
jets of order k at (0,0) (that is, those of Hl). From there it follows that the corresponding flow
has a special flow representation with a ceiling function having a unique symmetric power-like
singularity as in (1)–(3).

We end this introduction with some of the questions that naturally arise from our result.

Question 1. Do Kochergin flows always have Lebesgue spectral type (with countable multipli-
city)?

To answer this question, one has to treat several singularities and with smaller powers as well
as general IET’s on the base.

Question 2. What is the spectral type in the case of non degenerate saddles?

Arnol’d conjectured a power-like decay of correlation in the asymmetric case, but the decay
is more likely to be logarithmic, at least between general regular observables or characteristic
functions of regular sets such as balls or squares. Note that even a lower bound on the decay of
correlations is not sufficient to preclude absolute continuity of the maximal spectral type. How-
ever, an approach based on slowly coalescent periodic approximations as in [11] may be explored
in the aim of proving that the spectrum is purely singular.

Plan of the paper

In Section 2 we first give the formal definition of our special flows and we describe the set of
coboundary functions we will be interested in.

The proof that the flow T t
α,ϕ has an absolutely continuous maximal spectral type follows by a

standard argument from Theorem 3 that states that the Fourier transforms of the spectral measures
of functions in our special dense set are square-integrable.

The proof of Theorem 3 splits in two parts. We consider a time t ∈ [qn,qn+1] for some n ∈ N.
We further consider intervals of time of the type t ∈ [l21/20,(l +1)21/20]⊂ [qn,qn+1].
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First, a decay faster than t−1/2−ε for some ε > 0 is established outside a bad set Bl of measure
comparable to t−1/2+ε . This result is stated as Proposition 2.1. Second, the squared correlations
on the bad set Bl are controlled on average for t ∈ [l21/20,(l + 1)21/20]. This is the content of
Proposition 2.2.

Section 3 is devoted to the proof of general stretching estimates for the Birkhoff sums of the
ceiling function.

In Section 4 the bad set Bl is constructed and the stretching properties outside this set are
stated. This is the content of Propositions 4.2, 4.4 and 4.5.

Section 5 explains the derivation of correlation decay estimates from uniform stretching of
Birkhoff sums. The main results of Section 5.1 are Corollary 2 that describes the fast decay
of order at least t−1/2−ε on the good intervals that partition the complement of the bad set, and
Corollary 3 that describes the decay of order t−1/2+ε on general intervals (with the bad set Bl

included). Corollary 2 will directly yield the proof of Proposition 2.1 on fast decay outside Bl ,
given in Section 5.2, while Corollary 3 is crucial in the bootstrap argument that yields the averaged
decay on the set Bl of Proposition 2.2, given in Section 5.3.

Finally, in Section 6, we complete the proof of Theorem 2 and prove that the spectral type
of Kochergin flows is Lebesgue with countable multiplicity. The proof that the spectral type is
not just absolutely continuous, but indeed equivalent to the Lebesgue measure, is based on a new
criterion for countable Lebesgue spectrum of smooth flows (Theorem 6) and on the construction
of an arbitrary number of observables, localized on an arbitrarily long flow-box, which have given
arbitrary correlation functions on a finite, but arbitrary long, time interval. The control of the
correlation functions beyond this time is guaranteed by the estimates on correlation decay obtained
in Sections 4 and 5.

The outline of the construction of the observables comes from the proof of the Lebesgue
maximal spectral type for time changes of horocycle flows [17] . However, again in contrast with
the case of time-changes of horocycle flows, whose phase space has dimension 3, for this approach
to work in the case of surface flows, that is, in dimension 2, it is crucial that the constant in the
estimates on the square integrals of correlations satisfy good bounds in terms of the smooth norms
of the functions. For this reason, we will estimate carefully this dependence throughout the paper.

2 Special flows, smooth coboundaries, and decay of correlations

Let Rα : T→ T, Rα(θ) = θ +α mod 1, where α ∈ T is an irrational number with the sequence
of denominators (qn)

+∞

n=1 and let ψ ∈ L1(T,B,λT) be a strictly positive function. We denote by
dT the distance on the circle. We recall that the special flow T t := T t

α,ψ constructed above Rα and
under ψ is given by

T×R/∼ → T×R/∼
(θ ,s) → (θ ,s+ t),

where ∼ is the identification
(θ ,s+ψ(θ))∼ (Rα(θ),s) . (4)

Equivalently (see Figure 2), this special flow is defined for t + s > 0 (with a similar definition for
negative times) by

T t(θ ,s) = (θ +N(θ ,s, t)α, t + s−ψN(θ ,s,t)(θ)),
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where N(θ ,s, t) is the unique integer such that

0 6 t + s−ψN(θ ,s,t)(θ)6 ψ(θ +N(θ ,s, t)α), (5)

and

ψn(θ) =


ψ(θ)+ . . .+ψ(Rn−1

α θ) if n > 0
0 if n = 0

−(ψ(Rn
αθ)+ . . .+ψ(R−1

α θ)) if n < 0.

Let M denote the configuration space, that is,

M := {(θ ,s) ∈ T×R : s 6 ψ(θ)}.

In our case ψ = ϕ , where ϕ has the properties stated in formulas (1), (2) and (3). For a given
ζ > 0, let us denote

Mζ := {(θ ,s) ∈M : dT(θ ,0)> ζ ,ζ < s < ϕ(θ)−ζ}. (6)

We recall that f is a smooth coboundary for the flow T t
α,ϕ if there exists a smooth function φ such

that, for any a < b, ∫ b

a
f (u, t)dt = φ(u,b)−φ(u,a).

The space of smooth coboundaries is dense in the subspace L2
0(M)⊂ L2(M) of zero average func-

tions, provided T t
α,ϕ is ergodic (which is always the case if α is irrational). Moreover, it can be

shown that the subspace F of the space of all smooth coboundaries defined by the conditions
that f ∈ F if and only if f is a smooth coboundary and there exists ζ > 0 with f (x) = 0 for
every x ∈Mc

ζ
, is also dense in L2

0(M). Indeed, let us prove that the orthogonal space F⊥ ⊂ L2
0(M)

contains only the zero function. In fact, every function f ∈ L2
0(M), which belongs to the ortho-

gonal space F⊥ ⊂ L2
0(M), is by definition orthogonal to the Lie derivative along the flow of every

smooth function with support contained in Mζ for some ζ > 0. It follows that for every t > 0 the
function f ◦T t

α,ϕ − f is orthogonal to all smooth functions with support in Mζ , for every ζ > 0,
hence it is orthogonal to all square-integrable functions, as the space of smooth functions with
support contained in Mζ for some ζ > 0 is dense in L2(M). It follows that for any t > 0, the
function f ◦T t

α,ϕ − f vanishes, hence f is invariant and constant by the ergodicity of the flow. As
f has zero average, it is equal to the zero function.

Let f ∈F be a smooth coboundary and g ∈C1(M). By definition, since f ∈F , there exists
ζ > 0 such that f = 0 on Mc

ζ
.

Theorem 3. Let f be a smooth coboundary for the flow (T t
α,ϕ) and let g be a smooth function on

M, both vanishing on some neighborhood of the boundary of M. Then the correlation function

C f ,g(t) :=
∫

M
f (T t

α,ϕ(x))g(x)dµ , for all t > 0 , (7)

belongs to the space L2(R,dλR) of square-integrable functions on the real line.

The symbols C f ,g, C′f ,g, C′′f ,g will denote positive constants depending only on the C1 norms
of f ∈F and g ∈ C1(M) and on the C1 norm of the transfer function φ for f ∈F . Theorem 3
immediately follows from
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Theorem 4. For every f ∈F and g ∈C1
0(Mζ ) there exists a constant C f ,g > 0 such for all l ∈ N,

we have ∫ (l+1)21/20

l21/20

∣∣∣∣∫M
f (T t

α,ϕ(x))g(x)dµ

∣∣∣∣2 dt <C f ,g l−1− η

100 .

For simplicity, we denote l0 = l21/20, l1 = (l +1)21/20. Let n ∈ N be unique such that

qn < l0 < qn+1 .

Theorem 4 can be derived from the propositions stated below.

Proposition 2.1. There exists a set Bl ⊂M, µ(Bl)< q−1/2+6η
n such that for every t ∈ [l0, l1], we

have ∣∣∣∣∫M\Bl

f (T t
α,ϕ(x))g(x)dµ

∣∣∣∣<C f ,g t−1/2− η

6 .

Proposition 2.2. We have∫ l1

l0

∣∣∣∣∫
Bl

f (T t
α,ϕ(x))g(x)dµ

∣∣∣∣dt <C f ,g
(l1− l0)µ(Bl)

q20η
n

.

The proofs of the two above propositions will be given later, in Sections 5.2 and 5.3, respect-
ively. Let us show how they imply Theorem 4, and therefore Theorem 3 and the first part of
Theorem 2 on the absolute continuity of the spectrum.

Proof of Theorem 4. Let F(t) := 1
Bl

∣∣∣∫Bl
f (T t

α,ϕ(x))g(x)dµ

∣∣∣ and let Gl := {t ∈ [l0, l1] : F(t) >
1

q7η
n
}. By Markov’s inequality and Proposition 2.2, we have

|Gl|6C f ,g
l1− l0
q13η

n
.

By splitting the integration below into Gl and Gc
l , we get

∫ l1

l0

∣∣∣∣∫
Bl

f (T t
α,ϕ(x))g(x)dµ

∣∣∣∣2 dt 6C f ,g
(l1− l0)µ(Bl)

2

q13η
n

6C f ,g
(l1− l0)

q1+η
n

6C′f ,g
(l1− l0)

q1+η/2
n+1

6C′f ,g
(l1− l0)

l1+η/2
0

6 2C′f ,g
l1/20

l21/20(1+η/2) <C′′f ,gl−1− η

2 .

Using this and Proposition 2.1, we have

∫ (l+1)21/20

l21/20

∣∣∣∣∫M
f (T t

α,ϕ(x))g(x)dµ

∣∣∣∣2 dt 6 2
∫ l1

l0
t−1− η

5 dt+

2
∫ l1

l0

∣∣∣∣∫
Bl

f (T t
α,ϕ(x))g(x)dµ

∣∣∣∣2 dt 6 l−1− η

10 ,

which finishes the proof of Theorem 4.
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3 Stretching of Birkhoff sums

We collect in the section the necessary technical facts about the Birkhoff sums of the ceiling
function ϕ above Rα . Some proofs that are not difficult, but probably a bit tedious, will be deferred
to the Appendix A.

For simplicity, we will assume that in our main assumptions (1), (2), (3) we have M1,N1,R1 = 1
and that

∫
T ϕdλT = 1. Throughout this section we suppose fixed l0 = l21/20, l1 = (l +1)21/20 and

the unique integer n such that qn < l0 < qn+1.
For every x ∈M we will denote by x̄ ∈ T its first coordinate. In particular, for any t ∈ R, we

will denote the first coordinate of T t
α,ϕ(x) ∈ M by T̄ t

α,ϕ(x). Similarly, for any horizontal interval
I ⊂M, we will denote Ī ⊂ T its vertical projection and by λ (I) its (horizontal) Lebesgue measure,
that is, the Lebesgue measure λT(Ī).

Let qk ∈ [qn log15 qn,qn log20 qn] (such qk exists by the Diophantine assumptions on α) and
consider the partition Ik of T into intervals with endpoints {−iα}qk−1

i=0 . For any Ī ∈Ik such that
Ī∩ [− 1

q3/5
n
, 1

q3/5
n
] = /0, let Iϕ := {(θ ,s) ∈M : θ ∈ Ī,0 6 s 6 minθ∈Ī ϕ(θ)}. Define

W :=
⋃
{Iϕ : Ī ∈Ik, Ī∩

[
− 1

q3/5
n

,
1

q3/5
n

]
= /0}. (8)

By a slight abuse of notations, we refer to W as a set as well as a partial partition of M into
intervals. Define moreover

V := {(θ ,s) ∈M : 0 6 s 6 q3/5+1/10
n }. (9)

Notice that Mζ ⊂W .
Notice that since t 6 l1 6 qn+2 and ϕ > c > 0, we have

Nt := sup
x∈M

N(x, t)6
qn+2

c
� qk.

Hence by the definition of the partition Ik, for every I ⊂W

0 /∈
Nt⋃

i=0

Ri
α(Ī). (10)

As a consequence of (10) the Birkhoff sum ϕN(x,t) is (twice) differentiable on I, for every x ∈ I and
t 6 l1. This fact will be used repeatedly in the proofs.

3.1 Denjoy-Koksma estimates

We start with some Denjoy-Koksma type estimates that allow us to give some control on the
Birkhoff sums of ϕ in function of the closest visit to the singularity.

We will adopt the following notation: for any x ∈M and N ∈ N, we let

xN
min = min

06 j<N
d(x̄+ jα,0).
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Lemma 3.1. For every x ∈M and every N ∈ [qr,qr+1], we have

ϕ
(
xN

min
)
+

1
3

qr 6 ϕN(x̄)6 ϕ
(
xN

min
)
+3qr+1 (11)

ϕ
′ (xN

min
)
−8q2−η

r+1 < |ϕ ′N(x̄)|< ϕ
′ (xN

min
)
+8q2−η

r+1 (12)

and
ϕ
′′ (xN

min
)
6 ϕ

′′
N(x̄)< ϕ

′′ (xN
min
)
+8q3−η

r+1 . (13)

Proof of Lemma 3.1. We will give the proof of (11), the proofs of (12) and (13) are analogous.
Let χr denote the characteristic function of the interval [− 1

3qr
, 1

3qr
] and define ϕ̄r := (1−χr)ϕ . By

Denjoy-Koksma inequality, since
∫
T ϕdλT = 1, we have

(ϕ̄r+1)qr+1
(x̄)6 qr+1

∫
T

ϕ̄r+1dλT+4q1−η

r+1 6 3qr+1.

Therefore
ϕN(x̄)6 ϕqr+1(x̄)6 ϕ(xN

min)+(ϕ̄r+1)qr+1
(x̄)6 ϕ(xN

min)+3qr+1.

This gives the upper bound. Analogously (by Denjoy-Koksma inequality for ϕ̄r), we get the lower
bound. The proof is thus finished.

The following lemma is a direct consequence of (11) and (12), (13).

Lemma 3.2. For every x ∈M and N ∈ N

|ϕ ′N(x̄)|< (ϕN(x̄))2+2η , (14)

|ϕ ′′N(x̄)|> (ϕN(x̄))3−η log−3 N (15)

As a consequence, we have that for every x ∈M∩ (T×{s}) and every t ∈ R

|ϕ ′N(x,t)(x̄)|< 3s2+2η +3t2+2η (16)

and
|ϕ ′′N(x,t)(x̄)|> (t + s−ϕ(x̄+N(x, t)α))3−η log−3 N(x, t). (17)

We have also the following bound on the discrepancies of the base rotation relative to intervals.

Lemma 3.3. Let J̄ ⊂ T be an interval. Then for every N ∈ N and every θ ∈ T

|(χJ̄)N(θ)−Nλ (J)|6 2C−1 log2+ξ N .

Proof. Notice that by Denjoy-Koksma inequality, for every j ∈ N and θ ∈ T, we have

|(χJ̄)q j(θ)−q jλ (J)|6 2. (18)

To conclude, we write N = ∑
r
j=0 a jq j, where 0 6 a j 6

q j+1
q j

(it is called Ostrowski expansion of N)
use the cocycle identity, the bound in (18) for j = r,r−1, . . . ,0 and the fact that by our Diophantine
condition a j 6C−1(logq j)

1+ξ for all j ∈ N.
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3.2 Stretching estimates

Uniform stretching of the Birkhoff sums requires a lower bound on the derivatives of the Birkhoff
sums and an upper bound on their second derivatives (see for example Definition 4.3 below). For
any interval I ⊂W , we therefore introduce the notation

uI := sup
t∈[l0,l1]

sup
x∈I
|ϕ ′′N(x,t)(x̄)|. (19)

Lemma 3.4. Let I ⊂W. If uI > qn log9 qn, then for every t ∈ [l0, l1] and every x ∈ I∩T−t
α,ϕ(W ), we

have
xN(x,t)

min 6
1

qn log2 qn
(20)

and

|ϕ ′N(x,t)(x̄)|>

(
1

2xN(x,t)
min

)2−η

and |ϕ ′′N(x,t)(x̄)|6

(
2

xN(x,t)
min

)3−η

. (21)

In what follows, for simplicity, we will denote N(x) := N(x, t).

Lemma 3.5. Let x0,x ∈ I ⊂W with |x̄− x̄0|> 1
q3/2−2η

n
satisfy T t

α,ϕ(x) ∈V and let

|ϕ ′N(x0)
(x̄0)|6 q7/4+η

n and |ϕ ′′N(x0)
(x̄0)|6 q3−η

n log10 qn.

Then for some Ax,x0 >
q3−η

n

log5 qn
we have

|ϕ ′N(x)(x̄)−ϕ
′
N(x0)

(x̄0)−Ax,x0(x̄− x̄0)|6
Ax,x0

10
|x̄− x̄0|.

The proofs of Lemmas 3.4 and 3.5 will be given in Appendix A. Lemma 3.5 has the following
straightforward consequence.

Corollary 1. If |ϕ ′N(x0)
(x̄0)|< 3q3/2+η

n and |ϕ ′′N(x0)
(x̄0)|< q3−η

n log10 qn for some x0 ∈W, then for

every x ∈ I such that |x̄− x̄0|> 1
q3/2−3η

n
either T t

α,ϕ(x) ∈V c or if x satisfies T t
α,ϕ(x) ∈V , then

|ϕ ′N(x)(x̄)|>
q3−η

n

2log5 qn
|x̄− x̄0|. (22)

4 Mixing rate on intervals, construction of Bl

In what follows I ⊂W will be a horizontal interval (such that Ī ∈Ik) and h = q3/5
n . Then we know

that the iterates Ri
α(Ī) for i = 0, . . . ,h are all disjoint and do not contain 0. Recall the notation

uI := sup
t∈[l0,l1]

sup
x∈I
|ϕ ′′N(x,t)(x̄)|.

Moreover whenever It := I∩T−t
α,ϕW 6= /0, we define

rt
I = inf

x∈It
|ϕ ′N(x,t)(x̄)| (23)

(if It = /0 we may define rt
I =+∞). We also let

rI = inf
t∈[l0,l1]

rt
I. (24)
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Definition 4.1 (Complete towers). Fix a horizontal interval I ⊂M∩ (T×{s}) centered at z and
a number h > 0. A complete tower of ‘height’ h above the interval I is the set:

N(z,h)⋃
i=0

(Ri
α(Ī))ϕ \∪s

t=0T t
α,ϕ(Ī×{0}).

We now describe the bad set for correlations Bl (see Figure 6).

Proposition 4.2. There exists a set Bl ⊂M with the following properties:

(B1) Bl =U1∪·· ·∪Um where Ui are disjoint complete towers with heights h= q3/5
n over intervals

Bi ⊂W with horizontal measure λ (Bi) =
2

q3/2−5η
n

;

(B2) µ(Bl)6 q−1/2+6η
n ;

(B3) for every interval I ⊂W, we have I = J1t J2t Ibad where either I∩Bl = /0 and Ibad and J2

are empty, or Ibad is a level of some Ui and J1,J2 are intervals. When Ibad is not empty, we
denote by xbad its center.

(B4) for every interval I ⊂W and every t ∈ [l0, l1], we have one of the following

(B4.i) rt
I > q3/2+η

n ,

(B4.ii) rt
I < q3/2+η

n , Ibad 6= /0, uI 6 q3−η
n log9 qn and for every x ∈ J1t J2 s.t. T t

α,ϕx ∈W

|ϕ ′N(x,t)(x̄)|>
q3−η

n

log6 qn
|x̄− x̄bad |

(B5) For every t ∈ [l0, l1], for every i ∈ [1,m], there exists a complete tower Tt,i over an interval
Bt,i = [θt,i− 1

q3/2−5η
n

,θt,i +
1

q3/2−5η
n

]×{st,i} ⊂M of height ht,i > q3/5−1/50
n such that

µ(
(
T t

α,ϕ(Ui)4Tt,i
)
∩Mζ )6 q−1+10η

n .

For a horizontal interval I ⊂W such that T t
α,ϕ I ∩W 6= /0, the quantity that measures uniform

stretching on I is the ratio

St
I := inf

x∈It

(ϕ ′N(x,t)(x̄))
2

ϕ ′′N(x,t)(x̄)
, (25)

where It = I∩T−t
α,ϕ(W ) (we set St

I =+∞ if I∩T−t
α,ϕW = /0).

We recall that the integer l, hence the integers l0 = l21/20, l1 = (l + 1)21/20, and the integer n
such that qn < l0 < qn+1, are fixed throughout this section.

Definition 4.3. An interval J = [u,v]⊂ I ⊂W is called good if for every t ∈ [l0, l1], at least one of
the following holds:

St
J > t

1
2+2ε (26)

or for some choice of x∗ ∈ I and for every x ∈ J such that T t
α,ϕx ∈W, we have

|ϕ ′′N(x,t)(x̄)|< q3−η
n log9 qn and |ϕ ′N(x,t)(x̄)|>

1
2

q3/2+η
n +

1
2

q3−η
n

log6 qn
|x̄− x̄∗|. (27)

When we check (26) or (27) for a given t, we say that J is t-good.
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Proposition 4.4. In the decomposition I = J1t J2t Ibad of (B3), we have that J1 and J2 are good.

Proof of Proposition 4.4. Let t ∈ [l0, l1]. If rt
I < q3/2+η

n then (27) holds on J1 and J2 (with x∗= xbad)
due to Lemma 3.4, Proposition 4.2, part (B4.ii), and the fact that for x ∈ J1 ∪ J2 we have that
|x̄− x̄bad |> q−3/2+5η

n .
Now, if rt

I > q3/2+η
n , then we will actually establish that all of I is t-good (which in particular

implies the conclusion of Proposition 4.4 in this case):

Lemma 4.5. For any t ∈ [l0, l1], if rt
I > q3/2+η

n , then I is t-good.

Proof of Lemma 4.5. Case 1: uI > q3−η
n log9 qn.

In this case we do not use the assumption rt
I > q3/2+η

n . We use Lemma 3.4 and get for every
t ∈ [l0, l1] and every x ∈ I∩T−t

α,ϕ(W )

St
I = inf

x∈It

(
ϕ ′N(x,t)(x̄)

)2

|ϕ ′′N(x,t)(x̄)|
>

2−7

(xN(x,t)
min )1−η

> q2/3
n > t1/2+ε .

The last inequality holds because of t < qn+2 and the Diophantine assumptions on α . This shows
that I satisfies (26) and hence finishes the proof of Lemma 4.5 in this case.

Case 2: uI < q3−η
n log9 qn.

Notice first that if rt
I > q7/4+ η

2
n (see (23) for the definition of rt

I), then either x ∈ T−t
α,ϕ(W

c) or

St
I = inf

x∈It

(ϕ ′N(x,t)(x̄))
2

ϕ ′′N(x,t)(x̄)
>

q7/2+η
n

q3−η
n log9 qn

> q1/2+η
n > t1/2+ε ,

where the last inequality again holds because of t < qn+2 and assumptions on α . Therefore (26)
holds for I and the proof is finished in this case .

Let us consider only x ∈ I such that T t
α,ϕ(x) ∈W . If rt

I < q7/4+1/2η
n , let x0 ∈ I be such that

|ϕ ′N(x0,t)
(x̄0)| = rt

I . Let us assume WLOG that ϕ ′N(x0,t)
(x̄0) > 0. Then by Lemma 3.5, whenever

x̄ > x̄0 +
1

q3/2−2η
n

, we have

|ϕ ′N(x,t)(x̄)|>
q3−η

n

2log5 qn
|x̄− x̄0|>

2q3−η
n

log6 qn
|x̄− x̄0|. (28)

If x̄ < x̄0− 1
q3/2−2η

n
, then ϕ ′N(x,t)(x̄)< 0. Indeed, otherwise by Lemma 3.5 we have

0 6 ϕ
′
N(x,t)(x̄)< ϕ

′
N(x0,t)(x̄0)+

q3−η
n

2log5 qn
(x̄− x̄0)6 ϕ

′
N(x0,t)(x̄0)−qn,

which is a contradiction with the choice of x0. Therefore we have ϕ ′N(x,t)(x̄)< 0 and, by Lemma 3.5
and by the definition of x0, we derive

|ϕ ′N(x,t)(x̄)|>
q3−η

n

4log5 qn
|x̄− x̄0|>

2q3−η
n

log6 qn
|x̄− x̄0|. (29)
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Then by (28) and (29) and since rI > q3/2+η
n , we get that (27) is satisfied with x∗ := x0. This

finishes the proof in Case 2. and Lemma 4.5 is established.

The proof of Proposition 4.4 is hence finished.

4.1 Construction of the bad set Bl

Recall that the partition Ik is given by two towers i.e. disjoint sets of the form {B+ iα}qk
i=0 and

{C + iα}qk−1
i=0 where B,C are intervals around 0 of length ‖qk−1α‖,‖qkα‖ respectively. Denote

D1 = B+α,D2 =C+α (the shift comes from the fact that we want to stay away from the singu-
larity). The following construction works for D = D1,D2. We will present it for the tower above
D = D1, the other case being analogous. Consider a complete tower D of height Hk = qk−1 over
D. Notice that D ∩W is a union of horizontal intervals of length λ (D). Moreover there is a natural
order on horizontal intervals in D ∩W (coming from the order on D): each interval in D ∩W is
of the form D(h) for some 0 6 h 6 Hk (with D(0) = D).

Let 0 6 h1 6 Hk be the smallest real number such that D(h1) ⊂ D ∩W and rD(h1) 6 2q3/2+η
n .

Let t1 ∈ [l0, l1] and x1 := (θ1,s1) ∈ D(h1) be such that

T t1
α,ϕx1 ∈W and ϕ

′
N(θ1,t1)(θ1)6 2q3/2+η

n .

Let U1 be the complete tower of height q3/5
n over B1 :=

(
[− 1

q3/2−5η
n

+θ1,θ1 +
1

q3/2−5η
n

]×{s1}
)
∩D .

Let k2 be the largest number such that D(k2)⊂D ∩W .
Now inductively let Hk > hi > ki be the smallest real number such that D(hi) ⊂ D ∩W and

rD(hi) 6 2q3/2+η
n . Let ti ∈ [l0, l1] and xi := (θi,si) ∈ D(hi) be such that

T ti
α,ϕxi ∈W and ϕ

′
N(θi,ti)(θi)6 2q3/2+η

n . (30)

We define Ui to be the complete tower of height q3/5
n over Bi :=

(
[− 1

q3/2−5η
n

+θi,θi +
1

q3/2−5η
n

]×{si}
)
∩

D .

We continue this procedure until the last possible hm 6 Hk is defined.
Let us define

Bl :=
⋃

16i6m

Ui. (31)

Now, (B1) and (B3) follow by construction (notice that the top of Ui is below the base of Ui+1).
Moreover, by Lemma 3.1 we get that ϕqk−1(α)6 cqk+1, hence (B2) follows from

µ(Bl)6 ϕqk(α)λ (Bi)6
1

q1/2−6η
n

.

It remains to prove (B4) and (B5), which will be the subject of the next subsection.

4.2 Proving the properties of the bad set

In this section we give the proofs of (B4) and (B5) in Proposition 4.2
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Figure 6: The set Bl is a union of complete towers Ui.

Proof of (B4). Fix t ∈ [l0, l1]. By the construction of Bl , whenever for a partition interval
I ⊂W we have rt

I 6 q3/2+η
n , then

I∩Bl = Ibad ,

where Ibad is a level of some Ui. In fact, otherwise I ∩Bl = /0 and by construction rI > 2q3/2+η
n .

Therefore we need to show (B4.ii) for I ⊂W such that Ibad 6= /0 and rt
I < q3/2+η

n . Then, by defini-
tion, there exists xt

I ∈ I such that

T t
α,ϕ(x

t
I) ∈W ⊂V and ϕ

′
N(xt

I ,t)
(x̄t

I)6 q3/2+η
n . (32)

Notice that we have
uI < q3−η

n log9 qn. (33)

Indeed, if not, then by Lemma 3.4 we would get by (20) and (21) that ϕ ′N(xt
I ,t)

(x̄t
I) > q2−η

n , which
is a contradiction with (32).

Notice that by (32) and (33), the assumptions of Corollary 1 are satisfied with x0 = xt
I . There-

fore, for every x ∈ I such that T t
α,ϕ(x) ∈V and |x− xt

I|> 1
q3/2−3η

n
, we have

|ϕ ′N(x,t)(x̄)|>
q3−η

n

2log5 qn
|x̄− x̄t

I|. (34)

We claim that
|x̄t

I− x̄bad |6 q−3/2+4η
n . (35)

Now, (34), (33) and (35) will finish the proof of (B4.ii) since for x ∈ J1tJ2 = I \ Ibad , we have
that |x̄− x̄t

I|> |x̄− x̄bad |− |x̄t
I− x̄bad |> q−3/2+3η

n .
Thus it only remains to show our claim (35). By construction of the Ui’s, for some h > 0, we

can write
xbad = T h

α,ϕxi .

Moreover, since Ui is a complete tower of height q3/5
n and T h

α,ϕxi ∈Ui, we have that

h 6 ϕ
N(xi,q

3/5
n )

(x̄i)+ϕ(x̄i +N(xi,h)α).
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Since xi ∈W , we get by the definition of special flow

ϕ
N(xi,q

3/5
n )

(x̄i)6 2q3/5
n .

Moreover, since T h
α,ϕxi ∈W , we have

ϕ(x̄i +N(xi,h)α)6 2q3/5
n .

By putting together the above bounds, we get

h < 2q3/5+1/50
n . (36)

Let mi := max(ti, t). We will show that

a. T mi
α,ϕ(T h

α,ϕxi),T
mi

α,ϕ(xt
I) ∈V ;

b. |ϕ ′N(xt
I ,mi)

(x̄t
I)|6 2q3/2+η

n ;

c. |ϕ ′N(T h
α,ϕ xi,mi)

(T̄ h
α,ϕxi)|6 5q3/2+η

n .

The above properties will give (35) (and hence (B4.ii)), since if |T̄ h
α,ϕxi− x̄t

I| > q−3/2+4η
n then by

(33) and a., b., the assumptions of Corollary 1 are satisfied with x0 = xt
I , x = T h

α,ϕxi but then c. is
in contradiction with estimate (22) stated there. It remains then to show a., b.,c.

For a. we notice that by (30) and (32) we have T ti
α,ϕxi,T t

α,ϕxt
I ∈W . Moreover, by the immediate

bound |mi− t|6 l1− l0 < q1/10
n and by (36), we have the estimate

0 6 mi− t,mi− ti +h 6 2q3/5+1/50
n +q1/10

n 6 3q3/5+1/50
n , (37)

from which we derive that

{T mi
α,ϕ(T

h
α,ϕxi),T mi

α,ϕ(x
t
I)}= {T mi−ti+h

α,ϕ (T ti
α,ϕxi),T mi−t

α,ϕ (T t
α,ϕxt

I)} ⊂V.

This gives a.

For b. we first notice that since T t
α,ϕ(x

t
I) ∈W and |mi− t|6 l1− l0 < q1/10

n , by (16), we have

ϕ
′
N(xt

I ,mi−t)(T̄
t

α,ϕ(x
t
I))|6 q3/2+η

n

and by (32), |ϕ ′N(xt
I ,t)

(xt
I)|6 q3/2+η

n . By the cocycle identity, we then have

|ϕ ′N(xt
I ,mi)

(xt
I)|6 |ϕ ′N(xt

I ,t)
(x̄t

I)|+ |ϕ ′N(xt
I ,mi−t)(T̄

t
α,ϕ(x

t
I))|6 2q3/2+η

n .

This gives b.

For c., by cocycle identity, (30), (37) and (16) (for T ti
α,ϕ(xi) ∈W ), we get

|ϕ ′N(xi,mi+h)(x̄i)|6 |ϕ ′N(xi,ti)(x̄i)|+ |ϕ ′N(T ti
α,ϕ (xi),mi+h−ti)

(T̄ ti
α,ϕ(xi))|6 2q3/2+η

n . (38)
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Since xi ∈W , by (36) and (16), we have

|ϕ ′N(xi,h)(x̄i)|6 2q3/2+η
n . (39)

Finally from the cocycle identity, (38) and (39) we conclude that

|ϕ ′N(T h
α,ϕ xi,mi)

(T̄ h
α,ϕxi)|6 |ϕ ′N(xi,mi+h)(x̄i)|+ |ϕ ′N(xi,h)(x̄i)|6 5q3/2+η

n .

This finishes the proof of c. and hence also (B4.ii).

Proof of (B5).
Let si be such that xi ∈ D(hi) ⊂ T×{si} (D(hi) is the base of Ui). Let t∗ ∈ [t, t− 1] be such

that for zt,i = (θt,i,st,i) := T t∗
α,ϕxi we have

Bt,i := [θt,i−
1

q3/2−5η
n

,θt,i +
1

q3/2−5η
n

]×{st,i} ⊂M,

Let ht,i := ϕ
N(xi,q

3/5
n )

(xi)− si− (t∗− t) and let Tt,i be the complete tower of height ht,i over Bt,i.

Notice that si 6 q3/5(1−η)
n and ϕ

N(xi,q
3/5
n )

(xi)> q3/5
n log−10 qn (by (11)), hence ht,i > q3/5−1/50

n .
The difference between Ui∩Mζ and T t

α,ϕ(Tt,i)∩Mζ will come from the stretching of Birkhoff
sums of the top and at the base of Tt,i and from the difference |t∗− t| 6 1. The measure of the
symmetric difference between the two sets is twice the maximal stretching times the measure of
the base of Tt,i. First let us estimate the maximal stretch.

For any z ∈ Bt,i there exists ξi ∈ [z̄,θt,i] such that

|ϕN(θt,i,t)(z̄)−ϕN(θt,i,t)(θi,t)|6 |ϕ ′N(θt,i,t)(ξi)||z̄−θt,i| (40)

Since t < qn+1, it follows that for j = 0, . . . ,N(θt,i, t)−1, we have θt,i+ jα /∈ [− 1
qn log100 qn

, 1
qn log100 qn

]

and since |ξi−θt,i|< 1
q3/2−5η

n
, it follows that for j = 0, . . . ,N(θt,i, t)−1, we have

ξi + jα /∈
[
− 1

2qn log100 qn
,

1
2qn log100 qn

]
.

By the above condition and by (11), we derive from (40) the bound

|ϕN(θt,i,t)(z̄)−ϕN(θt,i,t)(θt,i)|6 q1/2+3η
n .

Therefore,

µ((T t
α,ϕ(Ui)4Tt,i)∩Mζ )6 λ (Bi)(4q1/2+3η

n + |t− t∗|)6 q−1+10η
n .

This finishes the proof of (B5) and hence also of Proposition 4.2.

5 From uniform stretching of Birkhoff sums to decay of correlations

5.1 Uniform stretching of Birkhoff sums and correlations

We will adopt below the following notation.
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For all f ∈F with transfer function φ and g ∈C1(M), let

N0( f ,g) := ‖φ‖0‖g‖0 and N1( f ,g) := (‖ f‖0 +‖φ‖0)‖g‖1 +(‖ f‖1 +‖φ‖1)‖g‖0 ,

where ‖ · ‖0 and ‖ · ‖1 respectively denote the C0 and the C1 norm. Moreover, we will denote by
the letter C a generic constant which depends only on on the rotation number α and on the ceiling
function ϕ .

In all what follows I denotes any interval of the partition of W defined in Section 4.
Our main result in this section is the following relation between uniform stretching of the

Birkhoff sums and decay of correlations.
Let us recall the following notation (see (23)). For any interval J ⊂ I denote

rt
J := inf

x∈Jt
|ϕ ′N(x,t)(x̄)|, (41)

where Jt := J∩T−t
α,ϕW (rt

J =+∞ if Jt = /0).

Proposition 5.1. For any interval J = [z,w]×{s} ⊂ I, we have the following estimate:∣∣∣∣∫J̄
f (T t

α,ϕ(θ ,s))g(θ ,s)dθ − p(z,w)
∣∣∣∣6C

{
N0( f ,g)

λ (J)
St

J
+N1( f ,g)

λ (J)
rt

J

}
,

where p(z,w) =
g(z,s)φ(T t

α,ϕ (z,s))
ϕ ′N(z,t)(z)

− g(w,s)φ(T t
α,ϕ (w,s)

ϕ ′N(w,t)(w)
.

To prove Proposition 5.1, we will need the following lemma that encloses the main estimate on
the correlation of coboundaries based on the stretching of the Birkhoff sums of the roof function.

Let J∗ := [u,v]×{s} ⊂ J be such that v−u 6 t−10.

Lemma 5.2. Let rt
u :=−ϕ ′N(u,t)(u). For all f ∈F and for all g ∈C1

0(M) and for all t > 0 we have∣∣∣∣∫J̄∗
f (T t

α,ϕ(θ ,s))g(θ ,s)dθ −∆(J∗, t)
∣∣∣∣6CN1( f ,g)

λ (J∗)
rt

I
, (42)

where N1( f ,g) = (‖ f‖0 +‖φ‖0)‖g‖1 +(‖ f‖1 +‖φ‖1)‖g‖0 and

∆(J∗, t) :=
1
rt

u

[
g(v,s)φ(T t

α,ϕ(v,s))−g(u,s)φ(T t
α,ϕ(u,s))

]
.

Proof. Let I ⊂W ∩ (T×{s}) be a horizontal interval as in Section 4. Let J∗ = [u,v]⊂ I such that
v0−u0 6 t−10. If T−t

α,ϕJ∗ ⊂W c then Lemma 5.2 holds trivially. We use the notation

T t
α,ϕ(u,s) = (ũ, s̃) = (u+N(u, t)α, t + s−ϕN(u,t)(u)) ,

where 0 6 s̃ 6 ϕ(u+N(u, t)α). We also denote ṽ = v+N(u, t)α .
In the remainder of this proof we will denote for simplicity the integer N(u, t) by N. We will

suppose that rt
u =−ϕ ′N(u)> rt

I > 0, the case where rt
I < 0 being similar. Let us also denote

Bt
I := sup

θ∈I
ϕ
′′
N(θ).

We will use the notation X = O(Y ) if there exists a constant C > 0 such that X 6CY .
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We have for θ ∈ [0,λ (J∗)] that T t
α,ϕ(u+θ ,s) = (ũ+θ , s̃+ϕN(u)−ϕN(u+θ)). By the inter-

mediate value theorem, since rt
I � λ (J∗)−1, we have∫

J̄∗
f (T t

α,ϕ(θ ,s))g(θ ,s)dθ =
∫

λ (J∗)

0
f (ũ+θ , s̃+ϕN(u)−ϕN(u+θ))g(u+θ ,s)dθ

=g(u,s)
∫

λ̄ (J∗)

0
f (ũ+θ , s̃+ϕN(u)−ϕN(u+θ))dθ +O(‖ f‖0‖g‖1

λ (J∗)
rt

I
).

Now, since ϕN(u)−ϕN(u+θ)� 1 we also have∫
λ (J∗)

0
f (ũ+θ , s̃+ϕN(u)−ϕN(u+θ))dθ

=
∫

λ (J∗)

0
f (ṽ, s̃+ϕN(u)−ϕN(u+θ))dθ +O(‖ f‖1

λ (J∗)
rt

I
),

and by the definition of Bt
I , we have |ϕN(u)−ϕN(u+θ)− rt

uθ |6 Bt
Iθ

2. Therefore,∫
J̄∗

f (T t
α,ϕ(θ ,s))g(θ ,s)dθ = g(u,s)

∫
λ (J∗)

0
f (ṽ, s̃+ rt

uθ)dθ

+O(‖ f‖0‖g‖1
λ (J∗)

rt
I

)+O(‖ f‖1‖g‖0
λ (J∗)

rt
I

).

For simplicity let us denote w( f ,g) := ‖ f‖0‖g‖1 +‖ f‖1‖g‖0. A change of variable then gives∫
J̄∗

f (T t
α,ϕ(θ ,s))g(θ ,s)dθ =

1
rt

u
g(u,s)

∫ rt
uλ (J∗)

0
f (ṽ, s̃+θ)dθ +O(w( f ,g)

λ (J∗)
rt

I
)

=
1
rt

u
g(u,s)

[
φ(ṽ, s̃+ rt

uλ (J∗))−φ(ṽ, s̃)
]
+O(w( f ,g)

λ (J∗)
rt

I
)

but T t
α,ϕ(v,s) = (ṽ, s̃+ϕN(u)−ϕN(v)) = (ṽ, s̃+ rt

uλ (J∗)+E ) with E 6 Bt
Iλ (J∗)

2, hence∫
J̄∗

f (T t
α,ϕ(θ ,s))g(θ ,s)dθ =

1
rt

u
g(u,s)

[
φ(T t

α,ϕ(v,s))−φ(ṽ, s̃)
]

+O(w( f ,g)
λ (J∗)

rt
I

+‖g‖0‖φ‖1
λ (J∗)

rt
I

)

=
1
rt

u

[
g(v,s)φ(T t

α,ϕ(v,s))−g(u,s)φ(T t
α,ϕ(u,s))

]
+O(N1( f ,g)

λ (J∗)
rt

I
) ,

which is precisely formula (42).

Proof of Proposition 5.1. Since the proof is symmetric for t > 0 and t < 0, from now on we will
assume that t > 0. If T t

α,ϕ(J)⊂W c, then Proposition 5.1 holds trivially. We assume for definiteness
that −ϕ ′N(u,t)(u) > rt

J on J. Let us decompose J into finitely many subintervals J =
⋃m

i=1 Ji such
that Ji = [ui,ui+1)×{s} with |ui+1−ui|6 t−10, and so that N(·, t) is constant on each Ji.

Then ∫
J̄

f (T t
α,ϕ(θ ,s))g(θ ,s)dθ =

m

∑
i=1

∫
Ji

f (T t
α,ϕ(θ ,s))g(θ ,s)dθ =

m

∑
i=1

∆(Ji, t)+E , (43)
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where, by (42)

E 6 N1( f ,g)
λ (J)

rt
J

.

Notice that if T t
α,ϕ(Ji)⊂W c then the corresponding integral in (43) is 0. Therefore we only have

to consider those Ji for which T−t
α,ϕ(Ji) * W c. By enumeration let us assume that this is the case

for all Ji.
Let us denote rt

i :=−ϕ ′N(ui,t)
(ui) and Θi := g(ui,s)φ(T t

α,ϕ(ui,s)). We then have

|
m

∑
i=1

∆(Ji, t)− p(z,w)|= |
m

∑
i=1

1
rt

i
(Θi+1−Θi)− p(z,w)|

= | 1
rt

m
Θm+1−

1
rt

1
Θ1 +

m−1

∑
i=1

(
1
rt

i
− 1

rt
i+1

)
Θi+1− p(z,w)|

= |
m−1

∑
i=1

(
1
rt

i
− 1

rt
i+1

)
Θi+1|6 ‖φ‖0‖g‖0

(
1
rt

J
+

m−1

∑
i=1

∣∣rt
i+1− rt

i

∣∣
rt

i+1rt
i

)
.

To estimate the quantity ∑
m−1
i=1
|rt

i+1−rt
i |

rt
i+1rt

i
, by the choice of (ui)

m
i=1 (since N(·, t) is constant on Ji)

and ui+1−ui 6 t−10, we get
|rt

i+1− rt
i |6 2Bt

iλ (Ji)

where Bt
i := ϕ ′′N(ui,t)

(ui). To conclude the argument, we notice that (since ui+1 ∼ ui)

m−1

∑
i=1

Bt
iλ (Ji)

rt
i+1rt

i
6

λ (J)
St

J
. (44)

This, by (43), finishes the proof of Proposition 5.1

Proposition 5.1 has the following corollaries that allow us to deal with the decay of correlations
on good intervals. In the corollaries below C again denotes a global positive constant which
depends only on the rotation number α and on the ceiling function ϕ . It may be different in each
corollary.

Corollary 2. For every good interval J, we have∣∣∣∣∫J̄
f (T t

α,ϕ(θ ,s))g(θ ,s)dθ

∣∣∣∣6C(N0( f ,g)q−1
n +N1( f ,g)q−2

n ) t−1/2− η

4 . (45)

Proof. Assume J∩T−t
α,ϕW 6= /0 (otherwise the LHS is 0) and let first (26) hold in the definition 4.3

of a good interval. Notice that for x ∈ T−t
α,ϕ(W ), ϕ ′′N(x,t)(x̄)> q3−10η

n (see (17)) and hence by (26),

1/rt
J 6 q−3/2−4ε

n 6 t−1/2−2ελ (J). Moreover, p(z,w) 6 CN0( f ,g)/rt
J 6 CN0( f ,g)t−1/2−ελ (J).

An application of Proposition 5.1 for J finishes the proof in this case. If (27) holds, define Jweak :=
[x∗− 1

q3/2−2η
n

,x∗+ 1
q3/2−2η

n
]∩ J. Notice that by (27),

rt
Jweak

> q3/2+η
n and St

Jweak
> q

5η

2
n .
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So by Proposition 5.1 for Jweak, we have∣∣∣∣∫J̄weak

f (T t
α,ϕ(θ ,s))g(θ ,s)dθ

∣∣∣∣6C(N0( f ,g)q−1
n +N1( f ,g)q−2

n ) t−1/2− η

4 . (46)

Therefore it remains to show (45) with J \ Jweak. Let J = [z,w]×{s} and let J \ Jweak = J′ ∪ J′′,
so that z ∈ J′ (unless J′ = /0) and w ∈ J′′ (unless J′′ = /0). We will show (45) for J′ and J′′. We
will apply the same procedure to both J′ and J′′, therefore we will explain the argument only
in the case of J′′. Let m ∈ N be the unique positive integer s.t. 2m 6 q3/2−2η

n (w− x∗) 6 2m+1.
Let us consider the intervals J′′i := [wi,wi+1]× {s} = [x∗ + w−x∗

2i+1 ,x∗ + w−x∗
2i ]× {s} ∩ J′′, where

i = 0, . . . ,m. Then J′′ =
⋃m

i=0 J′′i (notice that Jm may be degenerated). Consider only those J′′i for
which T−t

α,ϕ(J
′′
i ) * W c. By enumeration assume this is the case for all i = 0, . . . ,m. By (27) we

have
rt

J′′ > q3/2+ η

2
n . (47)

Moreover by (27), for every J′′i , we have

sup
x∈J′′i

|ϕ ′′N(x)(x̄)|6 q3−η
n log9 qn and inf

x∈J′′i
ϕ
′
N(x)(x̄)>

q3−η
n (w− x∗)
2i+2 log5 qn

.

Therefore, we have the following estimate:

m

∑
i=0

λ (J′′i )
St

J′′i

6
log20 qn

q3−η
n

m

∑
i=0

22i+4

(w− x∗)2 λ (J′′i )6
8log20 qn

(w− x∗)q3−η
n

2m+1 6
1

q3/2+ η

2
n

6 t−1/2− η

3 λ (J). (48)

Notice that by the definition of the function p(z,w) (see Proposition 5.1), we have p(w0,wm+1) =

∑
m
i=0 p(wi,wi+1). By Proposition 5.1 for J′′i , i = 0, . . . ,m and by (47), (48), we derive∣∣∣∣∫J̄′′

f (T t
α,ϕ(θ ,s))g(θ ,s)dθ

∣∣∣∣6 |p(w0,wm+1)|+
∣∣∣∣∫⋃J′′i

f (T t
α,ϕ(θ ,s))g(θ ,s)dθ − p(w0,wm+1)

∣∣∣∣
6C{N0( f ,g)λ (J)+N1( f ,g)λ (J)2} t−1/2− η

4 .

The same estimate is true for J′. This completes the proof of Corollary 2.

Moreover, we also have the following crucial corollary for the bootstrap argument in Subsec-
tion 5.3. Recall that l, l0, l1,n and W are chosen as in Section 4.

Corollary 3. For every interval Ī ∈ Ik and for all s ∈ R+ such that I := Ī×{s} ⊂ M, for all
t ∈ [l0, l1], we have∣∣∣∣∫Ī

f (T t
α,ϕ(θ ,s))g(θ ,s)dθ

∣∣∣∣6C{N0( f ,g)λ (I)+N1( f ,g)λ (I)2}t−1/2+6η . (49)

Proof. If I ∩W c 6= /0, then I ⊂ Mc
ζ

hence (LHS) is 0. If I ⊂W then let I = J1 t J2 t Ibad as in
Proposition 4.4. We apply Corollary 2 to J1 and J2 together with the estimates

λ (I)> qn log−20 qn and λ (Ibad)<
1

q3/2−2η
n

.

For the interval Ibad we estimate the integral by the uniform norm of the integrand times the
measure λ (Ibad) of the domain of integration.
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5.2 Summable decay on good intervals. Proof of Proposition 2.1

We now explain how the results of Section 5.1 imply Proposition 2.1.
In fact, we prove a more general statement that will be relevant in Subsection 6.3, to complete

the proof that the spectrum is Lebesgue with countable multiplicity.

Proposition 5.3. For every set E, measurable with respect to the partition W (see (8) for its
definition), we have∣∣∣∣∫E\Bl

f (T t
α,ϕ(x))g(x)dµ

∣∣∣∣<C{N0( f ,g)µ(E)+N1( f ,g)µ(E)2} t−1/2− η

5 .

Proof. Since g = 0 on Mc
ζ
⊃W c, we have∣∣∣∣∫E\Bl

f (T t
α,ϕ(x))g(x)dµ

∣∣∣∣= ∣∣∣∣∫
(E∩W )\Bl

f (T t
α,ϕ(x))g(x)dµ

∣∣∣∣ .
By Fubini, it is enough to show that, for every interval I ⊂W , we have∣∣∣∣∫Ī\Ībad

f (T t
α,ϕ(θ ,s))g(θ ,s)dθ

∣∣∣∣6C{N0( f ,g)λ (I)+N1( f ,g)λ (I)2} t−1/2−ε ,

where the subinterval Ibad is as in Proposition 4.4. It is then enough to apply Corollary 2 (to the
subintervals J1 and J2) together with the lower bound λ (I)> qn log−20 qn.

Proposition 5.3 is thus proved, and Proposition 2.1 immediately follows, as among the prop-
erties of the bad set (see Proposition 4.2) we have the bound µ(Bl)6 q−1/2+6η

n .

5.3 Averaged decay on the bad set. Proof of Proposition 2.2

Notice that as the bad set Bl decomposes by (31) as the union of the towers U1, ..., Um, Proposition
2.2 follows by the proposition below.

Let C f ,g denote a positive constant which depends on the functions f ∈F and g∈C1
0(M) only

through the quantities N0( f ,g) and N1( f ,g).

Proposition 5.4. For every i ∈ {1, . . . ,m}, we have∫ l1

l0

∣∣∣∣∫Ui

f (T t
α,ϕ(x))g(x)dµ

∣∣∣∣dt <C f ,g
(l1− l0)µ(Ui)

q20η
n

.

Proof. Fix i ∈ {1, . . . ,m}. Let A := {t ∈ [l0, l1] :
∫

Ui
f (T t

α,ϕ(x,s))g(x,s)dx > 0}. Let ρ(t) = 1 if
t ∈ A and ρ(t) =−1 if t ∈ [l0, l1]\A. Then, by Cauchy-Schwarz (Hölder) inequality, we have

∫ l1

l0

∣∣∣∣∫Ui

f (T t
α,ϕ(x))g(x)dµ

∣∣∣∣dt =
∫

Ui

(∫ l1

l0
ρ(t) f (T t

α,ϕ(x))dt
)

g(x)dµ

6

(∫
Ui

(∫ l1

l0
ρ(t) f (T t

α,ϕ(x))dt
)2

dµ

)1/2(∫
Ui

g(x)2dµ

)1/2

6 ‖g‖0µ(Ui)
1/2

(∫
Ui

(∫ l1

l0
ρ(t) f (T t

α,ϕ(x))dt
)2

dµ

)1/2

.
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Moreover we have(∫
Ui

(∫ l1

l0
ρ(t) f (T t

α,ϕ(x))dt
)2

dµ

)
6 ‖ f‖2

0 (l1− l0)3/2
µ(Ui)

+

(∫
Ui

(∫ l1

l0

(∫
r∈[l0,l1] : |r−t|>(l1−l0)1/2

ρ(r)ρ(t) f (T t
α,ϕ(x)) f (T r

α,ϕ(x))dr
)

dt
)

dµ

)
.

Therefore, to finish the proof of Proposition 5.4 it is enough to show that there exists a constant
C > 0 such that, for every t 6 r with t,r ∈ [l0, l1] s.t. |t− r|> (l1− l0)1/2, we have∣∣∣∣∫T t

α,ϕ (Ui)
f (x) f (T r−t

α,ϕ (x))dµ

∣∣∣∣6CN1( f , f )
µ(Ui)

q40η
n

. (50)

Note that t∗ := r− t ∈ [q
1

41
n ,q

1
19
n ]. Let us then fix such a t∗ ∈ [q

1
41
n ,q

1
19
n ]. Following the notation

of Section 4 we then let l∗ = [t∗] and n∗ be the unique integer such that qn∗ 6 l∗ < qn∗+1.
Let k∗ be any integer such that qk∗ ∈ [qn∗ log15 qn∗ ,qn∗ log20 qn∗ ]. It follows by construction that

we have qk∗ ∈ [q
1
41
n ,q

1
19
n log20 qn]

Observe now that by Corollary 3 there exists a constant C > 0 such that, for any interval Ī ∈Ik∗

and for all s ∈ R+ such that I := Ī×{s} ⊂M, we have∣∣∣∣∫Ī
f (T t∗

α,ϕ(θ ,s)) f (θ ,s)dθ

∣∣∣∣6C{N0( f , f )+N1( f , f )λ (I)}λ (I)

q
1

100
n

. (51)

Thus, it only remains to be seen that the integral in (50) decomposes into integrals over the sets
of the form T t

α,ϕ(Ui)∩ I, Ī ∈ Ik∗ , and that each is roughly equal to the product of λ (Ui∩I)
λ (I) times

the integral in (51). This is what we will now derive from Proposition 4.2, namely from the
property that T t

α,ϕ(Ui) is almost equal to the tower Tt,i of (B5). In fact, by properties (B1), (B2) in

Proposition 4.2, we have the bound m 6 q2/5+η
n , hence by property (B5) we conclude that

m

∑
i=1

µ(Tt,i4T t
α,ϕ(Ui))6 q−3/5+15η

n . (52)

The intersection of each tower Tt,i with I is a regular union of equally separated small intervals
(see Figure 7). In this situation the interpolation between the integrals is possible. To carry it out,
we introduce the following

Definition 5.5. Let ν ,γ ∈ (0,1). We will say that a collection S := K1 t . . .tKH ⊂ T×{s}
of pairwise disjoint horizontal intervals of equal lengths is (ν ,γ)-uniformly distributed in the
interval I if there exists a decomposition of I into a disjoint union of L 6 γH intervals I1, . . . , IL of
equal length ` ∈ [ν ,2ν ] such that, for all j ∈ [1,L], we have

#{i ∈ [1,H] : Ki ⊂ I j} ∈ [(1− γ)
H
L
,(1+ γ)

H
L
] .

This definition is useful in the following straightforward lemma.

Lemma 5.6. If S and I are as in Definition 5.5, then for any C1 real function G defined over the
interval I := Ī×{s}, we have∣∣∣∣∫

S̄∩Ī
G(θ ,s)dθ − λ (S ∩ I)

λ (I)

∫
Ī
G(θ ,s)dθ

∣∣∣∣6C (ν‖G‖1 + γ‖G‖0)λ (S ∩ I) .
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Lemma 5.7. For any complete tower T of height h > q3/5−1/50
n above any horizontal interval of

the the form BT = [− 1
q3/2−5η

n
+θT ,θT + 1

q3/2−5η
n

]×{sT }, we have the following:

(I1) if N(θT ,h)6 q1/3
n , then µ(T ∩Mζ )6 q1/2−3/5

n µ(T ) ;

(I2) if N(θT ,h) > q1/3
n , then for any Ī ∈Ik∗ such that I := Ī×{s} ⊂Mζ , the set T ∩ I is con-

tained in a collection of disjoint intervals of equal size (q−1/4
n ,q−1/100

n )-uniformly distributed
in the interval I.

Figure 7: The image of the set Ui under the flow. The intersection with any horizontal interval is a union
of equispaced intervals.

Before proving Lemma 5.7, we show how it implies (50). By (52), it suffices to show that
there exists a constant C > 0 such that∣∣∣∣∫

Tt,i

f (x) f (T t∗
α,ϕ(x)dµ

∣∣∣∣6CN1( f , f )
µ(Tt,i)

q50η
n

. (53)

If (I1) holds, then since f is supported on Mζ we have∣∣∣∣∫
Tt,i

f (x) f (T t∗
α,ϕ(x))dµ

∣∣∣∣6 ‖ f‖2
0 µ(Tt,i∩Mζ )6 ‖ f‖2

0
µ(Tt,i)

q
1

10
n

, (54)

hence the proof is finished in this case. Notice that by Fubini’s theorem (53) follows from the
following claim: there exists a constant C > 0 such that, for any I := Ī×{s} with Ī ∈Ik∗ , we have∣∣∣∣∫

Tt,i∩I
f (θ ,s) f (T t∗

α,ϕ(θ ,s))dθ

∣∣∣∣6C{N0( f , f )+N1( f , f )λ (I)}λ (Tt,i∩ I)

q50η
n

. (55)

In fact, the above bound is stronger than what we need to prove the absolute continuity of the
spectrum. The precise dependence of the constant on the function f and on the interval I ∈Ik∗ will
be crucial in the proof, in Subsection 6.3, that the spectrum is Lebesgue with countable multiplicity
.
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Now, if I ⊂Mc
ζ

then the integral in (55) is zero. Notice that, since t∗ 6 q1/19
n , by Lemma 3.2

the function G : I→ R defined as G(·) = f (·) f (T t∗
α,ϕ(·)) satisfies ‖G‖1 6 q1/8

n ‖ f‖0‖ f‖1, thus (I2)

and Lemma 5.7 imply that∣∣∣∣∫
Tt,i∩I

G(θ ,s)dθ − λ (Tt,i∩ I)
λ (I)

∫
Ī
G(θ ,s))dθ

∣∣∣∣6C‖ f‖0{‖ f‖0 +‖ f‖1λ (I)}λ (Tt,i∩ I)

q
1

200
n

,

and therefore (55) follows from (51). The proof of the derivation of the bound in (50) from
Lemma 5.7 is complete.

It only remains to give the

Proof of Lemma 5.7. Let us first consider the case N := N(θT ,h)> q1/3
n . Let {K1, . . . ,KH} be the

smallest collection of disjoint intervals of equal length such that

I∩T ⊂ K1tK2t·· ·tKH .

Notice that for every i ∈ {1, . . . ,H}, the interval K̄i is centered at the point θT + kiα , for some
ki ∈ [0,N]. In fact, there is an injective map from the set of k ∈ [0,N] such that θT + kα ∈ Ī to
the collection of intervals {K1, . . . ,KH} which misses at most 2 intervals. By Lemma 3.3 for J̄ = Ī
and θ = θT , we have

|H−Nλ (I)|6 2+2C−1 logN2+ξ . (56)

Let us then divide I into equal intervals I1, . . . , IL of equal length ` ∈ [q−1/4
n ,2q−1/4

n ] and let us
consider I j ⊂ I. The map from the set {i ∈ [1,H] : Ki ⊂ I j} to the set of k ∈ [0,N] such that
θT +kα ∈ Ī j, which sends every interval K̄i to its center, is injective and misses at most 2 elements.
From Lemma 3.3 for J̄ = Ī j and θ = θT , it follows that

|#{i ∈ [1,H] : Ki ⊂ I j}−Nλ (I j)|6 2+2C−1 logN2+ξ . (57)

Notice that since I ∈Ik by the bound (56), it follows that H > q1/3−1/20
n and by construction we

have L 6 q1/4−1/40
n , hence in particular H/L > q1/12−1/40

n . We then derive the estimate

|Nλ (I j)−
H
L
|= |Nλ (I)

L
− H

L
|6 2+C−1 logN2+ξ

L
6 q−1/10

n
H
L
,

which in turn by the bound (57) implies that

#{i ∈ [1,H] : Ki ⊂ I j} ∈
[
(1−q−1/100

n )
H
L
,(1+q−1/100

n )
H
L

]
.

This shows that the collection S = K1 t ·· · tKH is (q−1/4
n ,q−1/100

n )-uniformly distributed in I.
The proof of Lemma 5.7 is finished in case (I2).

Assume now that N(θT ,h) 6 q1/3
n . Notice that, since the height of the complete tower T is

h > q3/5−1/10
n , we have

ϕN(θT ,h)+1(θT )> q3/5−1/50
n .

But then

µ(T ∩Mζ )6 q1/3
n ζ

−1
λ (BT )6 q1/2−3/5

n q3/5−1/50
n λ (BT )6 q1/2−3/5

n µ(T ).

This finishes the proof of Lemma 5.7.
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6 Countable Lebesgue Spectrum

In this section we prove a general criterion for establishing the countable Lebesgue spectral prop-
erty for smooth flows with square-integrable correlations of smooth coboundaries. From our cri-
terion we derive that our Kochergin flows have countable Lebesgue spectrum, thereby completing
the proof of our main result, Theorem 2 (the precise formulation of Theorem 1). We also derive
that time-changes of horocycle flows have countable Lebesgue spectrum, thereby completing the
proof of the Katok-Thouvenot conjecture (see [29], Conjecture 6.8). In fact, it was proved in [17]
that smooth time changes of the horocycle flow have Lebesgue maximal spectral type, but the
multiplicity question was left open.

The section will be divided in three parts. In the first Subsection 6.1, we give in Theorem 5
an abstract Criterion for Infinite Lebesgue Spectrum (CILS), that guarantees infinite Lebesgue
multiplicity for a strongly continuous group of unitary operators on a Hilbert space having an
absolutely continuous spectral type.

To guarantee that the multiplicity of the Lebesgue component in the spectrum is at least n+1,
for some n > 0, the criterion requires, for any given positive measure and bounded subset C of
the real line, the construction of n+1- functions such that the (n+1)× (n+1) matrix of Fourier
transforms of their square-integrable mutual correlations has maximal rank equal to n+ 1 on C.
The latter would indeed contradict that all the (equivalence classes of the) spectral measures in the
decreasing spectral decomposition be zero on C starting from the n+1st measure.

An equivalent way of presenting the hypotheses of the CILS, is to require the existence, for
any n > 0, of n+ 1 functions, such that each function is almost orthogonal to the cyclic space of
any other one, and such that the spectral measures of the functions can be chosen to be not too
small on any fixed bounded measurable set of R.

In Subsection 6.2, we state in Theorem 6 a criterion that guarantees infinite Lebesgue mul-
tiplicity for a flow, based on the control of the decay of correlations for functions supported on
tall flow-boxes with an arbitrarily thin base. When mixing between such functions is effectively
obtained at times that compares to the height of the flow-boxes, it is then possible to construct the
functions as in the CILS and conclude infinite Lebesgue multiplicity. Indeed, we show in the same
subsection how the hypotheses of Theorem 6 immediately imply the hypotheses of the abstract
criterion in Theorem 5.

In Subsection 6.3, elaborating on the mixing estimates of Sections 4 and 5, we show that
Kochergin flows (with a sufficiently degenerate singularity) typically satisfy the hypotheses of our
criterion, thus completing the proof of Theorem 2 (hence of Theorem 1), our main result.

We also explain how to derive from [17] that smooth time changes of horocycle flows satisfy
the hypothesis of Theorem 6, our criterion for infinite Lebesgue multiplicity for flows. Since
by the results of [17] the maximal spectral type is Lebesgue, we conclude that the smooth time
changes of horocycle flows also have a Lebesgue spectrum with infinite multiplicity.

6.1 The Criterion for Infinite Lebesgue Spectrum (CILS)

Our criterion for countable Lebesgue spectrum of smooth flows is based on the following abstract
criterion for strongly continuous one-parameter unitary groups on Hilbert spaces.

Let F : L2(R,dt)→ L2(R,dτ) denote the Fourier transform, given by the formula

F ( f )(τ) =
∫
R

f (t)e−2πıtτdt , for all f ∈ L2(R,dt) .
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Theorem 5. Let {φR} be a strongly continuous one-parameter unitary group on a Hilbert space
H with absolutely continuous spectrum. For a fixed n ∈ N, let us assume that for every compact
set C ⊂ R \{0} of positive Lebesgue measure there exists εn,C > 0 such that the following holds.
For every ε ∈ (0,εn,C) there exist vectors f1, . . . , fn+1 ∈ H such that

‖〈φt( fi), f j〉‖L2(R,dt) 6 δi j + ε , for all i, j ∈ 1, . . . ,n+1;

‖
n+1

∏
i=1

F (〈φt( fi), fi〉)‖
L

2
n+1 (C)

> (n+1)!(1+ ε)n
ε .

Then the spectral type of {φR} is Lebesgue with multiplicity at least n+1.

The proof of the theorem is based on the following lemma.

Lemma 6.1. Let H be a Hilbert space and let H(n) :=⊕n
k=1Hk ⊂H denote an orthogonal, invari-

ant decomposition into cyclic subspaces of a strongly continuous one-parameter unitary group
{φR} with absolutely continuous spectrum. Let f1, . . . , fn+1 ∈H(n) be vectors such that the correl-
ations functions 〈φt( fi), f j〉 ∈ L2(R,dt). Let F : L2(R)→ L2(R) denote the the Fourier transform.
We have

det(F 〈φt( fi), f j〉) = 0 almost everywhere.

Proof. Let us begin to illustrate the argument in the case n = 1. Then we can assume (up to a
unitary equivalence) that there is a function m ∈ L1(R,dτ) such that f1, f2 ∈ L2(R,mdτ). We
therefore assume f1 = f1(τ), and f2 = f2(τ) ∈ L2(R,mdτ). The flow acts on L2(R,mdτ) by
multiplication by e2πıτt . So we have

F (〈φt( fi), fi〉) = m| fi|2 , for i = 1,2 ,

F (〈φt( f1), f2〉) = m f1 f̄2 .

We have the identity between functions in L1(R):

F (〈φt( f1), f1〉)F (〈φt( f2), f2〉) = m2| f1|2| f2|2 = (m f1 f̄2)(m f2 f̄1)

= F (〈φt( f1), f2〉)F (〈φt( f2), f1〉) .

In the general case, let fik denote the projection of the vector fi on the cyclic space Hk, for all
i ∈ {1, . . . ,n+1} and k ∈ {1, . . . ,n}. Since the cyclic spaces are invariant and orthogonal, for all
i, j ∈ {1, . . . ,n+1} we have

〈φt( fi), f j〉=
n

∑
k=1
〈φt( fik), f jk〉 .

Since the spaces Hk are cyclic and the group has absolutely continuous spectrum, there exist
functions m1, . . . ,mk ∈ L1(R,dτ) and, for each k ∈ {1, . . . ,n} and all i ∈ {1, . . . ,n+1}, there exist
functions uik ∈ L2(R,mkdτ) such that for all i, j ∈ {1, . . . ,n+1} we have

F 〈φt( fi), f j〉=
n

∑
k=1

uikū jkmk .

By the above formula, every column of the (n+ 1)× (n+ 1) matrix (F 〈φt( fi), f j〉(τ)) can be
written as the sum of n vectors as follows. For each j ∈ {1, . . . ,n+1}, we have F 〈φt( f1), f j〉(τ)

. . .
F 〈φt( fn+1), f j〉(τ)

=
n

∑
k=1

mk(τ)

 u1k(τ)ū jk(τ)
. . .

u(n+1)k(τ)ū jk(τ)

=
n

∑
k=1

mk(τ)ū jk(τ)

 u1k(τ)
. . .

u(n+1)k(τ)

 .
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Since the matrix (F 〈φt( fi), f j〉(τ)) is (n+1)×(n+1), its determinant is a sum of determinants of
matrices containing at least two columns proportional to the same vector (u1k(τ), . . . ,u(n+1)k(τ)).
This proves that the determinant vanishes almost everywhere. The argument is complete.

Proof of Theorem 5. Let ⊕n∈NHn denote an orthogonal, invariant decomposition into cyclic sub-
spaces such that, for all n ∈ N, we have Hn ≈ L2(R,µn) with

µ1 := m1(τ)dτ � µ2 := m2(τ)dτ � ··· � µn := mn(τ)dτ � . . .

Let { fi} be a sequence of vectors in H and, for each i, j∈N, let fi j denote the orthogonal projection
onto H j. Since the spaces Hk are φR-invariant and mutually orthogonal, we have, for all i, j ∈ N,

〈φt( fi), f j〉= ∑
k∈N
〈φt( fik), f jk〉 ,

hence after taking the Fourier transform

F (〈φt( fi), f j〉) = ∑
k∈N

F (〈φt( fik), f jk〉) .

Let us assume by contradiction that the spectrum is Lebesgue with multiplicity at most n. Then
there exists a compact set C ⊂ R\{0} of positive Lebesgue measure such that

mn+1(τ) = mn+2(τ) = · · ·= 0 , for all τ ∈C .

Let f1, . . . , fn+1 ∈H be vectors given by the assumptions of the theorem Let f̄1, . . . , f̄n+1 ∈H(n) :=
H1⊕ ·· · ⊕Hn denote, respectively, the orthogonal projections of vectors f1, . . . , fn+1 ∈ H onto
the subspace H(n). Since for each k ∈ N the subspace Hk is cyclic, the Fourier transform of the
correlation 〈φt( fik), fik〉 is absolutely continuous (as a density) with respect to the measure µk on
R. Hence we derive, for all i, j ∈ {1, . . . ,n+1} the identity

F (〈φt( fi), f j〉)(τ) = F (〈φt( f̄i), f̄ j〉)(τ) , for almost all τ ∈C .

It follows that, by Lemma 6.1, for all i, j ∈ {1, . . . ,n+1}, we have that

det(F (〈φt( fi), f j〉)(τ) = det(F (〈φ̄t( fi), f̄ j〉)(τ) = 0 , for almost all τ ∈C . (58)

By Hölder inequality, for any p > 1 the product of n+ 1 functions in Lp(R) belongs to L
p

n+1 (R)
and we have

‖
n+1

∏
i=1

gi‖L
p

n+1 (R)
6

n+1

∏
i=1
‖gi‖Lp(R) . (59)

Since the determinant of a (n+1)× (n+1) matrix is a polynomial of degree n+1 in the entries
of the matrix, the determinant of the matrix (F 〈φt( fi), f j〉) belongs to L

2
n+1 (R).

By the assumptions on the vectors f1, . . . , fn+1 we have

‖F 〈φt( fi), f j〉‖L2(C,dτ) 6 ‖F 〈φt( fi), f j〉‖L2(R,dτ) = ‖〈φt( fi), f j〉‖L2(R,dt) 6 δi j + ε ,

hence, by formula (58), by the expansion of the determinant, and by the estimate in formula (59),

‖
n+1

∏
i=1

F (〈φt( fi), fi〉)‖
L

2
n+1 (C)

= ‖detF (〈φt( fi), f j〉)−
n+1

∏
i=1

F (〈φt( fi), fi〉)‖
L

2
n+1 (C)

6 (n+1)!(1+ ε)n
ε .

(60)
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However, by assumption we also have

‖
n+1

∏
i=1

F (〈φt( fi), fi〉)‖
L

2
n+1 (C)

> (n+1)!(1+ ε)n
ε ,

a contradiction with the upper bound in formula (60). The argument is thus complete.

We give now a version of the CILS that is well adapted to derive countable Lebesgue spectrum
from mixing estimates for Kochergin flows and horocycle flows (that is, from Theorem 6 below).

Corollary 4. Let us assume that for every n ∈ N, for any even functions ω1, . . . ,ωn+1 ∈ S (R)
(the Schwartz space), and for any any ε > 0, there exists vectors f1, . . . , fn+1 ∈H such that, for all
i, j ∈ {1, . . . ,n+1}, we have

‖〈φt( fi), f j〉−
d2

dt2 ωi ∗ωi(t)δi j‖L2(R) 6 ε .

Then the spectral type of the strongly continuous one-parameter unitary group φR is Lebesgue
with countable multiplicity.

Proof. Let C be a given compact subset of R\{0} of positive Lebesgue measure. By the Lebesgue
density theorem, it is not restrictive to assume that there exists an interval [a,b] with 0 < a < b
such that Leb(C∩ [a,b]) > (b− a)/2. The case when C∩R+ = /0 is similar. Let χC : R→ [0,1]
denote any smooth odd function with compact support in [−2b,−a/2]∪ [a/2,2b] such that χ2

C ≡ 1
on [−b,−a]∪ [a,b]. For all i ∈ {1, . . . ,n+1} let ωi be the function determined by the identity

F (ωi)(τ) =
1
τ

χC(τ)

‖χ2
C‖

1/2
L2(R)

, for all i ∈ {1, . . . ,n+1} .

The functions ωi are all even, and we can take f1, . . . , fn+1 as in the statement of the corollary. We
then verify that the hypotheses of Theorem 5 hold. In fact, we have

‖F (〈φt( fi), f j〉)−F (
d2

dt2 ωi ∗ωi)δi j‖L2(R)

= ‖F (〈φt( fi), f j〉)−
χ2

C

‖χ2
C‖L2(R)

δi j‖L2(R) 6 ε ,

hence in particular

‖F (〈φt( fi), f j〉)‖L2(R) 6 δi j + ε , for all i, j ∈ {1, . . . ,n+1} .

By the construction and by the Hölder inequality bound of formula (59) we have

‖
n+1

∏
i=1

F (〈φt( fi), fi〉)−

(
χ2

C

‖χ2
C‖L2(R)

)n+1

‖
L

2
n+1 (R)

6 2n(1+ ε)n−1
ε ,

hence by convexity we derive that

‖
n+1

∏
i=1

F (〈φt( fi), fi〉)‖
2

n+1

L
2

n+1 (C)
> ‖

(
χ2

C

‖χ2
C‖L2(R)

)n+1

‖
2

n+1

L
2

n+1 (C)
− [2n(1+ ε)n−1

ε]
2

n+1

>

(
‖χ2

C‖L2(C)

‖χ2
C‖L2(R)

)2

− [2n(1+ ε)n−1
ε]

2
n+1 .
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From the above estimate we conclude that

‖
n+1

∏
i=1

F (〈φt( fi), fi〉)‖
L

2
n+1 (C)

> (n+1)!(1+ ε)n
ε ,

for all ε > 0 such that(
‖χ2

C‖L2(C)

‖χ2
C‖L2(R)

)2

> [2n(1+ ε)n−1
ε]

2
n+1 +(n+1)!(1+ ε)n

ε .

By Theorem 5 it follows that the strongly continuous one-parameter unitary group {φR} has Le-
besgue spectrum with multiplicity at least n. Since n ∈ N is arbitrary, it has Lebesgue spectrum
with countable multiplicity.

6.2 Decay of correlations and infinite Lebesgue multiplicity.

As explained in the introduction of this section, we now give a criterion based on decay of cor-
relations that allows to construct the functions that as required in the CILS to guarantee infinite
Lebesgue multiplicity. The idea is to guarantee mixing between functions supported on tall flow-
boxes with thin base J after a time that is comparable to the height of the flow-boxes. Indeed by
fixing such a flow-box with base J ⊂ M and height TJ > 0, we can choose functions supported
on this flow-box in an arbitrary way so as to guarantee the satisfaction of the CILS conditions up
to some finite time comparable to TJ . After time TJ it is the effective mixing between functions
supported on such flow-boxes that insures the complete satisfaction of the CILS conditions.

One additional technical point is that our mixing estimates only hold for coboundaries, hence
we have to define corresponding classes of functions supported on tall and thin flow-boxes. For
Kochergin flows, one extra technical difficulty is that mixing is effectively controlled only away
from the singularity (and for technical reasons related to our proof, away from the ceiling func-
tion). Hence the family of functions we need to consider are not just supported on tall flow-boxes
with thin bases, but also have to vanish on a small measure set inside these flow-boxes that cor-
respond to a small neighborhood of the origin (and of the ceiling function). The latter difficulty is
not present in our application of the CILS to time changes of horocycle flows.

Let {T t} be a smooth aperiodic flow on a smooth manifold M, preserving a smooth volume
form of finite total volume. For any given transverse embedded closed multi-dimensional interval
J ⊂M, let TJ be the maximal real number T > 0 such that the map

FT
J (x, t) = T t(x,0) , for all (x, t) ∈ J× (−T,T ) , (61)

is a flow-box for the flow {T t}. The flow-box FJ := FTJ
J will be called a maximal flow-box over

the (basis) interval J ⊂M. Since the flow {T t} has no periodic orbits, for any T0 > 0 there exists
an interval J such that TJ > T0.

Let M := {Mζ |ζ ∈ (0,1)} be a fixed family of open subsets of M such that ∩ζ>0Mc
ζ

is a
closed subset M0 of zero-measure. In the case of Kochergin flows this is the family introduced in
formula (6) of Section 2. Given a flow-box FT

J , we define, for any ζ > 0, the set ST
ζ
(J) ⊂ R as

follows
ST

ζ
(J) := {t ∈ (−T,T ) : T t(J)∩Mc

ζ
= /0} .

By definition we have that ST
ζ
(J) is an open subset (which in general may be empty).
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In the sequel, we will focus our attention on very long and thin maximal flow boxes, that spend
most of the initial time away from the bad sets Mc

ζ
, for ζ > 0 sufficiently small. This motivates

the following definition.

Definition 6.2. A family Φ = {FJ} of maximal flow-boxes is called admissible if for every T > 0
and ν > 0, there exist N ∈ N and τ > 0, and ζ > 0 such that for all maximal flow-boxes FJ ∈ Φ

with TJ > τ , the set ST
ζ
(J) has at most N connected components, and

Leb((−T,T )\ST
ζ
(J))6 ν . (62)

Remark 2. It should be noted that, in the special case when the bases of the maximal flow-boxes
of a family Φ = {FJ} form a decreasing sequence {J} of intervals with respect to the inclusion,
then in order to establish that Φ is admissible it is enough to verify the conditions for all the
degenerate flow-boxes (the orbits segments) over the singleton equal to the intersection of all of
their bases. Our construction below of admissible families of maximal flow-boxes for Kochergin
flows (in Section 6.3) is based on this principle.

For any k ∈ N\{0}, and for any constants C > 0,ζ > 0, we define Gk(J,T,C,ζ ) to be the set
of all functions ψJ ∈C∞

0 (J× (−T,T )) defined as follows. Let χJ ∈C∞
0 (J) be any smooth function

such that
∫

J χ2
J dλ = 1, with Cs(J) norm bounded above by C/λ (J)s+1/2 for all s ∈ {0, . . . ,k}, and

let ψ ∈C∞
0 (S

T
ζ
(J)) is any smooth function with Ck norm on R bounded above by C. We can now

define the functions supported on flow-boxes that we will be working with.

Definition 6.3. Given a flow-box FT
J and constants C,ζ > 0, we define Gk(FT

J ,C,ζ ) to be the class
of all functions gJ ∈C∞(M), defined on the range RT

J of the flow-box map FT
J as

(gJ ◦FT
J )(x, t) := χJ(x)ψ(t) , if (x, t) ∈ J× (−T,T ) , (63)

for any ψ ∈ Gk(J,T,C,ζ ), and defined as gJ := 0 on M \RT
J .

The class Fk(FT
J ,C,ζ ) ⊂ Gk(FT

J ,C,ζ ) consists of all functions fJ ∈ Gk(FT
J ,C,ζ ) which are

derivatives along the flow.

We can now state our general criterion, based on correlation decay, for countable Lebesgue
spectrum.

Theorem 6. Let {T t} be a smooth, aperiodic, volume-preserving ergodic flow with absolutely
continuous spectrum on a smooth manifold M of finite total volume. Assume that there exists an
admissible family of maximal flow-boxes Φ := {FJ} for the flow, such that infλ (J) = 0 (hence
supTJ = +∞) and there exists k ∈ N \ {0} such that given any T > 0, C > 0 and ζ > 0, for any
family {( fJ,gJ)} of pair of functions such that fJ ∈Fk(FT

J ,C,ζ ) and gJ ∈ Gk(FT
J ,C,ζ ) we have

inf
FJ∈Φ

∫
R\[−TJ ,TJ ]

|〈 fJ ◦T t ,gJ〉|2dt = 0 .

Then the flow {T t} has countable Lebesgue spectrum.

We will derive the criterion from Corollary 4. Since we only control the decay of correlations
for functions in the classes Fk(FT

J ,C,ζ ) and Gk(FT
J ,C,ζ ), we first prove below a simple approx-

imation lemma to approximate the target even functions ω1, . . . ,ωn+1 ∈S (R) of Corollary 4 by
(even) functions supported inside sets of the type ST

ζ
(J). For technical reasons that will appear

below in the proof of the approximation lemma, we prefer to first symmetrize the set ST
ζ
(J) and

consider instead functions supported in ST
ζ
(J)∩ (−ST

ζ
(J)).
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Lemma 6.4. Let Φ = {FJ} be admissible. Then, for every k ∈ N, ε > 0, for every even function
ω ∈S (R), there exist τ > 0 such that for every T > τ , there exists ζ > 0 such that if J is such
that TJ > T , there exists an even function ψ ∈C∞

0 (−T,T ) such that dψ

dt ∈C∞
0 (S

T
ζ
(J)∩ (−ST

ζ
(J)))

with Ck norm bounded above by a constant C :=C(k,ε,ω,T )> 0 (crucially) independent of the
flow-box FJ ∈Φ, such that

‖ d2

dt2 (ψ ∗ψ)− d2

dt2 (ω ∗ω)‖L2(R) < ε . (64)

Proof. By properties of convolution we can write

d2

dt2 (ψ ∗ψ)− d2

dt2 (ω ∗ω) =
dψ

dt
∗ dψ

dt
− dω

dt
∗ dω

dt

= (
dψ

dt
+

dω

dt
)∗ (dψ

dt
− dω

dt
) ,

hence, by Young’s convolution inequality, we have

‖ d2

dt2 (ψ ∗ψ)− d2

dt2 (ω ∗ω)‖L2(R) 6 ‖
dψ

dt
+

dω

dt
‖L1(R)‖

dψ

dt
− dω

dt
‖L2(R) . (65)

It is therefore enough to construct functions ψ such that dψ

dt are L2 approximations of the function
dω

dt with bounded L1 norm, and are supported in ST
ζ
(J).

By the definition of an admissible family of maximal flow-boxes, for every T > 0 and ν > 0,
there exist τ,ζ > 0 and N ∈ N such that for all maximal flow-boxes FJ ∈ Φ with TJ > τ we have
that J ⊂ Mζ , the symmetric set ST

ζ
(J)∩ (−ST

ζ
(J)) = I1 ∪ . . .∪ IN is a union of (at most) N open

intervals and Leb((−T,T ) \ I1 ∪ . . .∪ IN) 6 ν/4. Let then {I′1, . . . , I′N} be a symmetric family of
closed subintervals such that I′i ⊂ Ii , for each i ∈ {1, . . . ,N}, and

Leb((−T,T )\ (I′1∪ . . .∪ I′N))6 ν/2 . (66)

In order to control the norm of higher derivatives of the function ψ , we also choose the family {I′i}
such that, for all i ∈ {1, . . . ,N},

dist(∂ Ii,∂ I′i )>
ν

10N
.

We claim that there exists an even function ψ ∈C∞
0 ((−T,T )) such that

• dψ

dt is an odd smooth function supported inside ST
ζ
(J)∩ (−ST

ζ
(J)),

• dψ

dt = dω

dt on (I′1∪·· ·∪ I′N)∩ [−T +ν/4,T −ν/4],

• |dψ

dt (t)|6 |
dω

dt (t)|, for all t ∈ R,

• ‖dψ

dt ‖Ck(R) 6Ck‖ω‖Ck+1(R)(
ν

10N )
−k, for all k > 1

(with Ck > 0 a constant depending only on k ∈ N).
It follows from formula (65) and by Hölder inequality that we have

‖ d2

dt2 (ψ ∗ψ)− d2

dt2 (ω ∗ω)‖L2(R) 6 2‖dω

dt
‖L1(R)

(
2‖dω

dt
‖C0(R)ν

1/2 +‖dω

dt
‖L2(R\(−T,T ))

)
.
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Hence for every ω ∈S (R) and for every ε > 0, there exists Tε > 0 and νε > 0 such that, for all
T > Tε and all ν < νε , we have

‖ d2

dt2 (ψ ∗ψ)− d2

dt2 (ω ∗ω)‖L2(R) < ε .

We have thus reduced the proof of the lemma to that of the above claim.
In order to prove the claim we consider an even function φν ∈C∞

0 ((−T,T )) such that

• φν(t) ∈ [0,1], for all t ∈ R,

• φν(t) = 0, for all t 6∈ ST
ζ
(J)∩ (−ST

ζ
(J)) = I1∪·· ·∪ IN ,

• φν(t) = 1, for all t ∈ (I′1∪·· ·∪ I′N)∩ [−T +ν/4,T −ν/4],

• ‖φν‖Ck(R) 6Ck(
ν

10N )
−k ,

and then we define

ψ(t) =

{∫ t
−T φν(s)dω

dt (s)ds , for all t ∈ (−T,T ) ,
0 , for all t ∈ R\ (−T,T ) .

The function ψ ∈C∞
0 (−T,T ) since the function φν

dω

dt is odd, hence all of its primitives are even,
and has compact support in (−T,T ), so that ψ is the unique primitive which vanishes on the
complement of (−T,T ). Finally, it is straightforward to verify that ψ satisfies all the properties
listed in the claim.

Proof of Theorem 6. Let us fix ε > 0 and any given number n+ 1 ∈ N \ {0} of even Schwartz
functions ω1, . . . ,ωn+1 ∈S (R). Let Φ = {FJ} be an admissible family of maximal flow-boxes.

By Lemma 6.4 there exist T , τ > 0 (large) and ζ > 0 (small) such that if J is such that TJ > τ ,
there exist even functions ψi ∈C∞

0 ((−T,T )), i = 1, . . . ,n+1, such that dψi
dt ∈C∞

0 (S
T
ζ
(J)) with Ck+1

norm uniformly bounded above by a constant C′ :=C′(k,ε,ω1, . . . ,ωn+1,T )> 0 such that

‖ d2

dt2 (ψi ∗ψi)−
d2

dt2 (ωi ∗ωi)‖L2(R) < ε/2 . (67)

Let now χ
(1)
J , . . . ,χ

(n+1)
J ∈C∞(J) be functions such that∫

J
χ
(i)
J χ

( j)
J dλ = δi j , for all i, j ∈ {1, . . . ,n+1} ,

with Cs norm bounded above by C′′/λ (J)s+1/2 on J for all s ∈ {0, . . . ,k} (this is possible provided
that the constant C′′ is taken to be larger than some constant that only depends on n).

Let C > max{C′,C′′}. For every i ∈ {1, . . . ,n+ 1}, let f (i)J ∈ Fk(FT
J ,C,ζ ) be the function

defined on the range RT
J of the flow-box map FT

J as

f (i)J ◦FT
J (x, t) := χ

(i)
J (x)

d
dt

ψi(t) , if (x, t) ∈ J× (−T,T ) ,

and defined as f (i)J = 0 on M \RT
J .
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We then compute the correlations. Let TJ/2 > max{T,τ/2}. For all t ∈ [−TJ,TJ] we have
(since the functions ψ1, . . . ,ψn+1 are all even)

〈 f (i)J ◦T t , f ( j)
J 〉=

∫
J

∫ T

−T
χ
(i)
J (x)χ( j)

J (x)
dψi

dt
(σ + t)

dψ j

dt
(σ)dσdx

= (
dψi

dt
∗

dψ j

dt
)(t)δi j =

d
dt2 (ψi ∗ψ j)(t)δi j .

(68)

and by the assumption of the theorem, if λ (J) is small enough, for every i, j ∈ {1, . . . ,n+ 1} we
have:

‖〈 f (i)J ◦T t , f ( j)
J 〉‖L2(R\[−TJ ,TJ ]) 6 ε/2 . (69)

Note that, since the functions ψi are supported in [−T,T ] and T < TJ/2, we also have

d
dt2 (ψi ∗ψ j)(t)δi j = 0, for t ∈ R\ [−TJ,TJ]. (70)

By putting together formulas (67)–(70), it follows that if λ (J) is small enough (hence TJ is large
enough), the functions f (i)J , with i ∈ {1, . . . ,n+1}, satisfy the assumptions of Corollary 4:

‖〈 f (i)J ◦T t , f ( j)
J 〉−

d2

dt2 (ωi ∗ω j)δi j‖L2(R) 6 ε .

It follows then by Corollary 4 that, under the hypotheses of the theorem, the flow {T t} has count-
able Lebesgue spectrum, hence the argument is completed.

6.3 CILS for Kochergin flows and time changes of horocycle flows

We prove below that the hypotheses of Theorem 6 are verified for Kochergin flows {T t
α,ϕ}.

Let M = {Mζ |ζ > 0} denote the family introduced in formula (6) of Section 2.

Theorem 7. For every Kochergin flow {T t
α,ϕ} with α ∈ Dlog,ξ , ξ < 1

10 , there exists an admiss-
ible family of maximal flow-boxes {FJ}, over a decreasing sequence {J} of intervals satisfy-
ing limλ (J)→ 0+ (hence TJ → +∞), such that the following holds. For any T > 0, for any
C and ζ > 0, for any sequence of pair of functions {( fJ,gJ)} such that fJ ∈ F1(FT

J ,C,ζ ) and
gJ ∈ G1(FT

J ,C,ζ ) we have

lim
λ (J)→0+

∫
R\[−TJ ,TJ ]

|〈 fJ ◦T t
α,ϕ ,gJ〉|2dt = 0 .

Proof. We consider the following family of maximal flow boxes. We fix θ0 that is not in the orbit
of 0 by Rα on the circle and take any sequence of basis intervals {J} ⊂ {Jm} with

Jm := [θ0−
1

10qm
,θ0 +

1
10qm

]×{0} , for all m ∈ N.

Since the sequence {Jm} is decreasing with respect to the inclusion, it is immediate to prove that
the family {FJm} of maximal flow-boxes is admissible by verifying that the conditions hold for all
the degenerate flow-boxes (orbit segments) FT

J∞
:= {T t

α,ϕ(θ0,0)|t ∈ [−T,T ]} over the degenerate
interval J∞ := {(θ0,0)} ⊂ M. Indeed, by the definition of the family {Mζ} (in formula (6) of
Section 2) for any T > 0 and ν > 0 there exists ζ > 0 such that (θ0,0) ∈Mζ , the orbit segment
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FT
J∞

does not intersect the interval [−ζ ,ζ ]×{0}. Therefore the set ST
ζ
(J∞) = FT

J∞
is equal to a finite

union of N := NT intervals such that Leb((−T,T ) \ ST
ζ
(J∞)) 6 (2T )(2ζ ), hence the estimate in

formula (62) of the definition of an admissible family of maximal flow-boxes holds if 4T ζ < ν .
We also observe that by construction there exists a constant c > 0 such that TJm > cqm, for all

m ∈ N, which implies that for any J ∈ {Jm} we have

λ (J)>
c

5TJ
. (71)

For any J ∈ {Jm}, let us fix T ∈ (0,T 1/2
J ). We want to prove a bound on the correlations for

any pair of functions fJ ∈F1(FT
J ,C,ζ ) and gJ ∈ G1(FT

J ,C,ζ ), where C is a fixed constant, and
derive the vanishing of the limit in the statement of the theorem. In the sequel the symbols C′,
C′′ will denote generic universal constants independent of J (but dependent on T > 0), and that
also depend on the constant C in the classes of functions F1(FT

J ,C,ζ ) and G1(FT
J ,C,ζ ). Let then

fJ ∈F1(FT
J ,C,ζ ) and gJ ∈ G1(FT

J ,C,ζ ). By Definition 6.3, the functions fJ and gJ are given by

fJ ◦FT
J (x, t) = φJ(x, t) = χJ(x)φ(t) and gJ ◦FT

J (x, t) = ψJ(x, t) = χJ(x)ψ(t)

on RT
J , with φ ,ψ ∈ G1(J,T,C,ζ ) and φ a derivative, and fJ = gJ = 0 on M \RT

J .
Since the function gJ is supported on the range RT

J of the flow-box map FT
J it is enough to

prove bounds on ∫
RT

J

fJ ◦T t
α,ϕ(x)gJ(x)dµ .

Let then |t| > TJ . WLOG we can assume t > 0 since the argument for t < 0 is similar. As in
Subsection 5.2 we split the estimate into two parts: the integral over the complement of the bad
set Bl (see formula (31) in Subsection 4.1 for its definition), and the integral over the bad set.

Claim 1. There exists C > 0 such that, for some ε > 0 and for all J ∈ {Jm}, we have (recalling
that T is fixed and TJ →+∞)

|
∫

RT
J \Bl

fJ ◦T t
α,ϕ(x)gJ(x)dµ|6Ct−1/2−ε . (72)

Proof. Let us recall the partitions Ik of T into intervals with endpoints {−iα}qk−1
i=0 and W intro-

duced (see formula (8)) at the beginning of Section 3. By the assumption that t > TJ , by formula
(71) there exists a constant such that t > C′/2λ (J). It follows that there exists a product set
ET

J,k ∈W with base ĒT
J,k measurable with respect to the partition Ik, such that RT

J ⊂ ET
J,k and we

have
µ(ET

J,k)6C′µ(RT
J ) =C′T λ (J) .

By construction there exists a constant C′′ > 0 such that

N0( fJ,gJ) = ‖ fJ‖0‖gJ‖0 6
C′′

λ (J)
‖φ‖0‖ψ‖0 ;

N1( fJ,gJ) = (‖ fJ‖0 +‖φJ‖0)‖gJ‖1 +(‖ fJ‖1 +‖φJ‖1)‖gJ‖0 6
C′′

λ (J)2 ‖φ‖2‖ψ‖1 .

Hence it follows from Proposition 5.3 that∣∣∣∣∣
∫

ET
J,k\Bl

fJ(T t
α,ϕ(x,s))gJ(x,s)dµ

∣∣∣∣∣<C′′
(
C′T‖φ‖0‖ψ‖0 +(C′T )2‖φ‖2‖ψ‖1

)
t−1/2−ε .

The bound in formula (72) is therefore proved and the proof of Claim 1 is completed.
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It remains to estimate the integral on the bad set Bl ∩RT
J . Let t ∈ [l21/20,(l + 1)21/20] with

l ∈ N. Let us recall the notation l0 = l21/20, l1 = (l + 1)21/20 and let n ∈ N be the unique natural
number such that qn < l0 < qn+1. Let then k ∈ N be such the qk ∈ [qn log15 qn,qn log20 qn].

Claim 2. There exists a constant C > 0 such that, for all l0 > TJ , we have∫ l1

l0

∣∣∣∣∫
Bl∩RT

J

fJ(T t
α,ϕ(x))gJ(x)dµ

∣∣∣∣dt 6C
l1− l0

q1/2+15η
n

. (73)

Proof. We follow the proof of Proposition 5.4 in Subsection 5.3. Let

AJ := {t ∈ [l0, l1] :
∫

Bl

fJ(T t
α,ϕ(x))gJ(x)dµ > 0}

and let ρJ(t) = 1 if t ∈ AJ and ρJ(t) = −1 if t ∈ [l0, l1] \AJ . Let FT
J denote as above a flow-box

map and let RT
J ⊂M denote its range. Then, by Cauchy-Schwarz (Hölder) inequality, we have

∫ l1

l0

∣∣∣∣∫
Bl

fJ(T t
α,ϕ(x))gJ(x)dµ

∣∣∣∣dt =
∫

Bl∩RT
J

(∫ l1

l0
ρJ(t) fJ(T t

α,ϕ(x))dt
)

gJ(x)dµ

6

(∫
Bl∩RT

J

(∫ l1

l0
ρJ(t) fJ(T t

α,ϕ(x))dt
)2

dµ

)1/2(∫
Bl∩RT

J

gJ(x)2dµ

)1/2

6 ‖gJ‖0µ(Bl ∩RT
J )

1/2

(∫
Bl

(∫ l1

l0
ρ(t) fJ(T t

α,ϕ(x))dt
)2

dµ

)1/2

. (74)

We split the auto-correlation integral on the RHS of formula (74), as follows:

∫
Bl

(∫ l1

l0
ρJ(t) fJ(T t

α,ϕ(x))dt
)2

dµ

6

(∫
Bl

(∫ l1

l0

(∫
r∈[l0,l1] : |r−t|610T

ρ(r)ρ(t) fJ(T t
α,ϕ(x)) fJ(T r

α,ϕ(x))dr
)

dt
)

dµ

)
+

(∫
Bl

(∫ l1

l0

(∫
r∈[l0,l1] : |r−t|>10T

ρ(r)ρ(t) fJ(T t
α,ϕ(x)) fJ(T r

α,ϕ(x))dr
)

dt
)

dµ

)
. (75)

By invariance of the measure, since fJ is supported on RT
J , we can write∫

Bl

fJ(T t
α,ϕ(x)) fJ(T r

α,ϕ(x))dµ =
∫

T t
α,ϕ (Bl)

fJ(x) fJ(T r−t
α,ϕ (x))dµ

=
∫

T t
α,ϕ (Bl)∩RT

J

fJ(x) fJ(T r−t
α,ϕ (x))dµ .

(76)

hence we have the immediate estimate(∫
Bl

(∫ l1

l0

(∫
r∈[l0,l1] : |r−t|610T

ρ(r)ρ(t) fJ(T t
α,ϕ(x)) fJ(T r

α,ϕ(x))dr
)

dt
)

dµ

)
6 20T‖ fJ‖2

0(l1− l0)µ(T t
α,ϕ(Bl)∩RT

J ) . (77)
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We then have the following crucial fact. For any (r, t) ∈ [l0, l1]2 such that 10T 6 |r− t| 6 TJ/10,
either x′t := T t

α,ϕ(x) ∈ RT
J or T r

α,ϕ(x) = T r−t
α,ϕ (x

′
t) ∈ RT

J (but not both), hence, by taking into account
that the function fJ is supported in RT

J , we have(∫
Bl

(∫ l1

l0

(∫
r∈[l0,l1] : |r−t|>10T

ρ(r)ρ(t) fJ(T t
α,ϕ(x)) fJ(T r

α,ϕ(x))dr
)

dt
)

dµ

)
=

(∫
Bl

(∫ l1

l0

(∫
r∈[l0,l1] : |r−t|>TJ/10

ρ(r)ρ(t) fJ(T t
α,ϕ(x)) fJ(T r

α,ϕ(x))dr
)

dt
)

dµ

)
. (78)

By formula (76), our goal is now to estimate for r− t > TJ/10 the integral∫
Bl

fJ(T t
α,ϕ(x)) fJ(T r

α,ϕ(x))dµ =
∫

T t
α,ϕ (Bl)∩RT

J

fJ(x) fJ(T r−t
α,ϕ (x))dµ .

Let then t∗ = r− t (which without of generality we can assume positive) and recall the notation
established in Subsection 5.3: let l∗= [t∗] and n∗ to be the unique integer such that qn∗ 6 l∗< qn∗+1.
Let k∗ be any integer such that qk∗ ∈ [qn∗ log15 qn∗ ,qn∗ log20 qn∗ ]. We recall that by construction we

have qk∗ ∈ [q
1
41
n ,q

1
19
n log20 qn]. By the lower bound in formula (71), since t∗ > TJ/10, it follows that

λ (J)> 1/qk∗ and that, for any interval Ī ∈Ik∗ , we have

λ (I)6 1/qk∗ 6 1/q1/41
n .

We recall that the set Bl was defined (in formula (31) of Subsection 4.1) as a union of a fi-
nite number of disjoint complete towers U1, . . . ,Um. By property (B5) in Proposition 4.2, for
every t ∈ [l0, l1] there exist complete towers Tt,1, . . . ,Tt,m which are approximations of the sets
T t

α,ϕ(U1), . . . ,T t
α,ϕ(Um) respectively, and such that It therefore suffices to estimate

m

∑
i=1

∣∣∣∣∫
Tt,i∩RT

J

fJ(T t∗
α,ϕ(x)) fJ(x)dµ

∣∣∣∣ .
Following Lemma 5.7, we distinguish two cases. In the first case we have N(θt,i,ht,i)6 q1/3

n . By
the bound in (54) we then have∣∣∣∣∫

Tt,i∩RT
J

fJ(x) fJ(T t∗
α,ϕ(x))dµ

∣∣∣∣6 ‖ fJ‖2
0

µ(Tt,i∩RT
J )

q
1
10
n

6
C′

q
1

10
n

µ(Tt,i∩RT
J )

λ (J)
. (79)

In the second case we have N(θt,i,ht,i) > q1/3
n . From the bound in (55), for all I := Ī×{s} with

Ī ∈Ik∗ we have∣∣∣∣∫
Tt,i∩I

fJ(T t∗
α,ϕ(θ ,s)) fJ(θ ,s)dθ

∣∣∣∣6C′{N0( fJ, fJ)+N1( fJ, fJ)λ (I)}
λ (Tt,i∩ I)

q50η
n

. (80)

By the lower bound (71) it follows that λ (J) > 1/qk∗ , hence there exists a product set ET
J,k∗ ∈W

with base ĒT
J,k∗ measurable with respect to the partition Ik∗ , such that RT

J ⊂ ET
J,k∗ and we have

µ(ET
J,k∗)6Cµ(RT

J ) =C′T λ (J) .
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Thus, from the bound in formula (80) we derive the following estimate:∣∣∣∣∫
Tt,i∩RT

J

fJ(x) fJ(T t∗
α,ϕ(x))dµ

∣∣∣∣6 C′

q50η
n

µ(Tt,i∩RT
J )

λ (J)
, (81)

hence, by formulas (79) and (81), we have∣∣∣∣∫T t
α,ϕ (Ui)∩RT

J

fJ(x) fJ(T t∗
α,ϕ(x))dµ

∣∣∣∣6 C′

q50η
n

µ(Tt,i∩RT
J )

λ (J)
+C′′

µ(Tt,i4T t
α,ϕ(Ui)

λ (J)
. (82)

After summing over all towers of Bl , that is, over i ∈ {1, . . . ,m}, by the measure bound in (52),
we derive that∫

T t
α,ϕ (Bl)∩RT

J

fJ(x) fJ(T t∗
α,ϕ(x))dµ 6

m

∑
i=1

∣∣∣∣∫T t
α,ϕ (Ui)∩RT

J

fJ(x) fJ(T t∗
α,ϕ(x))dµ

∣∣∣∣
6

C′

q50η
n

µ(∪m
i=1Tt,i∩RT

J )

λ (J)
+C′′

q−3/5+15η
n

λ (J)
. (83)

By the equidistribution properties of the base rotation under the Diophantine assumption on the
rotation number, there exist constants C′,C′′ > 0 such that

max
(
µ(∪m

i=1Tt,i∩RT
J ),µ(Bl ∩RT

J )
)
6C′µ(RT

J )
log2 qn

q1/2−4η
n

6C′′
λ (J)

q1/2−5η
n

, (84)

hence by formulas (75), (76), (77), (78) and (83) we derive that there exist constants C′,C′′ > 0
such that∫

Bl

(∫ l1

l0
ρJ(t) fJ(T t

α,ϕ(x))dt
)2

dµ 6C′(
1

q1/2+45η
n

+
1

q3/5−15η
n λ (J)

)(l1− l0)2

+C′′
l1− l0
λ (J)

(
λ (J)

q1/2−5η
n

+
1

q3/5−15η
n

) . (85)

By taking into account that λ (J)> 1/qk∗ > 1/q1/18
n and that that l1− l0 > q80η

n , we also have

l1− l0
q1/2−5η

n

6
(l1− l0)2

q1/2+45η
n

and
1

q3/5−15η
n

6 min

(
λ (J)

q1/2+45η
n

,
(l1− l0)λ (J)

q1/2+45η
n

)
,

hence from formula (85) we derive the following bound on self-correlations:∫
Bl

(∫ l1

l0
ρJ(t) fJ(T t

α,ϕ(x))dt
)2

dµ 6C
(l1− l0)2

q1/2+45η
n

. (86)

Finally, from formulas (74), (84) and (86) we derive the bound∫ l1

l0

∣∣∣∣∫
Bl

fJ(T t
α,ϕ(x))gJ(x)dµ

∣∣∣∣dt

6 ‖gJ‖0µ(Bl ∩RT
J )

1/2

(∫
Bl

(∫ l1

l0
ρJ(t) fJ(T t

α,ϕ(x))dt
)2

dµ

)1/2

6C′
(

µ(Bl ∩RT
J )

λ (J)

)1/2
(l1− l0)

q1/4+20η
n

6C′′
(l1− l0)

q1/2+15η
n

. (87)

Claim 2 is therefore proved.
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From Claim 2, together with the immediate estimate∣∣∣∣∫
Bl∩RT

J

fJ(T t
α,ϕ(x))gJ(x)dµ

∣∣∣∣6C′
µ(Bl ∩RT

J )

λ (J)

and the bound (84), we derive our final estimate on the bad set, that is, as soon as l0 > TJ ,∫ l1

l0

∣∣∣∣∫
Bl∩RT

J

fJ(T t
α,ϕ(x))gJ(x)dµ

∣∣∣∣2 dt 6C′
l1− l0
q1+η

n
6C′

l1− l0
l1+η/2
0

6
C′′

l1+η/3 . (88)

The statement of Theorem 7 then follows from the estimates in formulas (72) and (88).

The hypotheses of the criterion for countable Lebesgue spectrum stated in Theorem 6 also hold
for all smooth time-changes of a horocycle flow {ht} on the unit tangent bundle M of a compact
hyperbolic surface, as we will explain below.

Let M = {Mζ |ζ > 0} denote in this case the trivial family such that Mζ = M for all ζ > 0.
For such a trivial family, all families of flow-boxes are admissible and, for all T > 0 and C > 0,
the families of functions Fk(FT

J ,C,ζ ) := Fk(FT
J ,C) and Gk(FT

J ,C,ζ ) := Gk(FT
J ,C), introduced

in Definition 6.3, are independent of ζ > 0.

Proposition 6.5. For any sufficiently smooth time change {ht
ϕ} of a horocycle flow {ht}, there

exists a family Φ := {FJ} of maximal flow-boxes with infλ (J) = 0 (and supTJ =+∞), such that for
any T > 0 and C > 0, and for any family of pairs of functions {( fJ,gJ)} such that fJ ∈F1(FT

J ,C)

and gJ ∈ G1(FT
J ,C) we have

inf
FJ∈Φ

∫
R\[−TJ ,TJ ]

|< fJ ◦ht
ϕ ,gJ > |2dt = 0 .

Proof. The estimates required to prove this assertion are carried out in Subsection 6.3 of [17]
where the authors prove that sufficiently smooth time-changes of the horocycle flow have Le-
besgue maximal spectral type (see the Remark 3 below about the smoothness assumptions). The
base of the flow-boxes are 2-dimensional intervals of uniform (fixed) size in the geodesic direction
and arbitrarily small size in the direction of the complementary horocycle. Such flow-boxes and
the test functions of the classes F1(FT

J ,C) and G1(FT
J ,C) are introduced in Lemma 28 of [17]

(where the relevant estimates on their derivatives are proved). The key estimates on correlations
of functions in the classes F1(FT

J ,C) and G1(FT
J ,C) (supported on flow-boxes) are stated in [17]

as formulas (40) and (41) in the proof of Lemma 28. In fact, estimates on correlations follow from
those formulas by taking into account the formula of Lemma 9 of [17], which reduces estimates
on correlations for the time changes to estimates on curvilinear integrals along push-forwards of
geodesic arcs.

Remark 3. The relevant estimates on correlations from [17] (see in particular Lemma 24) are
stated for time-change functions of L2 Sobolev regularity r > 11/2. However, the argument that
establishes that the maximal spectral type is Lebesgue, which also implies the hypotheses of our
criterion for countable Lebesgue spectrum, hold under the milder hypothesis that the time-change
function is C1 and C2 in the geodesic direction.

We are now ready to derive our conclusions. By Theorem 3, Theorem 6, and Theorem 7 we
derive the completion of the proof of our main result:
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Corollary 5. For α ∈ Dlog,ξ , ξ < 1
10 , the dynamical system (T t

α,ϕ ,M,µ) has Lebesgue spectral
type with countable multiplicity.

By Theorem 25 of [17], §6.3, Theorem 6 of Subsection 6.2, and Proposition 6.5, we derive a
similar result for smooth time changes of the horocycle flow, thereby completing the proof of the
Katok-Thouvenot conjecture ([29], Conjecture 6.8):

Corollary 6. Any flow obtained by a sufficiently smooth time change from a horocycle flow has
Lebesgue spectral type with countable multiplicity.

A Birkhoff sums estimates

Proof of Lemma 3.4. By the definition of uI in (19), we know that there exist x0 ∈ I∩T−t
α,ϕ(W ) and

t0 ∈ [l0, l1] such that ϕ ′′N(x0,t0)
(x̄0)> q3−η

n log9 qn. Since N(x0, t0)< cqn+1, by (13), we get

(qn)
3−η log9 qn < ϕ

′′
N(x0,t0)(x̄0)< 2c3q3−η

n+1 +
1

xN(x0,t0)
min

< q3−η
n log4 qn +

1

xN(x0,t0)
min

,

which means that there exists j ∈ [0,N(x0, t0)−1] s.t.

x̄0 + jα ∈ [− 1
qn log3 qn

,
1

qn log3 qn
]. (89)

We will show that, for every t ∈ [l0, l1] and every x ∈ I∩T−t
α,ϕ(W ), we have

N(x, t)> j. (90)

Let us first show how (90) implies (20) and (21). Since λ (I)6 1
qn log15 qn

it follows by (90) that for

every t ∈ [l0, l1] and every x ∈ I∩T−t
α,ϕ(W )

xN(x,t)
min 6 d(x̄+ jα,0)6 d(x̄+ jα,0)+λ (I)6

1
2qn log3 qn

.

This gives (20). For (21), we have by (12) and (13)

|ϕ ′N(x,t)(x̄)|>

(
2

3xN(x,t)
min

)2−η

−4q2−η

n+2 >

(
1

2xN(x,t)
min

)2−η

,

and

|ϕ ′′N(x,t)(x̄)|6

(
3

2xN(x,t)
min

)3−η

+4q3−η

n+2 6

(
2

xN(x,t)
min

)3−η

.

This gives (21). Therefore it remains to show (90). Notice that for x ∈ I ∩ T−t
α,ϕ(W ), (90) is

equivalent to
N(x, t)> j (91)

(since T t
α,ϕ(x) = (x̄+N(x, t)α,s′) ∈W ). Notice also that if the lower bound

N(x, t0)> j, (92)
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holds, then (91) follows for all t ∈ [l0, l1]. Indeed, otherwise we have

(4qn+1)
1−η > ϕ(x̄+N(x, t)α)> t + s−ϕN(x,t)(x̄)>

ϕN(x,t0)(x̄)−ϕN(x,t)(x̄)> ϕ(x̄+ jα)> q1−η
n log2 qn,

a contradiction. Hence it remains to show (92). Assume by contradiction that N(x, t0) < j for
some x ∈ I∩T−t

α,ϕ(W ). Then, by the definition of j, we have

N(x,t0)⋃
i=0

Ri
α(Ī)∩

[
− 1

5qn+2
,

1
5qn+2

]
= /0. (93)

Therefore, for every θ ∈ Ī by (12) we have

|ϕ ′j(θ)|< 10q2−η

n+2 . (94)

Hence, by (89), (93), and (94), for some θ ∈ Ī, we get

(5qn+2)
1−η > max(ϕ(x̄+N(x, t0)α),ϕ(x̄0 +N(x0, t0)α))>

|ϕN(x,t0)(x̄)−ϕN(x0,t0)(x̄0)|> ϕ(x̄0 + jα)−|ϕ ′j(θ)|λ (I)> 1/2
(
qn log3 qn

)1−η − (qn+1)
1−η ,

which yields a contradiction since qn+2 < qn log2+3ξ qn. So (92) holds. This completes the proof
of Lemma 3.4.

Proof of Lemma 3.5. Notice that for some θ ∈ [x̄, x̄0] we have

ϕ
′
N(x)(x̄)−ϕ

′
N(x0)

(x̄0) = ϕ
′′
N(x0)

(θ)(x̄− x̄0)+ϕ
′
N(x)−N(x0)

(x̄+N(x0)α).

Since |ϕ ′′N(x0)
(x̄0)|6 q3−η

n log10 qn, by (13) for N = N(x0) it follows that

{x̄0, . . . , x̄0 +(N(x0)−1)α}∩ [− 1
qn log4 qn

,
1

qn log4 qn
] = /0. (95)

Notice that since x0 ∈W , for some constant c > 0, we have

ϕN(x0)(x̄0)> t−q3/4
n > cqn.

So by (95), by (11) for N = N(x0) and by the Diophantine condition on α , we have qr+1 > cqn
10

(where r is such that qr 6 N(x0)6 qr+1 ). But then by (11) for N = N(x0) and x = θ and again by
the Diophantine condition on α , we have

ϕ
′′
N(x0)

(θ)>
q3−η

n

log5 qn
.

Define Ax,x0 := ϕ ′′N(x0)
(θ). We will show that

|ϕ ′N(x)−N(x0)
(x̄+N(x0)α)|6 Ax,x0

10
|x̄− x̄0|. (96)
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By the definition of N(x), N(x0) and since T t
α,ϕ(x) ∈V , for some z ∈ [x̄, x̄0] we have

2q3/4(1−η)
n > |(t−ϕN(x0)(x̄0))− (t−ϕN(x)(x̄))|> |ϕN(x)(x̄)−ϕN(x0)(x̄0)|=

|ϕ ′N(x0)
(x̄0)(x̄− x̄0)+ϕ

′′
N(x0)

(z̄)(x̄− x̄0)
2 +ϕN(x)−N(x0)(x̄+N(x0)α)|.

Moreover, we have the following:

Claim. If ϕ ′′N(x)(x̄)< q3−η
n log10 qn, then for every z ∈ I

ϕ
′′
N(x)(z̄)< 30q3−η

n log10 qn.

Therefore

|ϕN(x)−N(x0)(x̄+N(x0)α)|6 2q3/4(1−η)
n +q7/4+η

n |x̄− x̄0|+q3−η
n log5 qN(x̄− x̄0)

2,

so by Lemma 3.2,

|ϕ ′N(x)−N(x0)
(x̄+N(x0)α)|6

3
(

4q3/2(1−η2)
n +q(7/2+2η)(1+η)

n |x̄− x̄0|2 +q(6−2η)(1+η)
n log10+2η qn(x̄− x̄0)

4
)
. (97)

Notice however that since 1
qn log15 qn

> 1
qk
> λ (I)> |x̄− x̄0|> 1

q3/2−2η
n

, we have

q3−η
n

log10 qn
|x̄− x̄0|>

100max
(

q3/2(1−η2)
n ,q(7/2+2η)1+η

n |x̄− x̄0|2,q(6−2η)(1+η)
n log10+2η qn(x̄− x̄0)

4
)
.

Therefore and using (97) we get (96) which completes the proof of Lemma 3.5.

We just have to give the proof of the claim.

Proof of the Claim. We know that N(x) 6 qn+2. If ϕ ′′N(x)(z̄) > 30q3−η
n log10 qn, by (13) it follows

that zN(x)
min 6 1

3qn log
10

3−η qn

. But since x,z ∈ I and λ (I)< 1
qn log15 qn

, we would have xN(x)
min 6 1

2qn log
10

3−η qn

.

So by applying (13) for N(x) and x, we would get ϕ ′′N(x)(x̄)> 2q3−η
n log10 qn, a contradiction.
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