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TRANSLATED ABSTRACT (SPANISH)

1.

2.

Las plantas tienen rasgos quimicos y fisicos tnicos que pueden reducir infecciones en un
amplio rango de animales desde los primates hasta las orugas. Los girasoles (Helianthus
annuus; Asteraceae) son un ejemplo de este fendmeno, al tener polen que inhibe
infecciones causadas por el patdégeno tripanosoma Crithidia bombi en el abejorro Bombus
impatiens. Sin embargo, el mecanismo que explica este fendémeno atin no ha sido
determinado, y no se sabe si el polen de otras especies de Asteraceae tiene efectos
similares.

Nosotros evaluamos si los mecanismos que median el efecto antipatogénico del polen de
girasol son fisicos (por su exina espinosa), quimicos (por sus metabolitos), 0 ambos.
También evaluamos el grado mediante el cual otras siete especies de Asteraceae reducen
las infecciones de C. bombi en comparacion con el polen de girasol y otras dos especies
no-Asteraceae, y si el largo de las espinas del polen predice su efecto.

Encontramos que las exinas del girasol por si solas redujeron la infeccion de manera
comparable con el efecto ejercido por el polen completo de girasol, mientras que los
metabolitos del polen de girasol por si solos no lo hicieron. Por otra parte, los abejorros
que consumieron polen de cuatro de las otras siete especies de Asteraceae obtuvieron

infecciones de C. bombi 62 — 92% mas bajas que aquellas que consumieron polen de no-


https://github.com/llf44/Asteraceae-pollen

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
&9
90
91
92
93

4,

Asteraceae. Sin embargo, el largo de las espinas no predijo la variacion en las infecciones
de los abejorros.

Nuestro estudio indica que la capacidad del polen de girasol para inhibir C. bombi esta
guiada por su exina espinosa, y que este fenomeno se extiende a varias especies de
Asteraceae. Nuestros resultados indican que las exinas del polen de girasol son tan
efectivas en reducir infecciones como el polen completo, lo cual implica que futuros
estudios deben expandir la evaluacion del efecto de otras especies con polen espinado en

la dindmica polinizador-patdgeno.

ABSTRACT

)

2)

3)

4)

Plants have unique chemical and physical traits that can reduce infections in animals
ranging from primates to caterpillars. Sunflowers (Helianthus annuus; Asteraceae) are
one striking example, with pollen that suppresses infections by the trypanosomatid gut
pathogen Crithidia bombi in the common eastern bumble bee (Bombus impatiens).
However, the mechanism underlying this effect has remained elusive, and we do not
know whether pollens from other Asteraceae species have similar effects.

We evaluated whether mechanisms mediating sunflower pollen’s antipathogenic effects
are physical (due to its spiny exine), chemical (due to metabolites), or both. We also
evaluated the degree to which pollen from seven other Asteraceae species reduced C.
bombi infection relative to pollen from sunflower and two non-Asteraceae species, and
whether pollen spine length predicted pathogen suppression.

We found that sunflower exines alone reduced infection as effectively as whole
sunflower pollen, while sunflower pollen metabolites did not. Furthermore, bees fed
pollen from four of seven other Asteraceae had 62 — 92% lower C. bombi infections than
those fed non-Asteraceae pollen. Spine length, however, did not explain variation in
bumble bee infection.

Our study indicates that sunflower pollen’s capacity to suppress C. bombi is driven by its
spiny exine, and that this phenomenon extends to several other Asteraceae species. Our
results indicate that sunflower pollen exines are as effective as whole pollen in reducing
infection, suggesting that future studies should expand to assess effects of other species

with spiny pollen on pollinator-pathogen dynamics.
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INTRODUCTION

Pathogens are ubiquitous in all living systems, resulting in a constant ecological and
evolutionary interplay between pathogens, hosts, and their environments (Brown, 2022; Schmid-
Hempel, 2011). Infectious diseases can have profound impacts on ecological communities, the
severity of which is often exacerbated by anthropogenic forces such as habitat destruction,
introduction of invasive species, climate change, and pollution (Brearley et al., 2013; Gibbons et
al., 2000; Marcogliese & Pietrock, 2011). Plants have evolved a myriad of chemical and physical
defenses to mitigate pressure from pathogens, and many animals exploit these plant defenses to
reduce their own infections (Abbott, 2014; de Roode et al., 2013). Understanding the
mechanisms underlying plant antipathogenic properties may inform management strategies that
reduce disease in vulnerable animal populations.

Plant secondary metabolites, including phenolics, alkaloids and terpenoids, are associated
with plant defense against herbivores, phytopathogens and parasites. Secondary metabolites can
be present in both vegetative tissues and floral rewards (nectar and pollen), with composition and
concentration varying within individuals and across species (Bennett & Walsgrove, 1994;
Palmer-Young et al., 2019; Rivest & Forrest, 2020). Some of these compounds are also active
against animal pathogens (reviewed in Palmer-Young et al., 2016) and thus may benefit certain
herbivores by reducing infection when consumed. For example, woolly bear caterpillars
(Grammia incorrupta) parasitized by tachinid flies (Exorista mella) will consume pyrrolizidine
alkaloids that reduce mortality of infected hosts, even though the toxins increase mortality in
unparasitized individuals (Singer et al., 2009). Diet can also shape infection in pollinators. For
example, when buff-tailed bumble bees (Bombus terrestris) consume the secondary metabolite
callunene from heather (Calluna vulgaris) nectar, the gut pathogen Crithidia bombi loses its
ability to anchor into the bee gut and infect the host (Koch et al., 2019). Many insect taxa can
self-medicate using plant phytochemicals in response to infection by pathogens (reviewed in de
Roode & Hunter, 2019). Chemistry, however, is not the only mechanism by which plants
suppress infections in animals. For example, great apes infected with certain parasitic nematodes
or tapeworms consume bristly leaves, which physically irritate their gut and increase the
expulsion of the pathogens, demonstrating a mechanical mechanism of dietary disease
suppression (Huffman, 2003; Huffman & Caton, 2001). Pollen is consumed by many flower-

visiting insects, and the exine (outermost physical structure) can vary in morphology, including
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presence of spines of varying lengths in some plant species. There are many more known
examples of infection suppression due to chemical rather than mechanical means, especially for
insects (Bernardo & Singer, 2017).

Bumble bees (Bombus spp.) are common pollinators in many ecosystems and include
some of the world’s most economically important wild bee species (Kleijn et al., 2015). Concern
over bumble bee populations has grown in recent decades with reports of declines for many
species; these declines are often linked, at least in part, to pathogens (Cameron et al., 2011;
Goulson et al., 2015; Schmid-Hempel et al., 2014). Furthermore, there is potential for pathogen
spillover from managed honey bees and bumble bees to wild bumble bee species through shared
used of floral resources, though we currently do not know the full impact of the movement of
managed species within and across countries on wild bee disease dynamics (reviewed in
Figueroa et al., 2023). Moreover, recent studies expanding the use of molecular screenings have
found widespread pathogen prevalence in wild bumble bee communities (Averill et al., 2021;
Figueroa et al., 2020; Jones et al., 2021; Plischuk et al., 2017), underscoring the need to
understand the impacts of pathogens and potentially reduce infections in these ecologically
important species.

One globally important pathogen that frequently infects bumble bees is Crithidia bombi,
a trypanosomatid gut pathogen that can reduce learning, survival, and reproduction, especially
for overwintering queens and nutritionally stressed individuals (Brown et al., 2000; Gegear et al.,
2006; Goulson et al., 2018). Prevalence of this pathogen can vary dramatically by location and
year, ranging from 0 — 82% in western Massachusetts, USA, across two years of sampling in 15
sites (Gillespie, 2010). Numerous nectar phytochemicals can suppress C. bombi in vitro, in vivo,
or both (Koch et al., 2019; Palmer-Young et al., 2017; Palmer-Young et al., 2016; Richardson et
al., 2015), raising the question of whether plants could serve as medicines for infected bees
(Koch et al., 2017).

Sunflower (Helianthus annuus,; Asteraceae) pollen, which has a characteristically spiny
exine and is low in protein, has a potent pathogen-suppressive effect against C. bombi when
tested in vivo in the common eastern bumble bee (Bombus impatiens). Bees fed sunflower pollen
had 20- to 50-fold lower C. bombi infection levels than those fed pollen from rapeseed (Brassica
napus, Brassicaceae) or buckwheat (Fagopyrum esculentum; Polygonaceae) (Giacomini et al.,

2018). Furthermore, sunflower pollen reduced C. bombi infection in B. impatiens queens as well
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as workers (Fowler et al., 2020), which is particularly important because infected queens are less
likely to survive overwintering and establish new colonies than uninfected queens (Brown et al.,
2003). Moreover, sunflower has the potential to benefit these pollinators by reducing gut
pathogen infections in the field. Specifically, Giacomini et al. (2018) found that C. bombi
infection intensity in wild B. impatiens workers collected on farms was lower in areas planted
with more sunflower. Similarly, Malfi et al. (in press) found that experimentally deployed B.
impatiens colonies had lower prevalence of C. bombi and higher queen reproduction at farms
with more sunflowers, highlighting implications for bumble bee health and reproduction under
natural conditions.

While the mechanism underlying how sunflower pollen reduces C. bombi infection in
bumble bees is unknown, several non-mutually exclusive hypotheses have been posited. These
include pollen acting as a laxative (Giacomini et al., 2022), influencing immune function
(Giacomini et al., 2021a, but see Fowler et al., 2022), and/or physically scraping the hindgut with
the spiny exine to impede C. bombi attachment (Giacomini et al., 2021a; Giacomini et al., 2018).
Given that protein content can strongly increase resistance and tolerance to infections and
improve immune function (Brown et al., 2000; Conroy et al., 2016; Lee et al., 2006; Logan et al.,
2005, but see Alaux et al., 2010), the difference in effects between sunflower and buckwheat
pollen is especially startling, as these two pollen types have similarly low protein levels (Yang et
al., 2013). This suggests that protein is not a significant factor mediating sunflower pollen’s
pathogen-suppressive effect. Assessments of sunflower pollen chemistry to date have not
uncovered any compounds responsible for pathogen suppression (Adler et al., 2020), and
sunflower methanolic extracts increased C. bombi replication in vitro (Palmer-Young &
Thursfield, 2017). However, the role of sunflower pollen metabolites in driving effects within the
host are not well explored. This raises the question of whether the physical structure of the pollen
(spiny exines), the chemistry (secondary as well as nutritional metabolites), or both contribute to
pathogen suppression.

Most Asteraceae produce echinate (spiny) pollen, presenting an opportunity to test
whether echinate pollen from other Asteraceae species also suppresses C. bombi compared to
non-Asteraceae species that lack spines. Furthermore, pollen spine length varies considerably
within the Asteraceae (Tomb et al., 1974), yet it is unknown whether spine length variation

affects the degree of pathogen suppression in bumble bees. Compared to wildflower and
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buckwheat control pollens, pathogen suppression has been found across nine H. annuus
cultivars, four wild H. annuus populations, two congeners and two species in a different genus of
the same family (Solidago spp.) (LoCascio et al., 2019). These results suggest that the pathogen-
suppressive effects of pollen may be more widespread within the Asteraceae.

Here we ask: (a) Do sunflower exines and/or sunflower metabolites reduce C. bombi
infection as effectively as whole sunflower pollen? (b) Does pollen from other Asteraceae
species reduce C. bombi infection as effectively as sunflower pollen, and (c) Does Asteraceae

pollen spine length explain the degree to which pathogen infection is reduced?

MATERIALS AND METHODS
Overview

For each question we conducted paired experiments at University of Massachusetts,
Ambherst (Lab1) and North Carolina State University (Lab2). The experiments assessing
sunflower exines and metabolites (question a) were replicated across the two institutions (same
treatments), while the experiments assessing other Asteraceae pollens and spine lengths
(questions b and c¢) were divided between the two institutions (different Asteraceae species, same
controls). All experiments employed the same protocols for making inoculum and for counting
C. bombi, described below. The C. bombi used was originally sourced from B. impatiens workers
collected in Hadley, MA, USA (42°21'51.93”N, 72°33'55.88”W) and maintained in commercial
B. impatiens colonies in both laboratories that were fed a wildflower mix pollen diet (low to no
Asteraceae present, assessed via microscopy). During experiments, worker bees were housed in
individual containers (plastic 16 oz. deli cups with mesh bottoms and perforated lids; Figure S1)
and fed 10 mL of 30% sucrose solution along with 0.15 g of their pollen treatments, replaced
every other day, and housed in the dark at 27°C and 55-60% humidity. We employed B.
impatiens workers from commercial colonies (Koppert Biological Systems, Howell, MI, USA) in

all experiments.

(a) Effects of sunflower pollen exines, metabolites and whole pollen
To determine the role of pollen exine structure and metabolites in driving the effect of
sunflower pollen on C. bombi, we compared C. bombi counts in bees fed different pollen diets.

We used pollen from three sources: sunflower pollen (Henan Mingshengfeng Bio-Technology
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Co., LTD; Henan province, China), buckwheat pollen (Fuyang Import and Export Ltd, China),
and wildflower pollen (CC Pollen; Phoenix, Arizona). We verified that the wildflower pollen had
less than 5% Asteraceae (echinate) pollen via visual inspection of a subset of the mixture stained
with basic fuchsin dye under a compound microscope (Kearns & Inouye, 1993). In addition to
these three control diet treatments (sunflower pollen, buckwheat pollen, and wildflower pollen),
we also included sunflower or buckwheat metabolites mixed with wildflower pollen, and
sunflower or buckwheat exines mixed with wildflower pollen (mixed by weight; ratios in Table
S1). We included buckwheat whole pollen because it has similar (low) protein concentrations
(Yang et al., 2013) but results in much higher C. bombi infections than sunflower pollen
(Giacomini et al., 2018), and buckwheat metabolites and exines mixed with wildflower pollen as
methods controls (so we could ascertain whether effects were due to adding any metabolite or
exine, or were specific to sunflower metabolites or exines). We included wildflower pollen as a
more ecologically relevant multispecies control and used it as the substrate to mix with
sunflower and buckwheat exines and metabolites. The complete experimental design is visually

represented in Figure S2.

Treatment preparation

We planned to extract metabolites or exines from a set weight of sunflower or buckwheat
pollen and add these extracts to wildflower pollen to create the same final diet weight. For
example, we extracted metabolites from 50 g of sunflower pollen, and then added them to
enough wildflower pollen to create 50 g of diet, ensuring that we had the same ratio of
metabolites to total diet weight in both the original and treatment diet. By extracting metabolites
or exines from a standardized known weight of whole pollen and adding them to create a
standard final weight of diet treatment, we ensured that each treatment used the amount of
metabolite or exine from a known quantity of pollen (regardless of volume), incorporated into
the appropriate weight of diet. For exines, we ended up extracting from 100 g of pollen instead
of 50 due to significant loss of material during extractions because exines remained stuck in filter
paper or on glassware. Thus, while our intent was to replicate the ratio of exine:total diet found
in the original pollen, instead the exine treatments are a test of whether exines added to
wildflower pollen can replicate the effects of whole sunflower pollen, and not necessarily a test

of the ecologically relevant ratio.
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To obtain clean and intact pollen exines we used modified methods from Gonzalez Cruz
et al. (2018), and to obtain pollen metabolites with a wide range of polarities, we sequentially
extracted sunflower and buckwheat pollen with distilled water, methanol, ethyl acetate and
hexane and retained all metabolites after removal of solvents (Gonzalez-Cruz et al., 2018);
methods detailed in Appendix S1. Our goal was to ensure the extraction of the broadest possible
range of metabolites (including lipids and proteins) and not simply secondary metabolites, since
other components, such as fatty acids, can have antimicrobial properties (Feldlaufer et al., 1993).
Pollen from the three control diet treatments was pulverized using a coffee grinder, then mixed
with distilled water to create a paste with a consistency palatable for bees (detailed in Table S1).
For the exine and metabolite treatments, the exines or metabolites from each species (originally
extracted from 100 g of pollen for exines or 50 g of pollen for metabolites) were mixed with
enough wildflower pollen to weigh 50 g. For the metabolites, this replicated the original relative
amount per weight of pollen, and for exines, we extracted from twice the original weight due to
loss of material during extractions. Each exine/metabolite and wildflower pollen mix was then
combined with distilled water to create a paste fed to bees (5-36 mL of water; detailed in Table
S1). The pollen mixture to water ratios varied between treatments because the exines and
metabolites varied in moisture content, and so required different amounts of water to reach
similar consistencies. At Labl, we initially added too much water to the sunflower metabolite
treatment, and so both the sunflower and buckwheat metabolite diet treatments were dried at 47
°C for 26 hours (including both treatments in case heat affected compounds; no treatments were
dried at Lab2). Pollen diets were stored at -20 °C. To feed diets to bees, we placed the treatments
in microcentrifuge tube caps inside the housing container. Since grinding pollen may increase
access to chemical defenses in the pollen grain and/or increase physical defenses by creating
smaller “shards” compared to the intact exine (Brochu et al., 2020), we processed treatments in a
similar way. We verified via microscopy that pollen morphology was not altered after grinding;

therefore, it is unlikely that pollen “shards” affected our results (Figure S3).

Crithidia bombi inoculation

C. bombi inoculum was prepared fresh daily with 150 pL of homogenized gut solution
from an infected bee diluted with "4 strength Ringer’s Solution (Lab1) (Sigma Aldrich, St Louis,
MO, USA) or distilled water (Lab2) to create a solution with 1200 cells/uL. This solution was
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then added to equal parts 50% sucrose solution for a final inoculum with 25% sucrose and 600
cells/uL. On the day of inoculation, bees were deprived of pollen for 2 h, transferred to
individual vials, presented with 15 pl of inoculum (~9000 pathogen cells, comparable to
concentrations encountered in nature; Schmid-Hempel & Schmid-Hempel, 1993) and observed
until the drop was consumed. Bees that did not consume the entire droplet of inoculum were
excluded from experiments.

Each bee was inoculated once, then housed in individual containers and provided the
pollen treatment for the duration of the trial (7 days). At Labl, we used worker bees from five
commercial colonies, starting trials on six dates from November 11 to December 10, 2019, for a
total of 252 bees (33 bees died and 17 escaped, resulting in final sample sizes ranging from n =
23 to 30 per diet treatment). At Lab2, we used workers from three colonies started over seven
dates from April 12 to May 6, 2020, for a total of 294 bees (22 bees died, resulting in final
sample sizes ranging from n = 37 to 40 per diet treatment). All diet treatments were evenly

distributed across dates and colonies in both institutions.

Crithidia bombi counts

We dissected bees and assessed C. bombi cell counts seven days after inoculation and
exposure to the pollen diet, a realistic timeframe for the infection to reach a representative
population size (Otterstatter & Thomson, 2006). To determine pathogen loads, we dissected the
bee gut and placed it in a 1.5 mL microcentrifuge tube with 300 pL of % strength Ringer’s
solution (Lab1) or distilled water (Lab2), which was then homogenized and left to settle for 4 hr.
We then placed a 10 pL aliquot of the supernatant on a hemocytometer (Hausser Scientific) and
counted the number of C. bombi cells under a compound light microscope at 400 to determine
cells per 0.02 pL of gut solution. We recorded daily mortality and measured marginal cell length
of the right forewing of each bee to estimate bee body size (Nooten & Rehan, 2020), which often
correlates with C. bombi infection intensity (Van Wyk et al., 2021).

Diet treatment consumption
Given that pollen deprivation can reduce C. bombi infections in B. impatiens (Conroy et
al., 2016; Logan et al., 2005), we measured the amount of pollen consumed during the treatment

phase from the second to the fourth day (48 hr) at Lab1 to verify that consumption did not
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explain differences in infection. Pollen was placed in the cap of a microcentrifuge tube inside
each housing container and weighed before being administered to the bee and again after 48 hr.

We did not measure consumption for this experiment at Lab2.

(b) Effects of pollen from other Asteraceae species

Pollen species and experimental methods

We compared the effect of pollen from ten species on C. bombi infections, including
seven Asteraceae that had not been tested previously and three control species. The seven new
Asteraceae were cocklebur (Xanthium strumarium), common sagebrush (Artemisia tridentata),
dandelion (Taraxacum officinale), dog fennel (Eupatorium capillifolium), eastern baccharis
(Baccharis halimifolia), marsh elder (Iva annua), and short ragweed (Ambrosia artemisiifolia),
selected based on their commercial availability; all were hand-collected and sourced from
Stallergenes Greer (Lenoir, North Carolina, USA). Although the pollen from these species may
not necessarily be regularly collected by bumble bees in nature, our goal here was to assess the
generality of Asteraceae pollen effects on C. bombi infection. The three control treatments were
sunflower (Helianthus annuus; Asteraceae positive control), buckwheat (Fagopyrum esculentum;
non-Asteraceae negative control), and red maple (4cer rubrum; non-Asteraceae negative control;
Table S2). Sunflower and buckwheat are standard positive and negative controls used in previous
experiments (Fowler et al., 2020; Giacomini et al., 2018; LoCascio et al., 2019), but they were
honey bee-collected and obtained from a different source (Changge Hauding Wax Industry,
China Co. LTD) than the other species tested. Thus, we included red maple as a negative control
that was hand-collected and from the same source as the other Asteraceae pollens but in a
different family (Sapindaceae). Sunflower and buckwheat pollen pellets were first ground using
a coffee grinder and then mixed with distilled water to produce a paste that could be fed to bees.
The other pollen species were received in powder form and directly mixed with distilled water to
produce a paste, which was then mixed with 30% sucrose solution to reach a similar consistency
as the sunflower and buckwheat pollen pastes, which were honey bee-collected and thus
naturally mixed with nectar (Table S2).

Because it is logistically challenging to conduct bioassays with more than 7 treatments

simultaneously, experiments at Labl and Lab2 each assessed 3-4 of the Asteraceae pollen
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species plus the same three control pollen species. Thus, we do not compare all the Asteraceae
pollens to each other, but instead assess their effectiveness compared to the same control
treatments. Trials took place in 2021 on five dates between January 13 — 27 at Labl and six dates
between January 12 — February 9 at Lab2. While we began with equal sample sizes within each
institution and pollen species treatment, final sample sizes differed due to bee mortality or escape
(Table S2). In both institutions, bees from three commercial colonies were used, equally

distributed among treatments.

Pollen consumption, C. bombi inoculation and counts

We measured the amount of pollen consumed as described above in (a). We also
estimated evaporation in the pollen treatments by including containers with pollen but no bees
for each pollen treatment (n = 14 in Labl and » = 5 in Lab2). We first calculated the linear
regression of the final (evaporated) pollen weight predicted by initial pollen weight separately
for each pollen treatment in the absence of bees (Figure S4). From these linear regressions we
estimated the predicted final pollen weight for each replicate due to evaporation, based on the
initial pollen weight. We then subtracted the predicted final weight from the measured final
weight to estimate consumption after accounting for evaporation. Crithidia bombi inoculation

and counts were completed as described above in (a).

(c) Effect of Asteraceae pollen spine length

Measuring Asteraceae pollen spine length

To evaluate whether Asteraceae pollen spine length influenced C. bombi infection
intensity, we generated images of each pollen species used to answer question (b) using
Scanning Electron Microscopy (SEM) at the Lab1 Institute for Applied Life Sciences. For each
pollen species, we measured and averaged the values from five spines on each of five pollen
grains from each plant species to obtain the mean pollen spine length using ImageJ (Abramoft et

al., 2004).

Statistical analyses
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General approach

Statistical analyses were conducted using R version 4.1.0 (R Core Team, 2021). Data were
analyzed using mixed effects models (GLMM) using the glmmTMB package, which allowed us
to account for zero-inflation (Brooks et al., 2017). The responses evaluated were C. bombi count
(cells per 0.02 pL) and bee survival over the course of the experiments. Models varied in
distribution selected and whether bee size (wing marginal cell length) was included as a
covariate (based on model fit). We assessed model fit using the DHARMa package (Hartig,
2017). Significance of fixed effects was determined using Type 11 Wald y? tests (Fox &
Weisberg, 2018). We evaluated pairwise comparisons between treatments for C. bombi counts
and pollen consumption using Tukey’s honestly significant difference test from the multcomp
package (Hothorn et al., 2016). Lastly, we evaluated differences in survivorship of bees fed
different diet treatments using a Cox proportional hazards mixed effects model of the coxme
package, including survival as the response (death/days elapsed) (Therneau & Therneau, 2015).
For the survival analysis comparing different plant species, we evaluated the model with either
species as the explanatory variable or spine length (not included in same model since
intrinsically confounded). We evaluated pairwise differences across treatments in the survival
analyses using the emmeans functions of the emmeans package (Lenth et al., 2018). Model

details are described below.

(a) Effects of sunflower pollen exines, metabolites and whole pollen

Since the same treatments were used at Lab1 and Lab2, data for these experiments were
analyzed together. To evaluate the effects of sunflower pollen exines and metabolites on C.
bombi infection, we constructed a GLMM with a negative binomial distribution that included C.
bombi count as the response and pollen diet, lab (Lab1 or Lab2) and their interaction as
predictors. The model also included colony as a fixed effect and inoculation date as a random
effect. Including bee size negatively affected model convergence and thus bee size was not
included in the model. At Labl, on November 12, 2019, 15 bees were inoculated from a colony
that was later discovered to have C. bombi, and thus it is possible that these bees had been
exposed to the pathogen before the trial. The effect of diet treatment was unchanged when bees

from this colony were removed from the analyses (y* = 63.25, df = 6, P < 0.001 vs y*> = 65.25, df
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=6, P <0.001 when bees from the colony were included and excluded, respectively), and so the
complete dataset was retained to maintain the larger sample size.

For the Labl bees (where pollen consumption was measured), we evaluated the
relationship between pollen consumption and C. bombi counts by constructing a GLMM that
included C. bombi count as the response, and pollen diet, pollen consumption (initial — final
pollen weight), the interaction between pollen diet and pollen consumption, and bee size as fixed
effects. The model included a negative binomial distribution. Variance inflation in our model
was less than two, indicating low multicollinearity. We found no effect of pollen consumption on
C. bombi counts (x> = 0.77, df = 1, P = 0.380), or survival (y* = 0.95, df = 1, P = 0.330). There
was, however, a significant pollen consumption by pollen diet interaction on C. hombi count (see
Results). Thus, we report both the interaction term results (bees from Lab1, where pollen
consumption was measured), and results excluding consumption data (bees from both

institutions, given that consumption was not measured at Lab2).

(b) Effects of pollen from other Asteraceae species

We analyzed the effect of pollen species separately for each institution because Lab1 and
Lab2 compared different Asteraceae species (although they used the same controls). Our initial
GLMM included C. bombi count as the response, pollen species, pollen consumed and colony as
fixed effects, and inoculation date as the random effect. Including bee size negatively affected
model convergence and thus bee size was not included in the model. Variance inflation in our
model was less than two, indicating low multicollinearity. Given that there were no effects of
pollen consumption in the initial model on C. bombi counts (y* = 1.32, df =1, P=10.251 and y* =
0.14, df =1, P=0.709, for Labl and Lab2, respectively) or bee survival (4> = 0.22, df=1, P =
0.642 and > =0, df = 1, P =0.973, for Labl and Lab2, respectively), and that including pollen
consumption limited our sample size since we were unable to measure pollen consumption for all
bees (n = 13 bees without consumption data), the final model excluded consumption as a

covariate.

(c) Effect of Asteraceae pollen spine length
To assess whether pollen spine length explained variation in C. bombi infection, we

constructed a separate model that combined data from both institutions. We standardized the
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values of the Asteraceae pollen species before analyzing in a single model to account for
differences in baseline infection levels at the two institutions. To standardize, we first calculated
the average C. bombi count for each treatment at each institution and then divided the average
from each Asteraceae species and red maple by the buckwheat average (negative control) from
the same institution (hereafter, ‘standardized C. bombi count’). The reason we standardized by
buckwheat was that it was used in both institutions (and its relative effect on infection was
expected to be the same) and did not have spines. We did not standardize by red maple because
we wanted to include a non-Asteraceae treatment species with no spines that was from the same
source as all the non-sunflower Asteraceae species. We then constructed a linear regression
model that included standardized C. hombi count as the response variable, and pollen spine
length as the explanatory variable (aggregated at the species level for both; » =9, one for each
species). Given that sunflower and red maple had measurements from both institutions, we
randomly selected the lab from which we would take the measurement for each of the two
species (sunflower value was from Lab1 and red maple was from Lab2) to avoid

pseudoreplication.

RESULTS

(a) Effects of sunflower pollen exines, metabolites and whole pollen

Crithidia bombi counts differed with pollen diet (- = 63.25, df =6, P <0.001; Figure 1).
Bees fed sunflower exines or sunflower whole pollen exhibited the lowest C. bombi counts (81 —
94% lower counts than all other treatments; Figure 1). Furthermore, the effect of sunflower
exines added to wildflower pollen did not differ from the effect of whole sunflower pollen (z =
0.52, P=0.999), while sunflower metabolites added to wildflower pollen resulted in much
higher C. bombi counts (z = 6.05, P <0.001; Table S3; Figure 1). Consumption of whole
sunflower pollen reduced C. bombi counts relative to all diet treatments except sunflower exines
(z>4, P <0.001 for all except sunflower exines; Table S3; Figure 1). Similarly, bees fed
sunflower exines had significantly lower C. bombi counts than all other treatments (z> 3.07, P <
0.032), except for buckwheat exines, with which it did not statistically differ (z=2.16, P =
0.301; Table S3; Figure 1). Colonies significantly varied in C. bombi counts (y* = 23.32, df =7,

P =0.002). Institution and institution by pollen diet interaction did not explain C. bombi counts
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(x*=0.02,df=1, P=0.884 and x~ = 8.55, P = 0.201, respectively; Figure S5). Pollen diet did
not significantly influence bee survival (y> = 11.72, df =6, P=0.068 and y* = 1.77, df = 6, P =
0.940, for Lab1 and Lab2, respectively).

Although pollen consumption did not significantly influence C. bombi counts (y~ = 0.77,
df=1, P=0.380, at Labl where consumption was measured), there was a significant pollen
consumption by pollen diet interaction (%~ = 24.10, df = 6, P < 0.001), whereby bees that ate
more buckwheat whole pollen had significantly higher C. bombi counts and those that ate more
sunflower exines had significantly lower C. bombi counts than those fed the wildflower whole

pollen control (Table S4).

(b) Effects of pollen from other Asteraceae species

C. bombi counts varied significantly by pollen species (> = 76.37, df = 5, P < 0.001 and
1> =63.25,df =6, P<0.001, for Labl and Lab2, respectively; Figure 2). C. bombi counts did
not differ significantly between bees that consumed buckwheat and those fed red maple pollen
(Table S5). Bees fed sunflower pollen, our positive control known to reduce C. bombi, had 74 —
77% lower C. bombi counts than those fed buckwheat and red maple, our two negative controls,
in both institutions (Figure 2). Similarly, ragweed, cocklebur, dandelion, and dog fennel pollen
had lower C. bombi counts than buckwheat and red maple (average 77% lower, ranging from 62
— 92% lower; Table S5; Figure 2). Colonies differed in C. bombi counts at Lab2 (y> = 20.37, df =
2, P<0.001), but not at Lab1 (* = 2.53, df = 2, P = 0.282).

For the Labl trials, there was 25% mortality. While pollen species explained differences
in bumble bee worker survival (y> = 16.18, df = 5, P = 0.006), there were no significant pairwise
comparisons (Table S6). The highest survival was for bees fed buckwheat and the lowest for
those fed marsh elder, and this was the only marginally significant pairwise comparison (P =
0.05; Table S6). At Lab2, there was very low mortality (4% overall; Table S2) and no effect of
pollen treatment on survival (> =0, df =6, P = 1).

(c) Effect of Asteraceae pollen spine length
Spine length varied from 0.29 (sagebrush) to 5.25 um (sunflower) across the eight

Asteraceae species screened (Figure 3). However, spine length did not explain significant
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variation in C. bombi counts (F1,7=2.08, P = 0.192; Figure 4), nor differences in bee survival (y*

=0.12,df=1,P=0.729 and y* = 0, df = 6, P =1, in Labl and Lab2, respectively).

DISCUSSION

While pollen is an essential component of bee diets that varies widely in nutritional
value, morphology and secondary chemistry (Bedinger, 1992; Goulson, 2010; Palmer-Young et
al., 2019), we lack an understanding of how different aspects of this variation contribute to
pathogen resistance in pollen-eating animals. Here we show that sunflower exines rather than
metabolites reduced C. bombi infection in the common eastern bumble bee, Bombus impatiens.
In addition, we found that bees fed four of seven Asteraceae pollen species had 62 — 92% lower
C. bombi counts than those fed our non-Asteraceae controls. Our work suggests that the
antipathogenic effect of sunflower pollen is driven by its spiny exine, and that this effect may be
common in the Asteraceae family.

Although sunflower pollen strongly and consistently reduced C. bombi infections in
previous studies with B. impatiens (Fowler et al., 2020; Giacomini et al., 2021b; Giacomini et al.,
2018; LoCascio et al., 2019), a key question remained regarding whether the effect was a product
of chemical and/or mechanical means. Our results are consistent with Adler et al. (2020) in
finding no effect of sunflower secondary metabolites on C. bombi infections (Adler et al., 2020).
A possible explanation is that certain plant secondary metabolites lose medicinal properties
during passage through the insect midgut (Koch et al., 2022; Koch et al., 2019), while Asteraceae
pollen exines can pass through the bee gut largely intact (Peng et al., 1985; Vanderplanck et al.,
2018). Alternatively, it may be that chemistry is simply not responsible for the medicinal effect
of sunflower pollen.

Interestingly, we found that bees fed sunflower exines mixed with wildflower pollen
reduced C. bombi similarly to those fed whole sunflower pollen (Figure 1), indicating that pollen
exines are a primary driver of how sunflower pollen reduces infection in B. impatiens. Our
results raise the question of whether the spines are removing attached pathogen cells or
preventing attachment of free-swimming cells by scraping the hindgut. This could occur if the
spines injure and subsequently melanize the gut (Giacomini et al., 2021a), resulting in surfaces
that are more difficult for the flagellated pathogens to adhere on. Furthermore, the echinate

pollen could irritate the bee gut and subsequently increase expulsion of the pathogen, as previous
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work has found that consuming sunflower pollen increases the rate and volume of defecation
(Giacomini et al., 2022). Alternatively, the exines could directly impact pathogen cells and cause
flagellar retraction or detachment (the flagellum is key for mounting successful infections; Koch
et al., 2019). We note that while sunflower exines reduced C. bombi counts 81% more than
buckwheat exines, these differences were not significant, even though buckwheat exines resulted
in significantly higher C. bombi counts than sunflower whole pollen. These results warrant
further evaluation into the mechanism by which pollen can influence disease dynamics in the
host. Furthermore, sunflower and buckwheat exines differ in morphology (Figure 3), and thus
they likely occupied different amounts of space in the pollen diets. Future work should elucidate
how pollen surface area, structure, nutrition, and even exine thickness influence antipathogenic
effects. Determining how sunflower exines interact with the host and/or the pathogen to reduce
infection is the next step to increase our understanding of how diet mediates infection dynamics.
We found that pollen from multiple other species in the Asteraceae family reduced C.
bombi, although this was not the case for all the Asteraceae species we screened. In addition to
sunflower, four other Asteraceae species reduced C. bombi infection: ragweed, cocklebur,
dandelion, and dog fennel (Figure 2). The three Asteraceae that were not significantly different
from buckwheat in terms of their impact on C. bombi infection were marsh elder, sagebrush, and
baccharis (although the mean C. bombi counts of both marsh elder and baccharis were much
lower than for buckwheat; 61% and 58%, respectively). Interestingly, while seven of the eight
species screened were in the highly speciose Asteroideae sub-family, the one species in a
different sub-family (dandelion, Cichorioideae) yielded the lowest pathogen counts of all
species, suggesting that the pattern may be more widespread in the family. Specifically targeting
and screening species across the entire Asteraceae phylogeny would be an important future
direction to determine generality and any phylogenetic signal within the family. Given that we
did not find a significant relationship between spine length and relative infection in the eight
Asteraceae species we screened (Figure 3 and Figure 4), expanding the number of species to
include a broader range of spine lengths, and evaluating other metrics that vary among pollen,
such as grain shape and size, as well as spine density, could explain differences in effects on
pathogen counts. Thus, the ability to reduce C. bombi infection may be common in the species-

rich Asteraceae family, although the specific role of spines remains to be determined.
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Asteraceae plants, which have characteristically echinate pollen walls, are often
considered poor quality forage for bees, in part because they have low protein content, are
missing essential amino acids, and have poor digestibility (Nicolson et al., 2018; Nicolson &
Human, 2013; Vanderplanck et al., 2018). For example, B. impatiens workers die more quickly
when fed pollen from sunflower exclusively compared to broad bean (Vicia faba, Fabaceae),
rapeseed (Brassica napus, Brassicaceae) or summer squash and watermelon (Cucurbita pepo and
Citrullus lanatus, respectively, Cucurbitaceae) (McAulay & Forrest, 2019). Nonetheless, bumble
bees are generalist foragers and seldom exclusively forage on a single species. Consuming
Asteraceae pollen in combination with other types of pollen may compensate for its nutritional
deficits. For example, B. impatiens worker mortality on a mixed pollen diet (50% as opposed to
100% sunflower), was similar to non-sunflower diets (McAulay & Forrest, 2019), and sunflower
pollen reduced C. bombi infections even when mixed 50% with wildflower pollen (Giacomini et
al., 2021b). Furthermore, recent work found that greater abundance of sunflowers on farms was
associated with lower prevalence of C. bombi and higher queen production in experimentally
deployed B. impatiens workers, (Malfi et al. in press). As such, the inclusion of Asteraceae
pollen in diverse pollen diets has the potential to reduce disease loads in B. impatiens without
costs in terms of survival or reproduction. Additionally, consumption of dandelion pollen
strongly reduced C. bombi counts (Figure 2), bringing to light the importance of considering
Asteraceae “weeds” as potential resources for bees, especially in otherwise ecologically
depauperate environments (Campbell et al., 2017; Requier et al., 2015; Vaca-Uribe et al., 2021,
but see Vanderplanck et al., 2020).

Multiple plant families beyond Asteraceae have species with echinate pollen, including
Malvaceae, Caprifoliaceae, Cucurbitaceae, and Campanulaceae, and their spines can vary greatly
in length (e.g., <1 um to > 10 um; Konzmann et al., 2019). The effect of the pollen from these
other plant families on C. hombi infection is unknown, and pollens from species in these families
vary in how palatable they are to foraging bees. Pollen can vary greatly in the nutrition it
provides bees and the presence/intensity of chemical and physical protective barriers (Konzmann
et al., 2019; Palmer-Young et al., 2019; Vaudo et al., 2016); some types of pollen can even
impair nutrient absorption (Brochu et al., 2020). The buff-tailed bumble bee, B. terrestris, which
generally avoids consuming the echinate pollen from Alcea rosea (Malvaceae), will readily

collect the pollen after the spines are bent via vortexing, illustrating how spines can inhibit pollen
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consumption by bees (Lunau et al., 2015). However, in an assessment of pollen palatability
across multiple plant families, pollen size, spine length, and spine density were not strong
predictors of collectability by B. terrestris (Konzmann et al., 2019). Evaluating whether
consumption of echinate pollen from species across plant families also suppresses C. bombi
infection in bees will shed light on the generality of this medicinal effect.

Most of what is known about bee disease dynamics comes from studies on 4. mellifera,
B. impatiens, and B. terrestris (Schmid-Hempel, 1998), though there is evidence that even within
the bumble bees, there are differences in susceptibility and likelihood of pathogen transmission
(Ruiz-Gonzélez et al., 2012). The medicinal value of sunflower to pollinators beyond B.
impatiens remains largely unknown but may extend to at least some other bee species. For
example, sunflower pollen also markedly reduced C. bombi infections in B. terrestris, a highly
abundant and commercially available European bumble bee species (Koch et al. unpublished
data), although not always (Gekiére et al., 2022). Furthermore, the antiparasitic effects of
sunflower may extend beyond trypanosomatids, as Nosema ceranae infections in A. mellifera
were reduced by consumption of sunflower pollen (Giacomini et al., 2018) and honey (Gherman
et al., 2014). Similarly, three species of mason bees (Osmia) that are specialized on Asteraceae
pollen had significantly lower brood parasitism compared to congeners in the same habitat who
are generalist pollen provisioners or those specialized on Fabaceae (0% compared to 33% brood
parasitism; Spear et al., 2016). However, the effects of sunflower pollen are not evident in all bee
species; the patterns are less strong for B. bimaculatus and B. vagans, and nonexistent for B.
griseocollis (Fowler et al., 2022), highlighting the need to evaluate the medicinal effect of
sunflower pollen across a diversity of bee species in locations with different pathogen strains and
resource availabilities (Sadd, 2011).

Here we show that multiple species from one of the most speciose plant families in the
world reduced infections of the trypanosomatid gut pathogen C. bombi in the common eastern
bumble bee and identify the pollen exine as a mechanism driving this effect. Our results suggest
that sunflower exines as well as whole sunflower pollen could be effective non-chemical
methods of managing C. bombi infection in commercial rearing facilities. Assessing the effects
of spiny pollen from other plant families and evaluating the ecological consequences of plant
species composition in established pollinator habitat, will further advance our understanding of

bee disease dynamics and pollinator health.
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SUPPORTING INFORMATION
Additional supporting information may be found in the online version of this article.

Appendix S1. Pollen metabolite and exine extraction protocol.

Table S1. Ratios of pollen treatments to water.

Table S2. Pollen species, including family, spine length, collection method, and sample sizes for
C. bombi infection and survivorship models.

Table S3. Comparisons between sunflower whole pollen and other diet treatments (buckwheat
and wildflower whole pollen, as well as buckwheat and sunflower metabolites and exines added
to wildlflower pollen) on C. bombi cell counts.

Table S4. Comparison of pollen consumption by pollen diet interaction relative to wildflower
control.

Table S5. Pairwise comparisons of C. bombi counts between pollen species.

Table S6. Pairwise comparisons in survival between pollen species at Lab].

Figure S1. Experimental set-up housing the bumble bees for bioassays.

Figure S2. Visual representation of the seven pollen diet treatments.

Figure S3. Pictures of the pollen treatments used in the experiment comparing effects of pollen
exines, metabolites and whole pollen.

Figure S4. Differences in initial and final pollen weight for evaporation controls (no bees).

Figure SS5. Effect of diet treatment on C. bombi counts in bees one-week post-inoculation.



929
930
931
932
933
934
935

936

30

Figure 1. Boxplots showing the effect of diet treatment on C. hbombi counts in bees one-week
post-inoculation for bees from both Labl and Lab2. The sunflower and buckwheat exines and
metabolites (metab.) were added to a wildflower mix (Figure S2), and thus we also include
wildflower pollen (WF) as a separate control. Whole pollen refers to pollen diets that were
exclusively wildflower, sunflower or buckwheat pollen. Data from both institutions were
analyzed together (as shown here) and visualized separately by institution in Figure S5 to show

consistency of patterns. Letters above bars indicate significant differences (Table S3).
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Figure 2. Boxplots showing effect of pollen species treatment on C. bombi counts in bees one-
week post-inoculation at A) Labl and B) Lab2. All pairwise comparisons between pollen species
can be found in Tables S5; data analyzed separately for each institution. Letters above bars

indicate significant differences (Table S5).
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Figure 3. SEM images of pollen from plant species used in experiments. A) buckwheat
(Fagopyrum esculentum; Polygonaceae), B) red maple (4cer rubrum; Sapindaceae), C)
sagebrush (Artemisia tridentata; Anthemideae, Asteraceae), D) ragweed (Ambrosia
artemisiifolia; Heliantheae, Asteraceae), E) dog fennel (Eupatorium capillifolium; Eupatorieae,
Asteraceae), F) dandelion (Taraxacum officinale; Cichorieae, Asteraceae), G) cocklebur
(Xanthium strumarium; Heliantheae, Asteraceae), H) marsh elder (/va annua; Heliantheae,
Asteraceae), 1) baccharis (Baccharis halimifolia; Astereae, Asteraceae), and J) sunflower

(Helianthus annuus; Heliantheae, Asteraceae). Spine lengths in Table S2.
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Figure 4. Correlation between pollen spine length and C. bombi counts, standardized by counts

in bees fed buckwheat pollen (BW). There is one data point for sunflower and for red maple even

though those species were screened in both institutions (one institution randomly selected to

represent each species). The confidence interval corresponds to standard error. Dashed line

indicates that P > 0.05.
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