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Abstract—Bumble bees (Bombus spp.) are important pollinators for both wild and

DOI: 10.26786/1920- agriculturally managed plants. We give an overview of what is known about the
7603(2023)713 diverse community of internal potentially deleterious bumble bee symbionts,

including viruses, bacteria, protozoans, fungi, and nematodes, as well as methods
Received 19 August 2022, for their detection, quantification, and control. We also provide information on
accepted 17 January 2023 assessment of risk for select bumble bee symbionts and highlight key knowledge

gaps. This information is crucial for ongoing efforts to establish parasite- conscious
programs for future commerce in bumble bees for crop pollination, and to mitigate
the problems with pathogen spillover to wild populations.
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INTRODUCTION constitute a large proportion of the pollinator
fauna. There is reason for concern about their

Bumble bees (Bombiis species) are widespread status, as declines have been reported around the
globally, but most prevalent and diverse at high world (Arbetman et al. 2017; Graves et al. 2020;
altitudes and high latitudes, where they can Soroye et al. 2020; Van Dooren 2019), and a North
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American species has been listed as endangered
and  hasn't been  seen  since 2006
(https://biologicaldiversity.org/w/news/press-

releases/elusive-pacific-northwest-bumblebee-

listed-as-endangered-2021-08-23/; accessed 18
January 2023). Bumble bees are important
pollinators for both wild and cultivated plants, and
there is now a thriving trade in commercial
colonies, shipped to many parts of the world, for
pollination of crops such as tomatoes, blueberries,
and raspberries, both in greenhouses and open
fields (Velthuis & van Doorn 2006). The loosely
regulated trade of commercial bumble bees has led
to the introduction of a variety of endoparasites,
with possible spillover to conspecifics and other
species in the wild bumble bee community, or to
native species when the commercial species are
non-native (Colla et al. 2006; Graystock et al.
2013b). We are still discovering the extent and
frequency of parasite spread to wild communities
through commerce, and the consequences of these
introductions for native bees. As a prelude to
potential regulation, such as a “clean stock”
mandate that bees be certified as parasite-free
before being shipped (Strange et al. 2023), it is
important to know the diversity of known bumble
bee endosymbionts, their impacts on hosts (when
known), and potential mechanisms for preventing
future introductions. Here we review the literature
and describe the diversity, pathology, and
detecion methods for bumble bee viruses,
bacteria, protozoans, fungi, and nematodes, as
well as associated knowledge gaps.

1) SYMBIONTS POTENTIALLY DELETERIOUS TO BUMBLE
BEES

In this section, we address some of the most
important, most commonly encountered, and best-
known potentially deleterious internal symbionts
of bumble bees (i.e., endosymbionts), particularly
those that are of interest in captive rearing
environments. This is far from a complete list (See
supplementary Symbiont List in Appendix I) but
interested readers who wish to learn about some of
the more obscure organisms associated with
bumble bees are encouraged to seek the works on
parasitism (Beaurepaire et al. 2020; de Miranda et
al. 2013; Macfarlane et al. 1995; Schmid-Hempel
1999) and bumble bee natural history (Alford 1975;
Goulson 2010). Additionally, we use the term
“parasite” broadly to refer to organisms of all taxa,
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including viruses, that sustain themselves at the
expense of their hosts and have the potential to
cause harm to their hosts, a definition which, for
our purposes, also encompasses the term
“pathogen”. Here we focus on known bumble bee
endosymbionts; a review of known bumble bee
ectosymbionts can be found in Evans et al. (2023).
Recommendations for implementing a clean stock
program to detect and prevent the spread of
parasites of concern in commercial rearing
facilities that pose a threat to wild bees can be
found in Strange et al. (2023).

VIRUSES

To date, all of the named viruses detected in
bumble bees have previously been reported from
honey bees. There are approximately 60 honey bee
viruses currently known, although next-
generation sequencing technologies are allowing
for the exploratory discovery of additional viruses
of managed honey bees and wild bees
(Beaurepaire et al. 2020; de Miranda et al. 2013;
Remmnant et al. 2017; Schoonvaere et al. 2016). A
single virus, perhaps specific to bumble bees, was
noted in three North American species in the 1980s
(present in B. pensylvanicus, B. impatiens, and B.

fervidus; absentin B. bimaculatus and B. vagans), but

nothing is known about these “entomopoxvirus-
like particles”, aside from their original description
(Clark 1982). Most honey bee-associated viruses
found in bumble bees are single-stranded,
positive-strand RNA (ss-RNA) viruses. The
structure of these ss-RNA viruses allows for the
diagnosis of active replication through detection of
the mnegative (replicating) strand. Although
negative-strand detection has indicated that the so-
called honey bee viruses do replicate within
bumble bees (Fiirst et al. 2014; Li et al. 2011;
Radzeviditté et al. 2017), the etfects of infection on
individuals and colonies are largely unknowrn, and
it is not clear whether presence of these viruses is
maintained largely through spillover or whether
substantial transmission occurs within the wild
bee community (Manley et al. 2015). Many honey
bee viruses persist within honey bee colonies as
non-apparent, chronic infections that exhibit
symptoms only when the colony is exposed to
additional stressors or intracuticular exposure,
such as seen with the strains transmitted by Varroa
mites (McMenamin et al. 2016). Although these
viruses are considered honey bee viruses, there is
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little known of their true host ranges or their ability
to cause disease in non-Apis hosts (Tehel et al.
2016).

Deformed Wing Virus (DWV) is one of the most
commonly detected honey bee viruses in both
Europe and North America (Dolezal et al. 2016;
McMahon et al. 2015). DWV is known to affect
colonies negatively and can be transferred by
feeding on infected pollen. Although infected
individuals often eclose as adults with crippled
wings, cryptic and asymptomatic infections are
known, and other factors can deform the wings of
bees during pupation, incuding infections of
Vairimorpha (Nosema) bombi (Rutrecht & Brown
2009). The first detection of the virus in bumble
bees was based on visual inspection of overt
pathology. In a commercial rearing facility in
Europe, about 10% of new B. ferrestris queens
exhibited characteristic crumpled wings upon
eclosion, and these, as well as asymptomatic honey
bees in a co-located apiary, were shown to be
harboring DWV (Genersch et al. 2006). The host
range of DWV might be quite broad, however, as
replicating DWV has been found in a number of
insect orders, including Blattodea and
Dermaptera, as well as in Varroa destructor, a
member of the class Arachnida and an ectoparasite
of honey bees (Gisder & Genersch 2016; Manley et
al. 2015). A recent study has documented the
ongoing potential replacement of genotypes of
DWV in honey bees (Paxton et al. 2022).

Using molecular means, DWV has been
detected across a broad spectrum of wild bee hosts
in many families. In the United Kingdom,
asymptomatic cases of DWV have been detected in
wild, flying individuals of B. ferrestris and B.
pascuorum, as well as in the wasp Vespula vulgaris
(Evison et al. 2012). Prevalence of DWV is often
quite high in some of the insect populations
surveyed, (e.g.. Apis mellifera (100%); B. terrestris
(29%), and the wasp V. vulgaris (30%)). although
other species of bumble bees surveyed at these
same sites were free of DWV (Evison et al. 2012).
DWYV has also been detected in North American
bumble bee species, including field-collected B.
ternarius and B. vagans, wild and lab-reared B.
huntii, and commercially sourced B. impatiens
(Levitt et al. 2013; Li et al. 2011; Sachman-Ruiz et
al. 2015; Singh et al. 2010). The virus has also been
observed in bumble bees from commercially
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sourced colonies in Europe (Evison et al. 2012;
Graystock et al. 2013b). In North America, active
replication of DWV has been observed in B. huntii,
B. impatiens, and B. vagans (Levitt et al. 2013; Li et
al. 2011). There were no measurable differences
between quantified levels of virus in wild bees and
wild-caught honey bees in a study in the United
States, although wild-caught honey bees had much
higher levels in a quantification study in the
United Kingdom (Dolezal et al. 2016; McMahon et
al. 2015). In a survey of B. atfratus in Colombia,
100% of the bees from seven nests screened for
parasites had DWV (Gamboa et al. 2015) and both
native and introduced species of Bombus in
Argentina were found to have a variety of viral
pathogens (Arismendi et al. 2021).

Few experiments have addressed the incidence
of disease in DWV-infected bumble bees, but DWV
has been shown to increase mortality in
experimentally infected individuals both alone
and with co-infection with the protozoan Apicystis
bombi (Fiirst et al. 2014; Graystock et al. 2016).
Although a laboratory study considering the
efficacy of proposed natural transmission routes
suggested that transmission in the wild may be
limited (Gusachenko et al. 2020; Streicher et al.
2023), research has demonstrated spillover from
honey bees to bumble bees (Tehel et al. 2022) and a
potential introduction with non-native bumble
bees (Arbetman et al. 2013). The closely related
Varroa destructor viruses (VDVs) and kakugo virus
(KV) are considered by some to be variants of a
DWV species complex (McMahon et al. 2015).
Alger et al. (2019) examined spillover of honey bee
viruses to wild bumble bees and found DWV and
Black Queen Cell Virus (BQCV) to be higher in
bumble bees foraging in areas where apiaries were
found. Additionally, they confirmed the presence
of these viruses on flowers near apiaries, which
indicates the potential for spread of bee viruses
due to shared flower use in agricultural landscapes
where managed bees are most commonly used.

Acute Bee Paralysis Virus (ABPV), Kashmir Bee
Virus (KBV), and Israeli Acute Paralysis Virus
(IAPV) are closely related and considered strains
of the same virus complex (AKI-complex) (Gisder
et al. 2009; McMahon et al. 2015). ABPV was the
first honey bee virus to be detected in bumble bee
hosts, and all bumble bee species tested are
susceptible to experimental infection and show
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classic symptoms, although its occurrence in
natural populations and effect on bumble bee
health through natural infection routes are
unknown (Bailey & Gibbs 1964). In honey bees,
ABPV causes trembling, loss of motor control, and
eventual death within a few days of infection
(Bailey & Gibbs 1964). ABPV is systemic but found
in high concentrations within the salivary glands
of honey bees and can be transmitted through
pollen, honey, and trophallaxis (Bailey & Gibbs
1964; Benjeddou et al. 2001). The virus is shed in
large quantities in feces and remains infectious for
months (Bailey & Gibbs 1964).

A recent survey in the United Kingdom found
ABPV to be the most common virus detected in
bumble bees, and that ABPV was more commeon in
bumble bees than in honey bees collected from the
same sites (McMahon et al. 2015). Commercial
colonies of B. impatiens in Mexico also tested
positive for ABPV (Sachman-Ruiz et al. 2015).
ABPV was detected in wild B. atratus in Colombia,
though in lower prevalence than other viruses in
the screening (Gamboa et al. 2015). Although KBV
has been reported from bumble bees in North
America and New Zealand, these records are
vague and do not indude which species were
infected (Singh et al. 2010; Ward et al. 2007).
However, one colony of commercial B. impatiens
tested positive for KBV in Mexico (Sachman-Ruiz
et al. 2015). KBV is detectable in feces, suggesting
this may be a relevant infection route for foraging
bees sharing floral resources (Hung 2000).

In addition to detection within Bombus spp.,
there is some information on the transmission and
virulence of viruses in the AKI-complex for
Bombus. IAPV causes shivering, paralysis, and
death in intected honey bees, with increased
mortality in the presence of Varroa (Gisder et al.
2009; Palacios et al. 2008). IAPV has been detected
in commercially reared B. impatiens, and cross-
infectivity studies suggest that transmission
between honey bees and bumble bees can occur
through shared food sources (Sachman-Ruiz et al.
2015; Singh et al. 2010). The route of infection may
be very important to the virulence of this virus
complex. Orally administered IAPV and KBV did
not induce mortality in infected B. ferrestris
individuals, but KBV-infected microcolonies
suffered slower colony establishment and lower
oftspring production, with the latter also seen for
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IAPV (Meeus et al. 2014). A subsequent study has
shown that oral administration can result in acute
infections with associated virulence, but at much
higher doses (Wang et al. 2018). Another study
showed that injections of as few as 20 particles of
IAPV into B. terrestris caused rapid mortality, with
all experimental bees dead after only eight days; in
contrast, bees injected with as many as 20,000
particles of another, unrelated virus, Slow Bee
Paralysis Virus (SBPV), showed no increase in
mortality over control bees (Niu et al. 2016). Yet,
SBPV virulence can be condition-dependent, with
even orally administered SBPV increasing B.
terrestris mortality under nutritional limitation
(Manley et al. 2015). SBPV has also been detected
in bumble bees from the United Kingdom, at a
slightly, but non-significantly, higher prevalence
than honey bees, whereas IAPV was not detected
in either host (McMahon et al. 2015).

In honey bees, Chronic Bee Paralysis Virus
(CBPV) 1is recognizable by the presence of
congregations of trembling bees at the hive
entrance, yet infections rarely impact colonies
unless other stressors, such as overcrowding or
nutritional stress, are also present (Allen & Ball
1996). Replicating CBPV has been detected in non-
Apis  organisms, including the mite Varroa
destructor, and the ant Camponotus vagus, which
opportunistically feeds on dead honey bees,
suggesting a wider host range for this virus thanis
currently documented (Celle et al. 2008). CBPV
was tied with ABPV for the most common virus
detected in commercial colonies of B. impatiens in
Mexico (Sachman-Ruiz et al. 2015), and it has also
been detected in native bumble bees in Argentina
(Fernandez de Landa et al. 2020) and Colombia
(Gamboa et al. 2015). Cloudy Wing Virus (CWV,
initially described as CW Particle) is a similar, but
likely unrelated virus (Bailey et al. 1980). There are
few data about the pathology of this virus, even in
honey bees. It appears to exist primarily as an
asymptomatic infection in honey bees, although
under some circumstances, it may cause rapid
mortality (Bailey et al. 1980; Carreck et al. 2010). In
Korea, the virus has been detected in captive, field-
deployed colonies of B. terrestris and B. ignitis, and
may have been an agent of mortality when present
in combination with other viruses, such as KBV
and Sacbrood virus (SBV) (Choi et al. 2010).
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Black Queen Cell Virus (BQCV) is one of the
most common honey bee viruses and has been
detected in multiple hymenopteran hosts,
including ants, wasps, and bees including miner
(Andrenidae), sweat (Halictidae), carpenter
(Xylocopa; Apidae), leaf-cutting (Megachilidae)
and bumble (Bombus; Apidae) bees (Levitt et al.
2013; Peng et al. 2011; Ravoet et al. 2014; Singh et
al. 2010; Zhang et al. 2012). The distribution of the
virus is largely unknown, but, due to its
prevalence in honey bees (e.g.. 98.5% of sampled
honey bees in Pennsylvania (Singh et al. 2010)), it
is expected to be widespread. Bumble bees from
commercial faciliies have been recorded
harboring the virus in the United States (Singh et
al. 2010), Mexico (Sachman-Ruiz et al. 2015), and
Argentina (Reynaldi et al. 2013), as have both
laboratory-reared and field-caught B. huntii in
Utah, United States (Peng et al. 2011), and wild
bumble bees in Colombia (Gamboa et al. 2015).
Replicating BQCV in bumble bees has also been
detected in multiple sites across Europe
(Radzevicitite et al. 2017). Field surveys show that
BQCV is common in both honey bees and bumble
bees in the United Kingdom (McMahon et al.
2015), but a study in lowa (United States) detected
very few bumble bees with the virus, in spite of
high prevalence in apiaries (Dolezal et al. 2016).
BQCV has been detected in pollen loads harvested
from honey bee workers (Singh et al. 2010), and in
wild bumble bees foraging near apiaries (Alger et
al. 2019; McNeil et al. 2020). BQCV replicates in the
tissues of the midgut of B. iuntii and is distributed
throughout the body, yet infected individuals
show no overt symptoms (Peng et al. 2011). In
honey bees, infection by BQCV is more detrimental
to larvae, with adults only suffering from infection
when coinfected with the microsporidian
Vairimorpha apis (Ball & Bailey 1999). If such age-
specific etfects of BQCV intection are also present
in bumble bees, it may be difficult to assess the
presence and etfects of BQCV infections, although
Salvarrey et al. (2021) were able to detect BQCV in
over 90% of B. panloensis workers in the wild.

Sacbrood virus (SBV) is a disease that causes
mortality in honey bee larvae. Infected individuals
cannot molt and eventually die, leaving distinctive
carcasses tull of virus-laden ecdysial fluid that are
usually removed from the colony by vigilant
workers (Bailey 1975). Although the etfect of SBV
infection on bumble bees is unknown, it has been
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detected in non-Apis hosts on three continents,
including in B. ternarius, B. wvagans, B. atratus,
Andrena spp., and the paper wasp Polistes metriciis
(Ravoet et al. 2014; Reynaldi et al. 2013; Singh et al.
2010). The virus can also be detected in pollen
collected by foraging honey bees (Singh et al.
2010), suggesting a possible transmission route to
captive-reared bumble bees. In a sample of 33 wild
bumble bee individuals from Iowa, SBV was the
most commonly detected virus of five tested for,
with 52% testing positive for SBV (Dolezal et al.
2016). However, there have not been any studies
that have tested for replicating strands of SBV or
examined the impacts of SBV infection on bumble
bees, so the impact of this virus is unknown
(Gisder et al. 2009).

Bumble bees have been surveyed for only a few
honey bee viruses, yet these pathogens appear
common among many species and across a wide
geographic range. There will likely be more honey
bee viruses detected in bumble bees, given that
others, such as Apis mellifera Filamentous Virus
(AmFV), have been detected in more distantly
related solitary bees, such as Andrena vaga, A.
ventralis, Osmia bicornis and O. cornuta (Ravoet et
al. 2014). AmFV was recently discovered in native
Bombus in the Andes (Plischuk et al. 2021).
Unraveling the infection dynamics, routes of
transmission, and distinct physiological and
colony-level effects of these viruses on bumble bee
hosts will be necessary to determine the impacts of
honey bee viruses on bumble bee hosts (Tehel et al.
2016).

BACTERIA

Little is known about bacterial diseases in
bumble bees, but early reports speculated that
pathogenic bacteria were responsible for some
larval mortality (Frison 1926). More recently there
has been a focus on the beneficial effects of core
bacteria associated with the gut of Apid bees
(Kwong & Moran 2016), and how these microbes
may aid in resistance against parasite infection
(Koch & Schmid-Hempel 2011a; Koch & Schmid-
Hempel 2011b; Mockler et al. 2018). While bacterial
diseases of honey bees such as American
foulbrood (Paenibacillus larvae) and European
foulbrood (Melissococcus  plutonins) can  be
devastating, there are few homologous reports of
bacterial infections in bumble bees (Fiinthaus et al.
2018). Many bacteria that have been found in
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bumble bees to date appear to be largely either
commensal or beneficial, though further work is
warranted on this topic. Bacteria that have been
identified from bumble bees include Bacillus cereus,
B. pumilus, Brevibacillus laterosporus, Burkholderia
cepacia, Enterobacter (formerly Aerobacter) cloacae,
Lysinibacillus (as Bacillus) fusiformis, Paenibacillus
glucanolyticus, Spiroplasma apis and S. melliferum
(Ahmed et al. 2007; Mactarlane et al. 1995; Marche
et al. 2016; Meeus et al. 2012; Pridal 2001; 2002;
Pridal et al. 1997; Schmid-Hempel 1999).

Spiroplasma  melliferum and 5. apis are
pathogenic bacteria that are associated with May
disease in honey bees and both are known to cause
mortality (Clark et al. 1985; Meeus et al. 2012).
Although both are normally associated with honey
bees, they have been detected on the surtace of
flowers and within the hemolymph and guts of
numerous flower-visiting insects, including B.
impatiens, B. pensylvanicus, B. pascuorum, B.
pratorum, and B. atratus, and the leaf-cutting bees
Osmia cornifrons and O. bicornis (Clark et al. 1985;
Gamboa et al. 2015; Meeus et al. 2012; Ravoet et al.
2014). The presence of high levels of bacteria, like
Spiroplasma spp., in bumble bee guts may indicate
their potential as a pathogen in bumble bees (Clark
et al. 1985), but this has not been verified. In honey
bee queens, E. cloacae causes B-melanosis, a disease
of the ovaries that sterilizes the queen (Fyg 1964),
but its effect in bumble bees is unrecorded
(Schmid-Hempel 1999). Bumble bees have rarely
been screened for the presence of Wolbachia, but
there are records of this bacterium being detected
in European bumble bee species (Evison et al.
2012; Gerth et al. 2015). The etfects of Wolbachia on
hosts are complex (Werren et al. 2008); it is
predominantly vertically transmitted and not
always pathogenic. To date, we have no
knowledge of the kind of association this
bacterium has with bumble bees. Research on
impacts of bacterial infections and microbiome
studies are urgently needed to understand better
how bacteria should be managed in a clean stock
program.

PROTOZOANS

The trypanosomatid Crithidia bombi is an
intestinal parasite found in species throughout the
genus Bombus, with a worldwide distribution
(Schmid-Hempel & Tognazzo 2010). The
distribution of this parasite within Bombiis remains
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relatively poorly studied and most information on
its pathology comes from B. terrestris and B.
impatiens. A close relative, C. expoeki, was described
from Bombus samples collected in both Europe and
North America and is assumed to be a similar
pathogen (Schmid-Hempel & Tognazzo 2010). In a
survey throughout the United States, C. bombi was
far more common than C. expoeki and co-occurred
in the same hosts (Tripodi et al. 2018). Similarly,
genetic data indicate another undescribed species,
nicknamed “C. mexicana”, that was detected in
bumble bee samples from southern Mexico
(Gallot-Lavallée et al. 2016), and additional
undescribed trypanosomatids in the United States
(Tripodi et al. 2018). In the US, C. bombi prevalence
is highly variable, but can be quite high, for
example ranging from 0 - 82 % in Massachusetts
(Gillespie 2010). An extensive survey of bumble
bees in the USA found Crithidia to be widespread,
yet at low prevalence across species at the sites
sampled (Cordes et al. 2012), however another
study found regional variation in infection rates
(Tripodi et al. 2018). In addition to in Bombus, C.
bombi has been detected in the non-Apidae hosts
Andrena vaga and Osmia bicornis in Europe (Ravoet
et al. 2014), including experimental evidence for
active replication in O. lignaria and M. rotundata
(Figueroa et al. 2021; Ngor et al. 2020), though
nearly nothing is known about the pathogenicity
of Crithidia in non-Bombus hosts (Figueroa et al.
2021). The honey bee trypanosomatid parasite
Lotmaria passim has been detected molecularly in
bumble bees from the United States, but may not
be a true parasite of bumble bees (Tripodi et al.
2018). Lotmaria passim has also been found in wild
bumble bees in the Andes mountains (Plischuk et
al. 2021).

Crithidia parasites are flagellated and are found
in the gut lumen of the host bee, anchoring to the
ileum epithelium with their flagellum (Koch et al.
2019). Infection in bumble bees can impair the
foraging abilities of infected workers (Gegear et al.
2005; Ofterstatter et al. 2005), reduce queen
hibernation survival (Fauser et al. 2017), and
reduce colony founding success (Brown et al
2003). Although acute mortality is rarely observed
(Brown et al. 2003), under conditions of nutritional
stress, intected workers are 50% more likely to
succumb to infections than their well-fed
counterparts (Brown et al. 2000). In general, the
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outcomes of infection are considered to be context-
and condition-dependent (Sadd & Barribeau 2013).

Crithidia is shed in the feces and can be
transmitted through feeding. Experimental
evidence shows that bumble bees can contract C.
bombi infections while feeding on flowers that have
been previously visited by infected bees (Adler et
al. 2020; Durrer & Schmid-Hempel 1994).
Transmission dynamics on flowers vary by plant
species and environmental conditions, with
deposition and acquisition for foraging B. impatiens
varying by flower parts, and exposure to UV
radiation significantly reducing pathogen survival
on tlowers (Figueroa et al. 2019). Moreover,
ditferences among plant species in transmission
potential for individual B. impatiens workers
(Adler et al. 2018) can affect colony-level infection
patterns (Adler et al. 2020), highlighting the role of
flowers in mediating transmission and prevalence
in this bumble bee species. However, there is very
limited understanding of C. bombi transmission
patterns via flowers beyond B. impatiens and B.
terrestris (Ruiz-Gonzalez et al. 2012). Bees from
commercial rearing facilities have tested positive
for this parasite upon delivery (Gegear et al. 2005;
Graystock et al. 2013b; Murray et al. 2013;
Otterstatter et al. 2005). Higher infection levels
were found in wild bumble bees near greenhouses
that had deployed commercial bumble bees than
in wild populations far removed from such sites,
lending support to the “spillover hypothesis”
(Colla et al. 2006; Graystock et al. 2014).

The neogregarine, Apicystis bombi, is a widely
distributed parasite of multiple bumble bee species
(Lipa & Triggiani 1996). In bumble bees, although
there are few experimental assessments of
virulence, the parasite can have severe effects.
Apicystis bombi decimates the fat body of infected
individuals, and field-collected infected spring
queens of European species die before founding
colonies (Jones & Brown 2014; Rutrecht & Brown
2008). Commercially sourced colonies of B.
terrestris were found to harbor this parasite,
suggesting a real danger of pathogen spillover of
this organism from captive to wild populations
(Graystock et al. 2013b). Unlike Crithidia, Apicystis
was not associated with greenhouse sites in a
Canadian study, although a study in the United
Kingdom did see higher prevalence of both
parasites near greenhouse sites (Colla et al. 2006;

J Poll Ecol 33(2)

Graystock et al. 2014). Population genetics of A.
bombi from Argentina, Colombia, Mexico, and
Europe also suggest that A. bombi in Argentina
may have originated from the recent importation
of non-native B. terrestris from Europe to Chile as
commercial pollinators (Aizen et al 2019;
Maharramov et al. 2013). However, B. terrestris has
not been documented in Colombia, thus the high
prevalence of A. bombi in South America might be
due to more complex factors (Gamboa et al. 2015).
Feeding experiments show that A. mellifera are
susceptible to A. bombi infections, and this parasite
has been infrequently reported from A. mellifera in
Europe, Japan, and South America (Graystock et
al. 2013a; Lipa & Triggiani 1996; Morimoto et al.
2013; Plischuk et al. 2011; Ravoet et al. 2014; Schulz
et al. 2019). Additionally, it has been detected in
European specimens of Andrena vaga, A. ventralis,
Heriades truncorum, Osmia bicornis, and O. cornuta
(Ravoet et al. 2014). Apicystis cryptica was recently
described from B. pascuorum from Belgium
(Schoonvaere et al., 2020), but this species has not
been reported from bees in the United States (Ivers
et al. 2022).

FUNGI

The microsporidian Vairimorpha (Nosema) bombi
(Tokarev et al. 2020) has a cosmopolitan
distribution (Cameron et al. 2016; Koch & Strange
2012; Li et al. 2011) and is found throughout the
genus Bombus; however, evidence suggests that
some species and/or subgenera are differentially
infected (Cameron et al. 2011; Cordes et al. 2012).
Furthermore, some declines of bumble species
have been linked to presumed epizootic events
involving V. bombi, including the recent declines of
the North American subgenera Bombiis sensit stricto
and Thoracobombus (Cameron et al. 2011; Malfi et
al. 2014). However, while the incidence of V. bombi
in North America has increased in recent times,
there is currently no evidence to support the
hypothesis that contemporary strains of the
parasite were exotic or introduced from Europe
(Cameron et al. 2016). Vairimorpha bombi has
frequently been detected in commercially sourced
colonies and  greenhouse-associated — wild
populations, but the evidence for spillover remains
inconsistent and inconclusive (Colla et al. 2006;
Graystock et al. 2013b; Murray et al. 2013;
Sachman-Ruiz et al. 2015; Whittington & Winston
2003).
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Infections of V. bombi occur through the
digestive tract, with spores usually concentrated in
the Malpighian tubules, the tissues of the midgut
and the fat body, although spores can also present
in muscles, and the accessory glands, ovaries,
accessory testes, and testes of reproductive adults
(Larsson 2007; Otti & Schmid-Hempel 2007).
Bumble bee colonies that are infected with V. bombi
can suffer from a reduction in reproductive
capacity (van Der Steen, 2008). Mortality is higher
in infected males, and the survivors produce fewer
viable sperm, while infected gynes exhibit swollen
abdomens and are more hesitant to mate than their
uninfected counterparts (Otti & Schmid-Hempel
2007). Intections of colonies early in the colony
cycle lead to an absence of the production of
sexuals (Otti & Schmid-Hempel 2008). However,
other studies have found V. bombi to have no effect
upon colony growth or reproductive output
(Whittington & Winston 2003). Much of what is
known about the pathology of V. bombi infections
is from a limited number of species (B. ferrestris
and B. lucorum), and species may be ditferentially
atfected by the disease (Brown 2017). For example,
although infected colonies of B. licorum were less
likely to produce gynes, when they were
produced, they were fully functional and capable
of mating, unlike the gynes produced in B.
terrestris colonies (Rutrecht & Brown 2009).
Recently, B. impatiens males were shown to have a
high tolerance to experimentally established V.
bombi infections (Calhoun et al. 2021).

Recent molecular screening of V. bombi in wild
bee commumnities across old fields and wildflower
strips in upstate NY (USA) found the pathogen to
be virtually absent across two years of sampling
(Figueroa et al. 2019; Graystock et al. 2020),
highlighting that factors that contribute to
ditfering prevalence rates are not sufficiently
understood. Conversely, bumble bees in
Argentina, Colombia, the United Kingdom, the
USA, and Uruguay have regularly tested positive
for V. ceranae (Nosema ceranae), with low/absent
prevalence of V. apis (Nosema apis), (Arbulo et al.
2015; Figueroa et al. 2019; Fiirst et al. 2014; Gamboa
et al. 2015; Graystock et al. 2014; Graystock et al.
2020; Plischuk et al. 2009); both V. ceranae and V.
apis are infective agents in honey bees.
Additionally, V. ceranae infections have been
confirmed infectious viamicroscopy in bumble bee
hosts from Argentina, Uruguay, and the United
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Kingdom (Brown 2017). Experimental feeding
experiments with B. ferrestris have shown that
bumble bees are susceptible to V. ceranae infection,
and that workers suffer increased mortality
(Graystock et al. 2013a). Bumble bees in China,
Thailand, and Mexico also carried V. ceranae, novel
strains of Vairimorpha that might be undescribed
species, and some species of Vairimorpha not
associated with bee hosts, but the infection status
of these novel detections remains unclear (Gallot-
Lavallée et al. 2016; Li et al. 2011; Sinpoo et al.
2019). A new genus and species of microsporidian,
Tubulinosema pampeana was recently described
from tissue infections in B. atratus hosts from
Argentina, and it has also been detected in the
same species in Uruguay (Plischuk et al. 2017;
Plischuk et al. 2015). The only microsporidians that
have been shown to cause true infections in wild
bumble bees are V. bombi, V. ceranae, and T.
pampeana (Brown, 2017). In addition to A. mellifera
and Bombus, V. ceranae has been detected in wild
European specimens of Andrena ventralis, Heriades
truncorum, Osmia bicornis, and O. cornuta (Ravoet et
al. 2014), with increasing evidence of active
infections in O. bicornis (Bramke et al. 2019; Miiller
etal. 2019). The health impacts of V. ceranae on wild
bee communities, especially alongside co-
occurring stressors, are largely unknown.

There are a few records of ascomycetes fungi
infecting bumble bees, but many members of this
group are primarily saprophytic and only
opportunistically pathogenic, while others are
obligate pathogens of bees (Foley et al. 2014; Jensen
et al. 2013; Mactarlane 1976). MacFarlane (1976)
cultured a number of fungi from living and dead
bumble bees, including a species of Aspergillus, but
did not show that these fungi were capable of
causing infection. In honey bees, Aspergillus
species are the causative agents of stonebrood, a
rarely observed larval malady of honey bees (Foley
et al. 2014). On the whole, the Aspergillus are
considered more saprophytic than pathogenic, but
many species are capable of infecting
immunocompromised hosts (both vertebrate and
invertebrates) and some strains have been shown
to be fully pathogenic to seemingly healthy honey
bees (Foley et al. 2014; Jensen et al. 2013;
Leatherdale 1970). The species Aspergillus candidis
and A. niger have been recorded from bumble bee
hosts, but their pathogenic roles are unclear
(Mactfarlane 1976; Schmid-Hempel 1999).
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The 28 species of Ascosphaera are known as bee
specialists and have been described from the nests
and larvae of dozens of wild bee species, with all
known cases of pathogenic Ascosphaera reported
from larvae and causing a suite of characteristic
symptoms leading to the common name
chalkbrood (Wynns et al. 2013). Ascosphaera apis is
the causative agent of chalkbrood, a larval disease
of honey bees, and fungal spores are commonly
found in the honey bee-sourced pollen fed to
captive bumble bees (e.g., Graystock et al. 2013b;
Maxfield-Taylor et al. 2015). However, recent
research has reported A. apis infecting adult
bumble bees in Oregon (United States) (Maxfield-
Taylor et al. 2015). In a captive-rearing experiment,
the body cavities of wild-caught queens that died
prior to producing colonies were filled with
vegetative and sporulating Ascosphaera species that
the authors genetically identified as A. apis.
Whether or not the fungus was responsible for the
death of the queens or whether bumble bee larvae
are also susceptible to the disease remains to be
seen. However, none of the ascomycetes recorded
from bumble bees have been conclusively shown
to be pathogenic by satistying Koch's postulates,
so their true status as pathogens in bumble bees is
uncertain (Macfarlane 1976).

Experiments to see whether bumble bees could
vector the biological control fungus Beanveria
bassiana throughout greenhouses have shown that,
at high doses, the fungus is capable of causing
mortality to bees (Kapongo et al. 2007). Similar
results were seen in efforts to use bumble bees as
vectors of Metarhizium anisopliae (Smagghe et al.
2013). It is unknown how frequent infections of
these fungi are in wild bumble bees, but these two
fungi have been isolated from bumble bees in
North America (Macfarlane 1976). Yeasts in the
genus Candida (many mnow classified as
Metschnikowia) have been cultured from bumble
bees, nests, and flowers, but these are typically
considered to be nectar yeasts, and likely only
facultatively pathogenic to bees (Batra et al. 1973;
Brysch-Herzberg 2004; Mactarlane 1976). There are
other sporadic records of entomopathogenic fungi
associated with bumble bees, including Hirsutella
sp., Acrostalagmus sp., Lecanicillium (formerly
Cephalosporium or Verticilium) lecanii, Geonyjces
(formerly Chryososporiiim) pannoriim,
Parascedosporium (formerly Doratomyces) putredinis,
Penicillium sp., and Isaria (formerly Paecilomyces)
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farinosus (Batra et al. 1973; Goulson 2010;

Macfarlane 1976; Schmid-Hempel 1999;
Zimmermann 2008). An unidentified mass of
hyphal growth was also described infecting the gut
tissue of living adult bumble bees collected in
Mlinois and Oregon (United States), but the
identity of this fungus remains unknown
(Kissinger et al. 2011).

NEMATODES

The nematode Sphaerularia bombi has a
worldwide distribution with infection records in
dozens of bumble bee species from North America,
South America, Europe and New Zealand (Colgan
et al. 2020; Goldblatt & Fell 1984; Lubbock 1861;
Lundberg & Svensson 1975; Macfarlane & Gritfin
1990; McCorquodale et al. 1998; Plischuk & Lange
2012; Poinar & Van Der Laan 1972). This parasite
exclusively infects bumble bee queens, and upon
infection, the queen is effectively sterilized.
Although infected queens may live as long as
uninfected queens (Mactarlane et al. 1995), they do
not initiate nests upon emergence, but rather
resume hibernaculum-seeking behavior (Alford
1969). Because infection with this parasite prevents
queens from initiating colonies, it has the potential
to impact populations severely.

Mated S. bombi females infect bumble bee
queens as they overwinter in soil cells. They
develop within the hemocoel of the host
throughout the winter, maturing upon bumble bee
emergence in spring. Mature, gravid females
control the corpora allata of host queens,
suppressing chemical signals that allow uninfected
queens to mature and seek nesting sites upon
emergence (Macfarlane & Griffin 1990). Each
female can produce over 100,000 eggs, which are
released and hatch in the hemocoel of the host
queen (Mactarlane & Griffin 1990). At the third
stage, juvenile nematodes burrow into the midgut
of the host. These juveniles are subsequently
excreted into shallow pits in the soil excavated by
the infected host queen, where they will mature
and wait for the next generation of overwintering
queens (Poinar & Van Der Laan 1972). Because the
nematodes drop into the soil to await transmission
to the next generation of queens, S. bombi is not
expected to be a pest of captive-reared bumble
bees.

There are few records of mermithid parasites in
bumble bee hosts, but they are geographically
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widespread, with records from North America,
South America, Europe, and Asia (Durrer &
Schmidhempel 1995; Kosaka et al. 2012; Kubo et al.
2016; MacLean 1966; Mullins et al. 2019; Plischuk
et al. 2017; Rao et al. 2017; Tripodi & Strange 2018).
Because the parasitic stages of mermithids are
devoid of morphological characters that would
allow their identification, the identity of these
parasites is largely unknown. One record of a
mermithid infecting a B. impatiens worker collected
in Massachusetts (United States) was identified to
the genus Pheromermis, but nothing is known of its
lite history or whether bumble bees are its primary
host (Rao et al. 2017). Like S. bombi, these parasites
require a free-living stage in the soil, so they are
unlikely to present an issue in rearing facilities.
Mermithids kill their hosts upon exiting the host’s
body, but with so few occurrences, they are
unlikely to have an impact on the population level
(Tripodi & Strange 2018).

2) DETECTION, IDENTIFICATION, AND QUANTIFICATION

GENERAL TECHNIQUES USED TO DETECT AND QUANTIFY
ENDOSYMBIONTS OF CONCERN

Detection of bumble bee parasites falls into two
major categories: molecular methods or visual
methods. Most parasite detection is destructive,
requiring that bees be killed prior to examination.
However, mature or transmitting infections of
some parasites, including S. bombi, Vairimorpha
spp., Crithidia spp., and A. bombi, can be visually
detected in feces, a non-lethal technique (Jones &
Brown 2014). For some parasites, quantification of
individual parasites in feces provides an accurate
estimation of the intensity of the established
intection, e.g., for Crithidia (Sadd 2011). However,
such a relationship has not been veritied for all
observable parasites detectable in the feces, and
false negatives may occur during early stages of
infection. In addition, low numbers of parasite
transmission stages may represent false positives,
where transmission stages, e.g., environmentally
resistant extracellular Vairimorpha spores, are just
passing through and are not from established
infections. This presents an issue for any analysis
where gut tissue is included and is a potential issue
in both visual and molecular detection approaches.
However, in closed systems, such as rearing
facilities, detection of parasites and pathogens in
the feces will likely represent actual infections.
Although tissues of the head and mesosoma can be
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infected, all known parasites can be detected by
examination of the tissues and hemocoel of the
metasoma. Ditferent parasites are typically
detected using ditferent techniques, but these are
often complementary. Larger organisms such as
nematodes are visible with light microscopy
during dissection under low magnification (10-
40x). This is often followed by an examination of
slide-mounted tissues or homogenates at higher
magnification (400x) to detect smaller organisms
(e.g., oocytes of Apicystis cryptica: Schoonvaere et
al. 2020). Finally, molecular methods can be used
to detect, identify, and quantify parasites of all
sizes from tissue extractions.

Before the development of molecular detection
techniques, visual detection with light microscopy
was the predominant mode of screening for
internal bumble bee parasites. Light microscopy
allows for the detection of parasites at 400x
magnification, encompassing a broad diversity of
organisms. To this day, microscopy continues to be
employed in the detection and quantification of
bumble bee parasites via the count of spores or
cells using a hemocytometer (Fries et al. 2013).
Some of the strengths of light microscopy include
that it is low-cost, requires little training to employ,
and most importantly, it can detect active
infections through tissue pathology. However,
there is a risk for false negatives as low-level or
early stage infections can be missed, suggesting
that  traditional light microscopy may
underestimate parasite prevalence (Blaker et al.
2014). False positives are also possible, especially
for less-experienced researchers who are not fully
aware of target parasite morphologies. In addition,
many pathogens are tissue-specific, thus requiring
the correct tissue to be examined for diagnosis
(Schmid-Hempel 1999). However, the primary
benefit of visual detection is the ability to diagnose
disease and disease intensity, rather than just the
presence of a potential disease-causing organism.
In all cases it is preferable that known positive
samples be observed under the set-up being used,
to ensure accurate identification and verify the
ability of the set-up to detect parasites and
pathogens of interest. For example, Crithidia spp.
require phase contrast microscopy for good
visualization. However, even then, detection by
observers untamiliar with cell morphology will be
aided by using fresh samples where some cells will
be motile.
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Polymerase Chain Reaction (PCR), developed
in 1985 is the most commonly employed
molecular technique for DNA amplification, and it
has been used to great effect to detect parasites in
both bumble bees (Blaker et al. 2014; Cordes et al.
2012; Huang et al. 2015; Koch & Strange 2012) and
humans (Yang & Rothman 2004). This method uses
short oligonucleotides, primers, that are designed
to hybridize with known genetic regions within
the genomes of targeted organisms. Samples that
fail to amplify are diagnosed as negative, and
samples that successtully amplify are diagnosed as
positive for the targeted parasite. Including control
regions that amplify bee DNA or cDNA in PCR is
a common quality control measure used to guard
against false negatives that can come about
through poor specimen handling, nucleotide
extraction or bad reactions. Positive controls
should also be included in PCR to ensure viability
of reactions. Similarly, the use of negative controls
that contain no DNA template can help guard
against false positives that usually stem from
laboratory contaminants. With the development of
primers for multiple targets that do not interfere
with one another during thermal cycling, PCR can
be multiplexed for the detection of multiple
pathogens simultaneously (Huang et al. 2015;
Procop 2007; Tripodi et al. 2018). One of the
strengths of PCR is that it can be used to detect
presence or absence of parasites at very low
intensities or in small sample volumes.
Quantitative PCR (qPCR) goes a step further,
amplifying and detecting the target sequence
simultaneously and, if properly calibrated,
yielding a quantitative measure of infection
intensity. For screening RNA viruses, reverse
transcriptase  PCR (RT-PCR) is wused, which
converts RNA to its complementary DNA strand
(cDNA), which is then used as template in PCR (de
Miranda et al. 2013). Standardized protocols for
PCR-based detection of a variety of common bee
pathogens have recently been released (de
Miranda et al. 2021).

In a double-blind methods comparison, PCR
was found to have an overall higher sensitivity for
detecting ~ human-pathogenic =~ microsporidia
compared to traditional light microscopy, though
both methods proved etfective (Rinder et al. 1998).
Likewise, Blaker et al. (2014) found significantly
higher sensitivity for detecting microsporidia in
bumble bees than light microscopy detected.
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However, increased sensitivity is not always
desirable. PCR methods do mnot distinguish
between exposure and infection, and dead or
inactivated parasites may still yield positive
results. Such sensitive methods can diagnose
samples as positive, regardless of the true infection
status within the host, thus positive PCR results
should be interpreted with this caveat in mind
(Brown 2017). PCR, qPCR, and RT-PCR assays can
be designed to use either species-specitic or broad-
range primers that can detect multiple members of
a targeted taxon, depending on the desired
identification level (Graystock et al. 2020; Mullins
et al. 2019; Procop 2007; Yang & Rothman 2004).
While broad-range primers allow for the discovery
of new organisms within a targeted taxon, one of
the major drawbacks of all primer-based detection
techniques is that the researcher will only detect
organisms or groups that are being targeted, and
that detection is limited to parasites for which
sequence data are available. However, post-
amplification analysis of PCR products from
broad-range primers through DNA sequencing
can be used to identify parasites to species,
generate additional data, and conduct analyses of
strain ditferences that can be wuseful in
understanding disease dynamics (Cameron et al.
2016).

Current advances in molecular technologies,
known as mnext-generation sequencing (NGS)
platforms, are beginning to allow for pathogen
screening and sequencing through exploratory
metagenomics (Gerth & Hurst 2017; Runckel et al.
2011). Exploratory work with the RNA-Seq
plattorm recently detected a number of known
bumble bee-associated organisms in two bumble
bee species, as well as two undescribed viruses in
O. cornuta (Schoonvaere et al. 2016). However, the
success of these NGS techniques depends on the
existence of reference databases, such as well-
curated sequence deposits, knowledge of the
pathology and natural history of the symbionts
detected and identified, as well as the techmnical
ability to process, analyze, and interpret the data
(de Magalhdes et al. 2010). As the use of these
methods increases, and databases of pathogen
sequences expand, NGS could provide unexplored
levels of pathogen screening abilities for bumble
bee research. However, despite their significant
value in these regards, NGS approaches would
currently be unfeasible for a rapid and high-
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throughput clean stock screening program, where
targeted visual or molecular approaches of known
parasites and pathogens of concern will be more
effective.

VIRUSES

Because of their small size (typically 20-30 nm
(James & Li 2012)), viruses are not visible with
basic microscopy and are primarily detected
through molecular methods (de Miranda et al.
2013). Using RT-PCR, specific primers can be
employed to determine the presence of a virus, and
the viral load can be quantified using calibrated
qRT-PCR (e.g., McMahon et al. 2015). In addition,
itis possible to run a multiplex RT-PCR and screen
for multiple RNA viruses simultaneously (Chen et
al. 2004). However, detecting the presence of a
virus is not equivalent to detecting a viral
infection. An advantage to the structure of many
ss-RNA viruses is that it is possible to screen for
their complementary strand, which, if found,
indicates active replication within the host (de
Miranda et al. 2013; Mazzei et al. 2014). This is not
possible for DNA-based parasites.

BACTERIA

Not all bacteria can be cultured on standard
media (Pridal 2001; Shrivastava 1982) and in
addition, while some can be easily viewed using
standard microscopy approaches, the
morphological delineation of bacterial pathogens
is difficult. Therefore, molecular methods are
commonly used for detection of bacteria, such as
Spiroplasma apis and S. melliferum (Meeus et al.
2012). Often, culture-based and molecular
methods are used in conjunction with one another
in order to determine physical and chemical
characteristics, experiment with inoculation and
host specificity, and resolve taxonomic issues
(Kwong et al. 2014; Kwong & Moran 2013; Praet et
al. 2018).

PROTOZOANS

The infective oocyst of neogregarines and the
motile stages of trypanosomatids can be detected
through microscopic examination of tissues, tissue
homogenates, or fecal samples at 400x. However,
these organisms have complex life cycles with
cryptic vegetative growth phases that can be easily
missed by microscopy, making molecular
detection methods more reliable. The gross
morphology of some protozoans makes their
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identification to broad groups rather simple, but
discerning species morphologically is impossible
under typical magnification. Morphological
differences that separate species can be seen with
scanning electron microscopy and other
specialized equipment (Liu et al. 1974; Schmid-
Hempel & Tognazzo 2010). Crithidia spp. are quite
small, typically less than 10 um long in all stages,
and some stages are highly mobile and visible
when alive (Schmid-Hempel & Tognazzo 2010). It
is important to note that while C. bombi has three
distinct morphological stages (amastigote:
spherical form with no visible flagellum;
choanomastigote: pear-like shape surrounding
flagellar pocket; and promastigote: large cells with
long flagellum (Logan et al. 2005; Ruiz-Gonzalez &
Brown 2006)), the vast majority of screening efforts
via microscopy focus on the promastigote stage,
potentially under-reporting infections of the other
morphological stages. Spores of neogregarines are
larger, 21-27 pym, and are easily visible at 400x (Liu
et al. 1974). Infections can be quantified by
counting oocysts in a hemocytometer (Human et
al. 2013). Broad-range primers have been
developed to detect trypanosomes, including
Crithidia spp., as well as neogregarines, including
Apicystis bombi (Meeus et al. 2010; Mullins et al.
2020; Schmid-Hempel & Tognazzo 2010). In
preliminary screening, a broad-range primer may
be used, then positives can be sequenced and
identified (Gallot-Lavallée et al. 2016). Broadly
screening and sequencing positive samples may
maximize the probability of detecting potential
pathogens, for groups that are likely to contain
unexpected or undescribed species, such as
Crithidia. A similar approach uses species-specific
primers coupled with broad-range primers,
allowing for the detection of unexpected species
(Stevanovic et al. 2016; Szalanski et al. 2016;
Tripodi et al. 2018).

FUNGI

Similar to other spore-producing pathogens,
visual detection of microsporidian spores at 400x
is common and spore intensities can be assessed in
slide-mounted tissues, homogenized gut samples,
or feces smeared onto a hemocytometer (Human et
al. 2013). The infective spores are the most readily
distinguishable life stage of the microsporidia, as
vegetative intracellular growth is cryptic and often
undetectable by microscopy; however, methanol
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fixation and Giemsa staining can reveal these
growth stages within tissue (Fries 1988). Spores of
most bee-infecting microsporidia species are
highly refractive in phase contrast microscopy and
approximately 5 um long. By scanning multiple
visual fields at an appropriate magnification (e.g.,
400x), repeated spore counts can be used to
quantify infection levels as a concentration of
spores per milliliter of homogenized tissue
(Human et al. 2013) or categorized on a relative
scale, such as the one used by Cordes et al. (2012)
for microsporidia: low infection when <2 spores,
moderate when 2-20 spores, and high infection >20
spores/ visual field (Cordes et al. 2012; Human et
al. 2013). Distinguishing ditferent species or even
genera of microsporidia using light microscopy
can prove difficult as the gross morphology of
spores is similar across the group, although
species-specific tissue pathology has been noted
(Plischuk et al. 2015). PCR has higher resolution for
detecting and distinguishing different
microsporidia species, and species-specific
primers have been developed for V. apis, V. ceranae,
and V. bombi (Blaker et al. 2014; Erler et al. 2012;
Graystock et al. 2020; Klee et al. 2006). Microscopy
and PCR are often used in combination to
maximize probability of detection while also
assessing presence and intensity of sporulating
infections, and are therefore complementary
approaches (Blaker et al. 2014; Calhoun et al. 2021).

Entomopathogenic fungi with hyphal growth,
such as chalkbrood (Ascosphiera spp.), are
uncommon in bumble bees and usually detected
visually, based on the presence of hyphae in the
abdominal cavity and the tissues of the alimentary
tract (Kissinger et al. 2011; Macfarlane 1976;
Maxfield-Taylor et al. 2015). Chalkbrood produces
visible hyphae that cover the bee carcass in late
stages of infection, but this pathology has only
been seen in larval infections of non-Bombis bees
(Schmid-Hempel 1999). Detection in bumble bees
could include visual inspection via microscopy at
low magnification (10-40x), examination of slide-
mounted tissues at higher magnification (200-
400x), culturing and isolation for morphological
identification of reproductive structures, as well as
molecular screening using broad-range or specific
primer pairs (James & Skinner 2005; Macfarlane
1976; Maxfield-Taylor et al. 2015).
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NEMATODES

Due to their relatively large size, bumble bee-
associated nematodes can be detected during
dissections of the metasoma at low magnification
(10—40x). Sphaerularia bombi is the most commonly
encountered nematode parasite in bumble bees,
although it is primarily restricted to queens
(Alford 1975; Mactarlane et al. 1993). The §-20 mm
long cucumber-like inverted uterus of a mature
female worm in the abdomen of the host is readily
identified through dissection (Alford 1969;
Plischuk & Lange 2012). Juveniles and eggs of S.
bombi can also be detected in the feces of bees and
quantified via a hemocytometer (Jones & Brown
2014). Mermithids are rarely recorded parasitizing
bumble bees, but are often large (e.g., 46 mm in
length) and easily detected during dissections at
low magnification (Rao et al. 2017). The parasitic
stages of mermithids lack the morphological
characters to distinguish species, thus molecular
characterization is recommended (Kubo et al. 2016;
Tripodi & Strange 2018).

DiscussioN

It is apparent that bumble bees have a
considerable number of endosymbionts, which can
be benign or cause sublethal or lethal pathology to
their hosts. We now have techniques for detection
and identification of most of these endosymbionts,
yet pathologies are understudied and the impacts
of detected pathogens are often unknown,
particularly in diverse bumble bee host species
beyond the relatively well-studied B. impatiens and
B. terrestris (Cameron & Sadd 2020). It is likely that
many species and strains remain to be described,
and there is insuffident effort devoted to
monitoring their populations in the wild. We have
strong evidence that the commercial trade, both
national and international, that has developed in
bumble bees for use in crop pollination has
facilitated the dispersal of many of these
endosymbionts to non-native ranges, including
around the world, and their introduction (through
spillover) to wild bees. Spillover from honey bees
(Apis mellifera) to bumble bees may also be a
significant source of infection (Alger et al. 2019;
Nanetti et al. 2021; Pislak Ocepek et al. 2021).

As we have pointed out, there are many
examples of knowledge gaps on the topic of
bumble bee endosymbionts of concern, with many
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recent discoveries. Some have been facilitated by
the development of new analytical techniques,
such as molecular screening. As additional surveys
utilizing these techniques are conducted it is likely
that additional species will be discovered, and that
we will learn more about their geographical
distributions. Just as plans are developing for
national monitoring program for native bees
(Woodard et al. 2020), plans should be laid for
monitoring the distribution, diversity, and
abundance of their parasites and pathogens.

Endosymbionts are only one category of
parasites and pathogens that can affect bumble
bees, and we address elsewhere the ectosymbionts
that can also infect them (Evans et al. 2023), as well
as the potential risk that hive products such as wax
and pollen pose to wild bumble bee and other
pollinators. Together, this large number of bumble
bee symbionts, in the context of a large and
growing national and international commercial
trade in these important pollinators, demonstrates
the need for regulations that will help to prevent
their spread, and the associated risk to wild
pollinators (Strange et al. 2023).
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