2023 IEEE International Conference on Service-Oriented System Engineering (SOSE) | 979-8-3503-2239-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/SOSE58276.2023.00025

2023 IEEE International Conference on Service-Oriented System Engineering (SOSE)

Vulnerability Analysis of Docker Hub Official
Images and Verified Images

Ruchika Malhotra
Department of Software Engineering
Delhi Technological Univeristy
New Delhi, India
ruchikamalhotra@dtu.ac.in

Abstract— Container technology is gaining significant attention
as compared to virtual machines due to an increase in the use of
cloud computing and containers use fewer resources as
compared to virtual machines. Docker is the most widely used
container technology that helps in managing and running
containers. Containers use images for execution that can be
created with the help of a docker file or can be downloaded from
various open-source repositories. Docker uses a Docker hub
repository that consists of official and verified images. As
containers share the host operating system, there is a need to
monitor the security of the images. In this paper, we are
analyzing the vulnerabilities in official and verified docker
images with the help of open-source vulnerability detection tools
such as anchore, aqua trivy, docker scan and jfrog xray. This
paper helps in identifying which types of images are more secure
based on the number of vulnerabilities and severity of
vulnerabilities and whether the number of pulls and number of
stars affects the number of vulnerabilities in images.

Keywords— Docker,
Vulnerabilities, Tools

Containers, Images, Security,

1. INTRODUCTION

The complexity of maintaining and managing application
services across large distributed computing environments is
minimized by cloud-based infrastructure. As cloud computing
is gaining a lot of attention, the use of virtual machine has also
increased. Since virtual machines provide a way to run
multiple operating system on a single device but virtual
machines require a lot of resources from the host. This is
where containers come into the picture as containers uses few
resources.

Containerization is a technique which is used to bind a
software system and its dependencies, binary files, libraries
and all the necessary files required to run the software into one
package which is called as a container. The main objective of
using containers is to deploy a software system on various
platform without any platform dependency issues and
compatibility issues. Docker is the most popular
containerization platform which reduces the deployment time
of software system so that developers quickly ship the
software into production phase.

Dockerhub is the publicly available repository which
consist of docker images (official and verified images).
Official images are published by docker team itself and
verified images are published by a certified publisher.
Dockerhub also provides a service through which developers
can share their images in private mode (with selected group of

Anjali Bansal
Department of Software Engineering
Delhi Technological Univeristy
New Delhi, India
anjalibansal791(@gmail.com

Marouane Kessentini
Department of Computer Science &
Engineering
Oakland Univeristy
Rochester, MI
kessentini@oakland.edu

users) or public mode (with whole community of dockerhub
users). One can reuse the existing image by pulling it from
dockerhub instead of building image from scratch.

As the docker images are maintained and updated by the
users, Docker doesn’t have any control on how frequently the
images (libraries and packages of images) get updated. The
images can go months and years without any updates. If any
image uses outdated libraries or any outdated packages, this
may introduce some vulnerabilities in the images and may
harm the security of the containers.

A vulnerability refers to any flaws and weaknesses in the
system due to which an attacker can gain control of the
system. These vulnerabilities can occur due to two reasons:
either there are some errors in code or there is some defect in
the design of the system. Vulnerabilities can be of various
types such as outdated packages, buffer overflow, SQL
injection, security misconfiguration etc. According to
OWASP, the most common security vulnerabilities are
cryptographic failures, broken access control, insecure design,
identification and authentication failures, outdated
components, software and data integrity failures, injection etc.

There are two terms docker images and docker containers.
Docker images and docker containers are almost same thing.
A docker image is a file which is a combination of binary files,
library files, and all the necessary dependencies required to
run an application. A docker container is a read/write copy of
a docker image. When we run a docker image it builds docker
container.

The growing use of containers has led to an increased need
to examine security related issues in containers. Containers are
more tightly integrated with the operating system of the host
as compared to virtual machines. Due to this there is a risk that
any container can access the sensitive and malicious data from
other containers or the host system itself. Therefore, there is a
need to examine the security issues in containers

The objective of this study is to analyze the security
vulnerabilities in official and verified images of docker hub
with the help of various open-source image scanning tools.
We have formulated following research questions:

e s there any clear difference between the total number
of vulnerabilities identified by various image scanning
tools in official and verified docker images?

e s there any clear difference between the type of
vulnerabilities (severity of vulnerabilities) identified in

2642-6587/23/$31.00 ©2023 IEEE 150
DOI 10.1109/SOSE58276.2023.00025
Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore. Restrictions apply.

official and verified docker images by various image
scanning tools?

e How many Common Vulnerabilities and Exposures
(CVEs) were published per year in National
Vulnerability Database (NVD) database for selected
images?

The remaining paper is structure as follows: Section 2
describes related work. Section 3 describes methodology used
in this paper to find vulnerabilities in docker images and tools
used to identify vulnerabilities. Section 4 describes
experimental results. In section 5, we describe conclusion and
future work.

II. RELATED WORK

The need for monitoring and controlling vulnerabilities in
docker images is growing as docker is gaining popularity day
by day. In this section, we will discuss previous studies that
have evaluated vulnerabilities in docker images.

There exists a number of container scanning tools such as
AppArmor [1], Anchore [2], Microscanner [3], Clair [4],
Cilium [5], JFrog Xray [6], Dagda [7], Aqua Trivy [8], Qualys
[9], Snyk [10], etc. which have been used to detect the security
vulnerabilities in containers. Javed and Toor [11] in their
study investigated the quality of various container scanning
tools based on coverage and accuracy. Efe et al. [12]
performed a detailed review of existing studies to identify the
most common CVEs, methods to detect vulnerabilities,
methods to detect DoS attack, and how to prevent docker
images from DoS attack.

Gummaraju et al. [13] analyzed security vulnerabilities in
docker hub official images. They identified that there exist
more than 30% of the official images which contains high
severity vulnerabilities. Zerouali et al. [14] analyzed the
relationship ~ between vulnerabilities in containers,
outdatedness of containers and buggy packages installed in
containers. They used technical lag to check the outdatedness
of containers. They identified that all studied Debian container
have vulnerabilities and buggy packages.

Shu et al. [15] introduced DIVA framework to analyze
security vulnerabilities in official and community docker
images. They identified that many images are outdated and
there exist more than 180 security vulnerabilities on average
in docker images. Zerouali et al. [16] analyzed that the
vulnerabilities in javascript packages might have negative
impact on docker hub images. Zerouali et al. [17] presented
ConPan, an automated tool to monitor and analyze
outdatedness, vulnerabilities, and bugs. This tool can be used
as a CLI or integrated with other processes through its python
APL

Gholami et al. [18] analyzed the package updation in
docker images. They shows that there is a median of 8.6
upgradation of packages and 2.1 downgrades of packages per
docker image. Wenhao and Zheng [19] analyzed docker
architecture and potential security risks in docker containers.
Huang et al. [20] performed a detailed analysis of existing
security mechanism and threats for containers. They also
introduced a framework for detecting the threats in docker
containers.

151

III. RESEARCH METHODOLOGY

This section describes the steps followed to detect the
vulnerabilities in docker images, tools used and images
selected for analysis. This study follows an explorative
methodology with a quantitative approach to collect and
analyze the data. We use container scanning tools to detect the
security vulnerabilities in official and verified docker images.
We collect number of vulnerabilities identified in docker
images, severity of identified vulnerabilities, unique CVEs,
and the year in which CVE is published using container
scanning tools. After collecting this data, we analyze this data
to find the differences in container scanning tools, the
differences in vulnerabilities in official and verified docker
images, and how many CVEs get published per year.

A. Selection of Container Scanning Tools

There exists a lot of static and dynamic tools to scan
images and containers in order to find vulnerabilities in
images. Javed and Toor [11] investigated different tools such
as Clair, Microscanner and Anchore for vulnerabilities in OS
and non OS packages in docker images. Nowadays aqua trivy
is used instead of Microscanner. We follow certain criteria to
select the container scanning tools. In this study, we chose
those tools that are popular, free of charge, and have been used
in earlier studies. Since trial versions of paid tools have limited
functionality therefore, we consider free of charge tools. We
use Anchore, Aqua Trivy, Docker scan, and Jfrog Xray to
identify the vulnerabilities in docker images. Table 1 shows
image scanning tools used and their characteristics. All the
tools used in this study can investigate both OS and non-OS
packages for vulnerabilities. Aqua Trivy and jFrog Xray tools
have information available regarding the database used in the
scanning process and from where the tool got its information
related to vulnerabilities.

TABLE L. TooLs USED
Tool Name OS Packages Non-OS Database
Packages Information
Anchore Yes Yes No
Aqua Trivy Yes Yes Yes
Docker Scan Yes Yes No
jFrog Xray Yes Yes Yes

Aqua Trivy vulnerability database collects information from
NVD (National Vulnerability Database), kube hunters, and
advisories from software vendors. jFrog Xray vulnerability
database collects information from NVD (National
Vulnerability Database), CVE (Common Vulnerabilities
Exposure) database, and security advisories from software
vendors and open-source communities.

B. Selection of Docker images

Docker hub consists of a mixture of official and verified
images. We consider both official and verified images on
docker hub. Official images are published by docker team
itself and verified images are published by a certified
publisher. In this study, we consider top 5 official images and
top 5 verified images for each selected official image from
docker hub. Images are selected based on number of pulls,
updation time period and number of stars. We choose ubuntu,
nginx, mongo, mysql, and postgres official docker images and
their corresponding top 5 verified images from docker hub.
Table 2 shows selected official images and verified images,
their number of downloads, number of stars, and latest
updation time. Based on the analysis of table 2, we can say

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore. Restrictions apply.

that official images are most downloaded and most frequently official and verified images. According to table 3, there is

used images as compared to verified images. a major difference between the total number of
vulnerabilities detected by each tool. We can analyze that
TABLE II. DOCKER IMAGES (OFFICIAL AND VERIFIED IMAGES) in most of the docker images, aqua trivy detects highest
Name of the Number of | Number of Updation number of Vulneral.)i.li.ties and jFrog Xray d.etects least
Image Pulls Stars Time number of vulnerabilities. Based on the analysis of table 3
Postgres 1B+ 10K+ 15 days ago and fig 1, we address first research question:
E;::fer:://sg::::: 4l igOJrM n ;?6 i\c;zy:r 222 RQI1: Is there any cle.a'r. differeqce betweer} the. total
bitnami/postgres- SOM+ 9 4 days ago number of vulnerabilities identified by various image
exporter scanning tools in official and verified docker images?
i +
L?E’Aifﬁ%‘?f:f;%;:;?.‘ v 5 2 332 aso Aqua Trivy identified the highest total number of
repmgr vulnerabilities (2300), anchore identified 2227
Ubuntu 1B+ 10K+ 6 days ago vulnerabilities, jfrog xray identified 1332 vulnerabilities,
ubuntu/apache2 IM+ 58 6 days ago and docker scan identified the lowest total number of
ubuntu/squid 1M+ 56 6 days ago vulnerabilities (1213) in selected docker official and
ubuntu/cor?ex 1M+ 3 3 months ago verified images.
ubuntu/redis 100K+ 18 6 months ago
Kfunm/pmmetheus 100K+ 40 2 months ago TABLEIL. TOTAL NUMBER OF VULNERABILITIES REPORTED BY
ongo 1B+ 9.6K 8 hours ago EACH TOOL
bitnami/mongodb 1B+ 216 4 days ago
circleci/mongo 10M+ 13 A year ago Name of the Anchore Aqua Docker jFrog
bitnami/mongodb- S0M+ 10 4 days ago Image Trivy Scan Xray
exporter Postgres 112 116 52 50
rapidfort/mongodb | S0K+ 15 A month ago bitnami/postgresql 101 104 52 32
percona/percona- 10M+ 37 A month ago circleci/postgres 208 211 92 82
server-mongodb bitnami/postgres- 81 86 45 18
Mysql 1B+ 10K+ 9 days ago exporter
circleci/mysql 100M+ 29 A days ago rapidfort/postgresql | 34 34 27 5
bitnami/mysql 100M+ 86 4 days ago bitnami/postgresql- | 101 104 52 32
bitnami/mysqld- 10M+ 5 4 days ago repmgr
exporter Ubuntu 18 18 10 3
rapidfort/mysql8-ib | SOK+ 0 4 days ago ubuntu/apache2 0 12 9 1
rapidfort/mysql SOK+ 14 10 days ago ubuntu/squid 0 14 10 3
Nginx 1B+ 10K+ 14 days ago ubuntu/cortex 77 63 14 57
bitnami/nginx 100M+ 159 6 days ago ubuntu/redis 20 20 11 3
bitnami/nginx- 10M+ 25 6 days ago ubuntu/prometheus | 74 82 38 43
ingress-controller Mongo 82 86 22 69
kasmweb/nginx 1M+ 6 4 days ago bitnami/mongodb 89 101 53 50
rapidfort/nginx 50K+ 3 6 days ago circleci/mongo 212 216 83 97
linuxserver/nginx S0M+ 193 7 days ago bitnami/mongodb- 83 83 45 17
exporter
rapidfort/mongodb | 42 53 37 25
We use the following steps to detect the vulnerabilities in percona/percona- 20 23 34 290
docker images: server-mongodb
Mysql 7 11 21 118
e Download and install docker desktop circleci/mysql 231 236 111 64
. . bitnami/mysql 80 81 43 31
e Download the selected images using docker pull bitnami/mysqld- 33 38 45 36
command. exporter
. rapidfort/mysql8-ib | 17 17 17 20
docker pull <image name> ragi dfort/misgl BN BN EN 2
e Download and install the selected tools Nginx ___ 140 144 102 22
bitnami/nginx 80 77 42 31
o Start the scan of the docker image bitnami/nginx- 99 89 52 16
ingress-controller
e Save the results such as image name, tool name, total kasmweb/nginx 79 76 46 105
number of vulnerabilities identified, and severity wise rapidfort/nginx 35 34 27 4
vulnerabilities. linuxserver/nginx 1 0 0 4

e Extract the CVE publication year in order to find

number of CVEs published per year. All the tools categorize the security vulnerabilities into

four types based on severity levels: Critical, High, Medium,
IV. RESULTS AND DISCUSSION and Low. Table 4 and fig 2 shows the severity wise
vulnerabilities in all the selected docker images. According to
table 4, some of the images have zero critical vulnerabilities
using all the selected tools and most of the images have higher
low severity vulnerabilities. On an average, official images
have less vulnerabilities than vulnerabilities in verified
images. So, we can say that official images are more secure as
compared to their corresponding verified images From fig 2,

In this section, we describe the results collected after each
scan of the images using container scanning tools. In this
study, we compare the tools performance based on total
number of vulnerabilities identified in docker images and
severity of vulnerabilities. Table 3 and fig 1 shows the total
number of vulnerabilities reported by each tool in selected

152

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore. Restrictions apply.

we can say that linuxserver/nginx is more secure as compared
to all the selected images as it has total 5 vulnerabilities using
all the selected tools. Based on the analysis of table 4 and fig
2, we address second research question:

RQ2: Is there any clear difference between the type of
vulnerabilities (severity of vulnerabilities) identified in
official and verified docker images by various image
scanning tools?

Most of the official images have high number of low severity
vulnerabilities. In most of the cases, official images have least
number of critical, high, and medium severity vulnerabilities
as compared to verified images. So, we can conclude that
official images are more secure as compared to verified
images.

TABLE IV. SEVERITY WISE VULNERABILITIES REPORTED IN EACH
IMAGE
Name of the Critical High Medium Low
Image
Postgres 4 60 27 239
bitnami/postgresql 2 35 20 232
circleci/postgres 68 162 118 245
bitnami/postgres- 2 30 20 178
exporter
rapidfort/postgresql | 0 5 6 89
bitnami/postgresql- | 2 35 20 232
repmgr
Ubuntu 0 0 16 42
ubuntu/apache2 0 0 4 9
ubuntu/squid 0 0 7 20
ubuntu/cortex 3 101 76 31
ubuntu/redis 0 0 14 40
ubuntu/prometheus | 0 41 112 84
Mongo 2 46 139 72
bitnami/mongodb 5 65 24 199
circleci/mongo 4 71 338 195
bitnami/mongodb- | 2 28 20 178
exporter
rapidfort/mongodb | 3 40 58 106
percona/percona- 6 87 175 99
server-mongodb

153

Mysql 2 44 74 37
circleci/mysql 61 155 94 332
bitnami/mysql 2 35 19 179
bitnami/mysqld- 2 45 26 179
exporter

rapidfort/mysql8-ib | 0 0 23 48
rapidfort/mysql 0 5 2 60
Nginx 8 40 89 271
bitnami/nginx 2 35 19 174
bitnami/nginx- 4 32 20 200
ingress-controller

kasmweb/nginx 31 176 90 9
rapidfort/nginx 0 5 2 93
linuxserver/nginx 0 3 1 1

During scanning of the docker images, we identify that
there are some vulnerabilities which occur most of the times
in all the images. CVE-2022-1271, CVE-2005-2541, CVE-
2022-0563, CVE-2019-9192, CVE-2017-11164, CVE-2022-
29458, and CVE-2019-8457 are some of the most identified
vulnerabilities in all the images using all the selected tools.
We identify total 342 unique vulnerabilities in all the images.
Fig 3 depicts the number of CVE ID published per year. Based
on fig 3, we can answer research question 3:

e RQ3: How many Common Vulnerabilities and
Exposures (CVEs) were published per year in National
Vulnerability Database (NVD) database for selected
images?

We identify total 342 unique vulnerabilities in all the
selected images. Although most of the vulnerabilities
identified are from 2022(155 total unique vulnerability), the
oldest vulnerability identified is from 2005. Also, 14
vulnerabilities are published in 2023 till now.

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore. Restrictions apply.

700
600
500
400
300
200

100

XUISU/IIAIISXNUI]
xuigu/jaoyprdea
XUISU/qaMuIsey]

**-SSISUI-XUISu/Iewiq

Xurgu;/rueuiq

XUuISN

1bsAwya0yprdea
qr-gibs&ur/y.1opprdex
J19310dx3-pbsAw/muewiq
[bsAw/wewq
[bsAw;/1992.410

[bsAIN

*-19AI9s-eu0d.13d/euodaod

qpoguowyaoypidea
193.10dx9-qpoduow/Turewiq
03u0u/1I[IID
qpoguow;/Tweuiq

o3uow

snayjowoad/nyungn
SIpaJ/myungn
X93.109/njungn
pmbs/mjungn
7oydede/njungn

nunqn

13w daa-[bsaadysod/ruewyq
[bsaa8)sod ya0yprdea
J19)10dx9-sda3)sod/mueuyiq
saag)sod /132110
[bsaa3ysod/ruewyq
$313)s04

jFrog Xray

Docker Scan

= Trivy

u Anchore

Total Number of Vulnerabilities Reported by Each Tool

Fig. 1.

rapidfort/nginx

bitnami/nginx-ingress-controller

rapidfort/mysql8-ib

bitnami/mysql ==

rapidfort/mongodb =

circleci/mongo

ubuntu/redis

ubuntu/squid

Ubuntu

rapidfort/postgresql

circleci/postgres

Postgres

200 300 400 500 600 700

100

Low

Medium

m Critical = High

Fig. 2. Severity Wise Vulnerabilities Reported in Each Image

154

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore. Restrictions apply.

180
160
140
120
100
80
60
40
20

2005 2007 2010 2011 2013 2014 2015 2017 2018 2019 2020 2021 2022 2023

Fig. 3. CVEs Published Per Year

V. CONCLUSION AND FUTURE WORK

This study analyze the security vulnerabilities in 5 official
images and their corresponding top 5 verified images. Official
and verified docker images from docker hub are selected
based on number of pulls and number of stars. We use
anchore, docker scan, aqua trivy, and jfrog xray to detect
vulnerabilities in docker images. We analyze that number of
pulls and number of stars does not affect the vulnerabilities in
docker images. We find that trivy detects the higher number
of vulnerabilities and docker scan detects the lowest number
of vulnerabilities. We also find that official images are more
secure as compared to verified images. We also analyze that
same CVE ID is detected with four different severity levels:
critical, high, medium and low. During the scanning of the
images, we identify that some of the vulnerabilities occur most
of the times in all the images. We may conclude that official
images are more secure than verified images and official
images are most frequently used images as compared to
verified images.

As there is a major difference between the total number of
vulnerabilities detected by each tool, there is a need to explore
why there is a big difference in the results of the tools. This
signifies the accuracy of the tools. The different severity levels
reported for the same vulnerabilities also require further
research.

REFERENCES

(1]

“Documentation Wiki AppArmor / apparmor GitLab.”
https://gitlab.com/apparmor/apparmor/-/wikis/Documentation.

“Container Vulnerability Scanning . Anchore.”

https://anchore.com/container-vulnerability-scanning.
[3] “MicroScanner: New Free Image Vulnerability Scanner for Developers
- Aqua.” https://www.aquasec.com/news/microscanner-new-free-
image-vulnerability-scanner-for-developers/.
[4] “Docker Image/Container Security Scan with Clair — Installation | by
Kinjal Rathod | System Weakness.”
https://systemweakness.com/docker-image-container-security-scan-
with-clair-installation-355f80201ef5.

“Cilium - Linux Native, API-Aware Networking and Security for
Containers.” https://cilium.io/.

[3]

(6] Tool -

“Software Composition
https://jfrog.com/xray/.

Analysis JFrog Xray.”

155

[7]

[12

[13

[14

[15

[16

[17

(s

[19

120

]

]

]

]

“GitHub - eliasgranderubio/dagda: a tool to perform static analysis of
known vulnerabilities, trojans, viruses, malware & other malicious
threats in docker images/containers and to monitor the docker daemon
and running docker containers for detecting anomalous activities.”
https://github.com/eliasgranderubio/dagda/.

“Trivy Open Source Vulnerability = Scanner | Aqua.”
https://www.aquasec.com/products/trivy/.
“Container Security | Qualys.”

https://www.qualys.com/apps/container-security/.

“What is container security? | Container Image Security | Snyk.”
https://snyk.io/learn/container-security/.

O. Javed and S. Toor, “Understanding the Quality of Container
Security Vulnerability Detection Tools.” arXiv, 2021. doi:
10.48550/ARXIV.2101.03844.

E. F. E. Ahmet, U. Aslan, and A. M. Kara, “Securing Vulnerabilities in
Docker Images,” International Journal of Innovative Engineering
Applications, vol. 4, no. 1, pp. 31-39, 2020.

J. Gummaraju, T. Desikan, and Y. Turner, “Over 30% of official
images in docker hub contain high priority security vulnerabilities,”
Technical Report, 2015.

A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On
the relation between outdated docker containers, severity
vulnerabilities, and bugs,” in 2019 ieee 26th international conference
on software analysis, evolution and reengineering (saner), 2019, pp.
491-501.

R. Shu, X. Gu, and W. Enck, “A Study of Security Vulnerabilities on
Docker Hub,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, 2017, pp. 269-280. doi:
10.1145/3029806.3029832.

A. Zerouali, V. Cosentino, T. Mens, G. Robles, and J. M. Gonzalez-
Barahona, “On the Impact of Outdated and Vulnerable Javascript
Packages in Docker Images,” in 2019 [EEE 26th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 619-623. doi: 10.1109/SANER.2019.8667984.

A. Zerouali, V. Cosentino, G. Robles, J. M. Gonzalez-Barahona, and
T. Mens, “ConPan: A Tool to Analyze Packages in Software
Containers,” in 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), 2019, pp. 592-596. doi:
10.1109/MSR.2019.00089.

S. Gholami, H. Khazaei, and C.-P. Bezemer, “Should you upgrade
official docker hub images in production environments?,” in 202/
IEEE/ACM 43rd International Conference on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER), 2021, pp. 101-105.

J. Wenhao and L. Zheng, “Vulnerability analysis and security research
of docker container,” in 2020 IEEE 3rd International Conference on
Information Systems and Computer Aided Education (ICISCAE), 2020,
pp. 354-357.

D. Huang, H. Cui, S. Wen, and C. Huang, “Security Analysis and
Threats Detection Techniques on Docker Container,” in 2019 IEEE 5th

International Conference on Computer and Communications (ICCC),
2019, pp. 1214-1220. doi: 10.1109/ICCC47050.2019.9064441.

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore. Restrictions apply.

