
Vulnerability Analysis of Docker Hub Official 
Images and Verified Images 

 
Ruchika Malhotra  

Department of Software Engineering  
Delhi Technological Univeristy 

New Delhi, India 
ruchikamalhotra@dtu.ac.in 

Anjali Bansal 
Department of Software Engineering 

Delhi Technological Univeristy 
New Delhi, India 

anjalibansal791@gmail.com 

Marouane Kessentini 
Department of Computer Science & 

Engineering 
Oakland Univeristy 

Rochester, MI 
kessentini@oakland.edu 

Abstract— Container technology is gaining significant attention 
as compared to virtual machines due to an increase in the use of 
cloud computing and containers use fewer resources as 
compared to virtual machines. Docker is the most widely used 
container technology that helps in managing and running 
containers. Containers use images for execution that can be 
created with the help of a docker file or can be downloaded from 
various open-source repositories. Docker uses a Docker hub 
repository that consists of official and verified images. As 
containers share the host operating system, there is a need to 
monitor the security of the images. In this paper, we are 
analyzing the vulnerabilities in official and verified docker 
images with the help of open-source vulnerability detection tools 
such as anchore, aqua trivy, docker scan and jfrog xray. This 
paper helps in identifying which types of images are more secure 
based on the number of vulnerabilities and severity of 
vulnerabilities and whether the number of pulls and number of 
stars affects the number of vulnerabilities in images. 

Keywords— Docker, Containers, Images, Security, 
Vulnerabilities, Tools 

I. INTRODUCTION  
The complexity of maintaining and managing application 

services across large distributed computing environments is 
minimized by cloud-based infrastructure. As cloud computing 
is gaining a lot of attention, the use of virtual machine has also 
increased. Since virtual machines provide a way to run 
multiple operating system on a single device but virtual 
machines require a lot of resources from the host. This is 
where containers come into the picture as containers uses few 
resources.  

Containerization is a technique which is used to bind a 
software system and its dependencies, binary files, libraries 
and all the necessary files required to run the software into one 
package which is called as a container. The main objective of 
using containers is to deploy a software system on various 
platform without any platform dependency issues and 
compatibility issues. Docker is the most popular 
containerization platform which reduces the deployment time 
of software system so that developers quickly ship the 
software into production phase.  

Dockerhub is the publicly available repository which 
consist of docker images (official and verified images). 
Official images are published by docker team itself and 
verified images are published by a certified publisher. 
Dockerhub also provides a service through which developers 
can share their images in private mode (with selected group of 

users) or public mode (with whole community of dockerhub 
users). One can reuse the existing image by pulling it from 
dockerhub instead of building image from scratch.    

As the docker images are maintained and updated by the 
users, Docker doesn’t have any control on how frequently the 
images (libraries and packages of images) get updated. The 
images can go months and years without any updates. If any 
image uses outdated libraries or any outdated packages, this 
may introduce some vulnerabilities in the images and may 
harm the security of the containers.  

A vulnerability refers to any flaws and weaknesses in the 
system due to which an attacker can gain control of the 
system. These vulnerabilities can occur due to two reasons: 
either there are some errors in code or there is some defect in 
the design of the system. Vulnerabilities can be of various 
types such as outdated packages, buffer overflow, SQL 
injection, security misconfiguration etc. According to 
OWASP, the most common security vulnerabilities are 
cryptographic failures, broken access control, insecure design, 
identification and authentication failures, outdated 
components, software and data integrity failures, injection etc. 

There are two terms docker images and docker containers. 
Docker images and docker containers are almost same thing. 
A docker image is a file which is a combination of binary files, 
library files, and all the necessary dependencies required to 
run an application. A docker container is a read/write copy of 
a docker image. When we run a docker image it builds docker 
container. 

The growing use of containers has led to an increased need 
to examine security related issues in containers. Containers are 
more tightly integrated with the operating system of the host 
as compared to virtual machines. Due to this there is a risk that 
any container can access the sensitive and malicious data from 
other containers or the host system itself. Therefore, there is a 
need to examine the security issues in containers 

The objective of this study is to analyze the security 
vulnerabilities in official and verified images of docker hub 
with the help of various open-source image scanning tools. 
We have formulated following research questions: 

 Is there any clear difference between the total number 
of vulnerabilities identified by various image scanning 
tools in official and verified docker images? 

 Is there any clear difference between the type of 
vulnerabilities (severity of vulnerabilities) identified in 

150

2023 IEEE International Conference on Service-Oriented System Engineering (SOSE)

2642-6587/23/$31.00 ©2023 IEEE
DOI 10.1109/SOSE58276.2023.00025

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

er
vi

ce
-O

rie
nt

ed
 S

ys
te

m
 E

ng
in

ee
rin

g 
(S

O
SE

) |
 9

79
-8

-3
50

3-
22

39
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

SO
SE

58
27

6.
20

23
.0

00
25

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore.  Restrictions apply. 



official and verified docker images by various image 
scanning tools? 

 How many Common Vulnerabilities and Exposures 
(CVEs) were published per year in National 
Vulnerability Database (NVD) database for selected 
images?  

The remaining paper is structure as follows: Section 2 
describes related work. Section 3 describes methodology used 
in this paper to find vulnerabilities in docker images and tools 
used to identify vulnerabilities. Section 4 describes 
experimental results. In section 5, we describe conclusion and 
future work.  

II. RELATED WORK 
The need for monitoring and controlling vulnerabilities in 

docker images is growing as docker is gaining popularity day 
by day.  In this section, we will discuss previous studies that 
have evaluated vulnerabilities in docker images.  

There exists a number of container scanning tools such as 
AppArmor [1], Anchore [2], Microscanner [3], Clair [4], 
Cilium [5], JFrog Xray [6], Dagda [7], Aqua Trivy [8], Qualys 
[9], Snyk [10], etc. which have been used to detect the security 
vulnerabilities in containers. Javed and Toor [11] in their 
study investigated the quality of various container scanning 
tools based on coverage and accuracy. Efe et al. [12] 
performed a detailed review of existing studies to identify the 
most common CVEs, methods to detect vulnerabilities, 
methods to detect DoS attack, and how to prevent docker 
images from DoS attack. 

Gummaraju et al. [13] analyzed security vulnerabilities in 
docker hub official images. They identified that there exist 
more than 30% of the official images which contains high 
severity vulnerabilities. Zerouali et al. [14] analyzed the 
relationship between vulnerabilities in containers, 
outdatedness of containers and buggy packages installed in 
containers. They used technical lag to check the outdatedness 
of containers. They identified that all studied Debian container 
have vulnerabilities and buggy packages.  

Shu et al. [15] introduced DIVA framework to analyze 
security vulnerabilities in official and community docker 
images. They identified that many images are outdated and 
there exist more than 180 security vulnerabilities on average 
in docker images. Zerouali et al. [16] analyzed that the 
vulnerabilities in javascript packages might have negative 
impact on docker hub images. Zerouali et al. [17] presented 
ConPan, an automated tool to monitor and analyze 
outdatedness, vulnerabilities, and bugs. This tool can be used 
as a CLI or integrated with other processes through its python 
API. 

Gholami et al. [18] analyzed the package updation in 
docker images. They shows that there is a median of 8.6 
upgradation of packages and 2.1 downgrades of packages per 
docker image. Wenhao and Zheng [19] analyzed docker 
architecture and potential security risks in docker containers. 
Huang et al. [20] performed a detailed analysis of existing 
security mechanism and threats for containers. They also 
introduced a framework for detecting the threats in docker 
containers. 

III. RESEARCH METHODOLOGY 
This section describes the steps followed to detect the 

vulnerabilities in docker images, tools used and images 
selected for analysis. This study follows an explorative 
methodology with a quantitative approach to collect and 
analyze the data. We use container scanning tools to detect the 
security vulnerabilities in official and verified docker images. 
We collect number of vulnerabilities identified in docker 
images, severity of identified vulnerabilities, unique CVEs, 
and the year in which CVE is published using container 
scanning tools. After collecting this data, we analyze this data 
to find the differences in container scanning tools, the 
differences in vulnerabilities in official and verified docker 
images, and how many CVEs get published per year. 

A. Selection of Container Scanning Tools 
There exists a lot of static and dynamic tools to scan 

images and containers in order to find vulnerabilities in 
images. Javed and Toor [11] investigated different tools such 
as Clair, Microscanner and Anchore for vulnerabilities in OS 
and non OS packages in docker images. Nowadays aqua trivy 
is used instead of Microscanner. We follow certain criteria to 
select the container scanning tools. In this study, we chose 
those tools that are popular, free of charge, and have been used 
in earlier studies. Since trial versions of paid tools have limited 
functionality therefore, we consider free of charge tools. We 
use Anchore, Aqua Trivy, Docker scan, and Jfrog Xray to 
identify the vulnerabilities in docker images. Table 1 shows 
image scanning tools used and their characteristics. All the 
tools used in this study can investigate both OS and non-OS 
packages for vulnerabilities. Aqua Trivy and jFrog Xray tools 
have information available regarding the database used in the 
scanning process and from where the tool got its information 
related to vulnerabilities. 

TABLE I.  TOOLS USED 

Tool Name OS Packages Non-OS 
Packages 

Database 
Information 

Anchore Yes Yes No 
Aqua Trivy Yes Yes Yes 
Docker Scan Yes Yes No 
jFrog Xray Yes Yes Yes 

 

Aqua Trivy vulnerability database collects information from 
NVD (National Vulnerability Database), kube hunters, and 
advisories from software vendors. jFrog Xray vulnerability 
database collects information from NVD (National 
Vulnerability Database), CVE (Common Vulnerabilities 
Exposure) database, and security advisories from software 
vendors and open-source communities. 

B. Selection of Docker images 
Docker hub consists of a mixture of official and verified 

images. We consider both official and verified images on 
docker hub. Official images are published by docker team 
itself and verified images are published by a certified 
publisher. In this study, we consider top 5 official images and 
top 5 verified images for each selected official image from 
docker hub. Images are selected based on number of pulls, 
updation time period and number of stars. We choose ubuntu, 
nginx, mongo, mysql, and postgres official docker images and 
their corresponding top 5 verified images from docker hub. 
Table 2 shows selected official images and verified images, 
their number of downloads, number of stars, and latest 
updation time. Based on the analysis of table 2, we can say 

151

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore.  Restrictions apply. 



that official images are most downloaded and most frequently 
used images as compared to verified images. 

TABLE II.  DOCKER IMAGES (OFFICIAL AND VERIFIED IMAGES) 

Name of the 
Image 

Number of 
Pulls 

Number of 
Stars 

Updation 
Time 

Postgres 1B+ 10K+ 15 days ago 
bitnami/postgresql 1B+ 196 5 days ago 
circleci/postgres 100M+ 31 A year ago 
bitnami/postgres-
exporter 

50M+ 9 4 days ago 

rapidfort/postgresql 100K+ 16 5 days ago 
bitnami/postgresql-
repmgr 

10M+ 20 5 days ago 

Ubuntu 1B+ 10K+ 6 days ago 
ubuntu/apache2 1M+ 58 6 days ago 
ubuntu/squid 1M+ 56 6 days ago 
ubuntu/cortex 1M+ 3 3 months ago 
ubuntu/redis 100K+ 18 6 months ago 
ubuntu/prometheus 100K+ 40         2 months ago 
Mongo 1B+ 9.6K 8 hours ago 
bitnami/mongodb 1B+ 216 4 days ago 
circleci/mongo 10M+ 13 A year ago 
bitnami/mongodb-
exporter 

50M+ 10 4 days ago 

rapidfort/mongodb 50K+ 15 A month ago 
percona/percona-
server-mongodb 

10M+ 37 A month ago 

Mysql 1B+ 10K+ 9 days ago 
circleci/mysql 100M+ 29 A days ago 
bitnami/mysql 100M+ 86 4 days ago 
bitnami/mysqld-
exporter 

10M+ 5 4 days ago 

rapidfort/mysql8-ib 50K+ 0 4 days ago 
rapidfort/mysql 50K+ 14 10 days ago 
Nginx 1B+ 10K+ 14 days ago 
bitnami/nginx 100M+ 159 6 days ago 
bitnami/nginx-
ingress-controller 

10M+ 25 6 days ago 

kasmweb/nginx 1M+ 6 4 days ago 
rapidfort/nginx 50K+ 3 6 days ago 
linuxserver/nginx 50M+ 193 7 days ago 

  

We use the following steps to detect the vulnerabilities in 
docker images: 

 Download and install docker desktop 

 Download the selected images using docker pull 
command. 

docker pull <image name> 

 Download and install the selected tools 

 Start the scan of the docker image 

 Save the results such as image name, tool name, total 
number of vulnerabilities identified, and severity wise 
vulnerabilities. 

 Extract the CVE publication year in order to find 
number of CVEs published per year. 

IV. RESULTS AND DISCUSSION 
In this section, we describe the results collected after each 
scan of the images using container scanning tools. In this 
study, we compare the tools performance based on total 
number of vulnerabilities identified in docker images and 
severity of vulnerabilities. Table 3 and fig 1 shows the total 
number of vulnerabilities reported by each tool in selected 

official and verified images. According to table 3, there is 
a major difference between the total number of 
vulnerabilities detected by each tool.  We can analyze that 
in most of the docker images, aqua trivy detects highest 
number of vulnerabilities and jFrog Xray detects least 
number of vulnerabilities. Based on the analysis of table 3 
and fig 1, we address first research question: 

RQ1: Is there any clear difference between the total 
number of vulnerabilities identified by various image 
scanning tools in official and verified docker images? 

Aqua Trivy identified the highest total number of 
vulnerabilities (2300), anchore identified 2227 
vulnerabilities, jfrog xray identified 1332 vulnerabilities, 
and docker scan identified the lowest total number of 
vulnerabilities (1213) in selected docker official and 
verified images.  

TABLE III.  TOTAL NUMBER OF VULNERABILITIES REPORTED BY 
EACH TOOL 

Name of the 
Image 

Anchore Aqua 
Trivy 

Docker 
Scan 

jFrog 
Xray 

Postgres 112 116 52 50 
bitnami/postgresql 101 104 52 32 
circleci/postgres 208 211 92 82 
bitnami/postgres-
exporter 

81 86 45 18 

rapidfort/postgresql 34 34 27 5 
bitnami/postgresql-
repmgr 

101 104 52 32 

Ubuntu 18 18 10 3 
ubuntu/apache2 0 12 9 1 
ubuntu/squid 0 14 10 3 
ubuntu/cortex 77 63 14 57 
ubuntu/redis 20 20 11 3 
ubuntu/prometheus 74 82 38 43 
Mongo 82 86 22 69 
bitnami/mongodb 89 101 53 50 
circleci/mongo 212 216 83 97 
bitnami/mongodb-
exporter 

83 83 45 17 

rapidfort/mongodb 42 53 37 25 
percona/percona-
server-mongodb 

20 23 34 290 

Mysql 7 11 21 118 
circleci/mysql 231 236 111 64 
bitnami/mysql 80 81 43 31 
bitnami/mysqld-
exporter 

83 88 45 36 

rapidfort/mysql8-ib 17 17 17 20 
rapidfort/mysql 21 21 21 4 
Nginx 140 144 102 22 
bitnami/nginx 80 77 42 31 
bitnami/nginx-
ingress-controller 

99 89 52 16 

kasmweb/nginx 79 76 46 105 
rapidfort/nginx 35 34 27 4 
linuxserver/nginx 1 0 0 4 

 

All the tools categorize the security vulnerabilities into 
four types based on severity levels: Critical, High, Medium, 
and Low. Table 4 and fig 2 shows the severity wise 
vulnerabilities in all the selected docker images. According to 
table 4, some of the images have zero critical vulnerabilities 
using all the selected tools and most of the images have higher 
low severity vulnerabilities. On an average, official images 
have less vulnerabilities than vulnerabilities in verified 
images. So, we can say that official images are more secure as 
compared to their corresponding verified images From fig 2, 

152

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore.  Restrictions apply. 



we can say that linuxserver/nginx is more secure as compared 
to all the selected images as it has total 5 vulnerabilities using 
all the selected tools. Based on the analysis of table 4 and fig 
2, we address second research question: 

RQ2: Is there any clear difference between the type of 
vulnerabilities (severity of vulnerabilities) identified in 
official and verified docker images by various image 
scanning tools? 

Most of the official images have high number of low severity 
vulnerabilities. In most of the cases, official images have least 
number of critical, high, and medium severity vulnerabilities 
as compared to verified images. So, we can conclude that 
official images are more secure as compared to verified 
images. 

TABLE IV.  SEVERITY WISE VULNERABILITIES REPORTED IN EACH 
IMAGE 

Name of the 
Image 

Critical High Medium Low 

Postgres 4 60 27 239 
bitnami/postgresql 2 35 20 232 
circleci/postgres 68 162 118 245 
bitnami/postgres-
exporter 

2 30 20 178 

rapidfort/postgresql 0 5 6 89 
bitnami/postgresql-
repmgr 

2 35 20 232 

Ubuntu 0 0 16 42 
ubuntu/apache2 0 0 4 9 
ubuntu/squid 0 0 7 20 
ubuntu/cortex 3 101 76 31 
ubuntu/redis 0 0 14 40 
ubuntu/prometheus 0 41 112 84 
Mongo 2 46 139 72 
bitnami/mongodb 5 65 24 199 
circleci/mongo 4 71 338 195 
bitnami/mongodb-
exporter 

2 28 20 178 

rapidfort/mongodb 3 40 58 106 
percona/percona-
server-mongodb 

6 87 175 99 

Mysql 2 44 74 37 
circleci/mysql 61 155 94 332 
bitnami/mysql 2 35 19 179 
bitnami/mysqld-
exporter 

2 45 26 179 

rapidfort/mysql8-ib 0 0 23 48 
rapidfort/mysql 0 5 2 60 
Nginx 8 40 89 271 
bitnami/nginx 2 35 19 174 
bitnami/nginx-
ingress-controller 

4 32 20 200 

kasmweb/nginx 31 176 90 9 
rapidfort/nginx 0 5 2 93 
linuxserver/nginx 0 3 1 1 

 

During scanning of the docker images, we identify that 
there are some vulnerabilities which occur most of the times 
in all the images. CVE-2022-1271, CVE-2005-2541, CVE-
2022-0563, CVE-2019-9192, CVE-2017-11164, CVE-2022-
29458, and CVE-2019-8457 are some of the most identified 
vulnerabilities in all the images using all the selected tools. 
We identify total 342 unique vulnerabilities in all the images. 
Fig 3 depicts the number of CVE ID published per year. Based 
on fig 3, we can answer research question 3: 

 RQ3:  How many Common Vulnerabilities and 
Exposures (CVEs) were published per year in National 
Vulnerability Database (NVD) database for selected 
images?  

We identify total 342 unique vulnerabilities in all the 
selected images. Although most of the vulnerabilities 
identified are from 2022(155 total unique vulnerability), the 
oldest vulnerability identified is from 2005. Also, 14 
vulnerabilities are published in 2023 till now. 

 
 
 
 
 
 

153

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore.  Restrictions apply. 



 
Fig. 1. Total Number of Vulnerabilities Reported by Each Tool 

 

 

Fig. 2. Severity Wise Vulnerabilities Reported in Each Image 

0

100

200

300

400

500

600

700

Po
st

gr
es

bi
tn

am
i/p

os
tg

re
sq

l
ci

rc
le

ci
/p

os
tg

re
s

bi
tn

am
i/p

os
tg

re
s-

ex
po

rt
er

ra
pi

df
or

t/p
os

tg
re

sq
l

bi
tn

am
i/p

os
tg

re
sq

l-r
ep

m
gr

U
bu

nt
u

ub
un

tu
/a

pa
ch

e2
ub

un
tu

/s
qu

id
ub

un
tu

/c
or

te
x

ub
un

tu
/r

ed
is

ub
un

tu
/p

ro
m

et
he

us
m

on
go

bi
tn

am
i/m

on
go

db
ci

rc
le

ci
/m

on
go

bi
tn

am
i/m

on
go

db
-e

xp
or

te
r

ra
pi

df
or

t/m
on

go
db

pe
rc
on

a/
pe
rc
on

a-
se
rv
er
-…

M
ys

ql
ci

rc
le

ci
/m

ys
ql

bi
tn

am
i/m

ys
ql

bi
tn

am
i/m

ys
ql

d-
ex

po
rt

er
ra

pi
df

or
t/m

ys
ql

8-
ib

ra
pi

df
or

t/m
ys

ql
N

gi
nx

bi
tn

am
i/n

gi
nx

bi
tn
am

i/n
gi
nx

-in
gr
es
s-
…

ka
sm

w
eb

/n
gi

nx
ra

pi
df

or
t/n

gi
nx

lin
ux

se
rv

er
/n

gi
nx

Anchore Trivy Docker Scan jFrog Xray

0 100 200 300 400 500 600 700
Postgres

circleci/postgres

rapidfort/postgresql

Ubuntu

ubuntu/squid

ubuntu/redis

mongo

circleci/mongo

rapidfort/mongodb

Mysql

bitnami/mysql

rapidfort/mysql8-ib

Nginx

bitnami/nginx-ingress-controller

rapidfort/nginx

Critical High Medium Low

154

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore.  Restrictions apply. 



 

Fig. 3. CVEs Published Per Year 

 
 

V. CONCLUSION AND FUTURE WORK 
This study analyze the security vulnerabilities in 5 official 

images and their corresponding top 5 verified images. Official 
and verified docker images from docker hub are selected 
based on number of pulls and number of stars. We use 
anchore, docker scan, aqua trivy, and jfrog xray to detect 
vulnerabilities in docker images. We analyze that number of 
pulls and number of stars does not affect the vulnerabilities in 
docker images. We find that trivy detects the higher number 
of vulnerabilities and docker scan detects the lowest number 
of vulnerabilities. We also find that official images are more 
secure as compared to verified images. We also analyze that 
same CVE ID is detected with four different severity levels: 
critical, high, medium and low. During the scanning of the 
images, we identify that some of the vulnerabilities occur most 
of the times in all the images. We may conclude that official 
images are more secure than verified images and official 
images are most frequently used images as compared to 
verified images.  

As there is a major difference between the total number of 
vulnerabilities detected by each tool, there is a need to explore 
why there is a big difference in the results of the tools. This 
signifies the accuracy of the tools. The different severity levels 
reported for the same vulnerabilities also require further 
research. 

REFERENCES 
 

[1] “Documentation · Wiki · AppArmor / apparmor · GitLab.” 
https://gitlab.com/apparmor/apparmor/-/wikis/Documentation. 

[2] “Container Vulnerability Scanning • Anchore.” 
https://anchore.com/container-vulnerability-scanning. 

[3] “MicroScanner: New Free Image Vulnerability Scanner for Developers 
- Aqua.” https://www.aquasec.com/news/microscanner-new-free-
image-vulnerability-scanner-for-developers/. 

[4] “Docker Image/Container Security Scan with Clair — Installation | by 
Kinjal Rathod | System Weakness.” 
https://systemweakness.com/docker-image-container-security-scan-
with-clair-installation-355f80201ef5. 

[5] “Cilium - Linux Native, API-Aware Networking and Security for 
Containers.” https://cilium.io/. 

[6] “Software Composition Analysis Tool - JFrog Xray.” 
https://jfrog.com/xray/. 

[7] “GitHub - eliasgranderubio/dagda: a tool to perform static analysis of 
known vulnerabilities, trojans, viruses, malware & other malicious 
threats in docker images/containers and to monitor the docker daemon 
and running docker containers for detecting anomalous activities.” 
https://github.com/eliasgranderubio/dagda/. 

[8] “Trivy Open Source Vulnerability Scanner | Aqua.” 
https://www.aquasec.com/products/trivy/. 

[9] “Container Security | Qualys.” 
https://www.qualys.com/apps/container-security/. 

[10] “What is container security? | Container Image Security | Snyk.” 
https://snyk.io/learn/container-security/. 

[11] O. Javed and S. Toor, “Understanding the Quality of Container 
Security Vulnerability Detection Tools.” arXiv, 2021. doi: 
10.48550/ARXIV.2101.03844. 

[12] E. F. E. Ahmet, U. Aslan, and A. M. Kara, “Securing Vulnerabilities in 
Docker Images,” International Journal of Innovative Engineering 
Applications, vol. 4, no. 1, pp. 31–39, 2020. 

[13] J. Gummaraju, T. Desikan, and Y. Turner, “Over 30% of official 
images in docker hub contain high priority security vulnerabilities,” 
Technical Report, 2015. 

[14] A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On 
the relation between outdated docker containers, severity 
vulnerabilities, and bugs,” in 2019 ieee 26th international conference 
on software analysis, evolution and reengineering (saner), 2019, pp. 
491–501. 

[15] R. Shu, X. Gu, and W. Enck, “A Study of Security Vulnerabilities on 
Docker Hub,” in Proceedings of the Seventh ACM on Conference on 
Data and Application Security and Privacy, 2017, pp. 269–280. doi: 
10.1145/3029806.3029832. 

[16] A. Zerouali, V. Cosentino, T. Mens, G. Robles, and J. M. Gonzalez-
Barahona, “On the Impact of Outdated and Vulnerable Javascript 
Packages in Docker Images,” in 2019 IEEE 26th International 
Conference on Software Analysis, Evolution and Reengineering 
(SANER), 2019, pp. 619–623. doi: 10.1109/SANER.2019.8667984. 

[17] A. Zerouali, V. Cosentino, G. Robles, J. M. Gonzalez-Barahona, and 
T. Mens, “ConPan: A Tool to Analyze Packages in Software 
Containers,” in 2019 IEEE/ACM 16th International Conference on 
Mining Software Repositories (MSR), 2019, pp. 592–596. doi: 
10.1109/MSR.2019.00089. 

[18] S. Gholami, H. Khazaei, and C.-P. Bezemer, “Should you upgrade 
official docker hub images in production environments?,” in 2021 
IEEE/ACM 43rd International Conference on Software Engineering: 
New Ideas and Emerging Results (ICSE-NIER), 2021, pp. 101–105. 

[19] J. Wenhao and L. Zheng, “Vulnerability analysis and security research 
of docker container,” in 2020 IEEE 3rd International Conference on 
Information Systems and Computer Aided Education (ICISCAE), 2020, 
pp. 354–357. 

[20] D. Huang, H. Cui, S. Wen, and C. Huang, “Security Analysis and 
Threats Detection Techniques on Docker Container,” in 2019 IEEE 5th 
International Conference on Computer and Communications (ICCC), 
2019, pp. 1214–1220. doi: 10.1109/ICCC47050.2019.9064441. 

0

20

40

60

80

100

120

140

160

180

2005 2007 2010 2011 2013 2014 2015 2017 2018 2019 2020 2021 2022 2023

155

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 13,2023 at 18:36:07 UTC from IEEE Xplore.  Restrictions apply. 


