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Abstract

Disinfectant decay by biofilms in distribution networks during stagnation can allow opportunistic
pathogens transmission and thus compromise drinking water safety. Applying phosphate-based
corrosion inhibitors to the system can exacerbate disinfectant decay by providing nutrients to
biofilms growing inside premise plumbings. Here we evaluate the impacts of corrosion inhibitors
on biofilms' structural and chemical properties that form in premise plumbing, and the resulting
implications for disinfectant decay. Two commonly used phosphate-based (phosphate blends and
phosphate) corrosion inhibitors were added separately to simulated drinking water for biofilm
development over one to two years. Optical coherence tomography (OCT) imaging showed that
the studied biofilms' thickness, porosity, and porous structure did not change after exposure to
free chlorine for 24 hrs or monochloramine for 120 hrs. Compared to other biofilms, phosphate-
based biofilms had the highest overall porosity due to their many connecting channels. The
phosphate-based biofilms consumed free chlorine or monochloramine at a faster rate than other
biofilms. Experimental results showed that phosphate-based biofilms consumed more
monochloramine after 96 hours of contact than other biofilms. A separate set of experiments
involving disinfectant decay with suspended biomass material, together with the OCT results,
provided parameters for a simplified quasi-first-order reaction-diffusion model so that predictive
modeling of decay in biofilms under stagnation conditions could be attempted without
parameter-fitting. The biofilm modeling results provided a close estimate for free chlorine decay
while underestimating monochloramine decay. In agreement with the experimental results, the
model results indicate that the phosphate-based biofilms led to slightly faster free chlorine
consumption and monochloramine consumption than the other biofilms and indicate that

diffusion limitation imposed by biofilm pore structure on disinfectant decay is crucial. The study
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results suggest that using phosphate-based corrosion inhibitors may lead to a rapid depletion of
residual disinfectant during stagnation.
1. Introduction

Biofilms are ubiquitous in drinking water distribution systems (DWDSs) (Bloetscher et
al., 2010). Drinking water aesthetics, such as color, taste, and odor, can deteriorate when biofilm
clusters detach into the DWDSs. Corrosion inhibitors, commonly added to decrease lead and
copper corrosion products in drinking water, are usually phosphate-based (about 94% of utilities
in the United States) and can provide nutrients to microorganisms grown as biofilms inside
DWDS and premise plumbing (Kogo et al., 2017), which connected the end points of DWDS
and consumers (Arnold et al., 2020). In compliance with the lead and copper rule, 54% of the
utilities in the US used corrosion inhibitors (Arnold et al., 2020). Residual disinfectants (free
chlorine and monochloramine) are required by USEPA to maintain microbial stability and
prevent opportunistic pathogen propagation in the DWDS and premise plumbing (Prest et al.,
2016, Rennecker et al., 2001, Wang et al., 2012). However, residual disinfectants can be depleted
by organic matter, biofilms, and pipe material in both large- and small-scale distribution systems,
further exacerbated by long stagnation and low flow rate devices implemented for water
conservation practice in premise plumbing (Buse et al., 2019b, Lautenschlager et al., 2010, Ley
et al., 2020, Li et al., 2019, Ling et al., 2018, Tolofari et al., 2021, Wang et al., 2012).
Opportunistic pathogens can find shelter in biofilms and increase the infection risk for water
users when the disinfectant concentrations are inadequate (Abdel-Nour et al., 2013, Cooper and
Hanlon, 2010, Declerck, 2010, Declerck et al., 2009, Farhat et al., 2012). The disinfectant decay
depends on multiple factors, including natural organic matter in the water, scaling extent on the

pipe surface, and the pipe material in the DWDS (Wang et al., 2013a, Xue and Seo, 2013).
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Disinfectant reactivity has been measured with single-cell cultures, suspended particles in
drinking water sources, single-species biofilm clusters, and biofilms harvested from simulated
drinking water sources (Boccelli et al., 2003, Du et al., 2022, Lee et al., 2011, Zhao et al., 2018).
Chlorine decay in large-scale DWDSs has been modeled based on these disinfectant reactivities.
At the same time, biofilms were always multi-species and developed under various water sources
and hydraulic regimes (Abokifa et al., 2016a, Abokifa et al., 2016b, Douterelo et al., 2016, Fish
etal., 2017, Fish et al., 2015, Zhu et al., 2020).

Kinetics of free chlorine decay is commonly modeled using first-order kinetics, in large-
scale distribution (e.g., Monteiro et al., 2014) and premise plumbing networks (Zheng et al.,
2015), and while chloramine decay is often modeled as first-order kinetic with additional
autodecay, more rigorous simulation requires significantly more complex approaches (Hossain et
al., 2022). In either case, biofilm presence has been indicated as an additional factor impacting
decay kinetics and disinfection progress (e.g., Buse et al., 2019a, Huang et al., 2020a), requiring
separate consideration of kinetics associated with the biofilm (Monteiro et al., 2014; Hossein et
al., 2022). Extracellular polymeric substance (EPS) composition of biofilms, affected by
hydraulic conditions and water constituents in the DWDS, exhibit different relative disinfectant
byproduct formation potentials after chlorine exposure (Liu et al., 2017). Water-filled pores and
channels in the biofilm matrix have been shown to accommodate the aqueous-phase transport of
chemicals, such as nutrients, oxygens, and disinfectants within single-species lab-grown biofilms
(Lee et al., 2018, Quan et al., 2022). Previous studies have shown that the penetration of free
chlorine into biofilms by diffusion is impacted by its strong oxidant nature that leads to a fast
reaction with biofilm material, while monochloramine can penetrate deeper into the biofilm

matrix due to its lower reactivity (Lee et al., 2018, Lee et al., 2011). These observations suggest
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that biofilm structure may play a significant role in disinfectant transport and effectiveness.
However, effective diffusion coefficients of mature biofilms depend on the structural
heterogeneity of biofilm, which can be altered by phosphorus addition, a common ingredient in
corrosion inhibitors (Davit et al., 2013, Fang et al., 2009, Quan et al., 2022). Thus, the effect of
biofilms' structure and chemical composition developed under these common corrosion
inhibitors on disinfectant decay should be studied.

To fill the knowledge gaps on the role of corrosion inhibitors on biofilm characteristics
and free chlorine and monochloramine consumption by these biofilms in the premise plumbing,
we 1) characterized the structure and chemical composition of biofilms fed by three corrosion
inhibition conditions using optical coherence tomography (OCT) and Fourier-transform infrared
spectroscopy (FTIR); 2) measured the reactivity of two disinfectants with biomass harvested
from three biofilms; 3) determined the disinfectant decay after stagnation contact with three
intact biofilms, and modeled decay as a reaction-diffusion process within the biofilm; and 4)
characterized the pore structure of the three biofilms by pore network analysis. Biofilms
developed under unmodified source water (local groundwater) were used as a control. Two
corrosion inhibitors, phosphate or phosphate blends, were chosen because of their popularity in
utility that preferred corrosion inhibitors (Arnold et al., 2020). These corrosion inhibitors were
added separately to the source water to investigate the differences in biofilm development

induced by source water chemistry and disinfectant demand.

2. Methods

A schematic of this study is shown in Figure 1.
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Figure 1 is inserted here.

2.1. Biofilm growth conditions

Biofilms were grown on coupon-holding polypropylene (PP) rods and polyvinyl chloride
(PVC) coupons, materials commonly found in premise plumbing systems. These rods and
coupons were inserted into three separate CDC reactors (BioSurface Technologies Corporation)
fed by groundwater with or without corrosion inhibitors. Groundwater, the drinking water source
in Champaign, IL, was passed through a green-sand filter to remove precipitate formed by
calcium and magnesium when groundwater is exposed to air. The original groundwater did not
contain disinfectants. Two chemical compositions were used in this study due to their popularity
in utilities: 1) phosphate (2 mg/L as PO4) and 2) phosphate blends (2.4 mg/L as POy4).
Groundwater without corrosion inhibitors was fed to a separate reactor as a control condition.
Sodium diphosphate (Fisher) was mixed with 10L groundwater at a final concentration of 2
mg/L as PO4to feed phosphate biofilm. Groundwater containing phosphate blends was prepared
by mixing sodium diphosphate (Fisher) and sodium metaphosphate (Fisher) in a 6:4 molar ratio
with 10L groundwater at a final concentration of 2.4 mg/L as PO4. These concentrations of
corrosion inhibitors are in the range of reported corrosion inhibitors used in the US (McNeill and
Edwards, 2002, USEPA, 2016). These feeding groundwater solutions were prepared every two
days and fed to the CDC reactors continuously at a flow rate of 1.3 mL/min. A stirrer in the CDC
reactor created a shear condition with a Reynolds number around 3570. The CDC reactors were
wrapped with aluminum foil and kept at an average temperature of 25 °C. The biofilms were

grown for over one year before being used in the free chlorine experiments. Although the
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biofilms were grown for over two years before being used in the monochloramine experiments,

these biofilms had similar chemical and porous characteristics (See results and Table 1S).

2.2. Biofilm porous structure characterization

Structures of the three studied biofilms were characterized by cross-sectional scans with a
dimension of 3.125 mm x 4.18 mm X 4 mm using optical coherence tomography (OCT). The
axial resolution of the OCT was around 8 um, and the lateral resolution was around 20 um.
Three locations were chosen randomly from each biofilm-covered coupon. The OCT images
were rotated to correct for taking images at an angle and modified to reduce reflection caused by
water using ImagelJ Fiji v 2.0 (Schindelin et al., 2012) and Avizo (Thermo Fisher Scientific).
About 100-180 images from each image stack were selected for analysis because of the image
quality, as described in a previous study (Huang et al., 2020b). The overall biofilm thickness was
determined using a MATLAB code described previously (Derlon et al., 2012, Shen et al., 2015).
The physical thickness of biofilm was determined by dividing the optical thickness by the
corresponding refractive index from 1.33-1.38. The average thickness of each biofilm image
stack was calculated as described in previous studies (Huang et al., 2020b).

The upper and lower half of the biofilm OCT image stacks were analyzed separately after
dividing the biofilm at half of the average thickness. The porosities and pore network were
characterized in the top and bottom halves of the biofilms using the image analysis framework
described in a previous study (Huang et al., 2020b).

2.3. Chemical composition characterization by FTIR

We used FTIR experiments to determine the biofilm composition. Biomass was scraped

from the holding rods into clean petri dishes and dried overnight at 4 °C. Two biomass samples

were subjected to FTIR scans, in which 15 scans were obtained for each biofilm type. The
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absorbance of the infrared radiation by the dried biomass over the wavenumber from 400 to 4000
cm’! was measured by Fourier-transform infrared spectroscopy equipped with an attenuated total
reflection element (ATR-FTIR). The wavenumbers associated with the absorbance peaks were
compared to the IR spectrums reported in previous studies (Holman et al., 2009, Schmitt and

Flemming, 1998).

2.4. Disinfectant decay in contact with suspended biomass

Our first decay experiments involve reactions with biomass scraped from the coupon
biofilm and sonicated to form a suspension. A free chlorine (2 g/L as Cl,) stock solution was
prepared by diluting sodium hypochlorite (10-15% available chlorine, Sigma) with Milli-Q
water. A monochloramine stock solution (510 mg/L as Clz) was prepared by mixing the
ammonium chloride solution (1000 mg/L as NH3) and sodium hypochlorite to reach an N:Cl
molar ratio of 1:1. The stock concentration of free chlorine and monochloramine was determined
by measuring the absorbance of the stock at 254 nm and 243 nm (free chlorine and
monochloramine, respectively) using a Shimadzu UV-2450 spectrophotometer. The
predominance of monochloramine was confirmed by the presence of the only absorbance peak at
243 nm in an absorbance scan made from 190 to 500 nm. The free chlorine and chloramine stock
were stored in the dark at 4 °C. A 2 mM carbonate buffer (pH: 7.8-8.1) was prepared by
dissolving sodium bicarbonate (Fisher Scientific) in Milli-Q water to simulate the drinking water
alkalinity condition (200 mg/L as CaCOs3). A standard curve from 0.02 to 4.2 mg/L as Cl> was
constructed based on the linear relationship of UV absorbance at the corresponding wavelength
and disinfectant concentrations using the DPD standard method. Two points in the standard
curve (0.5 and 2 mg/L as Cl») were checked daily, and the error rate was under 5%. The standard

curves for free chlorine and chloramine were measured weekly or in cases where the error rate
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was over 5%. Fresh stock solutions of free chlorine and monochloramine were prepared weekly.
All glassware was washed thoroughly with water treated by a Milli-Q Water Purification system
and baked at 550 °C for 2 hours.

Biomass was scraped from the rods in the CDC reactors using a sterilized spatula and
dispensed in 50 mL glass vials containing 15 mL bicarbonate buffer. Then, these biofilms were
disrupted by 1 min of vortex followed by 20 min of sonication. Free chlorine or monochloramine
stock was added to the suspended biomass to reach a final concentration of 4.0-4.1 mg/L as Cl.
The vials were wrapped in foil and placed in a shaker for a designated reaction time, after which
a 2.5 mL aliquot was filtered through a 0.22 pm PES syringe filter (Millipore), and the free
chlorine or chloramine concentration was measured using the DPD standard method. The
reaction times were 5, 15, 30, 150 min for free chlorine and 3, 6, 12, 24, and 48 hours for
monochloramine. These reaction times were selected based on the reaction time for free chlorine
or monochloramine to reach the detection limit of 0.02 mg/L as Cl, with biomass in preliminary
experiments. To the remaining suspended biomass in buffer, 2.7 g/L sodium thiosulfate was
added to quench the residual disinfectant, and then 10N NaOH at a final concentration of 0.25 M
(pH at 11) was added to digest the sample. The sample was then placed on a shaker table at 250
rpm for 3 hours in the dark. The volume of sodium thiosulfate needed to neutralize the residual
disinfectants was checked with preliminary experiments. These samples were filtered through a
0.22 um PES filter and the pH was lowered to 2 by adding concentrated HCI. The total organic
matter (TOC) concentrations of digested samples were determined by a Shimadzu TOC-VCPH
analyzer. Experiments were conducted in triplicates in free chlorine experiments and duplicates

in monochloramine experiments because of sample limitation.

2.5. Disinfectant decay in contact with intact biofilms
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Two biofilm-covered PP rods with three PVC coupons were removed from the CDC
reactor and immersed in glass flasks filled with 250 mL bicarbonate buffer. Freshly prepared
disinfectant stock (free chlorine or chloramine) was added into the bicarbonate buffer to reach a
final concentration of 4 mg/L as Cl,. The disinfectant concentration was measured using the
DPD method and the corresponding standard curves, as described in section 2.4. As
aforementioned sample collection, disinfectant concentrations after the corresponding contact
time were measured in a 2.5 mL sample filtered by a 0.22 um PES syringe filter (Millipore). The
remaining samples were quenched with 2.7 g/L sodium thiosulfate. The contact times for
biofilms with free chlorine were 1, 3, 6, 12, and 24 hours, and the contact times with chloramine
were 3, 6, 12, 24, 48, 72, 96, and 120 hours due to the low reactivity of chloramine. After these
times, the biofilms were scraped from the PVC coupons on the rods and resuspended into a 15
mL bicarbonate buffer. As described above, the biofilms were disrupted by vortex and
sonication, followed by digestion with NaOH addition in the shaker. TOC concentrations were
determined from the digested samples. The mass of biofilms exposed to the disinfectant was
estimated by multiplying the TOC concentration after normalized by the scraped area with the

biofilm-covered area on the rods.

2.6 Mathematical modeling of reaction with biomass and diffusion-reaction with biofilm

Disinfectant decay in the presence of suspended biomass.

Under conditions of suspended biomass reactant in suspension, we ignore diffusion limitations
and treat the time-dependent consumption of free chlorine or chloramine as a quasi-first-order
kinetic,

[1] C(t) = C(0)exp(—4,Bt)
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where C(t) (mg L as Cl) is the concentration of disinfectant at time ¢, A, (L mgBiomass’ min™)
is the specific disinfectant decay rate per unit B (TOC) concentration, B (mg L) is the initial
biomass concentration measured as TOC. Because we assumed the biomass concentration as a
constant, Equation [1] is applied as a first-order kinetic.

Disinfectant diffusion and decay within intact biofilms.

To simultaneously quantify the time-dependent impacts of both disinfectant diffusion within and
reaction with porous biofilm, we applied a conventional transient reaction-diffusion model,

o _p%C ;B 0<t, 0<x<I
ot~ Coxz ’ *=

2]
with initial and boundary conditions

[3] Clx,t=0)=0 t=00<x<1

[4] C(x=0,t) =Cy(t) t >0 x =0,

respectively. This model treats the biofilm as a porous slab of finite thickness admitting one-
dimensional Fickian diffusion of disinfectant concentration C. The biofilm has thickness /, total
areal extent A4, porosity n, diffusion coefficient D = nD,, /T where D, is the diffusion coefficient
of the disinfectant solute in bulk solution, and 7 is the tortuosity of the biofilm (assumed unity
per Melo, 2005). The right-hand side of Equation [2] includes the reaction term for disinfectant
decay.

At the surface of the biofilm x = 0, the solution in the biofilm is in contact with the bulk solution
that has a concentration, C, (t). The disinfectant concentration in the bulk solution C},(t)

undergoes dynamics due to diffusive ingress of disinfectant into the biofilm at the surface of the

biofilm (at x = 0) and is governed by

5 vdcb— ADaC t>0x=0
[5] bTar ax X =
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with initial condition

[6] Cp(t =0) = Cpo t=20

Equations [2-6] were solved numerically using a conventional explicit-in-time finite-difference
scheme with central differencing used for the diffusion term. This approach is simple to
implement but requires honoring the von Neumann condition for stability of the diffusive flux
calculation that is implemented here as

_sz
6D’

[7] At
Application of the mathematical models.

Predictive modeling requires independent determination of parameters. To determine values of
the specific decay rate constant 4, independently from the biofilm disinfectant decay
experiments, we applied Equation [1] to disinfectant concentration decay data obtained from the
suspended biomass experiments. For each combination of disinfectant and biomass type, the
value of 1,B in Equation [1] was manually fitted to the disinfectant concentration data from the
suspended biomass decay experiments. This fitting was done by minimizing errors between
simulated and average (over replicates) decay data over time. The resulting value of 1,B was
then divided by the measured TOC value (B) for these solutions to obtain the specific reaction
rate coefficient A,. The remaining parameters needed for Equations [2-6] were directly measured
and include biofilm area, thickness (mean values from Figure 3a), and porosity (mean values
from Figure 3b). The bulk diffusion coefficient values are taken from standards literature [Dy, =
8.28% 10™* cm?/min for free chlorine (Tang and Sandall, 1985); D, = 9.96x 10~* cm?/min for
monochloramine (Chen et al., 1993)]. The TOC concentration (B) for the intact biofilms was

measured separately. For free chlorine cases, this procedure was repeated for all three biofilm
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types and completed the independent determination of values of parameters needed for the use of
Equations [2-6] to simulate the decay data in the intact biofilm cases. The reaction rate in the
case of monochloramine includes auto-decay at first-order, in addition to the kinetic model
described above. The auto-decay rate is assumed strictly first-order and determined from
concentration decay observed in the abiotic controls, yielding a rate coefficient 2.0X 10~> min™..
After these adjustments, the same procedure as described above is used to parameterize the
overall reaction rate for the monochloramine decay in the biofilms. Speciation reactions endured
by monochloramine are not needed because we measured total monochloramine in the decay
experiments.

Parameter values obtained are reported in Table 1. Also shown are dimensionless
Damk®éhler numbers (“Da!”) for each case, developed as follows. The dimensionless
Damkdhler number for reaction-diffusion per unit area in a biofilm is the characteristic diffusion
time for penetration of the full depth / of the biofilm, [? /4D, divided by the characteristic

reaction time, 1/, Bpiofitm. Thus Da'" = 1?2, Byioriim/nDp, Where we have used the fact that D

= nDj, assuming unit tortuosity. Note that this definition of the Damkdhler number ignores the
contribution of auto-decay occurring with the monochloramine cases, which was at least three

orders of magnitude smaller than the biomass-induced decay rate coefficient.
Table 1 is inserted here.

2.6. Statistical analysis
Basic statistical analysis on the measurements and simulations of disinfectant residual
concentrations in contact with suspended biomass or biofilms at each sampling time and overall

biofilm structure (thickness, overall porosities, and normalized pore and throat number) were
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carried out by R version 4.2.0. A parametric hypothesis test (Student’s t-test) was used when the
assumptions of normality and equal variance were met. A nonparametric hypothesis test
(Kolmogorov-Smirnov test, or KS test) was used instead when these assumptions were not met.
The goodness-of-fit of the model was determined by testing the differences between the
simulations and measurements with a two-sided hypothesis test. A significant difference was

determined when the p-value was below 0.05.

3. Results and Discussion
3.1. FTIR characterization for biofilm composition

The infrared spectra of two-year biofilms are shown in Figure 2. The characterization of
FTIR spectra for one-year and two-year biofilms is shown in Table 1S. Two distinctive IR
spectra were obtained for biofilms fed by groundwater with or without phosphate addition. Three
major absorbance peaks at around 713, 872, and 1400 cm™ were observed in groundwater
biofilms but not in biofilms fed by phosphate-based corrosion inhibitors. Absorbance peaks at
713 and 872 cm! represent aragonite or calcite and likely precipitated from groundwater. The
presence of these two peaks suggested precipitation of aragonite and calcite in the biofilms fed
by groundwater without polyphosphate addition. Similar results have been reported previously
(Shen et al., 2018). Absorbance peaks at 1028-1030 cm™! were observed in biofilms grown in
groundwater with phosphate blends and phosphate but not in groundwater biofilms. Specifically,
the absorbances at around 713 and 872 cm™! (carbonate species) were three and seven times
greater than the absorbance at around 1028 cm! (phosphate species) in groundwater biofilms.
However, no peak was found around 713 cm™ in phosphate blends and phosphate biofilms.

These ratios and the lack of absorbance peaks associated with calcite deposition in phosphate
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blends biofilms were expected because phosphate was used as an antiscalant additive to reduce
the precipitation of divalent ions in water-filled equipment, such as reverse osmosis membrane
systems and heat exchangers. Biofilms grown with and without phosphate also led to a different
IR spectrum in organics species. Specifically, major absorbance bands were observed near 1640
cm™ and 1547 cm™ in biofilms developed with phosphate and phosphate blends but not in
groundwater biofilms. These bands were previously reported in proteins (Pousti et al., 2018,
Quilés et al., 2010). While no absorbance peak near 2920 and 2850 cm™! (lipids) (Pousti et al.,
2018) was found in groudwater biofilms, minor absorbance peaks were observed near 2920 and
2850 cm™! in phosphate and phosphate blends biofilms. These differences in the IR spectrums in
phosphate-based and groundwater biofilms suggested that using corrosion inhibitors containing
phosphate can influence the organic species in the biofilm matrix.

In summary, the choice of using phosphate-containing corrosion inhibitors in drinking
water resulted in two distinct FTIR spectra. The chemical composition of the biofilm, especially
EPS, can affect biofilm formation and stability in drinking water system (Tugarova et al., 2017).
Growing conditions, such as water characteristics, microbial structure, and growth period, can
shift the chemical composition of the biofilms by biochemical activities (Holman et al., 2009,
Pousti et al., 2018, Quiles et al., 2010, Tugarova et al., 2017). Inorganic precipitation was
observed in biofilms grown under the influence of elevated divalent cations, which is commonly
found in groundwater (Goode and Allen, 2011, Shen et al., 2018). Also, absorbance peaks
associated with organic species, such as protein and lipids, were found in phosphate and

phosphate blends biofilms but not in groundwater biofilms.

Figure 2 is inserted here.

3.2. Biofilm thicknesses, porosities, and their variation with treatments
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First, we compared the thickness for one- and two-year biofilms (Figure 3). Among the
three one-year biofilms, the groundwater biofilms were the thinnest (median: 102 um, 95%
confidence interval (CI): 87 to 126 um). However, among the two-year biofilms, groundwater
biofilms were thickest (median: 262 pum, 95% CI: 212 to 324 um). Alternatively, for a given
biofilm type developed with phosphate corrosion inhibitors, one- and two-year biofilms have
similar thicknesses (KS test, p > 0.05). The second thickest biofilms were phosphate biofilms
218 um (95% CI: 191 to 328 um, one year) or 240 pm (95% CI: 170 to 335 pm, two year).
Phosphate blend biofilms were the third thickest with a median of 147 pm (95% CI: 84 to 246
pum, one-year) and 165 um (112 to 239 um, two-year), (KS test, p < 0.05). We found similar and
slightly increased thicknesses for biofilms grown with phosphate and phosphate blends for one
and two years. The thickness of biofilms grown without corrosion inhibitors more than doubled
during the second year. This observation suggests that phosphate allowed the biofilms to grow to
a steady-state faster. Thus, the time required for biofilm growth to reach steady state may depend
on biofilm age, feed water constituent, and hydrodynamic condition.

After one year of development (Figure 3b), the overall porosities of phosphate blends
(0.28 £ 0.06) were the greatest, followed by those of phosphate biofilms (0.24 + 0.08) and
groundwater biofilms (0.11 + 0.07) (KS test, p < 0.05). After two years of development (Figure
3d), the average overall porosity of phosphate blends, phosphate, and groundwater biofilms was
0.30 (£ 0.06), 0.26 (= 0.07), and 0.15 (= 0.04), respectively. No significant change in the overall
porosities between one- and two-year growth were observed in any of the biofilms (p > 0.05).
The overall porosities in biofilms fed by phosphate and phosphate blends were similar (p > 0.05)

and significantly greater groundwater biofilms (p < 0.05, KS test).
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For the one-year biofilms (Figure 3a), after 24 hours of free chlorine exposure, the
average thickness of phosphate biofilm reduced slightly (KS test, p < 0.05), while the average
thickness of phosphate blends and groundwater biofilms increased. A similar trend was observed
in two-year-old biofilms exposed to monochloramine. This observation showed that short-term
exposure to free chlorine and monochloramine did not remove the biofilm. By comparing the
upper and lower halves of the biofilm porosities separately (Figure 1S), no significant difference
was found in the top or bottom section of phosphate blends biofilm after free chlorine exposure (t
test, p > 0.05). The porosities in the bottom section of the phosphate biofilms were reduced after
free chlorine exposure (t test, p < 0.05), while the porosities in the top section remained the same
(t test, p > 0.05). However, the porosities in either top or bottom section of groundwater biofilms
increased after free chlorine exposure (t test, p < 0.05). Similar trends of increasing porosities in
the bottom or top section of groundwater biofilms were observed after monochloramine exposure
(t test, p < 0.05). In either the top or bottom section of the two-year-old biofilms, groundwater
biofilms were the least porous than phosphate-based biofilms before and after monochloramine
exposure (t test, p < 0.05). No significant difference in porosities was found in two-year old
biofilms between the two sections (p > 0.05). We expected deeper diffusive transport into the
biofilm compared to that of free chlorine because of monochloramine’s slower reactivity. The
porous top and bottom section in the two-year-old phosphate and phosphate blends biofilms may
allow the slowly reacting monochloramine transport further into the biofilm matrix. We tested

this hypothesis with experimental results presented below.
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Figure 3 is inserted here.

3.3 More connecting pores and throats were found in biofilms grown with phosphate-based

corrosion inhibitors

Because the axial resolution of OCT was around 8 pm, we only include the pores and
throats with an equivalent radius above 5 pm in our statistical analysis. The numbers of pores
and throats in each biofilm used in the free chlorine and monochloramine scenarios were
normalized by the total biofilm volume including biomass and pore space. The pore network
analysis showed that phosphate blends and phosphate biofilms had more pores per biofilm
volume and more connecting throats per biofilm volume than groundwater biofilms (KS test, p <
0.05) (Figure 4A). After one-year growth (Figure 4A), the highest normalized number of pores
was found in phosphate and phosphate blends biofilms, followed by groundwater biofilms (KS
test, p < 0.05 each). Groundwater biofilms had the lowest normalized number of throats (KS test,
p < 0.05 each), while the other two biofilms had a similar number of throats after normalization
(KS test, p > 0.05 each). The median normalized number of connecting throats in groundwater
biofilms was 20 and 18 times less than that in phosphate blends and phosphate biofilms,
respectively. Among the two-year-old biofilms (Figure 4B), phosphate blends and phosphate
biofilms had more normalized throats than groundwater biofilms (KS test, p < 0.05). However,
no significant difference between the normalized number of pores was found in phosphate,
phosphate blends, and groundwater biofilms. Overall, the great abundance of connecting throats
in phosphate and phosphate blends biofilms contributed to the greater bulk porosity of these

biofilms compared to groundwater biofilms.
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Figure 4 is inserted here.

The biofilm structure can be influenced by microbial structure, influent water
characteristics, and hydrodynamic conditions (Liu et al., 2016). In this study, biofilms developed
under the influence of phosphate-based corrosion inhibitors were more porous with more
connecting channels than those developed without phosphate corrosion inhibitors. A similar
observation was reported from biofilms developed in groundwater with or without
polyphosphate additives (Shen et al., 2018). Previous studies showed that the addition of
phosphate induced changes in the microbial community and EPS production (Liu et al., 2016).
These changes can play an important role in the reactivity of biofilms with chlorine and
monochloramine and the disinfectant byproducts formation (Lemus Pérez and Rodriguez Susa,
2017, Wang et al., 2013b). In the present study, larger connecting channels and pores in the pore
structure found in biofilms developed under phosphate-based corrosion inhibitors may aid in the
mass transport process of chlorine and chloramine into the biofilm matrix. A similar observation
was reported as greater biofilm removal by chlorine and monochloramine was found after

phosphorus addition (Fang et al., 2010).

3.4 Experimental results: fastest free chlorine and chloramine decay was observed in
phosphate-based biofilms

The experimentally determined free chlorine or monochloramine decays were normalized
by the biomass TOC concentrations (Figure 5). Free chlorine was rapidly consumed by the three
types of biomasses within 2 hours of contact. Among the three biomass, the groundwater
biomass consumed free chlorine the least, regardless of sampling time (p < 0.05). On the other

hand, phosphate-based biomass consumed the most free chlorine at all sampling times (p < 0.05).



439  However, we did not observe one type of biomass consistently consuming more

440  monochloramine than other types. No significant differences between the TOC-normalized

441  monochloramine concentrations were found within three biomass after 3 and 24 hours of contact
442 (p > 0.05). Groundwater biomass consumed the least monochloramine after 12 hours of contact
443  (p<0.05).

444 To determine the effect of the biofilm structure on the disinfectant reactive transport into
445  the biofilms, we exposed the intact biofilms to either free chlorine or monochloramine. The

446  disinfectant decays obtained with three biofilms are shown in Figure 6a and b. Free chlorine was
447  continuously and completely consumed by all three biofilms within 24 hours of reaction,

448  significantly faster than a scenario without biofilm (p < 0.05). In the first hour of contact, no
449  significant difference in free chlorine decay was found among the three biofilms. After 3 hours
450  of contact, the phosphate biofilms consumed the most free chlorine, while the groundwater

451  biofilms consumed the least free chlorine among the three biofilms (p < 0.05). In the first three
452 hours of contact, the three biofilms consumed monochloramine at a similar rate (p > 0.05).

453  Monochloramine was consumed after 96 hours of contact with biofilms grown with phosphate-
454  based additives. However, after about 60% of monochloramine was consumed by the

455  groundwater biofilms, monochloramine decay continued at a much slower rate (after 96 hours).
456  This reduced consumption of monochloramine may be due to the presence of fewer connecting
457  throats and reduced porosities in top in the groundwater biofilms because these throats may

458  promote the transport of monochloramine into the biofilm matrix and lead to complete

459  consumption in phosphate-based biofilms.

460

461  Figure 5 is inserted here.



462 3.5 Theoretical framework can simulate free chlorine decay with biofilms but cannot

463  simulate monochloramine decay

464 We first determined the specific reaction rate constants (4,) per biomass type exposed to
465  either free chlorine or monochloramine to answer the question of whether the water chemistry
466  under which the biomass developed impacts the disinfectant reactivity with the biomass. The
467  pseudo-first-order reaction kinetics (Equation [1]) was used to model the disinfectant

468  concentration as a function of time for free chlorine or chloramine in contact with the suspended
469  biomass obtained from three biofilms, respectively. Measured vs. predicted disinfectant

470  concentrations in biomass suspensions are plotted in Figure 2S. The differences between

471  simulated and measured free chlorine concentrations were significant with three biomass cases at
472 most sampling times (t test, p < 0.05). The only exception was with groundwater and phosphate
473  biomass after 15 and 120 min of reaction with free chlorine. However, no significant differences
474  were observed between simulated and measured monochloramine concentrations with all three
475  suspended biomass after 12 hours of reaction with monochloramine (t test, p > 0.05). Slightly
476  greater average monochloramine concentrations were simulated than measurements with

477  phosphate blends and groundwater biomass after three hours of reaction and two phosphate-
478  containing biomass after six hours of reaction (t test, p < 0.05). As shown in Table 1, the free
479  chlorine rate constants were the greatest with biomass grown without corrosion inhibitors

480  compared to those grown with phosphate-based corrosion inhibitors. Similar trends were

481  observed in the monochloramine reactions with suspended biomass.

482

483  Figure 6 is inserted here.

484

485 Turning to the cases involving intact biofilms, numerical solutions to Equations [2-6],

486 independently parameterized as described in section 3.4 were used to simulate the dynamics of
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disinfectant decay for free chlorine (solid lines in Figure 6a) and for monochloramine (solid
lines in Figure 6b), for all three biofilm types. The model underestimated the chlorine
consumption within one hour of contact for all three biofilms (t test, p < 0.05). The differences
between the simulations and measurements of free chlorine were not statistically significant at all
sampling times thereafter in the case of the groundwater biofilms (t test, p > 0.05). However, the
model overestimated the free chlorine consumption at 3 and 12 hours of contact and at 3 and 6
hours of contact with phosphate blends and phosphate biofilms, respectively (t test, p < 0.05).
Other than the aforementioned contact times for phosphate and phosphate-blends biofilms, the
simulation agreed with the measurements (t test, p > 0.05). On the contrary, the model did not
agree with the simulations at all sampling time and biofilm growing conditions with
monochloramine (t test, p < 0.05). With approximately constant reactive TOC the decay reaction
is treated in both free chlorine and monochloramine cases as a first-order reaction with effective
rate constant given by the product of the specific rate constant (4,) and biofilm TOC (B). Values
for these factors and A are listed in Table 1. Damkdhler numbers (reaction rate divided by
diffusion rate) are also given in Table 1 with values generally two orders of magnitude higher
for cases involving free chlorine compared to those with monochloramine. This difference 1s
largely attributable to the higher values of the specific decay rate A, for free chlorine that are also
roughly two orders of magnitude higher than those for monochloramine, while reactive mean
biofilm TOC concentration (Table 1) values show only mild differences.

While differences in overall free chlorine decay patterns among the biofilm types are
subtle, the variation of predicted concentrations between biofilm types is larger than the errors
between data and simulation in any given case. The predictive simulation of the dynamics in the

monochloramine case is much less successful. Simple inspection of the monochloramine decay
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in the case of suspended biomass strongly suggested that the reaction was not quasi-first-order as
written in Equations [1] and [2] because the trends in disinfectant concentrations are not
exponential. Speciation reactions may also complicate the reaction and diffusive transport
dynamics (Vikesland et al., 2001). Second, the reaction-diffusion model assumes homogeneous
porosity, whereas the pore networks exhibited heterogeneity. It is well known that when
reactions are linear (as in the free chlorine case), such small scale heterogeneity does not
generally invalidate reactive transport modeling at larger scales under the assumption of
effectively homogeneous media; however, this is not demonstrated for nonlinear reactions such
as may occur with monochloramine (Murphy and Ginn, 2000, Wood and Whitaker, 1998). Thus,
this heterogeneity in pore structure may have a greater impact on monochloramine reactive

transport than on free chlorine reactive transport.

4. Conclusions

Biofilm matrix is usually described as a porous material when nutrients, dissolved
oxygen, and antimicrobial agents can penetrate the matrix to support or inhibit microbial growth
(Lee et al., 2018, Quan et al., 2022). In no flow or slow flow pipes, diffusive transport can
dominate the slow-reacting solute transport in biofilms. The reduction in effective diffusion
coefficients of chemicals in biofilms suggested that biofilm structure and orientation of water-
filled pore space can play an important role in solute transport (Quan et al., 2022). However, due
to the complex pore structure and heterogeneity of the biofilm matrix developed under various
growing conditions, a single value of effective diffusion coefficient was used in a simplified
model system (Davit et al., 2013). The results of this study demonstrated that the porous biofilms

developed in phosphate-based corrosion inhibitors lead to a fast depletion of free chlorine in
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stagnation. This observation suggested that the effects of pore structure of biofilms on pore-scale
reactive-diffusive transport, especially with monochloroamine may need further investigation.

Simulations of disinfectants in DWDS are widely used in drinking water safety
management. The degree to which theoretical reactive-diffusive models can be used to predict
the residual disinfectant level in biofilms within pipe networks is an open research question. By
relying on a separate set of decay experiments involving suspended biomass from each biofilm,
we were able to parameterize a simplified quasi-first-order decay model independently. This
model was implemented with a classical diffusion modeling approach with independently
determined diffusion parameter values obtained from previous experiments (Chen et al., 1993,
Tang and Sandall, 1985). This model was made for a genuinely predictive simulation approach
without parameter-fitting. While we found that the classic reactive-diffusive model agreed with
the experimental measurements of free chlorine decay with biofilms, the model underestimated
the consumption of monochloramine. This underestimation of monochloramine consumption,
that our results suggest is primarily due to unincorporated complexities in the reaction network
for monochloramine decay within biofilms. Note that monochloramine is recommended over
free chlorine to control Legionella pneumophila in building plumbing (National Academies of
Sciences and Medicine, 2020). While monochloramine is more effective at inactivating
Legionella pneumophila, the underestimation of monochloramine decay could lead to a potential
risk of insufficient monochloramine residual in a complex building plumbing with biofilms and
stagnation. In a more general context, the modeling results as well as the values of the
Damkohler numbers obtained indicate that the diffusion limitation on the decay of disinfectants
in the presence of biofilms is significant. However, the simulation of radial diffusion within

larger pipe networks incorporating diffusion as described by Equation [2] can be computationally
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challenging, a first-order or otherwise simplified disinfectant solute exchange processes (Abokifa
et al., 2016a) would be worthwhile to improve the model accuracy and alleviate the
computational cost.

Due to complex premise plumbing structures, water-saving designs, and human activity,
stagnation and slow-flow sections are common in premise plumbing. In this study, we focused
on the role of premise plumbing biofilms developed under different chemical conditions on the
decay of disinfectants, through both experiments and predictive modeling. Corrosion inhibitors
are commonly used to prevent elevated levels of metal leaching from the pipes, especially in
aged DWDS. We found that using phosphate-based corrosion inhibitors led to porous biofilms
and complete consumption of free chlorine and monochloramine after 24 and 120 hours of
stagnation, respectively. After short-term exposure to free chlorine and monochloramine, no
significant disturbance in biofilm thickness was observed. This result suggested that short-term
disinfectant exposure did not remove biofilm coverage, especially under phosphate-based

corrosion inhibition treatment.
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Figure 1. Flow diagram for experiments to characterize biofilm structure and disinfectant
consumption. The reaction times of suspended biomass were 5, 15, 30, 150 min with free
chlorine and 3, 6, 12, 24, and 48 hours with monochloramine.
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Figure 2. IR spectrums of two-year biofilms developed in groundwater (blue) and
groundwater amended with phosphate (yellow), or phosphate blends (black).
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Figure 6. Free chlorine (a) and monochloramine (b) decay in contact with phosphate blends
(black square), phosphate (yellow circle), and groundwater biofilms (blue triangle) after
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of Equations [2-6] as described in Section 2.5.



