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Abstract— Visualization of hand movement is an important
part of many medical training, VR and haptic experiences,
which researchers typically address by developing application
specific hand visualization tools. While some existing simulators
allow for hand kinematic visualization using a generic hand
model, they are usual targeted for robotic grasp planning rather
than designed specifically for rendering in applications that
include haptic experiences. To fill this gap, in this paper we
present cHand, an extension of the haptics software library
CHAI3D, that enables hand Kkinematic visualization of an
arbitrary hand model. A representation of the hand can be
achieved with elementary geometric shapes that are provided
by CHAI3D, or with custom geometries loaded from STL files.
We release cHand as an open source contribution to keep with
the open source nature of CHAI3D, and present a tutorial on
its use in this manuscript.

I. INTRODUCTION

Hands play an important role in our interaction with
the environment, both because they are the primary means
through which we interact with the physical world around
us, and because of their strong perceptual capabilities [1].
Visualization of hand posture is thus a desirable feature for
many applications, yet there are few widely available tools
that can be used to quickly visualize a generic hand model,
and none of them were specifically designed with haptic
applications in mind. Indeed, most efforts from the research
community to provide tools for simulating hands has focused
on robotic hands and grasp planning.

For example, in 2004 Miller and Allen introduced Graspit!
[2], which is still being maintained today and focuses on the
simulation of robotic grasps, with support for data acquisition
from hardware being offered for a few specific devices,
most of them robotic hands. Leon et al. released Opengrasp
[3] in 2010 for similar purposes and comparable features
but, to the best of our knowledge, this tool has not been
updated since 2011. A third example is Syngrasp [4], [5],
which is a MATLAB toolbox aiming to simulate both human
and robotic hands that was released in 2013 and is still
being maintained. Syngrasp also focuses more on grasp
simulation and planning than on live visualization based on
data received from hardware, as evidenced by the choice of
using a language such as MATLAB, which is most powerful
when used for data analysis and post processing, instead of
a faster platform such as C++.
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Fig. 1: Example of visualization obtained with cHand.

One example of a library specifically designed for haptics
is CHAI3D [6], which was released in 2013 in the effort to
provide a ready for use platform for haptic researchers and
developers. CHAI3D offers a rich set of features including
a C++ API, graphic rendering through OpenGL, templates
to help with rapid prototyping, built-in force feedback al-
gorithms and hardware support for a variety of commercial
haptic devices, with the ability from the user to easily add
custom haptic devices. This library was also the first haptic
software development kit to be released as a non commercial,
completely open source project, which is a desirable feature
to foster engagement from the research community.

Despite its many features, CHAI3D does not provide an in-
terface to visualize hand movement. When CHAI3D was first
developed, haptic research primarily focused on grounded
devices, such as the Phantom [7], for which visualization
of kinematics revolves around visualizing the device itself,
rather than the hand using it. However, recent years have
seen a surge in applications of wearable haptics [8], which
often involve the use of wearable sensors to track hand
kinematics in order to provide haptic feedback as a response
to interactions happening in a virtual environment. The lack
of hand visualization capabilities currently represents a gap
between what CHAI3D can offer and what is needed by the
community.

This has led researchers to develop application specific
visualization methods [9], [10], [11], [12], [13], often relying
on commercial rendering software or game engines. While
this approach can be convenient in the fact that it allows
designers to get up and running with a virtual environment
relatively quickly, it comes with its drawbacks, such as
the large overhead from using complex software that has
many features that are not useful for haptic applications,
and the lack of some specific features desirable to better
simulate haptic interaction. In fact, Balzarotti and Baud Bovy



presented in [14] an attempt to create a bridge between
CHAI3D and the game engine Unity3D, and found that
there are intrinsic limits to how accurately Unity3D can
simulate haptics in physical interaction scenarios, so much
so that it limited what could be done in their integration with
CHAI3D.

In order to fill this gap, in this paper we present cHand, an
extension of CHAI3D that allows users to define and visual-
ize a generic hand model. We will first present an overview
of the main features provided as well as a description of
relevant public functions, and then show a few examples of
applications, which will serve as a short tutorial on how to
get started with the tool, similarly to what was done for
CHAI3D in [6]. In the final section, we describe a setup
where cHand was used with a sensor and a motor for live
data visualization. The CHAI3D extension cHand, together
with all the code that we refer to in this paper, is open source
and available on GitHutl,

II. OVERVIEW AND IMPLEMENTATION

With cHand we aim to enable visualization of a generic
hand model, building upon the existing framework in
CHAI3D. In order to accomplish this goal there are some
requirements that need to be met:

o The user needs to be able to define a generic hand model
for the software to process;

¢ Once the model is defined, a visualization needs to be
rendered and its kinematics updated as necessary based
on changes of joint angle valueis;

o There needs to be a way to detect contacts between
the rendered hand visualization and other objects in the
virtual world;

« All of the above need to be accomplished by leveraging
as much as possible upon the existing structures existing
in CHAI3D and keeping compatibility with the rest of
the library.

In order to explain how we fulfilled these requirements,
we need to briefly describe some elements of the architecture
of CHAI3D itself. CHAI3D has a hierarchical structure, built
starting from a base class cGenericObject which is then
used to define all renderable elements through inheritance.
Since this base class defines methods to store and obtain
information on position and orientation, all objects derived
from it have a rigid transformation associated to them, which
allows to define and move them in the virtual space.

To insert cHand in this structure, we decided to imple-
ment it as a class derived from cGenericObject. Figure
shows a partiaE representation of the inheritance diagram
for CHAI3D, showing how cHand inserts itself into it. In
addition to the features it inherits from cGenericObject,
cHand contains attributes allowing it to store information
on the hand model through a matrix, implemented using
std: :vector, where the first level represents a finger and
the second level individual joints in each finger. More in
detail, the following main features are implemented:

Ihttps://github.com/ebattaglia/cHand/
2We refer to the CHAI3Ddocumentation for a complete description
https://www.chai3d.org/download/doc/html/

Function Description

Defines hand kinematics (joints po-
sition and orientation) through a col-
lection of cTransforms

Overloaded function used to build
graphic visualization based on either
primitive shapes, or STL files stored
locally, depending on how it is called
Calls initialize_transforms
and initialize_graphics in
sequence

initialize_transforms

initialize_graphics

Initialization

initialize

updateAngles Updates values for each joint angle

updateKinematics Updates the kinematic of the hand

based on the current joint angles

Kinematics

makeTFromFile Loads a text file containing
information on relative transforms
between hand joints and returns
a  collection of cTransforms
in the format expected by
initialize_transforms
Returns the position of centers of
rotations for all joints, plus the cen-
ter of fingertips (used for contact
detection)

Toggles visualization of rotation
axes

Returns the total number of degrees
of freedom

Returns the number of fingers
Returns the number of degrees of
freedom for a given finger

Utility

getHandCenters

toggleArrows
getdof

getnfingers
getdof_finger

TABLE I: Code structure: main public member functions.

cGenericCamera

cGenericLight

cDirectionallight

cPositionalLight ]

cGenericTool ]'—[ cToolCursor ]
cGenericWidget

cGenericObject

cMultiMesh

Fig. 2: Simplified inheritance diagram for CHAI3D.

e A matrix of pointers to cGenericObject which is
used to store information on the relative posi-
tion and orientation of all joints in the hand
(jJoint_transforms_container);

« A matrix of pointers to cMultiMesh which is used to
store graphic objects used for representation of the hand,
plus a separate pointer to cMultiMesh that is used to
represent the palm;

« A vector of doubles containing the current values of
each joint angle in the model;

o A set of additional parameters containing information
on the hand model, such as the number of fingers,
degrees of freedom per finger and overall number of
degrees of freedom.

These are the main elements defining the representation
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of a hand, which are built and interacted with by using a
set of member functions, the most relevant of which are
summarized in Table [ Hand kinematics are initialized by
calling initialize_transforms, requiring as input a
matrix of cTransform. This matrix can be either defined
explicitly in the code, or loaded from a text file with the
function makeTFromFile.

Once the hand model kinematics are defined,
the graphic visualization can be built by calling
initialize_graphics. Two overloaded versions

of this function are provided, one that builds a visualization
with simple graphic primitives (cylinders and spheres)
defined internally by CHAI3D, and one that loads STL files
and requires a path to where they are stored locally, a vector
of cTransform defining the local transformation in the
reference frame where the STL file was saved, and a vector
of integers containing IDs of parent joints for each graphic
object, with 0 being used to define the base frame.

Once the cHand model and graphic representation are
initialized, changing kinematics is simply a matter of up-
dating the stored joint angle values (updateAngles)
and updating the transformations accordingly by calling
updateKinematics. Finally, contact detection can be
accomplished by calling the function getHandCenters,
which returns the current position of centers of rotations as
well as positions of the fingertips, and using the built in
contact models offered by CHAIS]ji

In the next sections we will show a few examples of ways
that cHand can be used, including a demonstration where
hardware is used to read live data that can serve as a template
for other applications.

III. USING CHAND

This section showcases a few of the features of cHand,
and is meant to be a quick tutorial on how to get started
with it. Some GUI element are present in these examples,
which were created using the free and open source Dear
ImGuﬁ user interface library. While we will include some
code snippets, for readability’s sake we will keep the lines of
code to a minimum and focus on concepts, and we encourage
the reader to browse the example files provided on the cHand
repository for more details.

A. Hand model definition

In order to make its use as easy as possible, cHand pro-
vides some default hand models that the hand visualization
can be initialized to. We chose as one of these models the
one introduced by Tkach et al. in [15] and described more in
detail in [16], for two reasons: (i) it is a fairly complex hand
model, with a high number of degrees of freedom, which
means that many hand models can be represented with this
one by simply keeping some joint angles to zero, and (ii)
authors in [16] released a large data set of hand postures,
providing open source measurements readily available for

3A simplified, kinematic based contact model can also be implemented
when no classical kinesthetic force feedback is present, as we will show in
the last section

4https://github.com/ocornut/imgui
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use. Initializing a virtual hand with such a default model is
straightforward and can be accomplished as follows:

HandModel = new cHand();
world->addChild (HandModel) ;

std::vector<std::vector<cTransform>> T =
HandModel->t_default_Tkach25Dof;

HandModel->initialize (T);

Figure shows the resulting visualization from the exam-
ple project HandVisualizerGUI_TransformsDefinition, which
provides a simple GUI to visualize changes in joint angle
values. This example also shows how to modify the matrix
of transformations used to define the hand model to obtain
desired finger lengths, done by simply assigning new values
to the translation terms before calling initialize.

Fig. 3: Simple hand model.

If a custom hand model is desired, translation, rotation and
the overall transformation of each joint can be easily defined
using the structures provided by CHAI3D, e.g.:

cVector3d fljointlpos(-0.05f, 0.045f,

-0.01f);

cMatrix3d fljointlrot (cVector3d(l, 0, 0)
, 0)5

cTransform Tf1j1 (fljointlpos,
fljointlrot);

and the chain of transformations can be defined for each
finger as:

vector<cTransform> Tfl;
\\ add more for more fingers

vector<vector<cTransform>> Tmodel;

Tfl.push_back (Tf171);
\\ repeat for all joints in each finger

Tmodel .push_back (Tfl);
\\ repeat to add all fingers to the
kinematic model

The visualization can then be obtained by simply calling
initialize (TModel).

It is worth pointing out that the hand model does not
necessarily have to be a five-fingered model. Figure 4] shows
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Fig. 4: Custom hand model with three fingers.

the visualization for a three-fingered hand model obtained
using the procedure described above, but a higher number of
fingers can also be used if desired. This could be useful for
example for some applications in teleoperation or augmented
reality where a robotic manipulator is controlled by a user
receiving haptic feedback [17], or for scenarios where it is
desirable to change the representation of the hand [18].

B. Loading complex and hand model data from local files

In the previous subsection we showed some examples
of visualization obtained through simple geometries defined
by CHAI3D. In some cases a more customized visualiza-
tion can be desirable, and for this reason cHand supports
loading custom geometries from STL files. The idea is
to attach a geometry to each joint, so that it moves as
the local reference frame moves according to the global
kinematic. This is implemented with two overloaded versions
of initialize_graphics, one that can be called with
no arguments and builds the standard visualization with
simple shapes, and one that requires additional arguments
as well as local files to load the necessary geometries.

The arguments needed for the latter are the following:

1) A vector of strings, each containing the path to the
STL mesh file to be loaded;

2) A vector of cTransform, each describing the local
transformation of each STL file as observed in the
reference frame that the file was saved in;

3) A vector of integers containing the mesh map, i.e.
a parametrization of which joints have a geometry
associated to them, with 0 being used to design the
base frame;

Figure[5]shows the visualization for a hand model obtained
from an MRI scan in [19], for which bone geometries, kine-
matic description and some examples of grasp are provided
as part of the open access repository HandCorpus [ZOE It
is worth noticing that in this case, in addition to loading
the STL geometries from file, the hand model itself is also
loaded from a .dat text file, using the member function
makeTFromFile provided by cHand. Additionally, this
model includes additional degrees of freedom for arcpalmar
joints, i.e. degrees of freedom on the palm between the bases

Shttps://www.handcorpus.org/?2p=97

Fig. 5: Hand model from [19] with STL visualization of
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(b) Arcpalmar movement.

(a) Zero pose.

Fig. 6: Arcpalmar degrees of freedom from the model defined
in [19], as visualized through cHand.

of the kinematic chains of each finger. This is a feature
that is not very common in kinematic models of hands, but
it can be nonetheless desirable for some applications [21],
and is supported by cHand through an optional argument in
initialize_transforms.

IV. VISUALIZING LIVE DATA WITH CHAND

The true strength of our cHand is to enable visualization
of hand kinematics in a live experiment, based on sensor
data. In this section we show a simple experimental scenario
using a glove which is meant to provide a template that can
be used to get started with other projects.

Figure [/| shows the sensorized glove that was used for
this demonstration. To keep the setup simple and easy to
reproduce, we endowed the glove with a single bend sensor
(3” bidirectional bend sensor from Flexpoint) and one small
vibration motor (10 mm shaftless vibration motor 310-
101.945, from Precision Microdrives). The sensor is placed
over the metacarpophalangeal middle finger joint, while the
vibrotactile feedback is located on the fingertip of the index
finger. An Arduino Micro board was used to handle USB
communication from the glove to a laptop, where CHAI3D
and cHand were ran in a Visual Studio 2019 environment.
A simple voltage divider was used to read the variable
resistance from the bend sensor.

In order to be able to measure the full hand kinematics
with bend sensors, one would need to place one on each
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(a) Top view. (b) Bottom view.

Fig. 7: Simple haptic glove used for live demonstration.

finger, building a sensing glove similar to the CyberGloveE.
However, this also introduces a lot of complexity in terms
of added hardware and calibration. Instead we chose to use
a single sensor to provide a coarse estimation of the full
hand posture using the concept of postural hand synergies.
Postural synergies are coordinated joint patterns that have
been observed in human hands movement [22], and have
led to applications in robotics for the design and control of
artificial hands [23], [24], [25], as well as sensing of human
hands [26], [9].

Such coordination can be quantified by performing a Prin-
cipal Component Analysis (PCA) of collections of complete
hand joint measurements, and evaluating the amount of
variance in the dataset that is explained by the first few
Principal Components (PCs). A linear combination of these
PCs can then used to represent an approximation of the
entire joint angle space. More formally if, n is the number
of degrees of freedom of the hand model, we can use the
first p PCs to approximate a joint angle vector 8 as:

O ~ciPy+...+cpP,,  with 8, €R" (1)

Santello et al. in particular observed in [22] that on average
around 60% of the hand movement associated with their
dataset was explained by just the first postural synergy. It is
then reasonable to think about obtaining an approximation of
hand posture from our single sensor through the first postural
synergy, where the bend sensor controls the level of opening
and closure of the hand (Figure [§p). Since the kinematic
model that was used in [16] is pre-built in cHand, and since
authors of [16] released their data set publicly, we were able
to run a PCA on that dataset and use the outcome to control
the visualization of hand closure as mentioned above.

To make the demonstration more interesting, we added
an spherical object for the user to interact with and through
which to obtain vibrotactile feedback, as shown in Figure @
Contact detection is implemented by using the cHand mem-
ber function getHandCenters to obtain the position of
centers of rotation for each joint, as well as the fingertips
(i.e., all elements represented by blue spheres in the figure)

Shttp://www.cyberglovesystems.com/

(b) As the user closes the hand
the sensor reading increases and
the hand starts closing.

(a) Initial hand in the zero pose,
before the data acquisition ses-
sion is started.

(c) Contact detection triggers a
color change in the grasped ob-
ject and a haptic cue to the user.

(d) The fingers not in contact
keep moving, while those inter-
acting with the object do not.

Fig. 8: Simulation of contact with an object based on hand
postural soft synergies.

and then comparing their distance from the center of the
object with the sphere radius. Once contact is detected on
any of the above mentioned points, the sphere changes color
and a vibrating pulse is triggered (Figure[§g). After this initial
contact, additional closure of the user’s hand as measure by
the bend sensor is handled by only moving the portions of
the kinematic chain that are distal with respect to the detected
contacts, following the principle of the soft synergy model
for grasp and manipulation which augments postural hand
synergies with compliance [27].

It is worth pointing out that this is not the standard way
that contact detection happens in CHAI3D. As also observed
in [14], the primary way to do contact detection in CHAI3D
is based on a force model, which means that it can not be
used for applications such as vibrotactile feedback where
there is no direct force exchange. The ability to extract the
position of the centers of rotation and fingertip of the hands
allows to get around that, where the problem turns then
into defining a collision detection box around the interaction
object and checking if points on the hand are inside it (which
in the case of interaction with a sphere can be done by
simply checking the distance of a point from its center). This
enables the definition of contact models for wearable haptic
applications that might not necessarily include a kinesthetic
force component.

This simple demonstration of interfacing cHand with sen-
sors and actuators serves as starting point for other projects.
The files for this project, including the Arduino sketch, are
available for download from the cHand repository, together
with files for the previously mentioned examples.



V. CONCLUSIONS

In this paper we presented cHand, an extension of the
CHAI3D haptic library that augments it with support for
visualization of hand kinematics. Features include definition
of a generic hand model, which can be defined in the
code or loaded from file, visualization through both simple
geometrical shapes and more complex custom geometries
from STL models, and the possibility to define contacts
kinematically from the position of the centers of rotation of
the hand and the fingertips. In addition to introducing the add
on and its features, we provided a series of examples meant
to serve as tutorials on how to get started with cHand. In the
last section, we described an easy to reproduce experimental
setup showing how to use cHand for live data acquisition.
This can serve as a template for future projects involving
other wearable haptic systems.

We believe that the addition of built in hand visualiza-
tion capabilities to CHAI3D can be beneficial for several
applications in haptics. Where in the past researchers in
wearable haptics had to choose between using CHAI3D with
no immediate way to visualize hand kinematics, or other
software such as game engines which can provide easier
visualization, but no real support for haptic applications, they
now have the option of getting up and running immediately
with hand models in CHAI3D. Given the recent growth in
the interest for this relatively new field of haptics [8], we
think that this tool can be beneficial for the community, and
we release it as an open source project.

Future work will revolve around addressing some of the
limitation of the current version, such as providing kine-
matic contact detection not just on fingertips and centers
of rotation, but also on the rest of the hand. Additionally
the demonstration described in the final section shows an
example of non force based contact detection for contact with
a simple geometry. Detection of contact with more complex
geometries can be performed using built in CHAI3D tools
to calculate a bounding box, but such calculations are not
exposed to the user. Future development of cHand will
address this by providing exposure through the cHand class.
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