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Abstract—ODbjective technical skill assessment is crucial for
effective training of new surgeons in robot-assisted surgery. With
advancements in surgical training programs in both physical and
virtual environments, it is imperative to develop generalizable
methods for automatically assessing skills. In this paper, we
propose a novel approach for skill assessment by transferring
domain knowledge from labeled kinematic data to unlabeled
data. Our approach leverages labeled data from common surgical
training tasks such as Suturing, Needle Passing, and Knot Tying
to jointly train a model with both labeled and unlabeled data.
Pseudo labels are generated for the unlabeled data through
an iterative manner that incorporates uncertainty estimation
to ensure accurate labeling. We evaluate our method on a
virtual reality simulated training task (Ring Transfer) using data
from the da Vinci Research Kit (dVRK). The results show that
trainees with robotic assistance have significantly higher expert
probability compared to these without any assistance, p < 0.05,
which aligns with previous studies showing the benefits of robotic
assistance in improving training proficiency. Our method offers
a significant advantage over other existing works as it does
not require manual labeling or prior knowledge of the surgical
training task for robot-assisted surgery.

Index Terms—Surgical skill assessment, surgical training,
Bayesian deep learning, virtual reality, robot-assisted surgery

I. INTRODUCTION

Robot-assisted minimally-invasive surgery (RAMIS) with
the advance of robotic platforms, such as the da Vinci sur-
gical system (Intuitive Surgical Inc., Sunnyvale, CA), has
revolutionized surgical interventions towards a safe, precise,
and less invasive approach for patient care [1, 2]. Despite
benefits, robot-assisted surgery is technically complex and
different for clinical operators compared to traditional open
interventions [3, 4]. It requires trainees to develop fundamental
technical skills, map task perception to appropriate actions,
and take valid operational strategies to properly control the
surgical tools [5]. Such proficiency could only be obtained
by sufficient training and structured practice with appropriate
feedback [6]. Therefore, understanding technical skills in var-

Ziheng Wang was with Department of Mechanical Engineering, The
University of Texas at Dallas, Texas, USA. email: zihengwang @intusurg.com

Andrea Mariani is with The BioRobotics Institute and the Department of
Excellence in Robotics & Al, Scuola Superiore Sant’Anna, Pisa, Italy.

Arianna Menciassi is with The BioRobotics Institute and the Department
of Excellence in Robotics & Al, Scuola Superiore Sant’Anna, Pisa, Italy.

Elena De Momi is with the Electronic Information and Bioengineering
Department (DEIB), Politecnico di Milano, Italy.

Ann Majewicz Fey is with Department of Mechanical Engineering, The
University of Texas at Austin & Department of Surgery, UT Southwestern
Medical Center, Texas, USA.

ious scenarios and providing accurate assessment for medical
trainees has paramount relevance in the field [7].

Typically, the acquisition of technical skills for surgery is
supported by verbal feedback from senior surgeons [8, 9],
and assessed using methods that are largely subjective and
resource-expensive, such as structured checklists and rating
scales [10, 11]. Recent advent of surgical robotic platforms
and Virtual Reality (VR) or computer-based simulators allows
to collect a broad set of recordings that are relevant to various
surgical operations [12—17]. Together with the advancements
in surgical data science, there is an increasing interest to assess
technical skills using tool kinematics and endoscopic videos
collected during basic training tasks [18, 19]. In addition,
recent studies in training augmentation have shifted the focus
towards the development of adaptive strategies for personal-
ized, self-directed surgical training [20-23]. This approach
is driven by the goal of maximizing learning by adapting
some training parameters to the trainee. More specifically, this
adaptation relies on a quantification of the trainee’s skill where
a training curricula or robotic assistance is adapted accordingly
as a function of the trainee’s learning progress [22-25]. Thus,
an accurate and continuous skill assessment is highly relevant
to enable an appropriate adaptation criterion and to provide
adequate feedback and timely guidance. Taken together, these
factors lead to a distinct necessity of an efficient solution for
assessing skills in personalized surgical training to better train
future robotic surgeons.

Pioneering surgical skill models ranging from shallow clas-
sifiers to advanced deep networks have been broadly exploited.
Classical machine learning algorithms such as support vector
machine (SVM), linear discriminant analysis (LDA), and hid-
den Markov models (HMM) are widely used to assess skills
based on low-level features extracted from either videos or
kinematic data [26-30]. In contrast, recent development of
deep learning leads to an increasing popularity due to its
superior end-to-end learning and automatic feature extrac-
tion capabilities. With a sufficient amount of labeled data,
convolutional neural network (CNN) and its modifications
could provide a high classification accuracy in several basic
surgical training exercises [31-35]. As sequence learners,
recurrent neural networks (RNN) such as long-term-short-
memory (LSTM) could explore complex temporal dynamics
of the sequential data and have shown a competitive accuracy
for measuring skills from motion kinematics [36, 37].

In general, there are two main drawbacks that existing
approaches typically feature when building a predictive model
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Fig. 1: Cross-domain Technical Skill Assessment for Robot-Assisted Surgery. Our proposed method starts with pre-training
a model using only the labeled data from a source domain, i.e., established basic surgical training exercises (referred to as
source domain data). This pre-trained model acts as a "teacher” to understand the unlabeled surgical training tasks of interest
in the target domain. Our approach leverages both the labeled source domain data and the abundant unlabeled data from the
target domain to improve representation learning. With the integration of an uncertainty estimation, the resulting skill model is
able to capture informative, domain-invariant knowledge from kinematics data. No manual labeling of surgical training tasks

in the target domain is necessary.

for skill assessment, particularly given broader, personalized
surgical training exercises. First, all these methods only utilize
the labeled data and are developed to assess skills of specific
tasks in surgical training, such as Suturing, Needle Passing,
and Knot Tying [38]. Despite high performance of skill as-
sessment has been reported in these studies, their effectiveness
in generalizing to new unlabeled data is less explored. In
particular, the abundant unlabeled data from the complex
settings of surgical training tasks can be very different from
the labeled ones. It remains less known whether the model
can generate meaningful skill labels given the new settings
of surgical training tasks (i.e. assessing skills in a training
task that is very different from the ones used to train the
skill model). Secondly, most existing methods assume the
availability of skill labels as the ground-truth required for
modeling. However, manual labeling is time-consuming and
labor-intensive as it involves significant efforts of experienced
professionals to assess skills based on their case review [38].
A new approach that can jointly explore the intrinsic charac-
teristics of unlabeled surgical data while leveraging available
information of labeled data is thus desirable.

This work focuses on the assessment of technical skills in
surgical training tasks based on kinematic data. We present a
two-stage framework that incorporates self-supervised learning
to capture inherent knowledge from both labeled and unlabeled
data. An uncertainty estimation is used to generate appropriate
pseudo labels for the target domain. Our approach leverages
both labeled and unlabeled data, allowing the model to capture
more inherent features of kinematics that are less specific
to a particular domain. Additionally, our approach does not
require prior skill labeling in the target domain, enabling the

assessment of skills without the constraint of skill labeling
which is typically challenging to acquire.
The key contributions of this paper are:

o A novel approach to assess surgical skills in unlabeled
kinematic data for new robotic surgical training exercises.

« A Bayesian self-supervised model with uncertainty regu-
larization that learns domain-invariant features from both
labeled and abundant unlabeled data.

« Validation of our approach on an unlabeled dataset from
standalone virtual reality simulation-based surgical train-
ing. By using pseudo labeling, we are able to extract
trainees’ learning curves and demonstrate alignment with
performance measures in VR training.

e A data-driven approach that eliminates the need for
manual labeling and prior task-specific knowledge for
heterogeneous surgical training exercises.

II. METHODOLOGY

We aim to assess technical skills in a unlabeled surgical
training task. We explicitly focus on a personalized, non-
standard training task, VR simulated Ring Transfer, which is
different from a typical setting of basic surgical training. We
formalize the problem as a cross-domain adaptation question
for skill assessment. Differently from conventional fully su-
pervised (only trained on labeled data) and fully unsupervised
learning (trained on unlabeled data) paradigms, our approach
seeks to learn a model by generalizing a source for which we
have labeled kinematic data with ground-truth skill labels to
a target domain where no true target skill label is available.



A. Preliminary

Formally, we denote the source domain as a group of labeled
samples, Dy, = {(x1,91), -, (z;,4:)} = {(X,Y)}, that
were collected from basic skill training. Each -th sample pair
is composed by the input kinematics data x; € R?, associated
with a corresponding skill class label y; € {1,--- , K'}. Here,
d is the dimension of input data and K is the number of
classes. Similarly, we denote the target domain as a set of
unlabeled samples Dy = {x1, -+ ,x;} = {X'}, x; € R%
Target domain was collected from a previously unseen exercise
involving robotic surgical skills, where no ground truth labels
of target domain are available.

In general, domain adaption refers to a set of approaches
predicting the labels of samples from target domain Dy,
using both labeled samples from source domain and unlabeled
samples from the target domain itself. As follows, the goal of
transferable skill assessment is to train a model fy(-) overs
Dy, and Dy that enables learning of both transferable features
and domain-invariant classifier. Here, the output of fy(-) is the
predictive class probability of skills and 6 denotes the learned
network parameters.

B. Self-supervised Learning Protocol

Self-supervised learning, also known as self-learning, refers
to a protocol that is specifically designed to learn from
both labeled and unlabeled data [39]. Typically, self-learning
approaches first construct an initial classifier based on the
labeled data. Then, the classifier is applied to some of un-
labeled data and make predictions using the model. These
predictions, namely pseudo labels, are included to re-train the
existing classifier in an iterative fashion until a certain stopping
criterion is satisfied.

We set up a similar procedure and devoted to domain
adaptation for transferable skill assessment: train a classifier on
the labeled source domain, produce approximate pseudo labels
of surgical exercises in target domain. Next, these pseudo-
labeled target samples are treated as labeled ones and used
for re-training a new classifier in target domain. Then, the
classifier explores the remaining set of target domain until
model learning converges or the maximum iteration number
is reached. In essence, self-learning considers the information
from both domains and enables to propagate knowledge from
the labeled source to the unlabeled target. Therefore, it could
not only exploit the hidden structures in motion kinematic data
that regularize learning, but help to find a shared feature space
that matches data distributions of both the domains.

We train the whole network (with parameters #) by mini-
mizing the loss between the model output fy(z) and the labels
(true labels from source and pseudo labels from target), while
penalizing large activation. Here, y denotes the true labels in
source domain x € Dr, and vy’ denotes the pseudo labels
of unlabeled samples in target domain z € Dy, Thus, the
overall loss £(6) is a weighted mixture of the cross-entropy
loss of labeled source domain, £;4peied, the cross-entropy loss
of pseudo-labeled ones from target domain, Lyscudo, and a L2
weight regularizer term:

L = Ligpeted + Lpseudo + M|0]|
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where a and A\ are two non-negative hyper-parameters to

balance contributions of three loss components. In particular,

the parameter o controls the importance of pseudo-labeled

target samples relative to the true labeled source samples. A

larger o could encourage selecting more pseudo-labels for

training, whereas a smaller o reduces the impact of target
samples for training.

Algorithm 1: Technical skill assessment with self-
learning and uncertainty estimation.

Input : Labeled source domain Dj,, unlabeled
target domain Dy, maximum iteration NV,
inference round 7', learning rate «,
pre-trained parameters ¢’

Output : Optimized network parameters 6

Initialization: Let training set Di,.q;n, = Dy, initialize
parameters with pre-trained network 6,
iteration index n = 1

1 repeat
2 for all x € Dy do
3 Variational MC-dropout inference with T’
stochastic forward passes
4 Determine uncertainty of the input sample x
end

Infer the softmax class probability of pseudo labels
for unlabeled target samples '

7 Select the first k target samples with lowest
uncertainty of pseudo labels, Dy,

Update training set by Dyrqin < Dirain U Dy

Update remaining unlabeled dataset in the target
domain by Dy < Dy — Dy,

10 if n%2 == 0 then

11 ‘ Update a learning rate by a™ < o™ ! % 0.5

12 end

13 Feed forward the current training data Dy,.q;y, and
backward propagation minimizing cost £(6)

14 Update the network parameters 6

15 n<n+1

16 until converge or n == N

17 return 6

C. Uncertainty Estimation

Jointly learning classifiers and optimizing pseudo labels on
unlabeled target domain is naturally difficult since it is not
possible to completely guarantee the correctness of generated
pseudo labels given an existing model. The uncertainty could
come from the variability in the relationship between observed
tool kinematics data and the corresponding skill class outputs.
Conventionally, pseudo labels were selected for self-learning
by taking the class which has the maximum softmax class
probability or the one with corresponding probability that is



larger than a predefined threshold (chosen experimentally).
The softmax function approximates relative class probabilities,
but it did not capture any uncertainty or confidence information
regarding the prediction outputs [40]. To cope with this
issue, our strategy is first to estimate the model uncertainty
of skill predictions and then seek for pseudo labels from
the most confident ones in unlabeled target domain. These
high-confidence pseudo labels presumably approximate the
underlying true target labels and could thus better help self-
learning adaptation.

Bayesian probability theory has offered us a statistically
principled way to infer the uncertainty within deep learning
tools [41]. Research has shown that any deep learning model
can be arbitrarily interpreted into Bayesian ones, which are of-
ten referred as Bayesian neural networks. In Bayesian settings,
the model uncertainty, also referred to as epistemic uncertainty,
could be readily derived from the variances of prediction with
respect to the distribution of network parameters 6, i.e., poste-
rior p(0|X,Y"). The distribution characterizes the uncertainty
or confidence of model that conforms to the observed data
(X,Y) € Dirain- Although the posterior p(0|X,Y") is analyti-
cally intractable, a popular approach, variational inference, can
approximate it with a simpler approximating distribution that
is much easier to sample with, while minimizing the Kullback-
Leibler (KL) divergence between the approximating distribu-
tion and the true posterior [42]. Kendal et al. [43] show that
the variational inference using stochastic Monte-Carlo dropout
(MC dropout) could allow to approximate Bayesian posterior
and minimize the cross-entropy loss of a network with dropout
is equivalent to minimizing the KL divergence. Differently
from the standard dropout that is used for regularization in
training, MC approach stochastically drops out parameters of
existing model at test time, which is equivalent to impose a
Bernoulli distribution on parameters, to obtain the posterior
approximate.

To allow uncertainty estimate for self-learning, we extend
and cast our skill model into the Bayesian setting and imple-
ment MC dropout to obtain the uncertainty estimates over the
current network. In practice, estimating prediction uncertainty
was accomplished as follows: (1) Given an existing classifier
with network parameters 6, we run the network with a chosen
number of stochastic forward passes T, where each unit has
a probability p of being set to 0. (2) We collect the softmax
probability outputs for each skill class in the ¢-th forward pass
(t=1,---,T). (3) From the outputs over 1" forward passes,
the final prediction of class probability and uncertainty are
taken to be the average and variance of predictions of each
class, as defined in Eq. 2 and Eq. 3, respectively. Further,
we derive the entropy of per-class uncertainty as the overall
uncertainty measure given the input data.

el
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where f;(-) denote fy(-) when including MC dropout, 0 is the
current network parameter ¢ masked by the dropout during
inference.

Taken together, Algorithm 1 depicts the overall procedure
in details. Initially, the inputs are the labeled samples from
source domain Dy, and unlabeled samples of target domain
Dy . After initialization with pre-trained network parameters
6', our approach performs the following major steps: (1) Given
current model parameters, MC-dropout variational inference
was conducted to query the uncertainty of predictions over
the unlabeled samples z € Dy. (2) Each unlabeled sample
are assigned with pseudo labels by taking the class which
has the maximum average class probability. (3) Subset of
target domain D}, C Dy in which the target samples with
the first k£ lowest amounts of uncertainty are added to the
current training set Dyyqin, < Dirqain UDy and simultaneously
removed from unlabeled target domain Dy <+ Dy — Dy;. (3)
Re-train a new classifier using the updated training set Dy,.qin.,
and update network parameters 6. The classifier explores the
remaining unlabeled data Dy with smaller confidence until
learning converges or maximum iteration is reached.

In our experiment, we fixed MC-dropout probability as
p = 0.5 for each dropout layer, the total number of forward
passes for inference was set as T' = 50 as we sample T = 50
prediction outputs for each input, and the number of selected
target samples (pseudo-labeled) in each training iteration was
k = 50. The hyper-parameters were chosen empirically as they
have shown a faster training convergence for modeling. As our
model may no longer achieve the best classification for source
domain after adapting to the target domain, we adopt the term
“converge” to denote the best model for which it is confident
enough to make a prediction for the target domain.

D. Architecture

Fig 2 shows the overview of our proposed architecture.
The network input is the motion kinematics measured from
robot end-effectors and the output is an estimated softmax
probability of skill classes that the input data is drawn from,
along with an estimate of prediction uncertainty.

The network consists of two main components where the
input data flows through in parallel: a convolutional component
and a recurrent component. The convolution component com-
prises two stacked convolutional layers that extract local pat-
terns along the length of time-series data. Each convolutional
layer is followed by a ReL.U activation and a standard dropout
layer with 0.2 dropout rate to reduce the risk of overfitting.
A global average pooling layer is then applied to sum out
the spatial information. It enables the network to handle input
sequences of varying lengths. Also, the global average pooling
could largely reduce the number of network parameters and
thus help to alleviate overfitting. In parallel, the recurrent
component consisted of two bi-directional LSTMs followed by
a standard dropout layer. The two sets of features from both
components are concatenated and then fed through a dense
layer. Finally, the network is forked at the last layer to have
two outputs: the skill probability output through a layer with
softmax nonlinearity, and an uncertainty estimate obtained
from the aforementioned Bayesian variational inference.



TABLE I: A comparison of datasets collected from independent surgical training tasks. Source: basic tasks of robot-assisted
surgical training. Target: simulated ring transfer task with adaptive haptic assistance. dVSS denotes the da Vinci Surgical System
and dVRK is the da Vinci Research Kit. MTM and PSM represent the master tool manipulator and patient side manipulator,

respectively.
Category Setup Training Task Controller Assistance Skill Labels Subject Session Sample Size
Suturing
. dVSS MTMs
Dry L A - 12
Source ry Lab Needle Passing dVSS PSMs N/ Labeled 8 0
Knot Tying
Target  Virtual Reality ~Ring Transfer dVRK MTMs Adaptive Unlabeled 16 10 1280

simulated PSMs

Haptic Guidance

Class Probability [T  Uncertainty '

Softmax 1

Fully Connected [ [ [ [ T | Var\atlonal
Layer Concatenate T Inference
Convolutional Recurrent

Feature Embeddings Feature Embeddings

HHE- &ﬁ

&4

Recurrent

Global
T Average Pooling

IIIIII
Normallzatlon
_—_—_

T Convolution

Batch
Normallzatlen

T T T T T T
P
1 Ccnvolutlon

HHIH\IIIIIII\
./\/\.\/ A /\/\/ JANS

Fig. 2: Overview of the proposed architecture for technical
skill assessment. The network utilizes multi-dimensional tool
kinematics data collected from da Vinci surgical robot API.
The output is the softmax class probability of skills along
with an uncertainty estimate of the predicted skill.

III. EXPERIMENTS

A. Datasets

Two datasets in the field of robotic surgical training were
used: the first dataset is denoted as the source domain, which
contains labeled data with the skill annotations from basic
surgical training tasks; the other is the target domain which
contains unlabeled data collected from a VR simulation-
based surgical training task that was characterized by the
application of adaptive haptic guidance during its execution.
Both datasets contain tool kinematics that were collected from
daVinci robotic surgical systems. The kinematics of two master
tool manipulators (MTMs) and two corresponding patient-
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Fig. 3: Snapshots of trainee operations in three basic surgical
training tasks (source domain dataset), including Suturing,
Needle Passing, and Knot Tying [38].

side manipulators (PSMs) were monitored and captured as
multi-dimensional time-series. All kinematic variables were
collected with 30 Hz sampling frequency. Specifically, the
source domain data contains the joint kinematic variables
from each robot manipulator, including Cartesian position (3),
rotation matrix (9), linear velocity (3), angular velocity (3),
and gripper angle (1), resulting 76-dimensional time-series
per trial, while the target domain data contains all variables
except for the measures of joint linear velocity, resulting
48-dimensional time-series per trial. To align with the data
measurements in two datasets, we only considered the 48
common kinematic variables. The two datasets are described
below and summarized in Table 1.

Source Domain Dataset: The source domain dataset are
labeled kinematics samples from a public-available technical
skill dataset, namely the JHU-ISI Gesture and Skill Assess-
ment Working Set (JIGSAWS) [38]. Subjects were required to
perform three basic surgical training tasks: Suturing, Needle
Passing, and Knot Tying. Fig. 3 shows the snapshots of
the training tasks from JIGSAWS. Each surgical task was
completed over 5 repetitions. Eight subjects in total with
varying robotic surgical experience participated in the exper-
iment, including four novice trainees (who practice on dVSS
< 10 hours), two intermediate trainees (with 10—100 hours
of practice), and two expert surgeons (with >100 hours of



Adaptive Ring Transfer

Fig. 4: Snapshots of unlabeled VR ring transfer task (target domain dataset). Subfigures show the involved main gestures: (1)
reach out the right arm to grasp the ring, (2) transfer the ring along the wire, (3) switch the ring from right to left, and (4)
release the ring. 16 subjects participated in 10 skill simulation sessions (8 repeated exercises in each session). During training,
adaptive haptic assistance (wrench to the master manipulators) were generated to assist trainees in controlling the virtual patient

side manipulators (PSMs) [22].
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Fig. 5: Intensity of haptic assistance for assisted subjects in
every repetition of ring transfer task in the target domain. [22]

practice). For simplicity, in this work we only consider two-
class skill labels, namely, novice and expert, and the trainees
with less than 100 hours are considered as novice, although our
method can be adapted into multi-class settings with novice,
intermediate and expert classes.

Target Domain Dataset: The target domain includes sam-
ples obtained from a scenario of personalized assistance-as-
needed VR surgical training exercises [22]. In the experiment,
each subject performed a ring transfer or steady hand task:
the trainee moves a ring along a curved wire pathway, while
attempting to avoid the ring and wire making contact and
keeping the rings plane perpendicular to the wires tangent.
Fig. 4 shows some snapshots of the ring transfer task. Sixteen
subjects without medical background and with none to little
experience in robotic teleoperation (12 males and 4 females,
all right-handed) participated in the experiment and were
randomly divided in two groups: an experimental (assisted)
group and a null (non-assisted) group. The training task was
carried out in 10 sessions over 5 days (2 sessions per day),

where in each session subjects performed the same exercise
over 8 repetitions.

For the group with robotic assistance (Assisted), trainees
received an adaptive visco-elastic haptic guidance during the
training session, that means forces and torques were applied
to the MTMs in order to guide the trainee towards an ideal
motion. The intensity of haptic guidance was adapted to a
real-time measure of the subjects performances according to
the assistance-as-needed paradigm [44, 45] in order to prevent
cognitive overload at the beginning and slacking once trained.
Consequently, the assistance intensity decreased all over the
training as the trainees began learning how to perform the
visuo-motor task. Fig. 5 shows the assistance intensity level
provided for the group of subjects where each subject received
full assistance after baseline assessment and the guidance was
totally removed after 6 sessions.

In contrast, trainees in the non-assisted group (Non-assisted)
performed the task without receiving any robotic assistance
throughout all the sessions. Details regarding the design of
haptic assistance can be found in [22].

B. Implementation Details

Before feeding the motion kinematics into the network,
we performed pre-processing for the raw data in two steps.
First, we down-sampled data samples from both source and
target domains by a factor of 30 (from the original sampling
rate 30 Hz to 1 Hz). The purpose of down-sampling is to
reduce unnecessary computational load. Then, normalization
was also applied to each channel of all kinematics variables
by subtracting the mean and dividing by the corresponding
standard deviation.

We implemented our methodology in Keras with Tensorflow
1.9 API as backend based on Python 3.6. All experiments
in this study were remotely run on the UTSouthwestern
BioHPC server and utilized a computing cluster equipped



with a NVIDIA Tesla P100 GPU with 16 GB memory and
72 CPUs with 256 GB memory running a Linux kernel. To
initialize the network, we first pre-trained the network on the
source domain data given the known skill labels in JIGSAWS
as ground-truth. We selected the best model as the one with
the minimized loss on the validation set. For training, we
utilized the following hyper-parameters: 100 training epochs,
stochastic gradient decent as chosen optimizer with initial
learning rate as 0.001, first and second momentum of 0.9 and
0.999, and weight decay of 10~8. Before fitting the model in
each epoch, the training set was randomly shuffled to achieve
a robust process of model learning.

C. Statistical Analysis of Pseudo Labeling in Target Domain

Since no ground-truth skill labeling is currently available
in the target domain dataset, we perform a statistical analysis
in order to check for the effectiveness of pseudo labeling for
extracting skill patterns. We hypothesize that the generated
pseudo labels, given the skill knowledge has been generalized
from the source to the target domain in the model, can provide
meaningful significant results to reveal the motor skill learning
pattern during a surgical training, and also be in align with
prior studies that robotic assistance would help improve the
proficiency of surgical training in general. We performed
a two-way ANOVA analysis to determine the significance
of skill probability between the training groups of subjects,
the training sessions, and the interaction between the two.
Similarly, another two-way ANOVA analysis was performed to
check the significance differences between the training groups
(Assisted and Non-assisted), the training stage (Pre-training
and Post-training), and the interaction between the two. A
post-hoc Tukey comparison was used to compare different
levels and highlight the significant effects within each group.

IV. RESULTS & DISCUSSION

To validate the effectiveness of our proposed approach for
assessing skills, we first analyze the class probability of skills
and model uncertainty when inferring skill labels for the
unlabeled surgical training. For the simplicity of discussion,
we only focus on the probability of the predicted expert
class. We first obtained the skill probability and uncertainty
estimate of each trial and then averaged cross the eight trials
in the corresponding session (8 repeated trials per session),
respectively. In particular, we extract the motor learning curve
from the output of skill predictions and investigate how the
trainees’ skills and model uncertainty varies as a result of
robotic assistance and time when surgical training proceeds.
Following that, we explore and compare the skill probability
with task performance metrics that were measured in real-time
during each trial of the surgical training. We hypothesize that
the generated pseduo labels of the unlabeled data can inform
the inherent learning curve in the surgical training and align
with the results informed by task performance metrics.

A. Skill Probability and Prediction Uncertainty

Fig. 6 (A) and (B) present the expert probability of robot-
assisted and non-assisted subjects per repetition (left, averaged

across corresponding group) and per session (right, averaged
across all repeated trials), respectively. Table II summarizes
all the statistics.

In general, skill learning of both assisted and non-assisted
subjects was characterized by an increase of expert class
probability (or, equivalently, a decrease of beginner class
probability) as the surgical training proceeded. Significant
difference was found between the assisted and non-assisted
subjects on the skill probability, p < 0.05. Specifically, the
subjects with robotic assistance were associated with con-
siderably higher probability of expert after the initial three
sessions. On the other hand, non-assisted subjects who did not
receive any haptic assistance showed a continuous increase of
technical skills within the first four sessions. However, non-
assisted subjects had the larger variances of skill probability
after the 4*" session. This result can be explained by the fact
that the non-assisted group underwent a management for self-
improvement as the surgical training repetitions proceeded.
Nevertheless, it might be more difficult for trainees to pick
up the most representative, expert-relevant motion patterns
without any assistance, and thus resulted in a less efficient
learning outcome at the final stage of training. Importantly,
the assisted subjects had a trend with continuous decrease
of expert probability in the first three sessions (maximum
haptic assistance). This result might be due to the fact that the
advent of haptics may change the trainees’ intended motion
and consequently interfere their initial learning momentum,
and thus trainees would need to adapt to the changes for an
improvement. Nevertheless, the assisted subjects demonstrated
a considerable improvement in their skills in and after the 4"
session. The differences of skill probability in the first three
session and the 4*" session can be explained by the increased
familiarity of subjects such that significant improvements are
shown.

Fig. 7 compares the expert class probability between the
initial training (first session) and post training (last session).
The figure highlights the motor learning outcome as the result
of surgical training. As shown, either assisted or non-assisted
subjects have significantly higher expert probability after the
training compared to the initial training session. This result
confirms that repeated training practices in general could help
trainees in achieving a potentially higher expertise. Note that
the steeper learning curve, as revealed by the dotted lines,
indicates that the robotic assistance potentially increased the
rate of learning for performing the complex motor task. Even
though the assistance intensity was adaptively diminished
after 3! session and no assistance was provided after 6"
session, trainees were able to improve their technical skills
more efficiently and to retain this improvement even after the
assistance removal.

Fig. 8 shows the averaged prediction uncertainties in each
session of VR surgical training. The value of uncertainty
is determined by the MC-dropout variational inference and
reflects the level of predictive confidence when outputting
a specific skill label given an input of motion kinematics.
In general, surgical skills in the initial phase of surgical
training are relatively more uncertain than the final stage.
As the surgical training proceeds, the level of uncertainty for
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Fig. 6: Average class probability of expert in the target domain ring transferring with adaptive robotic assistance. (A) assisted
subjects, (B) subjects without assistance. Left: the skill probability with respect to each repetition. Right: the probability in
each session (8 repeated trials per session). The bar represents the standard deviation across the eight trials of each user in

each session.

assessing skill decreases. The uncertainty could come from
the variability between the observed motion data of trainees
and the corresponding skill output. As the consequence of
iterative practice, trainees could demonstrate distinguished
motion patterns that provide a higher certainty of their skill
levels, with or without robot assistance. We also note that
non-assisted subjects are relatively more uncertain than the
assisted subjects, especially at the end of surgical training.
One interpretation is that between the assisted and non-assisted
group, the motion profiles of assisted subjects could demon-
strate more consistent signatures that are characteristic of high
expertise; in contrast, subjects without robotic assistance might
carry less distinguishable skill information in the motion that
is hard to measure.

B. Compare to Task Performance Measures

In the absence of skill labels in the target domain dataset, we
evaluated the validity of the generated pseudo labels by com-
paring their probabilities with the task performance metrics.
These metrics, which include completion time, translational
root mean square errors, and rotational root mean square
errors, were used as a proxy measure of technical skills to
indicate motor learning in the surgical training task. The

task performance metrics were collected in each training trial
and the average performance for all subjects is presented in
Fig. 9. As shown, a clear learning curve of the trainees is
captured by the task performance metrics. Consistent with
our skill predictions, the non-assisted subjects improved their
performance after multiple training sessions. Additionally, the
assisted subjects showed better performance improvement due
to the contribution of haptic assistance.

However, the evolution of the users’ task performance met-
rics differs from the ones inferred from our skill predictions
in terms of their slope and saturation. Specifically, the task
performance metrics tend to be more sensitive to changes in
assistance. We observed that, for the assisted subjects, the task
performance measures rapidly improved when the maximum
haptic assistance was activated, but showed relatively larger
variances after the fourth session when the assistance intensity
decreased. In contrast, as measured by the skill probability,
the assisted subjects showed long-term persistence at the final
stage of the training, indicating stable and consistent skill
learning over time, even with a decrease in the intensity
of haptic assistance. The discrepancy between the predicted
skill and task performance metrics makes sense. The task
performance metrics accurately reflect the direct impact of the



TABLE II: Two-way ANOVA statistical analysis of the expert class probability within the subject group (Assisted/Non-assisted)
and training group (Session, Pre/Post-Training). For simplicity, the post-hoc Tukey comparisons were considered within the

group of subjects and the group of Pre/Post-training only.

Subject Group

Training Group

Interaction

Assisted/Non-assisted Session

Pre/Post-training Assistx Session Assistx Pre/Post-training

4 < 0.001* 0.002*

< 0.001* < 0.001* 0.692

Tukey Comparison Non-assisted<Assisted -

Pre-training<Post-training - -
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Fig. 7: Class probability of expert before (first session) and
after (final session) training. Red denotes the subject group
with robotic assistance and the blue represents the one with-
out robotic assistance (non-assisted). The marker denotes the
average value and the bar represents the standard deviation
in each group. The slope of dotted line represents the motor
learning rate. Overall, skills of both groups were significantly
improved after training with higher expert class probability
(p < 0.05), in align with performance metric measures, while
the robot-assisted group shows a slightly larger learning rate.

physical assistance provided by the robotic system through its
haptic guidance. The purpose of this guidance is to align the
surgeon’s current pose with the ideal one, resulting in optimal
task performance metrics, by minimizing the translation and
orientation errors. On the other hand, the predicted skills
reflect a more complex motor learning process and changes in
these skills may not be immediately reflected in the surgeon’s
performance. This could be considered an advantage of our
approach for skill assessment, as it allows for the assessment
of skills without any “assistance bias” in training scenarios
that include robotic feedback or guidance.

Asteroid * represents significance p < 0.05

Robot-assisted Non-assisted

5 6 7 8 9 10
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Fig. 8: Uncertainty of predicted skill labels for the robot-
assisted and non-assisted group in each session of surgical

training. The bar represents the standard deviation across eight
repetitions in a session.
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C. Limitations

This study focuses on adapting skill models from a fully-
labeled dataset to a VR simulated training exercise and aims
to investigate the transferability of skills across physical and
virtual environment. The source data consists of only the
labeled data of standardized training exercises, but its limited
size may impact the generalizability of the skill models. To
address this, future work could involve collecting a larger
dataset for pretraining. The selected surgical training exercises
from the source and target domains in our study are different
but limited in term of the complexity. For future work, we
plan to extend the analysis to include more complex tasks in
boarder fields of surgical training, such as physical box trainers
and wet-lab exercises [46]. We believe that a comparison of
the skill models presented in our study and those measured
on physical box trainers could help to provide insights into
the training proficiency and outcomes across different environ-
ments [47, 48]. Additionally, a more granular analysis of the
skill models at surgical phase and task level might be helpful
to reveal the corresponding surgeons’ skills and workflow
patterns [7, 49]. Furthermore, it would be interesting to explore
the potential of this approach to generalize from technical to
non-technical skill assessment in surgical training [50, 51].

V. CONCLUSION

The present study aims to assess objective surgical skills
across domains by adapting existing skill models from a
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Fig. 9: Overall task performance of (A) assisted subjects, (B) non-assisted subjects. The metric is calculated as the mean of
three normalized measures of task performance: time, translational RMSE, and rotational RMSE, and indicates the overall
performance of surgical operations. On the left, the performance of each repetition; on the right, the aggregated performance
in each session. The error bar represents standard variance across eight repeated trials in each session.

labeled dataset to a virtual reality (VR) training exercise. Our
method leverages the knowledge gained from basic robot-
assisted surgical training exercises and enables a valid adap-
tation to unlabeled kinematic data.

To the best of our knowledge, this is the first study to
generalize skill assessment to diverse surgical training exer-
cises where full annotations are often difficult to obtain. We
evaluated our method in a cross-domain surgical training task
that employs adaptive assistance for trainees. Our approach
is capable of learning domain-invariant features from both
labeled and unlabeled data, and was able to construct learning
curves throughout the training task. The results showed that
trainees using robotic assistance have significantly higher
probabilities of becoming experts compared to those without
assistance (p < 0.05). This result is consistent with prior per-
formance measures, indicating that proper robotic assistance
can improve trainees’ learning and speed of skill acquisition.
The uncertainty in generating the corresponding skill label was
also significantly lower with the assistance.
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